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We present exact calculations of the partition function Z of the q-state

Potts model and its generalization to real q, the random cluster model, for

arbitrary temperature on n-vertex ladder graphs with free, cyclic, and Möbius

longitudinal boundary conditions. These partition functions are equivalent to

Tutte/Whitney polynomials for these graphs. The free energy is calculated

exactly for the infinite-length limit of these ladder graphs and the thermo-

dynamics is discussed. By comparison with strip graphs of other widths, we

analyze how the singularities at the zero-temperature critical point of the

ferromagnet on infinite-length, finite-width strips depend on the width. We

point out and study the following noncommutativity at certain special val-

ues qs: limn→∞ limq→qs Z1/n 6= limq→qs limn→∞ Z1/n. It is shown that the

Potts/random cluster antiferromagnet on both the infinite-length line and

ladder graphs with cyclic or Möbius boundary conditions exhibits a phase

transition at finite temperature if 0 < q < 2, but with unphysical properties,

including negative specific heat and non-existence, in the low-temperature

phase, of an n → ∞ limit for thermodynamic functions that is independent of

boundary conditions. Considering the full generalization to arbitrary complex

q and temperature, we determine the singular locus B in the corresponding C
2

space, arising as the accumulation set of partition function zeros as n → ∞. In

particular, we study the connection with the T = 0 limit of the Potts antifer-

romagnet where B reduces to the accumulation set of chromatic zeros. Certain

properties of the complex-temperature phase diagrams are shown to exhibit

close connections with those of the model on the square lattice, showing that

exact solutions on infinite-length strips provide a way of gaining insight into

these complex-temperature phase diagrams.
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I. INTRODUCTION

The q-state Potts model has served as a valuable model for the study of phase transitions

and critical phenomena [1,2]. On a lattice, or, more generally, on a graph G, at temperature

T , this model is defined by the partition function

Z(G, q, v) =
∑

{σn}

e−βH (1.1)

with the (zero-field) Hamiltonian

H = −J
∑

〈ij〉

δσiσj
(1.2)

where σi = 1, ..., q are the spin variables on each vertex i ∈ G; β = (kBT )−1; and 〈ij〉 denotes

pairs of adjacent vertices. The graph G = G(V, E) is defined by its vertex set V and its edge

set E; we denote the number of vertices of G as n = n(G) = |V | and the number of edges of

G as e(G) = |E|. We use the notation

K = βJ (1.3)

a = u−1 = eK (1.4)

and

v = a − 1 (1.5)

so that the physical ranges are (i) a ≥ 1, i.e., v ≥ 0 corresponding to ∞ ≥ T ≥ 0 for the

Potts ferromagnet, and (ii) 0 ≤ a ≤ 1, i.e., −1 ≤ v ≤ 0, corresponding to 0 ≤ T ≤ ∞ for

the Potts antiferromagnet. An equivalent expression for Z is

Z(G, q, v) =
∑

{σi}

∏

〈ij〉

(1 + vδσi,σj
) . (1.6)

One defines the (reduced) free energy per site f = −βF , where F is the actual free energy,

via

f({G}, q, v) = lim
n→∞

ln[Z(G, q, v)1/n] . (1.7)

Let G′ = (V, E ′) be a spanning subgraph of G, i.e. a subgraph having the same vertex

set V and an edge set E ′ ⊆ E. Then Z(G, q, v) can be written as the sum [3]- [6]
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Z(G, q, v) =
∑

G′⊆G

qk(G′)ve(G′) (1.8)

where k(G′) denotes the number of connected components of G′. The formula (1.8) enables

one to generalize q from Z+ to R+ (keeping v in its physical range). This generalization

is the random cluster model [6]. The formula (1.8) shows that Z(G, q, v) is a polyno-

mial in q and v (equivalently, a) with maximum degrees max{degq(Z(G, q, v))} = n(G)

and max{degv(Z(G, q, v))} = e(G). The minumum degrees are min{degq(Z(G, q, v))} =

k(G), which is equal to 1 for the graphs of interest here (since they are connected), and

min{degv(Z(G, q, v))} = 0, so

Z(G, q, v) =

n(G)
∑

r=k(G)

e(G)
∑

s=0

zrsq
rvs (1.9)

with zrs ≥ 0.

The Potts model partition function on a graph G is essentially equivalent to the Tutte

polynomial [7]- [11] and Whitney rank polynomial [4], [2], [12]- [14] for this graph, as dis-

cussed in the appendix. As a consequence, there are many interesting connections between

properties of this partition function and various graph-theoretic quantities.

The Potts model has never been solved exactly for arbitrary temperature on lattices of

dimensionality d ≥ 2 except for special d = 2, q = 2 case in which it is equivalent to the

solvable 2D Ising model [15] (with the redefinition JPotts = 2JIsing). Knowledge about the

Potts model includes exact calculations of the critical exponents and critical value of the free

energy for the 2D ferromagnet for the range q ≤ 4 where it has a second-order transition;

conformal algebra properties for the same range of q; the latent heat at the transition point

for q ≥ 5; and certain formulas for the critical point [2,16]. There is thus motivation for

studies that can give further insight into the Potts model. Among these are exact results for

the partition function and free energy that one can obtain for infinite-length, finite-width

strips with various boundary conditions. We shall present such results in this paper.

One of the interesting features of the Potts model is that the antiferromagnet (AF)

exhibits nonzero ground state entropy (without frustration) for sufficiently large q on a

given lattice or graph G, and serves as a valuable model for the study of this phenomenon.

The phenomenon of nonzero ground state entropy, S0 > 0, is an exception to the third law

of thermodynamics [17,18]. This is equivalent to a ground state degeneracy per site (vertex),

W > 1, since S0 = kB ln W . The zero-temperature partition function of the above-mentioned

q-state Potts antiferromagnet (PAF) on G satisfies
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Z(G, q, T = 0)PAF ≡ Z(G, q, v = −1) = P (G, q) (1.10)

where P (G, q) is the chromatic polynomial (in q) expressing the number of ways of coloring

the vertices of the graph G with q colors such that no two adjacent vertices have the same

color [3,19,20]. The minimum (integral) number of colors necessary for this coloring is the

chromatic number of G, denoted χ(G). Thus

W ({G}, q) = lim
n→∞

P (G, q)1/n (1.11)

where we use the symbol {G} to denote limn→∞ G for a given family of graphs.

Since Z(G, q, v) is a polynomial in q and v, or equivalently, a, one can generalize q from

Z+ not just to R+ but to C and a from its physical ferromagnetic and antiferromagnetic

ranges 1 ≤ a ≤ ∞ and 0 ≤ a ≤ 1 to a ∈ C. A subset of the zeros of Z in the two-complex

dimensional space C2 defined by the pair of variables (q, a) can form an accumulation set in

the n → ∞ limit, denoted B, which is the continuous locus of points where the free energy

is nonanalytic. As will be discussed below, this locus is determined as the solution to a

certain {G}-dependent equation. For a given value of a, one can consider this locus in the

q plane, and we denote it as Bq({G}, a). In the special case a = 0 (v = −1) where the

partition function is equal to the chromatic polynomial, the zeros in q are the chromatic

zeros, and Bq({G}, a = 0) is their continuous accumulation set in the n → ∞ limit [22]-

[47]; we have determined these accumulation sets exactly for various families of graphs in

a series of papers. Other properties of chromatic zeros such as zero-free regions for general

graphs, are of mathematical interest (see, e.g., [5,28,48]), although we shall not focus on them

here. For a given value of q, we shall study the continuous accumulation set of the zeros

of Z(G, q, v) in the a plane; this will be denoted Ba({G}, q). It will often be convenient to

consider the equivalent locus in the u = 1/a plane, namely Ba({G}, q). We shall sometimes

write Bq({G}, a) simply as Bq when {G} and q are clear from the context, and similarly with

Ba and Ba. A subtlety in the definition of this locus will be discussed in the next section.

One gains a unified understanding of the separate loci Bq({G}) for fixed a and Ba({G})
for fixed q by relating these as different slices of the locus B in the C2 space defined by (q, a).

This is similar to the insight that one gained in studies of accumulation sets of zeros of the

partition functions of the Ising model in the C
2 space defined by (a, µ), where µ = e−2βH

with H being the external field [49,50], which generalized the Yang-Lee zeros (zeros in µ for

fixed physical a) [51] and Fisher zeros (zeros in a for fixed H , often H = 0) [52].

In our earlier works on Bq({G}) for a = 0, we had denoted the maximal region in the

complex q plane to which one can analytically continue the function W ({G}, q) from physical

values where there is nonzero ground state entropy as R1. The maximal value of q where
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B intersects the (positive) real axis was labelled qc({G}). Thus, region R1 includes the

positive real axis for q > qc({G}). Correspondingly, in our works on complex-temperature

properties of spin models, we had labelled the complex-temperature extension (CTE) of

the physical paramagnetic phase as (CTE)PM, which will simply be denoted PM here, the

extension being understood, and similarly with ferromagnetic (FM) and antiferromagnetic

(AFM); other complex-temperature phases, having no overlap with any physical phase, were

denoted Oj (for “other”), with j indexing the particular phase [54]. Here we shall continue

to use this notation for the respective slices of B in the q and a or u planes.

In this paper we shall present exact calculations of the Potts/random cluster partition

function for strips of the square lattice with arbitrary length Lx and width Ly = 2, i.e ladder

graphs, having free, periodic (= cyclic), and Möbius longitudinal (x-direction) boundary

conditions. These families of graphs are denoted, respectively, as Sm (for open strip), Lm

(for ladder), and MLm (for Möbius ladder), where Lx = m+1 for Sm (following our labelling

convention in [32]) and Lx = m for Lm and MLm. One has n(Sm) = 2(m + 2) and n(Lm) =

n(MLm) = 2m. It will also be instructive to use the well-known solutions for the partition

function on the tree and circuit graphs to illustrate some points. We shall discuss several

items and investigate several questions about the Potts/random cluster model:

1. We analyze the thermodynamic behavior of the Potts model (for q ≥ 2) on the infinite-

length, Ly = 2 strip and compare it with the known behavior on the line. In particular,

we study the zero-temperature critical point of the Potts ferromagnet and discuss how

the critical singularities (which are essential singularities in temperature) depend on

q and the width of the strip. For reference, one may recall that as one part of his

original paper, Onsager used his closed-form solution to the partition function of the

Ising model to study it for Ly ×∞ strips of the square lattice [15]. The difference, of

course, is that for the Potts model with q 6= 2, one does not have a general closed-form

solution for Z on a Ly ×Lx grid with arbitrary Ly and Lx; indeed if one did, one would

have solved the model on the square lattice.

2. We shall show that the Potts/random cluster model with 0 < q < 2 on the n → ∞
limit of the circuit, ladder, and Möbius ladder graphs exhibits a finite-temperature

phase transition but with unphysical properties in the low-temperature phase, including

negative specific heat, negative partition function, and non-existence of an n → ∞ limit

that is independent of boundary conditions.

3. We shall point out and illustrate a certain noncommutativity in the definition of the

free energy for the Potts/random cluster model.
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4. For a given family of graphs G and its n → ∞ limit, {G}, we shall explore the

nature of the nonanalyticities of the free energy in q and the temperature variable u.

Some questions related to this are: what is the locus Bq for various values of u and

the locus Bu for various values of q (and the loci (Bu)qn and (Bu)nq), for the special

values q = qs where these differ)? The strip graphs that we consider here are useful

for this study since they are wide enough to exhibit a number of important features

but narrow enough so that the terms, denoted λj, whose powers contribute to the

partition function for a given family of graphs (see eq. (2.18)) can be calculated as

explicit algebraic functions. As our previous studies of asymptotic limits of chromatic

polynomials on various infinite-length, finite-width strips have shown [32,37,41,43], as

the width of the strip increases, one encounters algebraic equations defining the λj’s

that increase in degree so that these λj can involve cube roots, fourth roots, and, for

equations higher than fourth degree, one cannot obtain exact analytic expressions for

them, making it more cumbersome to calculate the locus B, which is the solution to

the degeneracy in magnitude of different dominant λj ’s.

5. Starting from our previous determination of Bq({G}) for the zero-temperature limit

of the Potts antiferromagnet, we explore how this locus changes as on increases T in

the range 0 < T ≤ ∞. In cases where this locus separates the q plane into different

regions for T = 0, does it continue to do so? How does the point qc({G}) vary with

temperature? Since we are now dealing with a singular locus in C
2, we can investigate

how the various features of the slice of B({G}) in the q plane relate to features of the

slice B({G}) in the plane of the temperature variable, u (or the equivalent variable a).

6. We shall show that certain features of the complex-temperature phase diagrams of the

infinite-length, finite-width strip graphs considered here can give insight into analogous

features of the Potts model on the square lattice.

7. Just as was true for our earlier studies of chromatic polynomials and their asymptotic

limits, it is of interest to explore the effects of different boundary conditions on the

singular locus B({G}), and we do this.

8. For mathematically inclined readers, we shall give the Tutte polynomials that are

equivalent to the Potts model partition functions that we have calculated for the cyclic

and Möbius strip graphs and extract special values that are of specific graph-theoretic

interest.

Conference reports on some of the material in this paper were given in [43,44]. In col-

laboration with H. Kluepfel, we have also carried out calculations of Potts/random cluster
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partition functions for general T and q on finite patches of several 2D lattices [45] (see also

[53]); our work here complements these calculations on finite patches in that we obtain ex-

act results for strip graphs of arbitrarily great length, and the nonanalyticities in the limit

n → ∞.

II. SOME GENERAL CONSIDERATIONS

A. Basic Properties of Z

For our later analysis, it will be useful to record some basic properties of the Potts model

partition function. Assuming q > 0, one observes that for the Potts ferromagnet, since

v > 0, each term in the sum (1.8) is positive, and consequently, Z(G, q, v) does not have any

zeros on the positive real q axis for the physical temperature range. On higher-dimensional

lattices where the ferromagnet has a finite-temperature phase transition, zeros will coalesce

and pinch the real positive q axis to form a region boundary, but this does not happen in

the 1D case and the infinite-length, finite-width strips, which are quasi-1D systems.

One may ask what factors Z has in general. From eq. (1.8) it follows that for an arbitrary

graph G,

Z(G, q = 0, v) = 0 (2.1)

and since Z(G, q, v) is a polynomial, this implies that Z(G, q, v) always has an overall factor

of q. For the families of graphs studied here, this is, in general, the only overall factor that

Z(G, q, v) has. For the special case v = −1, the resultant chromatic polynomial Z(G, q, v =

−1) = P (G, q) has the additional factors
∏χ(G)−1

s=1 (q − s). Another general result is that

Z(G, q = 1, v) =
∑

G′⊆G

ve(G′) = ae(G) . (2.2)

For temperature T = ∞, i.e., v = 0, we have

Z(G, q, v = 0) = qn(G) . (2.3)

For the Ising case q = 2, if G is bipartite,

Z(Gbip., q = 2, a) = a2e(Gb)Z(Gbip., q = 2, 1/a) (2.4)

where we have written Z here as a function of a. This is the well-known equivalence of the

Ising ferromagnet (F) and antiferromagnet (AF) on a bipartite lattice, when one makes the

replacement J → −J , and hence K → −K, a → 1/a. As a consequence, the zeros of Z in a
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for q = 2 are invariant under the inversion mapping a → 1/a. Among the families of graphs

considered here, the following are bipartite (equivalently, have chromatic number χ = 2):

tree graph Tm for any m; circuit graph Cm and cyclic ladder graph Lm with Ly = 2 for even

m; and Möbius ladder graph MLm for odd m. In contrast, the cyclic ladder graph Lm for

odd m and the Möbius ladder graph MLm for even m have χ = 3.

For a strip of the square lattice with width Ly and cyclic or Möbius longitudinal boundary

conditions, the average coordination number (degree in the graph-theoretic terminology)

∆ave. = 2 limn(G)→∞ e(G)/n(G) is

∆ave. = 4 − 2

Ly
. (2.5)

For the corresponding strip of width Ly and free boundary conditions, this formula for ∆

also holds in the Lx → ∞ limit. Another consequence of the symmetry (2.4) is that for the

Ising case the internal energy U and specific heat C satisfy the relations

U(Gbip, q = 2, J)F = U(Gbip., q, J → −J)AF − ∆ave.J

2
(2.6)

and

C(Gbip, q = 2, J)F = C(Gbip., q, J → −J)AF (2.7)

(where we have taken the n → ∞ limit, in which these results are independent of the

boundary conditions for physical values of temperature).

