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Developments and Future Outlook 
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1  Introduction

While extensive usage of high-performance computing has been a staple of other scientific and
engineering disciplines for some time, research mathematics is one discipline that has
heretofore not yet benefited to the same degree. Now, however, with sophisticated mathematical
computing tools and environments widely available on desktop computers, a growing number of
remarkable new mathematical results are being discovered partly or entirely with the aid of
these tools. With currently planned improvements in these tools, together with substantial
increases expected in raw computing power, due both to Moore's Law and the expected
implementation of these environments on parallel supercomputers, we can expect even more
remarkable developments in the years ahead.

This article briefly discusses the nature of mathematical experiment. It then presents a few
instances primarily of our own recent computer-aided mathematical discoveries, and sketches
the outlook for the future. Additional examples in diverse fields and broader citations to the
literature may be found in [] and its references.

2  Preliminaries

The crucial role of high performance computing is now acknowledged throughout the physical,
biological and engineering sciences. Numerical experimentation, using increasingly large-scale,
three-dimensional simulation programs, is now a staple of fields such as aeronautical and
electrical engineering, and research scientists heavily utilize computing technology to collect and
analyze data, and to explore the implications of various physical theories.

However, ``pure'' mathematics (and closely allied areas such as theoretical physics) only
recently has begun to capitalize on this new technology. This is ironic, because the basic
theoretical underpinnings of modern computer technology were set out decades ago by
mathematicians such as Alan Turing and John Von Neumann. But only in the past decade, with
the emergence of powerful mathematical computing tools and environments, together with the
growing availability of very fast desktop computers and highly parallel supercomputers, as well
as the pervasive presence of the Internet, has this technology reached the level where the
research mathematician can enjoy the same degree of intelligent assistance that has graced other
technical fields for some time.

This new approach is often termed experimental mathematics, namely the utilization of
advanced computing technology to explore mathematical structures, test conjectures and
suggest generalizations. And there is now a thriving journal of Experimental Mathematics. In
one sense, there is nothing new in this approach - mathematicians have used it for centuries.
Gauss once confessed, ``I have the result, but I do not yet know how to get it.'' []. Hadamard
declared, ``The object of mathematical rigor is to sanction and legitimize the conquests of
intuition, and there was never any other object for it.'' []. In recent times Milnor has stated this
philosophy very clearly:

If I can give an abstract proof of something, I'm reasonably happy. But if I can get a
concrete, computational proof and actually produce numbers I'm much happier. I'm
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rather an addict of doing things on computer, because that gives you an explicit
criterion of what's going on. I have a visual way of thinking, and I'm happy if I can
see a picture of what I'm working with. []

What is really meant by an experiment in the context of mathematics? In Advice to a Young 
Scientist, Peter Medawar [] identifies four forms of experiment:

1. The Kantian experiment is one such as generating ``the classical non-Euclidean
geometries (hyperbolic, elliptic) by replacing Euclid's axiom of parallels (or
something equivalent to it) with alternative forms.''

2. The Baconian experiment is a contrived as opposed to a natural happening, it ``is
the consequence of `trying things out' or even of merely messing about.''

3. The Aristotelian experiment is a demonstration: ``apply electrodes to a frog's
sciatic nerve, and lo, the leg kicks; always precede the presentation of the dog's
dinner with the ringing of a bell, and lo, the bell alone will soon make the dog
dribble.''

4. The Galilean experiment is ``a critical experiment - one that discriminates
between possibilities and, in doing so, either gives us confidence in the view we are
taking or makes us think it in need of correction.''

The first three are certainly common in mathematics. However, as discussed in detail in [], the
Galilean experiment is the only one of the four forms which can make experimental
mathematics a truly serious enterprise.

3  Tools of the Trade

The most obvious development in mathematical computing technology has been the growing
availability of powerful symbolic computing tools. Back in the 1970s, when the first symbolic
computing tools became available, their limitations were quite evident - in many cases, these
programs were unable to handle operations that could be done by hand. In the intervening years
these programs, notably the commercial products such as Maple and Mathematica, have greatly
improved. While numerous deficiencies remain, they nonetheless routinely and correctly
dispatch many operations that are well beyond the level that a human could perform with
reasonable effort.

Another recent development that has been key to a number of new discoveries is the emergence
of practical integer relation detection algorithms. Let x = (x1, x2, …, xn) be a vector of real or
complex numbers. x is said to possess an integer relation if there exist integers ai, not all zero, 
such that a1 x1 + a2 x2 +…+ an xn = 0. By an integer relation algorithm, we mean a practical
computational scheme that can recover the vector of integers ai, if it exists, or can produce 
bounds within which no integer relation exists. The problem of finding integer relations was
studied by numerous mathematicians, including Euclid and Euler. The first general integer
relation algorithm was discovered in 1977 by Ferguson and Forcade []. There is a close
connection between integer relation detection and finding small vectors in an integer lattice, and
thus one common solution to the integer relation problem is to apply the
Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm []. At the present time, the most
effective scheme for integer relation detection is Ferguson's ``PSLQ'' algorithm [,].

