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In this paper we focus on Dyck paths with peaks avoiding or restricted to
an arbitrary set of heights. The generating functions of such types of Dyck
paths can be represented by continued fractions. We also discuss a special case
that requires all peak heights to either lie on or avoid a congruence class (or
classes) modulo k. The case when k = 2 is especially interesting. The two
sequences for this case are proved, combinatorially as well as algebraically, to
be the Motzkin numbers and the Riordan numbers. We introduce the concept of
shift equivalence on sequences, which in turn induces an equivalence relation
on avoiding and restricted sets. Several interesting equivalence classes whose
representatives are well-known sequences are given as examples.

1. Introduction

An n-Dyck path is a lattice path in the first quadrant with end points (0, 0) and
(2n, 0), and consists of two kinds of steps—rise step: U = (1, 1) and fall step:
D = (1, −1). Let Dn denote the set of all n-Dyck paths and D = ∪n≥0Dn ,
the set of all Dyck paths. It is well known that |Dn|, the cardinality of Dn ,
equals the nth Catalan number, cn = 1

n + 1

(2n
n

)
, and that the generating function

Address for correspondence: S.-P. Eu, Department of Applied Mathematics, National University of
Kaohsiung, Kaohsiung, Taiwan.

STUDIES IN APPLIED MATHEMATICS 111:453–465 453
C© 2003 by the Massachusetts Institute of Technology
Published by Blackwell Publishing, 350 Main Street, Malden, MA 02148, USA, and 9600 Garsington
Road, Oxford, OX4 2DQ, UK.



454 S.-P. Eu et al.

C(z) := ∑
n≥0 cnz n satisfies the functional equation C(z) = 1 + zC(z)2 and

then, of course, C(z) = 1 − √
1 − 4z

2z explicitly.
A similar structure is an n-Motzkin path [5, 6, 12], which is a lattice path

in the first quadrant starting at (0, 0) and ending at (n, 0), and consists of
one more type of step—level step: L = (1, 0). Let Mn denote the set of
all n-Motzkin paths and M = ∪n≥0Mn , the set of all Motzkin paths. The
cardinality of Mn , denoted by mn, is the well-known nth Motzkin number. It
is also well known that the generating function M(z) := ∑

n≥0 mnz n satisfies

M(z) = 1 + zM(z) + zM(z)2 and explicitly M(z) = 1 − z − √
1 − 2z − 3z2

2z2 .
A peak of a Dyck path is the joint node formed by a rise step followed by a

fall step. The height of a peak is the y-coordinate of this node. Given a Dyck
path P, let HP denote the set of heights of all peaks of P. In this article, we
study the class of Dyck paths P such that every peak of P keeps away from an
avoiding set A ⊆ P, i.e., HP ∩ A = Ø where P is the set of positive integers.
Let Dn,A denote the set of such n-Dyck paths and DA = ∪n≥0Dn,A, the set of
all Dyck paths with heights avoiding A. Also let DA (z) be the generating
function of |Dn,A|. The concept of having heights avoiding A is dual to the
concept of having heights confined to the restricted set R := P − A, i.e., Hp ⊆
R. We shall also discuss the case of restriction, because sometimes R is very
neat to use. We define, in a similar manner, Dn,R , DR , and DR(z).

Some special cases have been studied before. For instance, Deutsch showed
that |Dn,{1}| is exactly the nth Fine number [3]. The general case Dn,{h} for any
fixed h ∈ P was considered by Peart and Woan [11]. They proved that |Dn,{2}|
equals the (n − 1)st Catalan number. Mansour also studied the Dyck paths with
fixed number of peaks with height h [10]. The case that R = {1, 2, . . . , h} was
well studied and the generating function DR(z) has recently been related to
pattern-avoiding permutations and Chebyshev polynomials [2, 8, 9].

The organization of the paper is as follows. In Section 2, we discuss the case
that A is the set of odd/even positive integers, and show that the Dyck paths
without peaks of even heights are counted by shifted Motzkin numbers; while
Dyck paths without peaks of odd heights are counted by Riordan numbers.
Two proofs, one bijective and the other algebraic, of the mentioned numerical
results are given.