Another basic property, evident from eq. (1.8), is that (i) the zeros of Z(G, q, v) in q for

real v and hence also the continuous accumulation set Bq are invariant under the complex

conjugation q → q∗; (ii) the zeros of Z(G, q, v) in v or equivalently a for real q and hence also

the continuous accumulation set Ba are invariant under the complex conjugation a → a∗.

B. Noncommutativity in the Random Cluster Model

Just as we showed the importance of noncommutative limits in our earlier work on chro-

matic polynomials (eq. (1.9) in Ref. [21]), so also we encounter an analogous noncommuta-

tivity here for the general partition function (1.8) of the random cluster model: at certain

special points qs (typically qs = 0, 1..., χ(G)) one has

lim
n→∞

lim
q→qs

Z(G, q, v)1/n 6= lim
q→qs

lim
n→∞

Z(G, q, v)1/n . (2.8)

Clearly, no such issue of noncommutativity arises if one restricts to positive integer q values

and uses the Potts model definition (1.1), (1.2). However, for the general random cluster
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model, whenever Z(G, q, v) has a factor (q−qs)
µs with finite multiplicity µs (where typically

µs = 1 here), one encounters this noncommutativity. It can also occur when such a factor

appears as a coefficient of one of the terms (λG,j)
m contributing to Z(G, q, v) (see eq. (2.18)

below). The reason for this noncommutativity is analogous to that which we discussed earlier

in the special case (a = 0) of the chromatic polynomial [21]; it is a consequence of the basic

result

lim
n→∞

(q − qs)
µs/n =

{

1 if q 6= qs

0 if q = qs
. (2.9)

We shall illustrate this with our exact results to be discussed below. Because of this non-

commutativity, the formal definition (1.7) is, in general, insufficient to define the free energy

f at these special points qs; it is necessary to specify the order of the limits that one uses in

eq. (2.8). We denote the two definitions using different orders of limits as fqn and fnq:

fnq({G}, q, v) = lim
n→∞

lim
q→qs

n−1 ln Z(G, q, v) (2.10)

fqn({G}, q, v) = lim
q→qs

lim
n→∞

n−1 ln Z(G, q, v) . (2.11)

For the zero-temperature Potts/random cluster antiferromagnet case a = 0 (v = −1), the

same ordering ambiguity affects the formal equation (1.11). In Ref. [21] and our subsequent

works on chromatic polynomials and the above-mentioned zero-temperature antiferromag-

netic limit, it was convenient to use the ordering W ({G}, qs) = limq→qs
limn→∞ P (G, q)1/n

since this avoids certain discontinuities in W that would be present with the opposite or-

der of limits. In the present work on the full temperature-dependent random cluster model

partition function, we shall consider both orders of limits and comment on the differences

where appropriate. Of course in discussions of the usual q-state Potts model (with positive

integer q), one automatically uses the definition in eq. (1.1) with (1.2) and no issue of orders

of limits arises, as it does in the random cluster model with real q.

As a consequence of the noncommutativity (2.8), it follows that for the special set of

points q = qs one must distinguish between (i) (Ba({G}, qs))nq, the continuous accumulation

set of the zeros of Z(G, q, v) obtained by first setting q = qs and then taking n → ∞, and

(ii) (Ba({G}, qs))qn, the continuous accumulation set of the zeros of Z(G, q, v) obtained by

first taking n → ∞, and then taking q → qs. For these special points,

(Ba({G}, qs))nq 6= (Ba({G}, qs))qn . (2.12)

From eq. (2.1), it follows that for any G,
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exp(fnq) = 0 for q = 0 (2.13)

and thus

(Ba)nq = ∅ for q = 0 . (2.14)

However, for many families of graphs, including the circuit graph Cn, and cyclic and Möbius

strips Lm and MLm, if we take n → ∞ first and then q → 0, we find that (Ba)qn is nontrivial.

For these families of graphs, with this order of limits, although the free energy is nonanalytic

at q = 0, it is continuous, and we find that, in general, exp(fqn) 6= 0 at q = 0. Similarly,

from (2.2) we have, for any G,

(Ba)nq = ∅ for q = 1 (2.15)

since all of the zeros of Z occur at the single discrete point a = 0 (and in the case of a graph

G with no edges, Z = 1 with no zeros). However, as the simple case of the circuit graph

below will show, (Ba)qn is, in general, nontrivial.

We shall also find that (Ba)nq 6= (Ba)qn for q = 2 for the infinite-length, Ly = 2 width

strip graphs {L} and {ML}. As stated, this noncommutativity can, in general, occur at

integer values of q up to and including q = χ(G). However, although χ = 3 for Cm and

Lm with odd m and for MLm with even m, there is no noncommutativity at q = 3 in these

cases. This can be seen as a consequence of the fact that one can take the limit m → ∞ on

even values of m.

In the q = 2 Ising case, as a consequence of the relation (2.4), the locus (Ba)nq is invariant

under the inversion map a → 1/a for the n → ∞ limit of a sequence of bipartite graphs of

type G:

(Ba)nq({Gbip.}) is invariant under a → 1

a
if q = 2 (2.16)

where {Gbip.} means that for the family of graphs of type G, one can take the limit n → ∞
with a sequence of bipartite members of the family G. (For example, for the circuit graphs

Cn, one can do this by taking n → ∞ on even values, and so forth for other families.) As our

explicit results for the strips {L} and {ML} below will show, the locus obtained with the

opposite order of limits, (Ba)nq({Gbip.}), does not, in general, have this inversion symmetry,

even if q = 2.

Concerning the cases where the continuous locus B may be the nullset ∅, some examples

from chromatic polynomials may be useful. For the complete graph on n vertices Kn (defined

as the graph in which each point is connected to every other point with edges), if a = 0,

then Z(Kn, q, v = −1) = P (Kn, q) =
∏n−1

s=0 (q − s), so that as n → ∞, there is no continous

accumulation set of the chromatic zeros, so Bq = ∅ . Another example is provided by the

strip Sm (see eq. (5.27) below).
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C. Definition of Free Energy for Complex q and K

Another matter concerns the definition of f away from physical values of q and K, where

Z(G, q, a) can be negative or complex. In these ranges of q and K, there is no canonical

choice of which 1/n’th root, i.e., which value of r, to pick in eq. (2.10) or (2.11):

Z(G, q, a)1/n = {|Z(G, q, a)|1/ne(φ+2πir)/n} , r = 0, 1, ..., n − 1 . (2.17)

where φ = arg(Z). Thus, we start by considering the free energy f defined for sufficiently

large (physical) T and integer q ≥ 2 and define the maximal region in the q plane for

fixed a or in the a plane for fixed q that can be reached by analytic continuation of this

function. As noted, this is labelled the region R1 in the q plane and the PM phase (and its

complex-temperature extension) in the u plane. In these regions, the canonical phase choice

in (2.17) is clearly that given by r = 0. This would also be true in physical low-temperature

broken-symmetry phases such as ferromagnetic (FM) or antiferromagnetic (AFM) phases

and their complex-temperature extensions, as discussed in [54]; however, such phases do not

occur in the 1D and quasi-1D strip graphs considered here. However, in general, in complex-

temperature O phases in the u plane and Rj regions with j 6= 1 in the q plane, only the

quantity |ef | = limn→∞ |Z(G, q, a)|1/n can be determined unambiguously.

D. General Form of Z for Recursively Defined Graphs

We find that a general form for the Potts model partition function for the strip graphs

considered here, or more generally, for recursively defined families of graphs comprised of m

repeated subunits (e.g. the columns of squares of height Ly vertices that are repeated Lx

times to form an Lx ×Ly strip of a regular lattice with some specified boundary conditions),

is

Z(G, q, v) =

Nλ
∑

j=1

cG,j(λG,j(q, v))m (2.18)

where Nλ depends on G. The formula (2.18) can be understood from the fact that for the

cyclic case, for q ∈ Z+, Z(G, q, v) can be expressed as the trace of a transfer matrix T :

Z(G, q, v) = Tr(T m) . (2.19)

Having obtained Z(G, q, v) in this manner, one can then generalize q from Z+ to R+. For a

strip of a regular lattice, this transfer matrix has dimensions N ×N , where N denotes the

number of possible spin configurations along a transverse slice of the strip; for example, for
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the square strips of interest here (or for triangular strips, written in the form of a square

strip with additional diagonal edges), N = qLy . Clearly, T is a symmetric matrix each of

whose elements is either 1 or a (positive) power of a = v + 1. For physical temperature,

for which a ≥ 0, T is real and hence can be diagonalized by an orthogonal transformation

O, yielding N eigenvalues (some of which may coincide). Generically, the multiplicity of

a given eigenvalue λG,j, which yields the coefficient cj for these cyclic graphs, depends on

q but is independent of v. The result (2.18) applies for both free and periodic transverse

boundary conditions, given that one uses periodic (cyclic) longitudinal boundary conditions.

Similar arguments based on the transfer matrix yield this result if one uses free transverse

and Möbius longitudinal, and periodic transverse and Möbius longitudinal (i.e. Klein bottle)

boundary conditions.

For strips with open longitudinal boundary conditions, Z(G, q, v) is not a trace, but

instead, is given by

Z(G, q, v) =
∑

σ̃i,σ̃f

〈σ̃i|T Lx|σ̃f〉 (2.20)

where σ̃i and σ̃f denote the states of the Ly spins on the initial (i) and final (f) transverse

edges of the strip. As our explicit solution (given below) for the open ladder graph Sm shows,

here cj can depend on both q and v.

For recursively defined families of graphs G, the result (2.18) is a generalization to the

case of the Potts/random cluster model partition function Z(G, q, v) of the Beraha-Kahane-

Weiss result [25] that the chromatic polynomial P (G, q) = Z(G, q, v = −1) can be written

in the form

P (G, q) =

Nλ,P
∑

j=1

cP,G,j(λP,G,j)
m . (2.21)

Since P (G, q) is a special case of Z(G, q), it follows that

Nλ,P ≤ Nλ . (2.22)

For example, in two well-known cases, (i) tree graph: Nλ = Nλ,P = 1, (ii) circuit graph:

Nλ = Nλ,P = 2. We find (iii) for the open Ly = 2 ladder Sm, Nλ = 2, while Nλ,P =

1; (iv)forthecyclic and Möbius strips, Nλ = 6 while [22] Nλ,P = 4. For the subset of the

λG,j’s that remain for P (G, q), the coefficient functions cP,G,j = cG,j(v = −1); as remarked

above, for the cyclic case and our Möbius strip, cG,j are independent of v.

As m → ∞, for a given point (q, v) in the C2 space of variables, one λj will dominate this

sum; we denote this as the “leading term” λℓ, where ℓ stands for leading. As one moves to
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another point (q′, v′), it may happen that there is a change in the dominant λ, from λℓ to, say,

λ′
ℓ. Consequently, there is a nonanalytic change in the free energy f as it switches from being

determined by the first dominant λℓ to being determined by λ′
ℓ. Thus, the equation for the

continuous nonanalytic locus B across which f is nonanalytic, is (with the {G} dependence

indicated explicitly)

B({G}) : |λG,ℓ| = |λ′
G,ℓ| . (2.23)

Although f is nonanalytic across B, a consequence of eq. (2.23) is that |ef | is continuous

across this locus. This is the generalization of the analogous phenomenon for the asymptotic

limit of chromatic polynomials, or equivalently, the T = 0 limit of the Potts antiferromagnet

[25,26,28,21], i.e. the property that W ({G}, q) is nonanalytic (although its magnitude is

continuous) across Bq({G}). As noted above, the locus B forms as the continuous accumu-

lation set of the zeros of Z(G, q, v) in the 2-complex dimensional space (q, v) as n(G) → ∞.

This again generalizes the earlier analysis for chromatic polynomials, where Bq formed as the

continuous accumulation set of the zeros of the chromatic polynomial in the single complex

variable q.

It is straightforward to generalize the transfer matrix formalism and hence eqs. (2.19) and

(2.20) to the case of the Potts model in an external magnetic field H , where the Hamiltonian

is H = −J
∑

〈ij〉 δσiσj
−H

∑

i δσi,σ0
(with σ0 chosen, say, as 1). Hence, the full generalization

for recursively defined families of graphs is, with η = eβH ,

Z(G, q, v, η) =

Nλ
∑

j=1

cG,j(λG,j(q, v, η))m . (2.24)

One could proceed to study the singular locus B in the C3 space of the variables (q, v, η)

which forms as the continuous accumulation set of the zeros of Z, and the various slices in

the q, a, and η planes. Here we restrict ourselves to the zero-field case, η = 1.

Typically, for a given point a ∈ C, there will be an infinite set of points in the q plane lying

on B, and for a given point q ∈ C, there will be an infinite set of points in the a plane lying

on B. Again, usually (we have commented on some exceptions above, where accumulation

sets of zeros are discrete), we find that Bq and Ba form curves (and possible line segments)

in the respective q and x = a or u planes. This follows from the property that B is the

solution of an algebraic equation expressing the degeneracy of the leading λ’s contributing

to Z. (For higher dimensional lattices the equations defining B can be transcendental instead

of algebraic.) The loci Bq and Bx, x = a or u, may be connected, or may consist of several

disconnected components; our results illustrate both types of behavior.
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The Potts ferromagnet has a zero-temperature phase transition in the Lx → ∞ limit of

the strip graphs considered here, and this has the consequence that for cyclic and Möbius

boundary conditions, B passes through the T = 0 point u = 0. It follows that B is non-

compact in the a plane. Hence, it is usually more convenient to study the slice of B in the

u = 1/a plane rather than the a plane. In the Ising case q = 2, Ba = Bu and so both are

noncompact. For the ferromagnet, since a → ∞ as T → 0 and Z diverges like ae(G) in this

limit, we shall use the reduced partition function Zr defined by

Zr(G, q, v) = a−e(G)Z(G, q, v) = ue(G)Z(G, q, v) (2.25)

which has the finite limit Zr → 1 as T → 0. For a general strip graph (Gs)m of type Gs and

length Lx = m, we can write

Zr((Gs)m, q, a) = ue((Gs)m)

Nλ
∑

j=1

cGs,j(λGs,j)
m ≡

Nλ
∑

j=1

cGs,j(λGs,j,u)
m (2.26)

with

λGs,j,u = ue((Gs)m)/mλGs,j . (2.27)

For example, for the strips of the square lattice with periodic longitudinal boundary

conditions and free transverse boundary conditions, and of width Ly vertices, we have

e(sq(Ly)m) = (2Ly − 1)m, so the prefactor in (2.27) is u2Ly−1.

III. 1D CASE WITH FREE BOUNDARY CONDITIONS

We first briefly discuss two cases that illustrate some important features in their simplest

contexts. We begin with Potts/random cluster model on a line of n vertices, or, more

generally, a tree graph, Tn. One has the well-known result

Z(Tn, q, v) = q(q + v)n−1. (3.1)

This case illustrates the general feature that the antiferromagnetic random cluster model for

real positive non-integral q fails to satisfy the usual statistical mechanical requirement that

the partition function is positive, and hence does not, in general admit a Gibbs measure [56].

Specifically, here we have

Z(Tn, q, v) < 0 for n even and q + v < 0 . (3.2)

These negative values of Z(Tn, q, v) occur at physical finite temperature if 0 < q < 1 and n

is even, since the condition q + a − 1 < 0 is equivalent to T < Tun, where
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Tun =
J

kB ln(1 − q)
=

|J |
kB ln

(

1
1−q

) , 0 < q < 1 , J < 0. (3.3)

Although in this case one could restore positivity by requiring that n be odd, we shall show

that there are further pathologies associated with this temperature.

The continuous locus B = ∅ since the accumulation set of the zeros of Z in q is the

discrete point q = −v. For q 6= 0, the limits in the definitions (2.11) and (2.10) commute,

and the free energy is (with v = a − 1)

fqn = fnq ≡ f = ln(q + a − 1) . (3.4)

The physical thermodynamic behavior for this case will be compared below with that for

the width Ly = 2 strips. For this purpose, we record the internal energy,

U = − Ja

q + a − 1
(3.5)

and the specific heat,

C =
kBK2(q − 1)a

(q + a − 1)2
. (3.6)

Note that the specific heat (3.6) is positive if q > 1 but is negative and hence unphysical for

all temperatures if q < 1, in both the ferromagnetic and antiferromagnetic cases. Thus the

pathological nature of the range 0 < q < 1 is manifested in the negative specific heat even

for temperatures above the value Tun in eq. (3.2) below which Z can be negative. Also, note

that in the antiferromagnetic case there are unphysical divergences of U and C at T = Tun.

For q = 0, the noncommutativity (2.8) occurs, and one has exp(fnq) = 0 but exp(fqn) =

(a− 1). This simple case demonstrates that the noncommutativity at a special point qs can

occur even when this point is not the the singular locus (B)qn or (B)nq. In passing we note

that a study of the q-state Potts model on the Bethe lattice (tree graph in which the interior

vertices all have the same coordination number) has been carried out in [57].

IV. 1D CASE WITH PERIODIC BOUNDARY CONDITIONS

A. General

The Potts/random cluster model on the circuit graph Cn, or equivalently, the 1D line

with periodic boundary conditions, is probably the simplest case with a nontrivial locus B.
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The Tutte polynomial for this graph is well known [12], and the corresponding Potts model

partition function is

Z(Cn, q, a) = (q + v)n + (q − 1)vn . (4.1)

As noted above, the Potts ferromagnet has a zero-temperature critical point, and this is

also true of the antiferromagnet in the q = 2 case where these are equivalent. In the

antiferromagnetic case, there is nonzero ground state entropy, S = kB ln(q − 1) if q > 2.

For comparison with the Ly = 2 results to be given below, we recall some of the thermo-

dynamic properties of the 1D Potts model. Here we take q ≥ 2 where there is no pathological

behavior (see below) and restrict to physical values of J and T ; the resulting thermodynamic

functions are then independent of whether one uses periodic or free boundary conditions and

were given above for f , U , and C in eqs. (3.4)-(3.6). The internal energy and specific heat

have the high-temperature expansions

U = −J

q

[

1 +
(q − 1)

q
K + O(K2)

]

(4.2)

C =
kB(q − 1)K2

q2

[

1 +
(q − 2)

q
K + O(K2)

]

(4.3)

Recall that the T → 0 limit corresponds to K → ∞, i.e. u → 0, for the ferromagnet (J > 0)

and to K → −∞, i.e., a → 0, for the antiferromagnet (J < 0). The low-temperature

expansions for these two cases are different:

U = −J
[

1 − (q − 1)e−K + O(e−2K)
]

as K → ∞ (4.4)

U =
(−J)eK

(q − 1)

[

1 − 1

q − 1
eK + O(e2K)

]

as K → −∞ (4.5)

C = kB(q − 1)K2e−K
[

1 − 2(q − 1)e−K + O(e−2K)
]

as K → ∞ (4.6)

C =
kBK2eK

(q − 1)

[

1 − 2

q − 1
eK + O(e2K)

]

as K → −∞ . (4.7)

Note that in the Ising case q = 2, these expansions satisfy the symmetry relations (2.6) and

(2.7).
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FIG. 1. Specific heat for the 1D Potts ferromagnet as a function of K = J/(kBT ). Going from bottom

to top in order of the heights of the maxima, the curves are for q = 2, 3, 4.
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FIG. 2. Specific heat for the 1D Potts antiferromagnet as a function of −K = −J/(kBT ). Going from

top to bottom, the curves are for q = 2, 3, 4.

In Figs. 1 and 2 we plot C for the (n → ∞ limit of the) ferromagnetic (F) and anti-

ferromagnetic (AF) cases (with kB = 1). In the antiferromagnetic case, C is a decreasing

function of q for all 0 < T < ∞. In the ferromagnetic case, C increases (decreases) with q at

low (high) temperatures and the curves for two different values q = q1 and q = q2 are equal

at the temperature Tcr = J/(kBKcr), where

Kcr =
1

2
ln

[

(q1 − 1)(q2 − 1)
]

. (4.8)

Thus, Kcr ≃ 0.35, 0.55, 0.90 for q = 2, 3, 4. The specific heat has a maximum at a temper-

ature Kcmax given by the solution of the equation (q − 1)(K + 2) + (2 − K)eK = 0. Some

illustrative values for Figs. 1 and 2 are (i) Kcmax ≃ ±2.4 (F,AF) for q = 2; (ii) Kcmax ≃ 2.7

(F), Kcmax ≃ −2.2 (AF) for q = 3; (iii) Kcmax ≃ 2.85 (F), Kcmax ≃ −2.15 (AF) for q = 4.

For q ≥ 3, the value of C at this maximum increases (decreases) with q for the ferromagnet

(antiferromagnet).
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B. Bq({C}) for fixed a

Returning to the study of Bq in the complex q plane as a function of a, we note that the

solution of the degeneracy equation |q + a− 1| = |a− 1| determines the locus Bq({C}) to be

the circle centered at q = 1 − a of radius |1 − a|:

q = (1 − a)(1 + eiθ) , 0 ≤ θ < 2π . (4.9)

For a < 1 and a > 1, this circle has support in the right-hand and left-hand half planes

Re(q) ≥ 0 and Re(q) ≤ 0, respectively; for any a, it always passes through the origin. The

locus Bq intersects the real q axis at q = 0 and at q = qc({C}), where

qc({C}) = 2(1 − a) . (4.10)

In general, for finite n, the zeros of Z do not lie exactly on B. We have shown, however, that

in the T = 0 limit of the Potts antiferromagnet, i.e., for a = 0, the zeros of Z(Cn, q, a = 0) =

P (Cn, q) do lie exactly on the locus B, which, for this case is the circle |q − 1| = 1 [21,30].

As T increases from 0 to infinity for the Potts antiferromagnet, i.e. as a increases from 0 to

1, the radius and center of the circle both decrease from 1 to 0 so that it contracts to the

origin at a = 1. As a increases above 1 through real values, i.e. as T decreases from ∞ to 0

for the ferromagnetic case, the circle is located in the Re(q) ≤ 0 half-plane, with its center

moving leftward and its radius increasing as a function of a. In this ferromagnetic case, the

crossing point given by qc({C}) occurs on the negative real q axis; Bq does not cross the

positive real q axis.

C. Bu({C}) for fixed q

We first consider values of q 6= 0, 1, so that no noncommutativity occurs, and (Bu)nq =

(Bu)qn ≡ Bu. As discussed above, it is convenient to use the u plane since Bu is compact in

this plane, except for the case q = 2, whereas Ba is noncompact because of the ferromagnetic

zero-temperature critical point at u = 1/a = 0. For q 6= 0, 1, 2, Bu is the circle [58]

Bu : u =
1

(q − 2)
(−1 + eiω) , 0 ≤ ω < 2π . (4.11)

The exterior of this circle is the (complex-temperature extension of the) PM phase, and its

interior is an O phase.

For the ferromagnet, the fact that the singular locus Bu passes through the T = 0

point u = 0 for the 1D Potts model with periodic boundary conditions, while for the same
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model with free boundary conditions, Bu does not pass through u = 0, means that the

use of periodic boundary conditions yields a singular locus that manifestly incorporates the

zero-temperature critical point, while this is not manifest in Bu when calculated using free

boundary conditions. As we shall show, this continues to be true concerning the longitudinal

boundary conditions when one considers the Potts ferromagnet on the Ly = 2 strip graphs.

This leads us to one of the important conclusions of this work, namely that although cal-

culations of the free energy of the Potts model on infinite-length, finite-width strips with

periodic boundary conditions in the longitudinal direction (the direction in which the strip

length goes to infinity) are more difficult than with free longitudinal boundary conditions,

the extra work is worth it since the resulting locus B incorporates this feature of passing

through u = 0, corresponding to the zero-temperature critical point of the ferromagnet, if

one uses periodic longitudinal boundary conditions. From our studies in the different, al-

though related, context of chromatic polynomials [36,37,41–43], we reached the analogous

conclusion that although the calculation of P (G, q) for strip graphs of a regular lattice is

more complicated when one uses periodic longitudinal boundary conditions, the resultant

singular locus Bq has the advantage of incorporating more of the features expected of the

infinite-width limit, i.e. the full two-dimensional lattice. One such expectation, based on

calculations of chromatic polynomials and the resultant W functions of eq. (1.11) for infinite-

length, finite-width strips as the width increased, was that Bq passes through q = 0 and that

this nonanalytic locus separates the region including the interval 0 < q < qc({G}) on the

real axis from the outlying region for sufficiently large |q| [32,33]; this is also in agreement

with the calculation in [27] for the triangular lattice. However, for finite width strips, Bq

consists of arcs [32] (and possible closed regions, as in Fig. 4 of [33]) which do not pass

through q = 0 and do not have this enclosure property.

The circle (4.11) crosses the real axis at u = 0 and at

uc({C}) =
1

ac({C}) = − 2

q − 2
(4.12)

(cf. eq. (4.10)). The point uc({C}) occurs at complex temperature for q > 2 and physical

temperature for q < 2. We shall comment further below on the case 0 < q < 2. In the a

plane, Ba is the vertical line

Ba : Re(a) = ac = 1 − q

2
, −∞ ≤ Im(a) ≤ ∞ . (4.13)

The phase with Re(a) > ac, to the right of this line, is the (complex-temperature extension

of the) PM phase, while the phase to the left of the line is the O phase. As q → 2, the radius

of the circle (4.11) goes to infinity, and at q = 2, Bu is identical to Ba by the symmetry

relation (2.16), forming the full imaginary u axis.
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We next consider the special values q = 0 and 1 for which noncommutativity occurs. For

q = 0, efnq = 0 as in (2.13) while in the PM phase with Re(a) > 1, efqn = a − 1 and in

the O phase with Re(a) < 1, |efqn| = |a − 1|; the locus (Ba)nq = ∅, while (Ba)qn is given by

(4.13) as the vertical line Re(a) = 1. For q = 1, the coefficient multiplying the second term

in Z(Cn, q, v) vanishes, and Z(G, q = 1, v) = an, a special case of (2.2). Here efnq = a while

in the PM phase defined by Re(a) > ac = 1/2, we have efqn = a and in the O phase defined

by Re(a) < 1/2, we have |efqn| = |a − 1|; (Ba)nq = ∅ since all of the zeros of Z occur at the

discrete point a = 0, while (Ba)qn is given by eq. (4.13) as the vertical line Re(a) = 1/2.

D. Phase Transition for Antiferromagnetic Case with 0 < q < 2

For the range 0 < q < 2, and the antiferromagnetic case J < 0, the nonanalyticity in the

free energy at a = ac = (2 − q)/2 in (4.12) occurs at the physical temperature

Tp =
|J |

kB ln
(

2
2−q

) , 0 < q < 2 . (4.14)

Therefore, the generalization of the Potts antiferromagnet to real positive q defined by the

random cluster representation (1.8) has a finite-temperature phase transition in the n → ∞
limit of the circuit graph, i.e. in 1D with periodic boundary conditions. (For the special

value q = qs = 1, it is understood that one takes n → ∞ first and then q → 1, i.e.,

one uses fqn; with the other order, q → 1 and then n → ∞, fnq is analytic and there is

no phase transition.) The phase transition at T = Tp is not a counterexample to the usual

theorem that a one-dimensional spin model with short-ranged interactions does not have any

phase transition at finite temperature, because the existence of this transition is inextricably

connected with the failure of positivity for Z and hence the absence of a Gibbs measure,

which are implicit requirements for the applicability of the above-mentioned theorem. As q

decreases from 2 to 0, the phase transition temperature Tp increases from 0 to infinity.

In the high-temperature paramagnetic phase T > Tp, the free energy, internal energy, and

specific heat are given by the same expressions as for the n → ∞ limit of the Potts/random

cluster model on the tree graph, eqs. (3.4), (3.5), and (3.6), respectively. Hence, even in

the high-temperature phase, one has an unphysical negative specific heat if q < 1. In the

low-temperature O phase, strictly speaking, only |Z| can be determined: | exp(fqn)| = |a−1|,
but with an appropriate choice of multiplicative phase, we can choose

f = ln(1 − a) , T < Tp (4.15)

and hence
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U =
Ja

1 − a
, T < Tp (4.16)

C = − kBK2a

(1 − a)2
, T < Tp . (4.17)

Thus, for all q in the range 0 < q < 2 where there is a finite-temperature phase transition,

the low-temperature phase has pathological property that the specific heat is negative. The

phase transition itself is first-order, with latent heat

lim
T→T+

p

U − lim
T→T−

p

U =
2|J |(2 − q)

q
. (4.18)

A basic pathology of the low-temperature phase of this antiferromagnet, i.e., the phase where

|v| > |q + v|, is that Z can be negative. For sufficiently large n, this occurs for 1 < q < 2 if

n is odd and for 0 < q < 1 if n is even.

Thus, if one restricts to q > 1, this 1D antiferromagnetic random cluster model satisfies,

at least in the high-temperature phase, the requirement that the specific heat is positive and,

for the interval 1 < q < 2, has a (first-order) finite-temperature phase transition; however,

even if one restricts the approach to the n → ∞ limit to even values of n, the low-temperature

phase is unphysical because of the negative specific heat. One also observes that the results

for the free energy and associated thermodynamic functions are the same for the n → ∞
limit of the tree graph and the circuit graph, i.e. are independent of whether one uses free

or periodic boundary conditions, if T > Tp, but differ for T < Tp, so that the existence

of the low-temperature phase in the case of periodic boundary conditions also means that

the n → ∞ limit does not exist owing to different results obtained with different boundary

conditions. The non-existence of a well-defined n → ∞ limit for the random cluster model

with non-integral q has been noted previously in [56]. For positive integer q, the (zero-field)

q-state Potts model is invariant under the operations of the permutation group Sq; however,

this symmetry group is not defined for non-integral q. In any case, the usual Peierls argument

shows that even if one could define some notion of a symmetry of Z for non-integral q, this

symmetry could not be broken spontaneously in the phase transition for this 1D system or,

indeed, for the random cluster model on an infinite-length, finite-width strip, to be discussed

below.

A further generalization of this 1D random cluster model is to keep q real but let it be

negative; in this case the model with the ferromagnetic sign of the coupling, J > 0, formally

has a nonanalyticity in the free energy at a positive finite value of the parameter T given by

kBT = J/ ln[(2 − q)/2]. However, since this model does not, in general, have a positive Z,

one cannot really refer to this parameter as a physical temperature and we shall not discuss

this case further.
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E. Other slices of B({C})

So far we have considered the “orthogonal” slices of B obtained by holding either q or

q constant. A different type of slice is obtained if one has q and a satisfy some functional

relation. As an illustration of this, we consider perhaps the simplest case, namely the linear

relation a + q = c, where c ∈ C is a constant. If one treats the a and q variables as

the “horizontal” and “vertical” axes (actually planes, in terms of real variables), then the

condition a + q = c is an affine translation of a diagonal slice of the complex locus B. The

resultant Ba is the solution of the equation |c − 1| = |a − 1|, which is a circle centered at

a = 1 with radius |c− 1|. The corresponding Bq is a circle centered at q = c− 1 with radius

|c − 1|. These circles in the a and q planes pass through a = 0 and q = 0, respectively.

V. SQUARE STRIP WITH FREE LONGITUDINAL BOUNDARY CONDITIONS

In this section we present the Potts model partition function Z(Sm, q, v) for the Ly = 2

strip of the square lattice Sm with arbitrary length Lx = m + 1 (i.e., containing m + 1

squares) and free transverse and longitudinal boundary conditions. One convenient way to

express the results is in terms of a generating function:

Γ(S, q, v, z) =

∞
∑

m=0

Z(Sm, q, v)zm . (5.1)

We have calculated this generating function using the deletion-contraction theorem for the

corresponding Tutte polynomial T (Sm, x, y) and then expressing the result in terms of the

variables q and v. We find

Γ(S, q, v, z) =
N (S, q, v, z)

D(S, q, v, z)
(5.2)

where

N (S, q, v, z) = AS,0 + AS,1z (5.3)

with

AS,0 = q(v4 + 4v3 + 6qv2 + 4q2v + q3) (5.4)

AS,1 = −q(v + 1)(v + q)3v2 (5.5)

and
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D(S, q, v, z) = 1 − (v3 + 4v2 + 3qv + q2)z + (v + 1)(v + q)2v2z2 . (5.6)

(The generating function for the Tutte polynomial T (Sm, x, y) is given in the appendix.)