In Section 3, we consider the general case that involves either an arbitrary
avoiding set A or an arbitrary restricted set R, and derive a reduction formula
for the generating function. Furthermore, when A (or R) is finite, the reduction
formula yields an explicit formula in the form of a continued fraction. We also
discuss the case when A and R are congruence classes modulo k for some
integer k > 1.

In Section 4, we introduce an equivalence relation among avoiding sets,
as well as among restricted sets, according to the shift equivalence between
sequences arising from these sets. Several interesting equivalence classes,
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including generalized Catalan numbers, Fine numbers, k-Fibonacci numbers,
and bisection of Fibonacci numbers, are given as examples.

In the final section, we conclude with several directions of further research
pertaining to the present work.

In what follows, Z, P, and N denote, as customary, the sets of integers,
positive integers, and non-negative integers, respectively. Also let |S| be the
cardinality of a set S and ‖P‖ the semilength (resp. length) of a Dyck (resp.
Motzkin) path P.

2. Dyck paths without peaks of odd or even heights

Let O and E be the sets of odd and even positive integers, respectively. In this
section we discuss the classes DO and DE. We first note that DO = DE and
DE = DO. For convenience, we set on = |Dn,O| and en = |Dn,E|. It is obvious
that o0 = e0 = 1. As for the other on and en, we found their connections with
two famous sequences—Motzkin and Riordan numbers.

THEOREM 1. For n ≥ 1, the number en of n-Dyck paths without peaks of
even heights is equal to the “shifted” Motzkin number mn−1. The number on of
n-Dyck paths without peaks of odd heights is equal to the number of n-Motzkin
paths without level steps on the x-axis.

Bijective proof : To prove the first part of this theorem, it suffices to devise
a bijection between Mn−1 and Dn,E. Let us define a map φ : {U , L , D} →
{UU, DU, DD} by φ(U ) = UU, φ(L) = DU, and φ(D) = DD. Given any
(n − 1)-Motzkin path M = S1S2 . . . Sn−1, we define φ(M) = φ(S1)φ(S2) . . .

φ(Sn−1). The corresponding n-Dyck path of M is then P = Uφ(M)D.
For example, M = LULUDD corresponds to P = UDUUUDUUUDDDDD.
It is clear that P contains no peaks of even heights, and that such map
Mn−1 → Dn,E is bijective.

Now we prove the second part of the theorem. It is not hard to see that
φ−1(Dn,O), the inverse image of n-Dyck paths without peaks of odd heights,
consists of n-Motzkin paths without level steps on the x-axis, and that φ is a
bijection between these two sets. Thus the second statement follows. �

Surprisingly, we found that on also equals the nth Riordan number rn. So
we unveil the connections of Riordan numbers with Dyck paths and with
Motzkin paths. To verify this combinatorial equivalence, we need the following
combinatorial bijection.

LEMMA 1. The number of n-Motzkin paths with at least a level step on the
x-axis is equal to the number of (n + 1)-Motzkin paths without level steps on
the x-axis.
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Proof : Let M be an n-path of the former type in the statement. Decompose
M into M1LM2, where L is the first level step on the x-axis. The corresponding
(n + 1)-Motzkin path is defined as M ′ = M1UM2 D, which obviously has no
level steps on the x-axis. The inverse of the map M → M ′ is easily constructed
by replacing the last U of M ′ rising from the x-axis with a level step L and then
removing the last step of M ′, which is a fall step D of course. Clearly, such
map is a bijection between these two types of Motzkin paths and the lemma
follows. �

In the next theorem, we innovate three representations for the Riordan
number.

THEOREM 2. The nth Riordan number rn counts the following classes of
paths:

(i) n-Motzkin paths without level steps on the x-axis;
(ii) (n + 1)-Motzkin paths with level steps on the x-axis;

(iii) n-Dyck paths without peaks of odd heights, i.e., rn = on.