Writing

D(S, q, v, z) =

2
∏

j=1

(1 − λS,jz) (5.7)

we have

λS,(1,2) =
1

2
(TS12 ±

√

RS12 ) (5.8)

where

TS12 = v3 + 4v2 + 3qv + q2 (5.9)

and

RS12 = v6 + 4v5 − 2qv4 − 2q2v3 + 12v4 + 16qv3 + 13q2v2 + 6q3v + q4 . (5.10)

In [34] we presented a formula to obtain the chromatic polynomial for a recursive family

of graphs in the form (2.21) starting from the generating function. It will be useful to give

here the generalization of this formula for the full Potts partition function. For a strip

(recursive) graph with the labelling conventions used here, the generating function can be

written as

Γ(G, q, v, z) =
N (G, q, v, z)

D(G, q, v, z)
(5.11)

with

N (G, q, v, z) =

dN
∑

j=0

AG,jz
j (5.12)

and

D(G, q, v, z) = 1 +

dD
∑

j=1

bG,jz
j

=

dD
∏

j=1

(1 − λG,jz) (5.13)

where
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dN (G) = degz(N (G)) (5.14)

dD(G) = degz(D(G)) (5.15)

Then the formula is

Z(Gm, q, v) =

dD
∑

j=1

[ dN
∑

s=0

AG,jλ
dD−s−1
j

][

∏

1≤i≤dD ;i6=j

1

(λG,j − λG,i)

]

λm
G,j (5.16)

For our present open strip Sm, we have

Z(Sm, q, v) =
(AS,0λS,1 + AS,1)

(λS,1 − λS,2)
λm

S,1 +
(AS,0λS,2 + AS,1)

(λS,2 − λS,1)
λm

S,2 (5.17)

(which is symmetric under λS,1 ↔ λS,2). This shows that the cG,j can depend on both q and

v for open strip graphs. Although both the λS,j’s and the coefficient functions involve the

square root
√

RS12 and are not polynomials in q and v, the theorem on symmetric functions

of the roots of an algebraic equation [61] guarantees that Z(Sm, q, v) is a polynomial in q

and v (as it must be by (1.8) since the coefficients of the powers of z in the equation (5.13)

defining these λS,j’s are polynomials in these variables q and v. This is a generalization of

our discussion in [41] from the special case of chromatic polynomials to the general case of

the Potts/random cluster partition function.

As will be shown below, the singular locus Bu consists of arcs that do not separate the

u plane into different regions, so that the PM phase and its complex-temperature extension

occupy all of this plane, except for these arcs. For physical temperature and positive integer

q, the (reduced) free energy of the Potts model in the limit n → ∞ is given by

f =
1

2
ln λS,1 . (5.18)

This is analytic for all finite temperature, for both the ferromagnetic and antiferromagnetic

sign of the spin-spin coupling J . The internal energy and specific heat can be calculated

in a straightforward manner from the free energy (5.18); since the resultant expressions are

somewhat cumbersome, we do not list them here. We find that for q < 2, in both the

ferromagnetic and antiferromagnetic case, for sufficiently low temperature, the specific heat

is negative, and hence the random cluster model is unphysical for q < 2 on this family of

graphs.

Let us define

Dk(q) =
P (Ck, q)

q(q − 1)
=

k−2
∑

s=0

(−1)s

(

k − 1

s

)

qk−2−s (5.19)
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and P (Ck, q) is the chromatic polynomial for the circuit (cyclic) graph Ck with k vertices,

P (Ck, q) = (q − 1)k + (q − 1)(−1)k (5.20)

so that D2 = 1, D3 = q − 2,

D4 = q2 − 3q + 3 (5.21)

and so forth for other Dk’s. In the T = 0 Potts antiferromagnet limit v = −1, λS,1 = D4 and

λS,2 = 0, so that eq. (5.2) reduces to the generating function for the chromatic polynomial

for this open square strip (cf. eq. (2.16) in [32])

Γ(S, q, v = −1; z) =
q(q − 1)D4

1 − D4z
(5.22)

where Equivalently, the chromatic polynomial is

P (Sm, q) = q(q − 1)(D4)
m+1 . (5.23)

For the ferromagnetic case with general q, in the low-temperature limit v → ∞,

λS,1 = v3 + 3v2 + (q + 2)v + O(1) , λS,2 = v2 + 2(q − 1)v + O(1) as v → ∞ (5.24)

so that |λS,1| is never equal to |λS,2| in this limit, and hence Bu does not pass through the

origin of the u plane for the n → ∞ limit of the open square strip:

u = 0 6∈ Bu({S}). (5.25)

In contrast, as will be shown below, Bu does pass through u = 0 for this strip with cyclic

or Möbius boundary conditions. For our later discussion, we record here the expressions for

the λS,j’s for the Ising case, q = 2:

λS,(1,2) =
1

2
(v + 2)

[

v2 + 2v + 2 ± (v4 + 4v2 + 8v + 4)1/2
]

. (5.26)

A. Bq({S}) for fixed a

We discuss here the continuous locus Bq({S}) in the q plane for various values of a. For

the chromatic polynomial case a = 0 (v = −1), B = ∅, since W ({S}, q) = (D4)
1/2 has only

the discrete branch point singularities (zeros) at

qbp, q∗bp = 1 + e±iπ/3 . (5.27)
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However, for a 6= 0, the situation is qualitatively different; Bq is nontrivial. As a increases

above 0, the locus Bq forms two complex-conjugate (c.c.) arcs, as shown, for a = 0.1, in Fig.

3. For small a, these arcs lie near to the circle |q−1| = 1; as a decreases, they shorten and as

a → 0, they degenerate to the c.c. points qbp, q
∗
bp in eq. (5.27). The endpoints of the arcs are

the (finite) branch point singularities of λS,j, j = 1, 2, arising from the zeros of the square

root in (5.8); for example, for a = 0.1, these endpoints occur at q ≃ 1.0654 + 0.9293i and

q ≃ 1.6346+0.59275i, together with their complex conjugates. From Fig. 3, one can see that

the density of chromatic zeros is greatest at the endpoints and minimal at the centers of the

arcs. As a increases, these arcs extend downward toward the positive real q axis. As a reaches

the value a = 9/16, the arcs touch the real axis at q = 63/64 = 0.984375, thereby joining to

form a single self-conjugate arc with endpoints at q, q∗ = (21±14
√

6i)/64 ≃ 0.3281±0.5358i.

As a increases above the value 9/16, Bq consists of the self-conjugate arc and a line segment

on the real axis, which spreads out from the point q = 63/64. This corresponds to the fact

that for a ≥ 9/16, the expression in the square root in eq. (5.8) has real as well as complex

zeros. An illustration is given for a = 0.9 in Fig. 4. As a → 1, the locus Bq shrinks in toward

the origin. For the ferromagnetic range a > 1, Bq is located in the Re(q) ≤ 0 half-plane and

forms c.c. arcs together with a line segment on the negative real axis, as illustrated for a = 2

in Fig. 5.
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FIG. 3. Zeros of Z(Sm, q, a) in the q plane for a = 0.1. For this and the other figures on zeros of

Z(Sm, q, a), we use m = 19, i.e., n = 42. The axis labels are qr ≡ Re(q) and qi ≡ Im(q) here and in other

q-plane plots.
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FIG. 4. Same as Fig. 3 for a = 0.9.
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FIG. 5. Same as Fig. 3 for a = 2.

One can also consider negative real values of a, which correspond to complex temperature.

As a decreases from 0 through real values, Bq forms arcs, as was the case when a increased

from 0; these arcs have endpoints at the branch point singularities of λS,j and elongate as a

moves downward in the range −1 < a < 0. As a reaches −1, these arcs touch the positive

real q axis at the point q = 2 and join to form a single self-conjugate arc (with endpoints

at 4 ± 4i), but as a decreases below −1, the arcs retract from the real axis to form two c.c.

parts again. It is straightforward to consider complex values of a also, but we shall restrict

ourselves to real a here.

B. Bu({S}) for fixed q

For our analysis of Bu({S}) we start with large q. Here Bu consists of a self-conjugate arc

that crosses the real u axis, together with a complex-conjugate pair of arcs that are concave

toward the real u axis. As q → ∞, these arcs all shrink and move in toward the origin of

the u plane. This limit thus commutes with the result of taking q → ∞ first before taking
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n → ∞; in this case,

λS,1 = q2 + 3vq + O(1) , λS,2 = v2(1 + v) + O
(1

q

)

as q → ∞ (5.28)

so that the degeneracy equation |λS,1| = |λS,2| has no solution for q → ∞. In Fig. 6

we show the complex-temperature zeros of Z for a typical value, q = 10, calculated for

Lx = m + 1 = 20, i.e., n = 42. With this large a value of n, these zeros occur close to the

asymptotic locus Bu and give an adequate indication of its location. The self-conjugate arc

crosses the real u axis at u ≃ −0.3954 where the quantity TS12 in eq. (5.9) vanishes, so that

|λS,1| = |λS,2|. The endpoints of this arc occur at two of the zeros of the square root in eq.

(5.8), viz., u ≃ −0.2937 ± 0.3870i. The two c.c. arcs have their endpoints at the four other

zeros of this square root, at u ≃ −0.1361 ± 0.14245i and u ≃ 0.1178 ± 0.8130i.

As q decreases, the endpoints of the self-conjugate arc retract toward the real axis, it curls

over to be more concave to the right, and the point at which it crosses the real axis moves

to the left. For example, for q = 4, the self-conjugate arc crosses the real axis at u = −1 and

has its endpoints at q ≃ −0.4341 ± 1.3178i, and the c.c arcs extend between endpoints at

q ≃ −0.3697 ± 0.2394i and q ≃ 0.1711 ± 0.1593i. For q = 3 (see Fig. 7), the self-conjugate

arc crosses the real axis at u ≃ −1.2767 and has endpoints at q ≃ −0.5498 ± 0.2489i, and

the c.c. arcs extend between q ≃ −0.0839 ± 2.0177i and 0.1892 ± 0.1974i, passing through

the points u, u∗ = e±2πi/3. These results for q = 3 and 4 have interesting implications that

we shall discuss further below. The changes in Bu as q decreases further toward q = 2 are

illustrated in Fig. 8 where we show the q = 2.5 case. The self-conjugate arc crosses the real

axis at u ≃ −1.323 and has endpoints at u ≃ −0.7249 ± 0.2083i while the c.c pairs of arcs

have endpoints at q ≃ 0.2006 ± 0.2272i and q ≃ 0.56505± 2.4351i.

For q = 2 (Fig. 9), the quartic polynomial in the square root of eq. (5.8) factorizes

into a quadratic polynomial times (v + 2)2, yielding the result (5.26). Correspondingly,

the self-conjugate arc disappears, and the locus B consists of two complex-conjugate arcs

located in the half-plane Re(q) ≥ 0, and touching the imaginary axis at u = ±i. This locus is

invariant under the inversion map u → 1/u. The upper arc extends from the left endpoint at

ue1 ≃ 0.2138+0.2720i through u = i to a right endpoint at ue2 = 1/u∗
e1 ≃ 1.78615−2.2720i,

and so forth for the c.c. arc. As we have discussed before in the context of Bq [32] (see

also [59,60]), these endpoints are the zeros of the square root in (5.26) where there are

finite branch point singularities in λS,1. There is also a discrete zero of Z at the point

u = −1 with multiplicity scaling proportional to the lattice size. As we proved in a previous

theorem (Theorem 6 of Ref. [55]), this zero arises for the Ising model on a lattice with odd

coordination number; in the present case, all of the vertices of the strip S except those on

the four end-corners have ∆ = 3.
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Because of the unphysical nature of the Potts/random cluster model for q < 2, we shall

not discuss this range except to mention another example of the noncommutativity (2.8) at

q = 0. If one first sets q = 0 and calculates Z, then, since Z = 0 identically, the set of zeros

of Z is vacuous. However, if one takes the limit n → ∞, calculates the accumulation set Bu,

and then takes the limit q → 0, one finds that limq→1 Bu is not the empty set. This is clear

from the fact that in the limit q → 0

λS,(1,2);q=0 =
v2

2

[

v + 4 ± (v2 + 4v + 12)1/2
]

(5.29)

so that the degeneracy equation |λS,1;q=0| = |λS,2;q=0| has a nontrivial solution, namely the

section of the the circular arc in the Re(u) < 0 half-plane

Bu : u =
1

3
ei(π±θ) , 0 ≤ θ ≤ arctan(2

√
2) (5.30)

which crosses the real axis at u = −1/3 (i.e., v = −4) and has endpoints at u = (−1 ±
2
√

2i)/9.
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FIG. 6. Zeros of Z(Sm, q, a) in the u plane for q = 10 and m = 19 (n = 42). The axis labels are

ur ≡ Re(u) and ui ≡ Im(u) here and in other u-plane plots.

32



-2

-1

0

1

2

ui

-3 -2 -1 0 1 2
ur

FIG. 7. Same as Fig. 6 for q = 3.
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FIG. 8. Same as Fig. 6 for q = 2.5.
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FIG. 9. Same as Fig. 6 for q = 2.

VI. CYCLIC AND MÖBIUS LADDER GRAPHS

A. Results for Z

By either using an iterative application of the deletion-contraction theorem for Tutte

polynomials and converting the result to Z, or by using a transfer matrix method (in which

one starts with a q2 × q2 transfer matrix and generalizes to arbitrary q), one can calculate

the partition function for the cyclic and Möbius ladder graphs of arbitrary length, Z(G, q, v),

G = Lm, MLm. We have used both methods as checks on the calculation. Our results have

the general form (2.18) with Nλ = 6 and are

Z(Lm, q, v) =

6
∑

j=1

cL,j(λL,j)
m (6.1)

and
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Z(MLm, q, v) =
6

∑

j=1

cML,j(λML,j)
m (6.2)

where

λML,j = λL,j , j = 1, ..., 6 (6.3)

λL,1 = v2 (6.4)

λL,2 = v(v + q) (6.5)

λL,(3,4) =
v

2

[

q + v(v + 4) ± (v4 + 4v3 + 12v2 − 2qv2 + 4qv + q2)1/2
]

(6.6)

and

λL,5 = λS,1 , λL,6 = λS,2 (6.7)

where λS,j, j = 1, 2 for the open ladder were given above in eq. (5.8). We note that

λL,3λL,4 = (1+v)(q+v)v3 and λL,5λL,6 = (1+v)(q+v)2v2. Chromatic and Tutte polynomials

for recursive families of graphs obey certain recursion relations [22,34]. In terms of the

equivalent Tutte polynomial, given in the appendix, the results (6.1) and (6.2) agree with a

recursion relation given in Ref. [22] (see also [23]).

The coefficient functions for the cyclic and Möbius ladders are

cL,1 = q2 − 3q + 1 (6.8)

cL,2 = cL,3 = cL,4 = cML,3 = cML,4 = q − 1 (6.9)

cL,5 = cL,6 = cML,5 = cML,6 = 1 (6.10)

cML,1 = −1 (6.11)

cML,2 = 1 − q . (6.12)

Because of the equalities cG,3 = cG,4 and cG,5 = cG,6 for G = L and for G = ML, we can

again apply the theorem on symmetric polynomial functions of roots of algebraic equations

[61] to confirm that, although the λG,j’s for nonpolynomial algebraic functions of q and v for

j = 3, 4, 5, 6, Z(Gm, q, v) is a polynomial function of these variables q and v, as it must be

by (1.8).

36



B. Special values and expansions of λ’s

We discuss some special cases. First, for the zero-temperature Potts antiferromagnet, i.e.

the case a = 0 (v = −1), the partition functions Z(Lm, q, v) and Z(MLm, q, v) reduce, in

accordance with the general result (1.10), to the respective chromatic polynomials P (Lm, q)

and P (MLm, q) calculated in [22]. In this special case, we have λL,1 = 1, λL,2 = 1 − q, and

(for an appropriate choice of sign of terms of the form
√

(q − 3)2 and
√

(D4)2 ) λL,3 = 3−q,

λL,4 = 0, λL,5 = D4 = q2 − 3q + 3, and λL,6 = 0. For the infinite-temperature value a = 1,

we have λL,j = 0 for j = 1, 2, 3, 4, 6, while λL,5 = q2, so that Z(G, q, a = 1) = q2m = qn for

G = Lm, MLm, in accord with the general result (2.3).

At q = 0, besides the q-independent λL,1, we find

λL,2 = (a − 1)2 (6.13)

λL,3 = λL,5 =
1

2
(a − 1)2

[

a + 3 + (a2 + 2a + 9)1/2
]

(6.14)

λL,4 = λL,6 =
1

2
(a − 1)2

[

a + 3 − (a2 + 2a + 9)1/2
]

. (6.15)

Since λL,3 and λL,5 are leading and are degenerate at this point, it follows that

q = 0 is on Bq({L}) ∀ a . (6.16)

At q = 1, cL,j = 0 for j = 2, 3, 4 so that the corresponding λL,j, j = 2, 3, 4, do not

contribute to Z. Further, cL,1 = −1 = −cL,j, j = 5, 6 and λL,1 = λL,6 = (a − 1)2 so

that the contributions of these terms cancel in Z, leaving only the contribution of λL,5:

Z(Lm, q = 1, a) = (λL,5)
m = a3m, in agreement with the general formula (2.2).

In order to study the zero-temperature critical point in the ferromagnetic case and also the

properties of the complex-temperature phase diagram, we calculate the λG,j,u’s corresponding

to the λG,j’s, using eq. (2.27). This gives λL,1,u = u(1− u)2, λL,2,u = u(1− u)[1 + (q − 1)u)],

and so forth for the others. In the vicinity of the point u = 0 one has

λL,1,u = u − 2u2 + u3 (6.17)

λL,2,u = u + (q − 2)u2 + (1 − q)u3 (6.18)

and the Taylor series expansions
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λL,3,u = 1 − u2 + 2(q − 2)u3 + O(u4) (6.19)

λL,4,u = u + (q − 4)u2 + (7 − 3q)u3 + O(u4) (6.20)

λL,5,u = 1 + (q − 1)u2
[

1 + 4u + O(u2)
]

(6.21)

λL,6,u = u + 2(q − 2)u2 + (q2 − 7q + 7)u3 + O(u4) . (6.22)

Hence, at u = 0, λL,3,u and λL,5,u are dominant and |λL,3,u| = |λL,5,u|, so that the point u = 0

is on Bu for any q 6= 0, 1, where the noncommutativity (2.8) occurs. For q > 0, λL,5,u is

dominant on the real u axis in the vicinity of u = 0 and hence in the PM and O phases that

can be reached by analytic continuation therefrom, while the term λL,3,r is dominant on the

imaginary u axis in the neighborhood of the origin, and hence in the O phases that can be

reached by analytic continuation from this neighborhood.

To determine the angles at which the branches of Bu cross each other at u = 0, we write u

in polar coordinates as u = reiθ, expand the degeneracy equation |λL,3,u| = |λL,5,u|, for small

r, and obtain qr2 cos(2θ) = 0, which implies that (for q 6= 0, 1) in the limit as r = |u| → 0,

θ =
(2j + 1)π

4
, j = 0, 1, 2, 3 (6.23)

or equivalently, θ = ±π/4 and θ = ±3π/4. Hence there are four branches of Bu intersecting

at u = 0 and these branches cross at right angles. The point u = 0 is thus a multiple point

on the algebraic curve Bu, in the technical terminology of algebraic geometry (i.e., a point

where several branches of an algebraic curve cross [62]).

In order to investigate how these crossings depend on Ly, we have calculated Z for the

cyclic strip graph of the square lattice with the next larger width, Ly = 3. Since the T = 0

critical point for the Potts ferromagnet is present for each q 6= 0, 1, it suffices to do this

calculation for the simple q = 2 Ising case (bearing in mind the noncommutativity that

applies at special values qs as discussed above). We find that there are two λj ’s that are

dominant near u = 0, and the small–u expansion of the degeneracy equation yields the

condition r3 cos(3θ) = 0, so that there are six curves on Bu crossing u = 0, at the angles

θ = (2j + 1)π/6, j = 0, 1, ..., 5. This leads to the generalization that for the cyclic strip

graph of the square lattice with width Ly, there are 2Ly curves on Bu that cross each other

at u = 0, at the angles θ = (2j + 1)π/(2Ly), j = 0, 1, ..., 2Ly − 1. This inference implies,

in turn, that in the limit Ly → ∞, an infinite number of curves on Bu intersect at u = 0,

and the complex-temperature (Fisher) zeros become dense in the neighborhood of this point.
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Since the origin of this phenomenon is not dependent in detail on the lattice type, one would

also infer that it occurs for infinite-length width Ly cyclic strips of other lattices.

For q = 0, 1 the (2.12) occurs, with (Bu)nq = ∅ by eqs. (2.14) and (2.15), but (Bu)qn 6= ∅.
While Bu is compact for q 6= 2, it is noncompact for q = 2, where the symmetry (2.16) holds.

Our exact calculations yield the following general result

B({L}) = B({ML}) . (6.24)

This is in accord with the conclusion that the singular locus is the same for an infinite-

length finite-width strip graph for given transverse boundary conditions, independent of

the longitudinal boundary condition. This generalizes our previous finding that Bq was

independent of the longitudinal boundary conditions for the case a = 0 [37,41,43]. In the

present case, the result (6.24) follows immediately because Z(Lm, q, v) and Z(MLm, q, v)

involve the same λj’s. We note that this is a sufficient, but not necessary condition for

the loci to be the same for a given family of graphs when one changes the longitudinal

boundary conditions; it may be recalled that for the T = 0 Potts antiferromagnet on the

width Ly = 3 strip of the square [42] with periodic transverse boundary conditions, when

one changed from periodic to twisted periodic longitudinal boundary conditions, i.e. toroidal

to Klein bottle topology, three of the Nλ = 8 terms were absent. However, since none of

these was a dominant term anywhere, the locus Bq was the same for either toroidal or

Klein bottle boundary conditions. From our calculation of the chromatic polynomial for the

width Ly = 3 strip of the triangular lattice with both free and periodic transverse boundary

conditions and periodic and twisted periodic longitudinal boundary conditions [46] we found

that a similar situation occured for the toroidal versus Klein bottle boundary conditions: six

of the Nλ = 11 terms in the toroidal case were absent in the Klein bottle case, but again

none of these was dominant anywhere. Owing to the equality (6.24), we shall henceforth, for

brevity of notation, refer to both B({L}) and B({ML}) as B({L}) and similarly for specific

points on B, such as qc({L}) = qc({ML}), etc.

C. Bq({L}) for fixed a

We find that Bq({L}) crosses the real q axis at

qc({L}) = (1 − a)(a + 2) . (6.25)

This is the solution to the degeneracy equation of leading terms |λL,5| = |λL,3| = |λL,2|. As a

increases from 0 to 1, qc({L}) decreases monotonically from 2 to 0. From eq. (6.25) it follows

that there are, in general, two values of a that correspond to this value of q on B({L}), viz.,
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ac,±({L}) =
1

2
[−1 ±

√

9 − 4q ] , i.e, uc,±({L}) =
−1 ±√

9 − 4q

2(q − 2)
. (6.26)

D. Antiferromagnetic Case, T = 0

We start with the T = 0 antiferromagnet, i.e. the case a = 0. After initial studies in

Refs. [22,26,28], the locus B was determined in Ref. [21]. As is shown in Fig. 3 of Ref. [21],

Bq separates the q plane into four regions, and qc({L}) = 2. The outermost region is R1, and

includes the segments 2 ≤ q and q < 0 on the real q axis; in this region λL,5 is dominant.

The innermost region, denoted R3, includes the segment 0 ≤ q ≤ 2 on the real axis; in

this region, the term λL,3 is dominant. In addition, there are two other complex-conjugate

regions, R2 and R∗
2, which touch the real axis at q = qc({L}) = 2 and stretch outward to

triple points at

qL,trip., q∗L,trip. = 2 ±
√

2 i . (6.27)

The part of B separating region R3 from regions R2, R∗
2 is the line segment Re(q) = 2,

−
√

2 ≤ Im(q) ≤
√

2. In regions R2, R∗
2, λ2 is dominant. At q = 2 all four terms are

degenerate (recall that for a = 0, λL,4 = λL,6 = 0). At the triple points qL,trip., there are

three degenerate leading terms, with |λL,5| = |λL,3| = |λL,2|. All four regions are contiguous

at qc({L}).

E. Antiferromagnet Case for T > 0

We proceed to consider the regions in the q plane for the Potts antiferromagnet at ar-

bitrary nonzero temperature, i.e. the range 0 < a ≤ 1. The zeros of Z in the q plane are

shown for several values of a in the figures. In this range 0 < a < 1 we find a number of

general features. As was true at T = 0, Bq continues to separate the q plane into different

regions and, as indicated in eq. (6.16) and (6.25), this locus crosses the real axis at q = 0

and qc({L}). Bq consists of a single connected component made up of several curves. Com-

menting on the regions in the q plane, starting for a near 0, we note that again the region

R1 is the outermost, and includes the semi-infinite line segment on the real axis q > qc({L})
and q < 0; region R3 is the innermost region, and includes the line segment 0 ≤ q ≤ qc({L}).
The complex-conjugate regions R2 and R∗

2 extend upward and downward from qc({L}) to

triple points. As a increases, the complex-conjugate regions R2 and R∗
2 are reduced in size.

As is evident in the figures, as a increases from 0 to 1, the locus Bq contracts toward the
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origin, q = 0 and in the limit as a → 1, it degenerates to a point at q = 0. This also describes

the general behavior of the partition function zeros themselves. That is, for finite graphs,

there are no isolated partition function zeros whose moduli remains large as a → 1. This is

clear from continuity arguments in this limit, given eq. (2.3).
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FIG. 10. Zeros of Z(Lm, q, a) in the q plane for a = 0.25 and m = 18 (n = 36).
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FIG. 11. Same as Fig. 10 for a = 0.5.
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FIG. 12. Same as Fig. 10 for a = 0.75.

F. Ferromagnetic Case

In Fig. 13 we show the zeros of Z for a typical ferromagnetic values, a = 2. We find

the following general features of Bq for the ferromagnetic Potts model for the full range of

temperature. The locus Bq contains a heart-shaped figure and a finite line segment on the

negative real q axis. The line segment occurs because the expression in the square roots

in λL,5 and λL,6, given as RS12 in eq. (5.10), is negative in an interval of the negative real

axis, yielding a pure imaginary square root so that, given that TS12 is real, |λL,5| = |λL,6|.
For example, for the case shown in Fig. 13, RS12 < 0 for −3.73 < q < −2.10; within this

interval, |λL,5| = |λL,6| are leading for −3.73 < q < 3.35, thereby producing the line segment.

(For the remaining part of the interval, −3.35 < q < −2.10, these eigenvalues have smaller

magnitudes than |λL,3| and hence do not determine the locus Bq.) The size of the heart-

shaped boundary increases as a increases. Since qc({L}), given in eq. (6.25), is negative,

Bq does not intersect the positive real q axis. As was true for the Potts AF, in the region

exterior to Bq in the q plane, the dominant λj is λL,5, so that the (reduced) free energy is
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f =
1

2
lnλL,5 =

1

2
ln λS,1 (6.28)

where λS,1 was given in eq. (5.8). For the range q > 2 where this system has acceptable

physical behavior, the above expression for the free energy holds for all (physical) tempera-

tures. We shall discuss the thermodynamics further below. In the region interior to Bq, λL,3

is dominant, so |ef | = |λL,3|1/2.
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FIG. 13. Zeros of Z(Lm, q, a) in q for a = 2 and m = 18 (n = 36).

G. Bq for a < 0

We briefly comment on Bq for negative real values of a, which correspond to complex

temperature (as well as complex values of a not considered here). For the interval

− 1

2
< a < 0 (6.29)

the regions R2 and R∗
2, which were separate, although contiguous at q = qc({L}), for a in

the interval 0 ≤ a < 1, now merge to form one region, which we shall call R22∗ to indicate

this merger. In this region, λL,2 is dominant. The R22∗ − R1 boundary is determined by

the degeneracy equation |λL,2| = |λL,5| and crosses the real axis at qc({L}). The point at
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which the R3 −R22∗ boundary crosses the real axis is determined by the relevant root of the

threefold degeneracy equation |λL,3| = |λL,2| = |λL,5|, and is

qbℓ = 2(1 − a) for − 1

2
< a < 0 . (6.30)

The width of the merged R22∗ region on the real axis is thus (−a)(1 − a) for this range of

a. As a decreases in the interval (6.29), qbℓ and qc both increase above 2. When a decreases

through the value a = −1/2, at which point qbℓ = 9/4, the square root in λL,3 becomes

complex. Viewed the other way, solving eq. (6.30) for a gives

ab± =
1

2

[

−1 ±
√

9 − 4q
]

. (6.31)

We are interested in the larger solution, ab+. When q increases through 9/4, corresponding

to ab+ = −1/2, the square root becomes complex, and there is no longer a real solution for

ab±. The region diagram changes qualitatively for a < −1/2. The illustrative case a = −1

is shown in Fig. 14. Note that Z(Lm, q, a = −1) has an overall factor q(q − 2). Here Bq

crosses the real q axis at q = 2 and q = qc = 4 as well as at q = 0. The crossing at q = 4 is

a multiple point on the algebraic curve. Other interesting changes occur for larger negative

values of a, but we shall forgo discussing them to proceed to the physical range of real a ≥ 1.
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FIG. 14. Zeros of Z(Lm, q, a) in q for a = −1 and m = 18.
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H. Thermodynamics of the Potts Model on the Ly = 2 Strip

1. q ≥ 2

In this section we first restrict to the range q ≥ 2 where the Potts/random cluster model

has physical behavior for both the ferromagnetic and antiferromagnetic cases, and then

consider the behavior for 0 < q < 2. For q ≥ 2, the free energy is given for all temperatures

by (6.28). It is straightforward to obtain the internal energy U and specific heat C from this

free energy; since the expressions are somewhat complicated we do not list them here but

instead concentrate on their high- and low-temperature expansions and general features, as

compared with those for the Ly = 1 case. The high-temperature expansion of U is

U = −3J

2q

[

1 +
(q − 1)

q
K + O(K2)

]

. (6.32)

The expression in brackets is the same as that for the Ly = 1 strip up to and including the

K2 term. For the specific heat we have

C =
3kB(q − 1)K2

2q2

[

1 +
(q − 2)

q
K + O(K2)

]

(6.33)

(here the order K2 term differs from that for Ly = 1.) The low-temperature expansions for

the ferromagnet (K → ∞) and antiferromagnet (K → −∞) are

U = J

[

−3

2
+ (q − 1)e−2K

[

1 + 6e−K + 7(q − 1)e−2K + O(e−3K)
]

]

as K → ∞ (6.34)

and

U =
(−J)eK

2(D4)2

[

t1 + t2e
K + O(e2K)

]

as K → −∞ (6.35)

where D4 = q2 − 3q + 3 was given in (5.21) and

t1 = (q − 2)(3q2 − 9q + 8) (6.36)

t2 = −(3q6 − 42q5 + 211q4 − 532q3 + 734q2 − 534q + 162)

(D4)2
(6.37)

C = 2kBK2(q − 1)e−2K
[

1 + 9e−K + 14(q − 1)e−2K + O(e−3K)
]

as K → ∞ (6.38)

and
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C =
kBK2eK

2(D4)2

[

t1 + 2t2e
K + O(e2K)

]

. as K → −∞ (6.39)

Again, we observe that for the Ising case q = 2, these expansions satisfy the symmetry

relations (2.6) and (2.7). (In passing, we mention the generalization of the first term in eq.

(6.34) to arbitrary Ly: in the T = 0 limit of the Potts ferromagnet,

U = −∆aveJ

2
= −2

[

1 − 1

2Ly

]

J . (6.40)

We show plots of C (with kB = 1) for the ferromagnetic and antiferromagnetic Potts model

on the Ly = 2 strip (in the Lx → ∞ limit) in Figs. 15 and 16. As was true for Ly = 1, in

the antiferromagnetic case, C is a decreasing function of q for all finite temperature, while

in the ferromagnetic case, C increases (decreases) with q at low (high) temperatures and

has a maximum that increases with q. For a fixed q, by comparing the previous plots of the

specific heat on the line (Ly = 1 case) with the corresponding plots for the Ly = 2 strip, for

the ferromagnet, and for the antiferromagnet, one can see quantitatively how the behavior

of this function changes as Ly increases.
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FIG. 15. Specific heat for the Potts ferromagnet on the infinite-length, width Ly = 2 strip (ladder) as a

function of K = J/(kBT ). Going from bottom to top in order of the heights of the maxima, the curves are

for q = 2, 3, 4.
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FIG. 16. Specific heat for the Potts antiferromagnet on the infinite-length, width Ly = 2 strip (ladder)

as a function of −K = −J/(kBT ). Going downward in order of the heights of the maxima, the curves are

for q = 2, 3, 4.

For both the Ly = 1 and Ly = 2 strips, we observe that the exponential zero in the

specific heat as T → 0 for both the ferromagnetic and antiferromagnetic cases is C ∼
(q − 1)K2e−Ly |K|. For comparative purposes we have also calculated the partition function,

free energy, and these thermodynamic functions for the Ising model on the strip with the

next larger width, Ly = 3. We find that the above dependence on Ly is again exhibited,

namely C ∼ K2e−3|K|.

In view of the fact that the Potts ferromagnet has a zero-temperature critical point

for the infinite-length, finite-width strip graphs of the square lattice (as does the Potts

antiferromagnet in the q = 2 case where it is equivalent to the ferromagnet on these graphs),

it is of interest to investigate the dependence of the singularities in thermodynamic functions

on the strip width Ly. As is typical for systems at their lower critical dimensionality, these
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are essential singularities. We have done this comparative study above for the specific heat.