Proof : By Lemma 1, (i) and (ii) are equivalent. By Theorem 1, (i) and (iii)
are equivalent. Now we need only prove that rn counts the class of paths in
(i). The statement is obviously true when n = 0. To proceed inductively, we
assume that it is true for n. Now let us refer to the identity

mn = rn + rn+1, (1)

given by Berhart [1]. By this identity and the induction hypothesis, it follows
that rn+1 counts those n-Motzkin paths with at least a level step on the x-axis.
Therefore, by Lemma 1, rn+1 counts those (n + 1)-Motzkin paths without
level steps on the x-axis. This completes the induction. �

Those combinatorial structures enumerated by the Riordan numbers studied
previously involve plane trees and partitions [1]. Theorem 2 enriches the list
of objects counted by the Riordan numbers. It would be interesting to find
bijections from either one of the three classes of paths to plane trees and to
partition, etc. It is also worth mentioning that Theorems 1, 2, and Equation (1)
together imply that

|Dn,E| = |Dn−1,O| + |Dn,O|.

To prove Theorems 1 and 2 algebraically, we consider the generating
functions M(z) and R(z) of mn and rn, respectively. It is known that
R(z) = 1

1 + z + z R(z)2 and explicitly
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R(z) = 1 + z − √
1 − 2z − 3z2

2z(1 + z)
.

Algebraic proof of Theorems 1 and 2: Let O(z) and E(z) be the generating
functions of on and en, respectively. For any P ∈ DO, either P = Ø or P =
UP1DP2, where P1 ∈ DE with the semilength ‖P1‖ > 0 and P2 ∈ DO. Thus,
the generating functions O(z) and E(z) satisfy

O(z) = 1 + z(E(z) − 1)O(z).

Similarly, for any P ∈ DE, either P = Ø or P = UP1DP2, where P1 ∈ DO
and P2 ∈ DE. Thus we have

E(z) = 1 + zO(z)E(z).

Solving the system of these two identities, we obtain E(z) = 1 + z − √
1 − 2z − 3z2

2z =
1 + zM(z) and O(z) = 1 + z − √

1 − 2z − 3z2

2z(1 + z) = R(z); thus, the proof follows. �

3. Dyck paths with heights of peaks avoiding/restricted to any set

In this section we discuss the generating functions DA (z) and DR(z) of |Dn,A|
and |Dn,R|, respectively, where A and R are arbitrary sets of positive integers.
Clearly, DØ(z) = C(z) and DØ(z) = 1, where C(z) is the Catalan generating
function. Given S ⊆ P and i ∈ P, we define S + i := {n + i | n ∈ S} and
S − i := P ∩ {n − i | n ∈ S}. Notice that the notation S − {i} is the set obtained
by removing i from S.

Given any Dyck path P ∈ DA with semi length ‖P‖> 1, it can be decomposed
into UP1DP2, where D is the first fall step back to the x-axis. Clearly, P1

belongs to DA−1 and P2 is in DA. Notice that when 1 ∈ A the semilength ‖P1‖
must be greater than zero; while ‖P2‖ is unrestricted in any condition. So one
obtains DA (z) = 1 + z[DA−1(z) − β(1 ∈ A)]DA (z), where β is the Boolean
function such that β(true) = 1 and β(false) = 0, and derives a reduction
formula

DA (z) = 1

1 + zβ(1 ∈ A) − zDA−1(z)
. (2)

In case A is a finite set with m = max A, we derive an explicit formula in the
form of a continued fraction with (m + 1) layers:
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DA (z) =
1

1 + zβ(1 ∈ A) − z

1 + zβ(2 ∈ A) − z
. . .

1 + zβ(m − 1 ∈ A) − z

1 + z − zC(z)

,

where C(z) is the Catalan generating function. For the combinatorial aspects of
continued fractions, see [7].

Example 1. Let A = {2, 3}. We have

D{2,3}(z) = 1

1 − z

1 + z − z

1 + z − zC(z)

.

Because C(z) = 1 + zC(z)2 or 1 − zC(z) = 1
C(z) , this continued fraction

is simplified as D{2,3}(z) = 1 + z + z2C(z). Thus, for n ≥ 2, the number of
n-Dyck paths with heights of peaks avoiding {2, 3} equals the shifted Catalan
number cn−2.