We next consider the (divergent) exponential singularities in the correlation length and the

(uniform, zero-field) susceptibility (again, in the q = 2 case, under the replacement J → −J

and uniform → staggered, this subsumes the antiferromagnetic case). Define the ratio of the

subleading eigenvalue divided by the leading eigenvalue of the transfer matrix for the strip

graphs with periodic longitudinal boundary conditions considered here as ρLy
. Thus

ρ1 =
λC,2

λC,1
=

v

q + v
(6.41)

and

ρ2 =
λL,3

λL,5
. (6.42)

We have also calculated ρ3 for the Ising case, but since it is a rather messy expression

involving cube roots, we do not display it here. These ratios ρLy
control the asymptotic

decay of the spin-spin correlation function. For example, in the n → ∞ limit, the spin-spin

correlation function in the 1D case is given by 〈σrσr′〉 ∝ (ρ1)
|r−r′|. The correlation length

can be written as

ξ = − 1

ln ρLy

. (6.43)

For the 1D case, one knows that the correlation length has an exponential divergence as

T → 0: ξ ∼ q−1eK + O(1). For the Ly = 2 strips we find

ξ ∼ q−1e2K + O(eK) , as T → 0 for {G} = {L} . (6.44)

and for the Ising model on the width Ly = 3 strip, we obtain ξ ∼ (1/2)e3K + O(e2K). These

results show that the exponential divergence in the correlation length is more rapid for larger

width Ly and are consistent with an inference that ξ ∼ q−1eLyK + O(e(Ly−1)K) as T → 0.

The fact that the correlation length diverges more rapidly as Ly increases is easily explained

since this is due to the spin-spin interactions and the average effect of these interactions, as

determined by the average coordination number, ∆ave in eq. (2.5), increases as Ly increases.

The zero-field susceptibility (per site) is well known for the 1D case: χ = β(1+ρ1)/(1−ρ1),

which diverges as a function of K like χ ∼ KeK as K → ∞. Our results for Ly = 2, 3 support

the inference that χ ∼ KeLyK as K → ∞. The more rapid divergence in χ as Ly increases

can be explained in the same way as was done for the correlation length.

The inferred Ly dependence of the divergences in the correlation length ξ and susceptibil-

ity χ at the zero-temperature critical point of the Potts ferromagnet dramatically illustrate
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the fact that the thermodynamic behavior of the model on this sequence of infinite-length,

width Ly strips of the square lattice is quite different, even in the limit Ly → ∞, from the

behavior of the model on the square lattice. In the latter case, the thermodynamic limit is

Lx → ∞, Ly → ∞, with limLx→∞ Ly/Lx equal to a finite nonzero constant. For the strips,

for any Ly no matter how large, the ferromagnet is critical only at T = 0, and as T → 0 and

ξ → ∞, the strip acts as a one-dimensional system, since limLx→∞Ly/Lx = 0. In contrast,

for the Potts model on the square lattice, the phase transition occurs at finite temperature,

at the known value Kc = ln(1 +
√

q ). These studies of the thermodynamic behavior of the

Potts model for general q on Ly × ∞ strips thus complement studies such as those on the

approach to the thermodynamic limit of the Ising model on Lx × Ly rectangular regions, in

which Lx and Ly both get large with a fixed finite ratio Ly/Lx [63], and finite-size scaling

analyses [64]. These differences are also evident in the behavior of Bu; we have inferred above

that as Ly → ∞, there are an infinite number of curves on Bu that cross each other at the

ferromagnetic zero-temperature critical point, u = 0, so that the Fisher zeros become dense

in the neighborhood of this point. This is quite different from the accumulation set of the

Fisher zeros for the square lattice; although this is known exactly only for the Ising case, the

existence of low-temperature expansions with a finite radius of convergence for the q-state

Potts model is equivalent to the statement that the singular locus Bu does not pass through

u = 0.

In the case of the antiferromagnet, as we have shown [31], for q values that are only

moderately above the value of q = 3 where the Potts antiferromagnet is critical on the square

lattice, the ground state entropy of infinite-length, finite-width strips rapidly approaches its

value for the square lattice. For the (Lx → ∞ limit of the) Ly = 2 strip, this is given by

S0 = (1/2)kB ln(q2 − 3q + 3), which is nonzero for q > 2. The analytic expressions for the

Ly = 3, 4 cases are given in [31]. This can be understood because the ground state entropy

is a disorder quantity and, for q > 3 is not associated with any large correlation length.

2. 0 < q < 2: Phase Transition for Antiferromagnet

For the range 0 < q < 2, our result for ac,+ in eq. (6.26) shows that B crosses the positive

real a axis in the interval 0 < a < 1, so that the Potts/random cluster antiferromagnet has

a finite-temperature phase transition, at the temperature

TL,p =
J

kB ln
[

1
2
{−1 +

√
9 − 4q }

] , 0 < q < 2 (6.45)
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(where both J and the log are negative, yielding a positive TL,p). For q = 1, it is understood

that one takes n → ∞ first and then q → 1, i.e., that one uses the free energy fqn. As

q decreases from 2 to 0, the phase transition temperature TL,p increases from 0 to infinity.

In the high- and low-temperature phases, the free energy is given by eq. (6.28) and by

f = (1/2) lnλL,3, respectively. These results may be compared with the temperature Tp

in eq. (4.14) for the circuit graph. The same comments that we made in that case apply

here; this result does not contradict the usual theorem that 1D (and quasi-1D) spin systems

with short-range interactions do not have any finite-temperature phase transition because

the phase transition here is intrinsically connected with unphysical behavior of the model

in the low-temperature phase, including negative specific heat, negative partition function,

and non-existence of an n → ∞ limit for thermodynamic functions that is independent of

boundary conditions. Indeed, the last pathology is obvious from the fact that for the n → ∞
limit of the ladder graph with open longitudinal boundary conditions, the free energy is given

by eq. (5.18) for all temperatures, the singular locus B does not cross the positive a axis,

and there is no such phase transition at finite temperature.

Evidently, the temperature value at which the phase transition takes place in the

Potts/random cluster antiferromagnet on the infinite-length limits of both the circuit graph

and the cyclic and Möbius Ly = 2 strip graphs is determined by the respective formulas

relating qc to a, eqs. (4.10) and (6.25). From the point of view of Bq in the q plane, as

we have discussed, we find, as a general feature, that in the antiferromagnetic case, as one

increases T from 0 to infinity, the value of qc({G}) for a given family {G} decreases from its

T = 0 value to the origin, q = 0. Correspondingly, for the n → ∞ limit of a given family

{G} with periodic (or twisted periodic) longitudinal boundary conditions, the antiferromag-

net will exhibit a finite-temperature phase transition at a temperature T{G},p for the range

0 < q < qc({G}):

∃ T{G},p > 0 for 0 < q < qc({G}) . (6.46)

Thus, for example, for the Ly = 3 square strip of the square lattice with cyclic or Möbius

boundary conditions, for which we determined Bq for the T = 0 antiferromagnet [37] and, in

particular, qc(sq, Ly = 3, cyc.) ≃ 2.33654, it follows that the random cluster antiferromagnet

has a finite-temperature phase transition for 0 < q < qc(sq, Ly = 3, cyc.). Just as we have

discussed above, at special integer values qs in the range 0 < q < qc({G}), it is understood

that one takes the limit n → ∞ first, and then q → qs in calculating f = fqn and Bu = (Bu)qn.

Similarly, on the Ly = 2 cyclic and Möbius triangular lattice strips, where we found that

qc(tri, Ly, cyc.) = 3 for Ly = 2 [37] and Ly = 3 [46], it follows that the Potts/random

cluster antiferromagnet has a finite-temperature phase transition for 0 < q < 3. In all cases,
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however, this transition involves unphysical aspects, among which is the non-existence of a

unique n → ∞ limit that is independent of boundary conditions.

I. Bu({L}) for q > 4

We next proceed to the slices of B in the plane defined by the temperature Boltzmann

variable u, for given values of q, starting with large q. In the limit q → ∞, the locus Bu is

reduced to ∅. This follows because for large q, there is only a single dominant λj, namely

λL,5 ∼ q2 + 3qv + O(1) as q → ∞ . (6.47)

Note that in this case, one gets the same result whether one takes q → ∞ first and then

n = 2m → ∞, or n → ∞ and then q → ∞, so that these limits commute as regards the

determination of Bu.
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FIG. 17. Zeros of Z(Lm, q, a) in the u = 1/a plane for q = 10 and m = 18 (n = 36).
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FIG. 18. Zeros of Z(Lm, q, a) in the u = 1/a plane for q = 3 and m = 24 (n = 48).

In the large–q region we find that the locus Bu consists of two complex-conjugate curves

that pass through u = 0 at the angles (6.23), hence intersecting at right angles and forming

a distorted figure-8, together with a separate self-conjugate arc. Thus, Bu is comprised of

two disconnected parts. For real q, the degeneracies in magnitude among leading terms

are |λL,3,u| = |λL,5,u| at u = 0 and |λL,5,u| = |λL,6,u| at the point on the negative real axis

where TS12 = 0. As a typical illustration of Bu for the large-q region, we show the complex-

temperature zeros for q = 10 calculated for m = 18, i.e., n = 2m = 36, in Fig. 17. It is

instructive to compare this plot with the analogous plot for the open strip with q = 10 given

above in Fig. 6. The self-conjugate arc is the same in the two plots, crossing the real u axis

at u ≃ −0.3954, where TS12 = 0 and having endpoints at two of the zeros of the expression

in the square root in λL,j, j = 5, 6, which are identical to λS,j, j = 1, 2 in eq. (5.8). A

notable difference between the locus Bu for the cyclic or Möbius ladder and the analogous

locus for the open square strip is that while the latter does not separate the u plane into

different regions, the former does. Specifically, there are three regions: the physical PM

phase occupying the interval 0 ≤ u ≤ ∞ and its maximal analytic continuation, together

with an O1 phase in the interior of the upper curve and its complex-conjugate phase O∗
1. As

53



is evident in the figure, the density of zeros on the curves decreases strongly as u approaches

the multiple point at u = 0. In the PM phase λL,5,u is dominant, and so the reduced free

energy is given by

f =
1

2
ln λL,5 for u ∈ PM . (6.48)

In the other phases only the magnitude |ef | can be determined unambiguously, and, with

appropriate choices of branch cuts, we have

|ef | = |λL,3|1/2 for u ∈ O1, O∗
1 . (6.49)

As q increases, Bu contracts toward u = 0, just as was true for the open strip. As q decreases,

the point at which the self-conjugate arc crosses the negative real u axis (i.e. where TS12 = 0)

moves toward the left, and the elongate toward the left.

J. Bu for 3

We next discuss the complex-temperature phase diagram for the case q = 3. An impor-

tant conclusion that we shall draw from our studies of Bu for q = 3 and q = 4 (as well as

the q = 2 case), building on our earlier comparative studies of complex-temperature phase

diagrams for the 1D and 2D Ising model with both spin 1/2 and higher spin s [58,65], is that

although 1D and quasi-1D systems with short-range spin-spin interactions (infinite-length

circuit or cyclic or Möbius strips) have qualitatively different physical thermodynamic prop-

erties than the same systems in higher dimensions, the complex-temperature phase diagrams

of these 1D and quasi-1D systems can give insight into the corresponding phase diagrams of

the model on lattices of dimensionality d = 2. Since no exact solution has been obtained for

the Potts model in d ≥ 2 (except for the d = 2, q = 2 case), whereas we have exact solutions

on infinite-length, finite-width strips, this means that one can use these as a tool to suggest

properties of the complex-temperature properties of the Potts model in 2D (and perhaps in

d > 2).

The complex-temperature zeros of Z in the variable u are shown for q = 3 in Fig. 18. In

addition to the (CTE)PM phase, which includes the intervals u ≥ 0 and u ≤ −2 on the real

u axis and the intervals 0.52 ≤ |Im(u)| ≤ 1.7 and |Im(u)| ≥ 2.2 on the imaginary axis, and

extends outward to the circle at infinity, one also has several O phases. Among these are an

O1 phase that contains the interval 0 ≤ Im(u) ≤ 0.52 and an O2 phase which includes the

interval 1.7 ≤ Im(u) ≤ 2.2, together with the complex conjugates of these phases, which are

denoted O∗
1 and O∗

2. The dominant terms in these phases are: λL,5 in PM; λL,3 in O1, O∗
1;
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and λL,2 in O2, O∗
2. Two phases that are self-conjugate and include intervals of the real axis

are the O3 phase, containing the real interval −1/2 ≤ u ≤ 0, in which λL,5 is dominant; and

the O4 phase, containing the real interval −2 ≤ u ≤ −1/2, in which λL,1 is dominant. The

point u = −2 here is the same as the point uc(q) in eq. (4.12) for the infinite-length limit

of the circuit graph. There are also phases that have no support on the real axis. The locus

Bu has several multiple points (in the technical terminology of algebraic geometry, meaning

points where several branches of an algebraic curve intersect). Anticipating our results for

other values of q, we find that the point on the negative real u axis where the PM phase,

on the left, is contiguous with the O4 phase, on the right, is given by the same uc as for the

circuit graph, i.e.,

uPM−O4
({L}) = uc({C}) = − 2

q − 2
. (6.50)

In a similar manner, we label the point on the negative real u axis where the O4 phase, on

the left, is contiguous with the O3 phase, on the right, as uO4−O3
; as indicated, this has the

value −1/2 for q = 3. The degeneracies in magnitude between leading terms λL,j,u at these

multiple points are as follows (with appropriate conventions for branch cuts in square roots):

|λL,3,u| = |λL,5,u| at u = 0 (6.51)

|λL,1,u| = |λL,5,u| at u = uO4−O3
(6.52)

|λL,1,u| = |λL,2,u| = |λL,5,u| at u = uPM−O4
(6.53)

|λL,1,u| = |λL,3,u| = |λL,5,u| at u ≃ −0.44 ± 0.22i (6.54)

|λL,j,u| all equal at u = e±2iπ/3 . (6.55)

Note that these points ue are the same as for the open square strip discussed above.

Motivated by our previous work [58,65], we next explore relations between the exactly

determined complex-temperature phase diagram for the Potts model on these strip graphs

and on the square lattice. For q = 3 and higher integers, where the 2D q-state Potts model is

not exactly solved, the complex-temperature phase diagram and associated Fisher zeros for

various lattices have been studied in a number of works (e.g. [66]- [74], [56]). One exact result

concerning the complex-temperature phase boundary Ba for the q = 3 Potts model on the

square lattice is that, as a result of the duality property (8.12) and the fact that the square
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lattice is self-dual, Ba maps to itself when one replaces a with ad given by (8.14); hence

the fact that the q = 3 Potts antiferromagnet on the square lattice has a zero-temperature

critical point [17], so that a = 0 is on Ba, means that the dual of this point, namely a = −2,

is also on Ba, or equivalently, u = −1/2 is on Bu [71]. Our exact results for the 1D case with

periodic boundary conditions, eq. (4.11) and for the infinite-length cyclic or Möbius ladder

have the same feature, viz., that Bu contains the point u = −1/2:

Bu ∋ u = −1/2 for {C}, {L} and Λsq with q = 3 (6.56)

where Λsq denotes the square lattice.

This interesting similarity of a feature of the complex-temperature phase boundary Bu

leads us to investigate whether there are also other such connections. Our results suggest

that the point u = −2 where for q = 3 the general formula (6.50) shows that Bu({G}) crosses

the negative real axis for {G} = {C} and {L}, and the points u = e±2iπ/3 in eq. (6.55) where

degeneracies in |λj|’s and associated multiple points on B({L}) occur, have analogues for

Bu in the q = 3 Potts model on the square lattice. These conjectures could, in principle,

be tested by calculations of Fisher zeros for q = 3 on finite square lattices, and these have

been done; however, the considerable scatter of the zeros in the Re(a) < 0 region [66–69,71]

renders it difficult to test the conjectures at present. One could also calculate the Potts

model free energy and the boundary Bu on infinite-length strips of greater width, Ly ≥ 3

and check to see if for q = 3, the points u = −2 and u = e±2iπ/3 are on the resultant locus

Bu. For the analogous multiple points at u = ±i on Bu for the q = 2 Ising model we have

done this (see below) and have found that these points are on this locus not only for Ly = 1

and 2 but also for Ly = 3, just as they are for the full 2D square lattice.

Let us comment further on the correspondences of special complex-temperature points

for the present strip and for the square lattice. There are close relations with the proposed

formulas (a−1)2 = q for q ≥ 2 and (a+1)2 = 4−q for 2 ≤ q ≤ 3 [75] for the Potts ferromagnet

and antiferromagnet, respectively. The second formula, (a + 1)2 = 4 − q (generalized to

consider complex as well as physical temperatures) has the solutions a = −1 ± √
4 − q

(which are duals of each other under the map a → ad = 1 + q/(a − 1). For q = 3, these are

0 and −2. For q = 4, the two solutions coincide at a = u = −1. Both of these complex-

temperature points, u = a−1 = −2 for q = 3 and u = −1 for q = 4, agree with eq. (6.50) for

the infinite cyclic or Möbius square strip.

One of the earliest conjectures for the complex-temperature phase boundary Ba of the

q = 3 Potts model on the square lattice was that it consisted of the square-lattice Potts

model consists of the two circles |a − 1| =
√

q and |a + 1| =
√

4 − q [66]. From later

studies of Fisher zeros, it was concluded that the Ba was not this simple [67–69,71]. This
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was further established combining the calculations of Fisher zeros with the analysis of low-

temperature series expansions [71,73], which showed the existence of complex-temperature

singularities not on this locus, which were associated with prongs or cusps formed by the

zeros. Nevertheless, if, indeed, the points a, a∗ = e±2πi/3 are on Ba, (equivalently, Bu since

the set of these points is the same under inversion) for the q = 3 square-lattice Potts model,

as might be inferred from our exact results on the strips considered here, then this makes

a very interesting connection with the old conjecture of Ref. [66], since the two circles are

|a − 1| =
√

3 and |a + 1| = 1 for q = 3, and these intersect precisely in the two points

a, a∗ = e±2πi/3. We recall that if one uses self-dual boundary conditions, then one finds that

the Fisher zeros lie nicely on the circle |ζ | = 1, where ζ = (a− 1)/
√

q, at least for Re(ζ) > 0

[69] and, moreover, in the q → ∞ limit, the complex-temperature phase boundary is |ζ | = 1,

where ζ = (a − 1)/
√

q [70].

K. Bu for 3 < q ≤ 4

As q increases in the real interval 3 ≤ q ≤ 4, the O4 phase contracts, as can be seen from

the fact that the point uPM−O4
moves to the right, from −2 to −1, while the right-hand

boundary at the point uO4−O3
moves to the left, from −1/2 to −1; thus, at q = 4, these

coincide:

uPM−O4
= uO4−O3

= −1 for q = 4 . (6.57)

In this interval 3 ≤ q < 4, the degeneracies in magnitude of leading terms |λL,j| at uPM−O4

in eq. (6.53) and at uO4−O3
in eq. (6.52) continue to hold. For q = 4, all |λL,j| are equal at

u = −1. The confluence of uPM−O4
and uO4−O3

at −1 and the equality of all |λL,j|’s at this

point reflect a special role for the value q = 4 for the complex-temperature phase diagram.

(However, for the physical thermodynamics of these 1D and quasi-1D systems, there is no

qualitative change in the nature of the singularity at the zero-temperature critical point of

the Potts ferromagnet at this value q = 4.) It may be recalled that the value q = 4 is also

special, albeit in a different way, for the 2D Potts model in that for physical values of q below

4 the Potts ferromagnet has a second-order phase transition while for q ≥ 5 this transition

is first order.

L. Bu for 2 < q < 3

We next discuss the complex-temperature phase diagram as q decreases through real

values from 3 to 2. From the point of view of this phase diagram, the limit q → 2 is singular,
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since Bu is compact if q 6= 2 but is noncompact for q = 2, passing through 1/u = 0. As q

decreases through this range, the point uPM−O4
moves leftward, approaching −∞ as q → 2+.

The point uO4−O3
at which Bu crosses the negative real u axis separating the O4 phase on

the left from the O3 phase on the right moves toward the right, from −1/2 to −0.453398..

(a root of the cubic equation u3 + 2u + 1 = 0) as q decreases from 3 to 2. In Fig. 20 we

show a plot of complex-temperature zeros for q = 2.5. One can observe how the intersection

points which occurred at u = e±2iπ/3 at q = 3 have shifted outward from the real axis and

toward the right. When q decreases all the way to 2, these intersection points reach ±i (see

below). For q = 2.5, the point uPM−O4
= −4, while the crossing at u = uO4−O3

is clearly

visible, near to its q = 2 limiting location at u ≃ −0.4534.

-4

-2

0

2

4

ui

-4 -2 0 2 4 6ur

FIG. 19. Zeros of Z(Lm, q, a) in the u = 1/a plane for q = 2.5 and m = 24 (i.e., n = 48).
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FIG. 20. Same as Fig. 19 for q = 2.

M. Bu for q = 2

Here we again encounter noncommutativity in the definition of the free energy and the

locus Bu. We first discuss fnq and (Bu)nq, obtained by setting q = 2 and then taking n → ∞.

For q = 2, besides the q-independent λL,1 = (a − 1)2, we have

λL,2 = (a − 1)(a + 1) (6.58)

λL,3 = a(a − 1)(a + 1) (6.59)

λL,4 = (a − 1)2 (6.60)

λL,(5,6) =
1

2
(a + 1)

[

a2 + 1 ±
(

a4 − 4a3 + 10a2 − 4a + 1
)1/2 ]

(6.61)
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so that for this value of q, λL,1 = λL,4. Further, cL,1 = −cL,4 = −1 so that the (λL,1)
m and

(λL,4)
m terms cancel each other in Z, which reduces to

Z(Lm, q = 2, a) =
∑

j=2,3,5,6

(λL,j)
m . (6.62)

Since each of the λj ’s contributing to Z(Lm, q = 2, a) has an (a + 1) factor, it follows that

Z(Lm, q = 2, a) = 2(a + 1)m × polyn. (6.63)

The result (6.63) implies that Z(L, q = 2, a = −1, m) = 0, which is implied more generally by

our earlier Theorem 6 of Ref. [55]. This theorem states that for lattices with odd coordination

number, the (zero-field) partition function of the Ising model vanishes at a = −1. This point

may or may not be on (Bu)nq; for example, for the honeycomb lattice, it is, while for the

Archimedean 3-12 lattice it is not [55]. In the present case we will find that it is not on

(Bu)nq.

In Fig. 20 we show a plot of Fisher zeros for the q = 2 case. Because of the general

fact that (Bu)nq passes through u = 0 and the special inversion symmetry (2.4), (2.16) that

holds for q = 2, it follows that (Bu)nq passes through a = 0 also. The complex-temperature

phase diagram consists of six phases, bounded by the locus Bu which is the continuous

accumulation set of the Fisher zeros. The phase diagram in the u plane consists of (i) the

complex-temperature extension of the Z2-symmetric, paramagnetic phase, PM, including the

real axis u > 0, together with five O phases: (ii) O1, including the interval on the imaginary

u axis from u = 0 to u = i, and its complex-conjugate, (iii) O∗
1; (iv) O2, including the interval

on the imaginary axis from u = i to u = i∞, and (v) its complex conjugate, O∗
2; and (vi) O3,

including the negative real axis, u ≤ 0. The PM and O3 phases map to themselves under

the inversion u → 1/u = a, while O1 ↔ O∗
2 and O2 ↔ O∗

1 under this inversion. As in our

previous work [54,55] we shall henceforth suppress the qualifier (CTE) and refer to the PM

phase simply as the PM phase. In this phase, λL,5 is the dominant term in (6.1) so that

reduced free energy is given by f = (1/2) lnλL,5 in the PM phase, as in (6.48). In other

regions that are not analytically connected with the PM region, only |ef | can be determined

unambiguously:

|ef | = |λL,5|1/2 for u ∈ O3, O
∗
3 (6.64)

|ef | = |λL,3|1/2 for u ∈ O1, O
∗
1 (6.65)

and

60



|ef | = |λL,2|1/2 for u ∈ O2, O
∗
2 . (6.66)

where here f = fnq. The locus Bu has multiple points (in the algebraic geometry sense)

at u = 0 and u = ±i and at complex infinity, i.e., at a = 1/u = 0 corresponding to the

zero-temperature ferromagnetic and antiferromagnetic Ising critical points. We have also

calculated Z(G, q, v) exactly for the Ising model on the cyclic Ly = 3 strip and have found

that Bu again has multiple points at u = ±i (as well as at u = 0 and 1/u = 0). A possible

inference would be that this is true for cyclic or Möbius strips of the square graph for all

finite values of Ly ≥ 2. Given our exact results for Ly = 2, 3, we see once again a very

interesting connection with the complex-temperature phase diagram of the same model – in

this case, the Ising model – on the two-dimensional square lattice, for which Ba consists of

the Fisher circles |u ± 1| =
√

2, which intersect precisely in the points u = ±i.

If one takes n → ∞ first and then q → 2, the resulting locus (Bu)qn differs from (Bu)nq in

several respects. First, (Bu)qn does not satisfy the inversion symmetry (2.16). Second, while

λL,5,u is dominant on the negative u axis in the vicinity of the origin u = 0, λL,1,u (equal, in

the q → 2 limit, to λL,4,u) becomes dominant for u < −0.454 and similarly for radial paths

emanating outward from the origin in the upper and lower Re(u) < 0 half-plane. This gives

rise to another region boundary. (Recall that the contributions of these λ’s cancelled if one

took q = 2 first, so that they did not affect Z or the locus (B)nq in the n → ∞ limit.) The

absence of the inversion symmetry in (Bu)qn is clear since a region boundary on this locus

passes through u ≃ −0.454 but not the inverse of this point. This is, then, an example of

the noncommutativity (Bu)qn 6= (Bu)nq for a case where both of these loci are nontrivial.

Finally, one can also discuss Bu for negative real q and for complex q, but we shall forgo this.

VII. SUMMARY AND CONCLUSIONS

In summary, we have calculated exact closed-form expressions for the Potts

model/random cluster partition function for general q and temperature T , or equivalently,

the Whitney/Tutte polynomial for the open, cyclic, and Möbius square strips (ladder graphs)

of width Ly = 2 and arbitrary length Lx. Taking the limit Lx → ∞, we have determined

the free energy f (and |ef | in unphysical phases) and the continuous locus B where the free

energy is singular, which arises as the continuous accumulation set of the partition function

zeros in the C2 space of the variables q and u. The divergences in the correlation length and

susceptibility of the Potts ferromagnet at its zero-temperature critical point were shown to

be more rapidly approached as the strip width increases, and the physical reason for this was

given. Our comparison of different strip widths suggests the inference that for infinite-length,

61



width Ly cyclic (or Möbius) strip graphs, as Ly → ∞, an infinite number of curves on Bu

pass through the point u = 0 and the Fisher zeros become dense in the neighborhood of this

point. It was shown that the Potts/random cluster antiferromagnet on both the infinite-

length circuit graph and ladder graph with cyclic or Möbius boundary conditions exhibits a

phase transition at finite temperature if 0 < q < 2, but with unphysical properties. We dis-

cussed a subtlety in the definition of the free energy of the random cluster model due to the

noncommutativity at certain special values qs: limn→∞ limq→qs
Z1/n 6= limq→qs

limn→∞ Z1/n.

Several generalizations of results for the T = 0 limit of the Potts antiferromagnet (chromatic

polynomials) were presented. Among these is the general form (2.18) for the partition func-

tion of recursive strip graphs (and its further generalization to the case of nonzero external

field, (2.24)). The analysis of [25] for the singular locus Bq in the case of chromatic polyno-

mials was generalized to the present case of the full temperature-dependent Potts partition

function. The dependence of the locus B as a function of the longitudinal boundary con-

ditions was studied, and it was shown that this locus is the same for the strips considered

here with cyclic and twisted cyclic (Möbius) longitudinal boundary conditions. For the Potts

antiferromagnet, it was found that as the temperature increases from 0 to infinity, the sin-

gular locus Bq contracts in to the origin, q = 0. For the Potts ferromagnet, this locus was

found not to cross the positive q axis, in contrast to the antiferromagnetic case, where, for

the cyclic strip, it does. In both the antiferromagnet and ferromagnet cases, for the strips

studied here, Bq passes (does not pass) through q = 0 if one uses periodic (free) longitudinal

boundary conditions. Generalizing our previous result for chromatic polynomials, we found

that for the strips with periodic longitudinal boundary conditions, Bq encloses regions in the

q plane for values of a where it is nontrivial (i.e., a 6= 1). Several advantages of periodic, as

opposed to free, longitudinal boundary conditions were noted, including the fact that with

such periodic longitudinal boundary conditions, the locus Bu passes through u = 0, in 1-1

correspondence with the zero-temperature critical point of the Potts ferromagnet. Finally,

certain properties of the complex-temperature phase diagrams and loci Bu for these infinite-

length, finite-width strips were shown to be the same as known properties of the model on

the square lattice, including the multiple points at u = ±i for q = 2, which also occur in

the exactly solved square-lattice Ising model and the point u = −1/2 for q = 3, which is

known to lie on Bu for the square lattice since it is dual to the zero-temperature critical

point at a = 0. This shows that exact solutions on infinite-length strips could provide a way

of generating plausible conjectures for complex-temperature properties of the Potts model

on two-dimensional lattices and some conjectures were made.
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VIII. APPENDIX

A. Connection Between Potts Model Partition Function and Tutte Polynomial

The Potts model partition function Z(G, q, v) is related to the Tutte polynomial T (G, x, y)

as follows. The graph G has vertex set V and edge set E, denoted G = (V, E). A spanning

subgraph G′ is defined as a subgraph that has the same vertex set and a subset of the edge

set: G′ = (V, E ′) with E ′ ⊆ E. The Tutte polynomial of G, T (G, x, y), is then given by [7]-

[9]

T (G, x, y) =
∑

G′⊆G

(x − 1)k(G′)−k(G)(y − 1)c(G′) (8.1)

where k(G′), e(G′), and n(G′) = n(G) denote the number of components, edges, and vertices

of G′, and

c(G′) = e(G′) + k(G′) − n(G′) (8.2)

is the number of independent circuits in G′ (sometimes called the co-rank of G′). Note that

the first factor can also be written as (x − 1)r(G)−r(G′), where

r(G) = n(G) − k(G) (8.3)

is called the rank of G. The graphs G that we consider here are connected, so that k(G) = 1.

Now let

x = 1 +
q

v
(8.4)

1Accordingly, the U.S. government retains a non-exclusive royalty-free license to publish or reproduce the

published form of this contribution or to allow others to do so for U.S. government purposes.
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and

y = a = v + 1 (8.5)

so that q = (x − 1)(y − 1) = (x − 1)v. Then

Z(G, q, v) = (x − 1)k(G)(y − 1)n(G)T (G, x, y) . (8.6)

There is also a connection with the Whitney rank polynomial, R(G, ξ, η), defined as [4,12]

R(G, ξ, η) =
∑

G′⊆G

ξr(G′)ηc(G′) (8.7)

where the sum is again over spanning subgraphs G′ of G. Then

T (G, x, y) = (x − 1)r(G)R(G, ξ = (x − 1)−1, η = y − 1) (8.8)

and

Z(G, q, v) = qn(G)R(G, ξ =
v

q
, η = v) . (8.9)

Note that the chromatic polynomial is a special case of the Tutte polynomial:

P (G, q) = qk(G)(−1)k(G)+n(G)T (G, x = 1 − q, y = 0) (8.10)

(recall eq. (1.10)).