Example 1 is not coincidental. The fact that |Dn,{2}| = cn−1 was shown by
Peart and Woan [11]. Here we provide a generalization as follows.

THEOREM 3. Let m and n be integers with n ≥ m ≥ 2. The number of
n-Dyck paths with heights of peaks avoiding {2, 3, . . . , m} equals the shifted
Catalan number, cn−m+1.

Proof : With 1 − zC(z) = 1
C(z) , it is easy to prove by induction that the

m-layer continued fraction

z

1 + z − z

1 + z − z
. . .

1 + z − z

1 + z − zC(z)

is equal to z + z2 + ··· + zm−2 + zm−1C(z)
1 + z + z2 + ··· + zm−2 + zm−1C(z) .
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Therefore

D{2,3,...,m}(z) = 1

1 − z + z2 + · · · + zm−2 + zm−1C(z)

1 + z + z2 + · · · + zm−2 + zm−1C(z)

= 1 + z + z2 + · · · + zm−2 + zm−1C(z),

and the proof follows. �

In the next section, we will give further generalizations of this theorem for
both avoidance and restriction. Bijective proofs of the generalizations will also
be provided.

In an analogous manner, we derive the following reduction formula for any
restricted set R.

DR(z) = 1

1 + zβ(1 /∈ A) − zDR−1(z)
.

When R is finite with m = max R, we obtain the following explicit formula:

DR(z) = 1

1 + zβ(1 /∈ R) − z

1 + zβ(2 /∈ R) − z
. . .

1 + zβ(m − 1 /∈ R) − z

1 − z

by using the fact DØ(z) = 1.

Example 2. Let us consider the restricted set R to be either {1, 2} or {1, 3}.
Through an easy calculation, we derive that

D{1,2}(z) = 1

1 − z
1 − z

= −1 + z

−1 + 2z

= 1 + z + 2z2 + 4z3 + 8z4 + 16z5 + · · · ,

D{1,3}(z) = 1

1 − z

1 + z − z

1 − z

= −1 + z + z2

−1 + 2z

= 1 + z + z2 + 2z3 + 4z4 + 8z5 + · · · .
So |Dn+1,{1,2}| = |Dn+2,{1,3}| = 2n for any n ∈ N. The cardinality of Dn+1,{1,2}
is easy to explain: because each path of Dn+1,{1,2} must be in the form of
UP1 P2 . . . PnD, where Pi ∈ {UD, DU}. But the fact |Dn+2,{1,3}| = 2n is not
obvious. The combinatorial relationship between restricted sets {1, 2} and
{1, 3} will be investigated in the next section.
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Given any integer k ≥ 2 and I ⊂ [1, k], where [1, k] := {1, 2, . . . , k} we now
considerA thecongruentclass (k, I ) := {n ∈ P | n ≡ i(mod k) for some i ∈ I }.
Notice that having heights restricted to (k, I) is the same as having height
avoiding (k, [1, k] − I ). The cases considered in Section 2 are special
cases of this general setting. We conclude the result of such general case as
follows.

THEOREM 4. The generating function D(k,I )(z) satisfies the functional equation

D(k,I )(z) =
1

1 + zβ(1 ∈ I ) − z

1 + zβ(2 ∈ I ) − z
. . .

1 + zβ(k ∈ I ) − D(k,I )(z)

, (3)

and D(k,I )(z) = (a(z) + √
b(z))/c(z) for some polynomials a(z), b(z), c(z) ∈

Z[z].

Proof : The equation of the above continued fraction directly follows
the same discussion about DA at the very beginning of this section. By
this equation, D(k,I )(z) satisfies a quadratic polynomial with coefficients
in Z[z]; therefore, D(k,I )(z) = (a(z) + √

b(z))/c(z) for some a(z), b(z),
c(z) ∈ Z[z]. �

Example 3. Let us consider k = 3. We find

D(3,{1})(z) = 1

1 + z − z

1 − z

1 − zD(3,{1})(z)

,

D(3,{2})(z) = 1

1 − z

1 + z − z

1 − zD(3,{2})(z)

, and

D(3,{3})(z) = 1

1 − z

1 − z

1 + z − zD(3,{3})(z)

.

Solving these equations we get the generating functions and the first few terms
of them as follows:
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D(3,{1})(z) = 1 − z2 − √
1 − 4z + 2z2 + z4

2z

= 1 + z2 + 2z3 + 5z4 + 13z5 + 35z6 + 97z7 + 275z8 + · · · ;

D(3,{2})(z) = 1 + z2 − √
1 − 4z + 2z2 + z4

2z

= D(3,{1})(z) + z; and

D(3,{3})(z) = 1 − z2 − √
1 − 4z + 2z2 + z4

2z(1 − z)

= D(3,{1})(z)
1

1 − z

= 1 + z + 2z2 + 4z3 + 9z4 + 22z5 + 57z6 + 154z7 + 429z8 + · · · .
The coefficients of D(3,{2})(z), excluding the constant term, form a sequence
called the generalized Catalan number, which is the sequence A025242 in
[13]. Note that |Dn,(3,{1})| = |Dn,(3,{2})| for n ≥ 2. It would be interesting to
have a bijective proof of this equation.

4. Equivalence classes of avoiding or restricted sets

Let us turn to the values dn,A := |Dn,A| and dn,R := |Dn,R|. Clearly, dn,Ø = cn ,
d0,Ø = 1, and dn,Ø = 0 for n ≥ 1. Following the discussion in Examples 1 and
2, we demonstrate a general theory in this section.

THEOREM 5. Let n ∈ N and A ⊂ P with 1 /∈ A. Then

dn,A = dn+1,(A+1)∪{2}.

Conversely, given any B ⊂ P with 1 /∈ B but 2 ∈ B, then

dn+1,B = dn,(B−{2})−1.

Proof : The second statement is directly from the first one. In the following
we show a bijection for proving the first statement, whose idea was originated
from [11]. Given any P ∈ Dn,A, we construct an (n + 1)-Dyck path P′ by first
lifting up P (i.e., UPD), followed by replacing every peak UD of height two in
UPD with a valley DU . For example, if P = UDUUDDUDUD, then we
have P ′ = UDUUUDDDUDUD. Clearly, the lifted path UPD avoids peaks of
heights in A + 1, so does P′. Moreover, P′ avoids peaks of height two because
all such peaks in UPD turn to be valleys. In fact, all valleys of height zero
arise in this way.
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The inverse of this bijection is described as follows. Given any
P ′ ∈ Dn+1,A+1∪{2}, to obtain P we need only replace every valley DU of height
zero in P′ with a peak UD, and then remove the first U and the last D. Because
some P′ might have a valley of height zero, the corresponding P would have a
peak of height one. Therefore, it is necessary that 1 /∈ A. �

Iterating Theorem 5, we get the following general result.

COROLLARY 1. Let m, n ∈ N and A ⊂ P with 1 /∈ A. Then

dn,A = dn+m,(A+m)∪[2,m+1],

where [2, m + 1] := {2, 3, . . . , m + 1}.

By dualizing Corollary 1, we obtain the next result:

COROLLARY 2. Let m, n ∈ N and R ⊆ P with 1 ∈ R. Then

dn,R = dn+m,((R−{1})+m)∪{1}.

The above two corollaries suggest an equivalence relation among sequences.
We say that two sequences 〈an〉 and 〈bn〉 are shift equivalent, denoted by
〈an〉 ≡s〈bn〉, if there exist non-negative integers p and q such that a p+n =
bq+n for all n ∈ N. The shift equivalence of sequence induces an equivalence
relation on avoiding sets as well as on restricted sets. We say two avoiding
sets A and A′ are equivalent if the corresponding sequences 〈dn,A〉 and 〈dn,A′ 〉
are shift equivalent. The equivalence of restricted sets are defined similarly.
Because avoidance and restriction are dual concepts, the equivalence relations
of avoiding sets and of restricted sets are two sides of one thing.

Example 4. We clearly have

〈dn,P〉 = 〈dn,Ø〉 = 〈1, 0, 0, 0, . . .〉 and
〈
dn,[2,∞)

〉 = 〈
dn,{1}

〉 = 〈1, 1, 1, . . .〉.
These two sequences are unique. The reader can easily check that each of
these sequences corresponds to an equivalence class with only one avoiding
set (or with only one restricted set.)