From the representation (8.6) and the duality property of the Tutte polynomial

T (G, x, y) = T (G∗, y, x) (8.11)

where G∗ is the dual graph corresponding to G, it follows that

Z(G, q, v) = ve(G)q−c(G)Z(G∗, q, vd) (8.12)

where G∗ denotes the graph that is dual to G and vd is the dual image of v:

vd =
q

v
(8.13)

or equivalently, in terms of the variable a,

ad =
a − 1 + q

a − 1
. (8.14)

Corresponding to the form (2.18) we find that the Tutte polynomial for recursively defined

graphs comprised of m repetitions of some subgraph has the form

T (Gm, x, y) =

Nλ
∑

j=1

cT,G,j(λT,G,j)
m (8.15)
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B. Square Strip with Free Longitudinal Boundary Conditions

The generating function representation for the Tutte polynomial for the open square strip

Sm is

ΓT (Sm, x, y; z) =

∞
∑

m=0

T (Sm, x, y)zm . (8.16)

We have

ΓT (S, x, y; z) =
NT (S, x, y; z)

DT (S, x, y; z)
(8.17)

where

NT (S, x, y; z) = AT,S,0 + AT,S,1z = (y + x + x2 + x3) − yx3z (8.18)

and

DT (S, x, y, z) = 1 − (y + 1 + x + x2)z + yx2z2

=
2

∏

j=1

(1 − λT,S,jz) (8.19)

with

λT,S,(1,2) =
1

2

[

(1 + y + x + x2) ±
(

y2 + 2y(1 + x − x2) + (x2 + x + 1)2
)1/2]

. (8.20)

The corresponding closed-form expression is given by the general formula from [34], as applied

to Tutte, rather than chromatic, polynomials, namely

T (Sm, x, y) =
[AT,S,0λT,S,1 + AT,S,1

λT,S,1 − λT,S,2

]

(λT,S,1)
m +

[AT,S,0λT,S,2 + AT,S,1

λT,S,2 − λT,S,1

]

(λT,S,2)
m . (8.21)

An alternative expression for T that explicitly shows that it is a symmetric function of

the λS,j, j = 1, 2, is

T (Sm, x, y) =
1

2
(y + x + x2 + x3)

[

(λT,S,1)
m + (λT,S,2)

m
]

+

1

2

[

y2 + y + 2yx + 2yx2 + x + 2x2 + 3x3 + 2x4 − yx3 + x5
]

[

(λT,S,1)
m − (λT,S,2)

m

λT,S,1 − λT,S,2

]

. (8.22)
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C. Cyclic and Möbius Square Strips

We write the Tutte polynomials for the cyclic and Möbius square strips Lm and MLm as

T (Lm, x, y) =

6
∑

j=1

cT,L,j(λT,L,j)
m (8.23)

and

T (MLm, x, y) =
6

∑

j=1

cT,ML,j(λT,ML,j)
m (8.24)

where it is convenient to extract a common factor from the coefficients:

cT,G,j ≡
c̄T,G,j

x − 1
, G = L, ML . (8.25)

Of course, although the individual terms contributing to the Tutte polynomial are thus

rational functions of x rather than polynomials in x, the full Tutte polynomial is a polynomial

in both x and y. We have

λT,ML,j = λT,L,j , j = 1, ..., 6 (8.26)

λT,L,1 = 1 (8.27)

λT,L,2 = x (8.28)

λT,L,(3,4) =
1

2

[

x + y + 2 ±
(

(x − y)2 + 4(x + y + 1)
)1/2 ]

(8.29)

and

λT,L,5 = λT,S,1 , λT,L,6 = λT,S,2 . (8.30)

Our result for T (G, x, y), G = L, ML agrees with a recursion relation given in [22] (see also

[23]).

c̄T,L,1 = [(x − 1)(y − 1)]2 − 3(x − 1)(y − 1) + 1 (8.31)

c̄T,L,2 = c̄T,L,3 = c̄T,L,4 = xy − x − y (8.32)
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c̄T,L,5 = c̄T,L,6 = 1 (8.33)

c̄T,ML,1 = −1 (8.34)

c̄T,ML,2 = −xy + x + y (8.35)

c̄T,ML,3 = c̄ML,4 = xy − x − y (8.36)

c̄T,ML,5 = c̄T,ML,6 = 1 . (8.37)

We note that λT,L,3λT,L,4 = xy and λT,L,5λT,L,6 = x2y.

D. Special Values of Tutte Polynomials for Square Strips

For a given graph G = (V, E), at certain special values of the arguments x and y, the Tutte

polynomial T (G, x, y) yields quantities of basic graph-theoretic interest [11]- [14], citewu77-

[79]. We recall some definitions: a spanning subgraph G′ = (V, E ′) of G is a graph with the

same vertex set V and a subset of the edge set, E ′ ⊆ E. Furthermore, a tree is a graph

with no cycles, and a forest is a graph containing one or more trees. Then the number of

spanning trees of G, NST (G), is

NST (G) = T (G, 1, 1) , (8.38)

the number of spanning forests of G, NSF (G), is

NSF (G) = T (G, 2, 1) , (8.39)

the number of connected spanning subgraphs of G, NCSSG(G), is

NCSSG(G) = T (G, 1, 2) , (8.40)

and the number of spanning subgraphs of G, NSSG(G), is

NSSG(G) = T (G, 2, 2) . (8.41)

Clearly, NSSG(G) − NCSSG(G) is the number of disconnected spanning subgraphs of G and

NCSSG(G)− NST (G) is the number of connected spanning subgraphs of G that contain one

or more cycles. One thus has the inequality
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NSSG(G) ≥ NCSSG(G) ≥ NST (G) i.e., T (G, 2, 2) ≥ T (G, 1, 2) ≥ T (G, 1, 1) . (8.42)

Also, clearly

NSSG(G) ≥ NSF (G) i.e., T (G, 2, 2) ≥ T (G, 2, 1) (8.43)

and

NSF (G) ≥ NST (G) i.e., T (G, 2, 1) ≥ T (G, 1, 1) . (8.44)

The set of spanning forests differs from the set of connected spanning subgraphs by the

removal of the condition that the subgraph is connected but the imposition of the condition

that the subgraph have no cycles, and hence there is no general inequality between NSF (G)

and NCSSG(G).

We recall the results for tree graphs Tn and circuit graphs Cn: T (Tn, 1, 1) = T (Tn, 1, 2) =

1, T (Tn, 2, 1) = T (Tn, 2, 2) = 2n−1, T (Cn, 1, 1) = n, T (Cn, 2, 1) = 2n − 1, T (Cn, 1, 2) = n + 1,

and T (Cn, 2, 2) = 2n.

For the open square strip Sm we find

NST (Sm) = 2
[

(2 +
√

3 )m + (2 −
√

3 )m
]

+
7

2
√

3

[

(2 +
√

3 )m − (2 −
√

3 )m
]

(8.45)

NSF (Sm) =
15

2

[

(2(2 +
√

3))m + (2(2 −
√

3))m
]

+
13√

3

[

(2(2 +
√

3))m − (2(2 −
√

3))m
]

(8.46)

NCSSG(Sm) =
5

2

[(5 +
√

17

2

)m

+
(5 −

√
17

2

)m]

+
21

2
√

17

[(5 +
√

17

2

)m

−
(5 −

√
17

2

)m]

(8.47)

and

NSSG(Sm) = 23m+4 . (8.48)

That eqs. (8.45)-(8.47) yield integers follows from the theorem on symmetric polynomial

functions of roots of an algebraic equation, as discussed in [41].

With the definition

ηG =
{

+1 if G = L
−1 if G = ML

(8.49)
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our calculations of the Tutte polynomials for the cyclic strip Lm and the Möbius strip MLm

yield

NST (Gm) = m
{

−ηG +
1

2

[

(2 +
√

3)m + (2 −
√

3)m
]}

, Gm = Lm, MLm (8.50)

NSF (Gm) = ηG(1 − 2m) −
[(5 +

√
17

2

)m

+
(5 −

√
17

2

)m]

+
(

2(2 +
√

3)
)m

+
(

2(2 −
√

3)
)m

, Gm = Lm, MLm (8.51)

NCSSG(Lm) = NCSSG(MLm) − 2m − 1 = −(m + 2) +
(m + 2)

2

[(5 +
√

17

2

)m

+
(5 −

√
17

2

)m]

− m

2
√

17

[(5 +
√

17

2

)m

−
(5 −

√
17

2

)m]

(8.52)

and

NSSG(Lm) = NSSG(MLm) = 23m . (8.53)

The results for the spanning trees for the cyclic and Möbius strips are known [76] (for higher-

dimensions, see [79]); we are not aware of the other quantities having been published.

Several comments are in order. Since T (Gm, x, y) grows exponentially as m → ∞ for

the families Gm = Sm, Lm, and MLm for (x, y) = (1, 1), (2,1), (1,2), and (2,2) (as well as

for Gm = Cm and Tm for (x, y) = (2, 1) and (2,2)), it is natural to define corresponding

constants

zset({G}) = lim
n(g)→∞

n(G)−1 ln Nx(G) , set = ST, SF, CSSG, SSG (8.54)

where, as above, the symbol {G} denotes the limit of the graph family G as n(G) → ∞ (and

the z here should not be confused with the auxiliary expansion variable in the generating

function (8.16) or the Potts partition function Z(G, q, v).) The general inequalities (8.42),

(8.43), and (8.44) imply that, for a given {G},

zSSG ≥ zCSSG ≥ zST (8.55)

zSSG ≥ zSF (8.56)

and
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zSF ≥ zST . (8.57)

We find that for both the line (Ly = 1) and the Ly = 2 square strip, the quantity

zset({G}) is independent of whether the longitudinal boundary conditions are free, periodic,

or Möbius:

zST ({G}) =
1

2
ln(2 +

√
3) ≃ 0.658479 for G = S, L, ML (8.58)

zSF ({G}) =
1

2
ln[2(2 +

√
3 )] ≃ 1.00505 for G = S, L, ML (8.59)

zCSSG({G}) =
1

2
ln

(

5 +
√

17

2

)

≃ 0.758832 for G = S, L, ML (8.60)

and

zSSG({G}) =
3

2
ln 2 ≃ 1.03972 for G = S, L, ML (8.61)

(where the result for zST can be extracted from [76]).

E. Tutte Polynomials for Dual Graphs

Since the Tutte polynomial satisfies the duality relation (8.11), our calculations of the

Tutte polynomials T (Gm, x, y) for the open, cyclic, and Möbius square strips, Gm = Sm, Lm,

and MLm, also yield the corresponding results for the duals of these graphs. The dual of

the square Ly = 2 strip with m + 1 squares, i.e., length Lx = m + 1 edges, (Sm)∗, can be

described as follows: for m ≥ 1, consider a line of m + 1 vertices, with successive vertices vi

and vi+1 connected to each other by an edge ei; the vertices on this line are connected to a

single external vertex by double edges, except for the first and last vertices on the line, each

of which is connected to the external vertex via three edges. This is (Sm)∗ for m ≥ 1. Note

that this is a multigraph, since a (proper) graph is normally defined not to have loops or

multiple edges. For the case m = 0, i.e., a single square, the dual is (S1)
∗ = TL4, where in

the mathematical literature, TLℓ, denoted “thick link”, is the multigraph consisting of two

vertices connected by ℓ edges. Our results for T (Sm, x, y) in eq. (8.21) thus give the Tutte

polynomial for this dual graph as T ((Sm)∗, x, y) = T (Sm, y, x).

For the dual of the cyclic strip graph, (Lm)∗, we recall a definition from graph theory:

given two graphs G and H , the “join” G+H is the graph obtained by connected each vertex
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of G to each vertex of H with edges. We also recall the notation K̄p for the complement of

Kp, i.e. the graph consisting of p vertices with no edges. Then for m ≥ 3,

(Lm)∗ = K̄2 + Cm (8.62)

where Cm is the circuit graph with m vertices. Hence our results for T (Lm, x, y) in eqs. (6.1)

with (6.4)-(6.10) also determine T ((Lm)∗, x, y) = T (Lm, y, x).
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[33] M. Roček, R. Shrock, and S.-H. Tsai, Physica A259 (1998) 367.

[34] R. Shrock and S.-H. Tsai, Physica A259 (1998) 315.

[35] R. Shrock and S.-H. Tsai, J. Phys. A 31 (1998) 9641; Physica A265 (1999) 186.

[36] R. Shrock and S.-H. Tsai, J. Phys. A Lett. 32 (1999) L195.

[37] R. Shrock and S.-H. Tsai, Phys. Rev. E60 (1999) 3512; Physica A 275 (1999) 429.

[38] A. Sokal, Combin. Prob. Comput., in press (cond-mat/9904146); cond-mat/9910503.

[39] R. Shrock and S.-H. Tsai, J. Phys. 32 (1999) 5053.

[40] N. L. Biggs, LSE report LSE-CDAM-99-03 (May 1999), to appear.

[41] R. Shrock, Phys. Lett. A261 (1999) 57.

[42] N. L. Biggs and R. Shrock, J. Phys. A (Letts) 32, L489 (1999).

[43] R. Shrock, in the Proceedings of the 1999 British Combinatorial Conference, BCC99 (July,

1999), Discrete Math., to appear.

[44] R. Shrock, in the Proceedings of the Taiwan Conference on Equilibrium and Non-Equilibrium

Phase Transitions (Academia Sinica, Taipei, Aug. 1999).

[45] H. Kluepfel and R. Shrock, YITP-99-32,33; H. Kluepfel, Stony Brook thesis (July, 1999).

[46] S.-C. Chang and R. Shrock, YITP-SB-99-50,58.

[47] J. Salas and A. Sokal, work in progress.

[48] e.g. G. Berman and W. T. Tutte, J. Combin. Theory 6 (1969) 301; D. Woodall, Discrete Math.

101 (1992) 333; B. Jackson, Combin. Prob. Comput. 2 (1993) 325; F. Brenti, G. Royle, and

D. Wagner, Canad. J. Math. 46 (1994) 55; V. Thomassen, Combin. Prob. Comput. 6 (1997)

497; J. Brown, J. Brown, J. Combin. Theory 6 B (1998) 251.

[49] C. Itzykson, R. B. Pearson, and J.-B. Zuber, Nucl. Phys. B220 (1983) 415.

[50] V. Matveev and R. Shrock, J. Phys. A 28 (1995) 4859; Phys. Rev. E53 (1996) 254; Phys. Lett.

A215 (1996) 271.

[51] T. D. Lee and C. N. Yang, Phys. Rev. 87 (1952) 410; C. N. Yang and T. D. Lee, ibid, 87

(1952) 404.

[52] M. E. Fisher, Lectures in Theoretical Physics (Univ. of Colorado Press, Boulder, 1965), vol.

7C, p. 1.

[53] S.-Y. Kim, R. Creswick, C.-N. Chen, and C.-K. Hu, in the Proceedings of the Taiwan Confer-

72

http://arXiv.org/abs/cond-mat/9808057
http://arXiv.org/abs/cond-mat/9904146
http://arXiv.org/abs/cond-mat/9910503


ence on Equilibrium and Non-Equilibrium Phase Transitions (Academia Sinica, Taipei, Aug.

1999).

[54] V. Matveev and R. Shrock, J. Phys. A 28 (1995) 1557.

[55] V. Matveev and R. Shrock, J. Phys. A 28 (1995) 5235.

[56] J. Salas and A. Sokal, J. Stat. Phys. 86 (1997) 551.

[57] Y. K. Wang and F. Y. Wu, J. Phys. A 9 (1976) 593.

[58] V. Matveev and R. Shrock, Phys. Lett. A204 (1995) 353.

[59] P. P. Martin, J. Phys. A 19, 3267 (1986). See also P. P. Martin, ibid., 20, L601 (1986).

[60] D. W. Wood, J. Phys. A 20, 3471 (1987); D. W. Wood, R. W. Turnbull, and J. K. Ball, ibid.

3495 (1987).

[61] J. V. Uspensky, Theory of Equations (McGraw-Hill, NY 1948), 264.

[62] R. Hartshorne, Algebraic Geometry (Springer, New York, 1977).

[63] A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185 (1969) 832.

[64] M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28 (1972) 1516; M. N. Barber, in C. Domb

and J. Lebowitz, Phase Transitions and Critical Phenomena, v. 8 (Wiley, New York, 1983).

[65] V. Matveev and R. Shrock, J. Phys. A (Letts.) 28 (1995) L533.

[66] J. M. Maillard and R. Rammal, J. Phys. A 16 (1983) 353.

[67] P. P. Martin and J. M. Maillard, J. Phys. A 19 (1986) L547.

[68] P. P. Martin, Potts Models and Related Problems in Statistical Mechanics (World Scientific,

Singapore, 1991).

[69] C. N. Chen, C. K. Hu, and F. Y. Wu, Phys. Rev. Lett. 76 (1996) 169.

[70] F. Y. Wu, G. Rollet, H. Y. Huang, J. M. Maillard, C. K. Hu, and C. N. Chen, Phys. Rev. Lett.

76 (1996) 173.

[71] V. Matveev and R. Shrock, Phys. Rev. E54 (1996) 6174.

[72] R. Shrock and S.-H. Tsai, J. Phys. A 30 (1997) 495.

[73] H. Feldmann, R. Shrock, and S.-H. Tsai, J. Phys. A (Lett.) 30 (1997) L663; Phys. Rev. E57

(1998) 1335; H. Feldmann, A. J. Guttmann, I. Jensen, R. Shrock, and S.-H. Tsai), J. Phys. A

31 (1998) 2287.

[74] W.-Y. Kim and R. Creswick, Phys. Rev. E58 (1998) 7006.

[75] R. J. Baxter, Proc. Roy. Soc. London, Ser. A 383 (1982) 43.

[76] R. K. Guy and F. Harary, Univ. of Calgary Rept. 2, 1966; J. Sedlácek, in Combinatorial
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