Corollary 1 suggests that an avoiding set A with 1, 2 /∈ A is the “simplest”
representative of the equivalence class containing it. If B � [2, ∞) with 2 ∈ B,
then there is a simplest A with both 1, 2 /∈ A such that 〈dn,A〉 ≡s 〈dn,B〉. The
case B = [2, ∞) is an exception, as shown in Example 4. As for restriction,
any R with both 1, 2 /∈ R is the simplest representative of its equivalence class
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by Corollary 2. For instance, we have found several interesting equivalence
classes, with the first sequence in each class being the simplest, as follows.

〈dn,Ø〉≡s

〈
dn,{2}

〉 ≡s

〈
dn,{2,3}

〉 ≡s

〈
dn,{2,3,4}

〉 ≡s · · · ≡s

〈Catalan numbers〉[11],
〈
dn,O−{1}

〉≡s 〈dn,E〉 ≡s

〈
dn,(E+1)∪{2}

〉 ≡s

〈
dn,(E+2)∪{2,3}

〉 ≡s · · · ≡s

〈Motzkin numbers〉,
〈
dn,{1,2}

〉≡s

〈
dn,{1,3}

〉 ≡s

〈
dn,{1,4}

〉 ≡s

〈
dn,{1,5}

〉 ≡s · · · ≡s 〈2n〉,
〈
dn,{1,2,3}

〉≡s

〈
dn,{1,3,4}

〉 ≡s

〈
dn,{1,4,5}

〉 ≡s

〈
dn,{1,5,6}

〉 ≡s · · · ≡s

〈bisection of Fibonacci〉,
〈
dn,{1,2,3,4}

〉≡s

〈
dn,{1,3,4,5}

〉 ≡s

〈
dn,{1,4,5,6}

〉 ≡s

〈
dn,{1,5,6,7}

〉 ≡s · · · ≡s

〈(3n + 1)/2〉,
where the sequence of the bisection of Fibonacci is defined recursively by
an = 3an−1 − an−2 with the initial values a0 = 1 and a1 = 1 [4].

Besides the above examples, Example 3 also shows that

〈
dn,(3,{1})

〉 ≡s

〈
dn,(3,{2})

〉 ≡s

〈
dn,((3,{2})+ j)∪[2, j+1]

〉 ≡s

〈generalized Catalan Numbers〉
for j ∈ P. The first equivalence relation is trivial in view of algebra, but cannot
be explained combinatorially by the theory developed in this work. Generally
speaking, when 1 ∈ A (i.e., 1 /∈ R), we still know little about their equivalence
classes. Among many examples we studied, the case when 1 ∈ A seems to
form an equivalence class that contains only one avoiding set, namely A. For
instance, 〈dn,P〉 in Example 4 and the following cases:

〈
dn,{1}

〉 ≡s 〈Fine numbers〉[4],

〈dn,O〉 ≡s 〈Riordan numbers〉,
〈
dn,{2}

〉 ≡s 〈Fibonacci numbers〉,
〈
dn,{k}

〉 ≡s 〈k-Fibonacci numbers〉,
where the sequence of k-Fibonacci numbers is defined by an = an−1 + an−2 +
· · · + an−k with the initial values a0 = 1 and a1 = a2 = · · · = ak − 1 = 0.
The k-Fibonacci class above can be easily derived by the continued fraction
form of D{k}(z).
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5. Concluding remarks

In this paper, certain classes of Dyck paths and Motzkin paths are shown to be
enumerated by certain integer sequences, some well known and some new.
The idea of shift equivalence of sequences and the corresponding equivalence
on sets helps classify various cases of height avoidance and restriction.
However, there are questions, which await answers, for instance, under what
circumstances will the equivalence class of sets contain a single element?

The concept of height avoidance and restriction considered here has led to
new research directions for lattice path enumeration: the enumeration of Dyck
paths with the heights of, valleys, or both peaks and valleys simultaneously,
avoiding or restricted to certain subsets of P, for instance. It is also of interest
to consider the Motzkin analogue of the present work.
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