Integer relation detection, as well as a number of other techniques used in modern experimental
mathematics, relies heavily on very high precision arithmetic. The most advanced tools for
performing high precision arithmetic utilize fast Fourier transforms (FFTs) for multiplication
operations. Armed with one of these programs, a researcher can often effortlessly evaluate
mathematical constants and functions to precision levels in the many thousands of decimal
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digits. The software products Maple and Mathematica include relatively complete and
well-integrated multiple precision arithmetic facilities, although until very recently they did not
utilize FFTs, or other accelerated multiplication techniques. One may also use any of several
freeware multiprecision software packages [,] and for many purposes tools such as Matlab,
MuPAD or more specialized packages like Pari-GP are excellent.

High precision arithmetic, when intelligently used with integer relation detection programs,
allows researchers to discover heretofore unknown mathematical identities. It should be
emphasized that these numerically discovered ``identities'' are only approximately established.
Nevertheless, in the cases we are aware of, the results have been numerically verified to
hundreds and in some cases thousands of decimal digits beyond levels that could reasonably be
dismissed as numerical artifacts. Thus while these ``identities'' are not firmly established in a
formal sense, they are supported by very compelling numerical evidence. After all, which is more
compelling, a formal proof that in its full exposition requires hundreds of difficult pages of
reasoning, fully understood by only two or three colleagues, or the numerical verification of a
conjecture to 100,000 decimal digit accuracy, subsequently validated by numerous subsidiary
computations? In the same way, these tools are often even more useful as a way of excluding the 
possibility of hoped for relationships, as in equation () below.

Figure

FIGURE 1(a-d): -1/1 polynomials (to be set in color)

We would be remiss not to mention the growing power of visualization especially when married
to high performance computation. The pictures in FIGURE 1 represents the zeroes of all
polynomials with ±1 coefficients of degree at most 18. One of the most striking features of the
picture, its fractal nature excepted, is the appearance of different sized ``holes'' at what
transpire to be roots of unity. This observation which would be very hard to make other than
pictorially led to a detailed and rigorous analysis of the phenomenon and more [,]. They were
lead to this analysis by the interface which was built for Andrew Odlyzko's seminal online paper
[].

One additional tool that has been utilized in a growing number of studies is Sloane and Plouffe's
Encyclopedia of Integer Sequences []. As the title indicates, it identifies many integer sequences
based on the first few terms. A very powerful on-line version is also available and is a fine
example of the changing research paradigm. Another wonderful resource is Stephen Finch's
``Favorite Mathematical Constants," which contains a wealth of frequently updated
information, links and references on 125 constants, [], such as the hard hexagon constant κ ≈
1.395485972 for which Zimmermann obtained a minimal polynomial of degree 24 in 1996.1

In the following, we illustrate this - both new and old - approach to mathematical research using
a handful of examples with which we are personally familiar. We will then sketch some future
directions in this emerging methodology. We have focussed on the research of our own circle of
direct collaborators. We do so for resaons of fmailiarity and because we believe it is
representative of broad changes in the way mathematics is being done rather than to claim
primacy for our own skills or expertise.

4  A New Formula for Pi

Through the centuries mathematicians have assumed that there is no shortcut to determining
just the n-th digit of π. Thus it came as no small surprise when such a scheme was recently
discovered []. In particular, this simple algorithm allows one to calculate the n-th hexadecimal
(or binary) digit of π without computing any of the first n-1 digits, without the need for
multiple-precision arithmetic software, and requiring only a very small amount of memory. The
one millionth hex digit of π can be computed in this manner on a current-generation personal
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computer in only about 30 seconds run time.

This scheme is based on the following remarkable formula, whose formal proof involves nothing
more sophisticated than freshman calculus:

This formula was found using months of PSLQ computations, after corresponding but simpler
n-th digit formulas were identified for several other constants, including log(2). This is likely the
first instance in history that a significant new formula for π was discovered by a computer.

Similar base-2 formulas are given in [,] for a number of other mathematical constants. In []
some base-3 formulas were obtained, including the identity

In [], it is shown that the question of whether π,   log(2) and certain other constants are normal
can be reduced to a plausible conjecture regarding dynamical iterations of the form x0 = 0,

where b is an integer and rn = p(n) / q(n) is the ratio of two nonzero polynomials with deg(p) <
deg(q). The conjecture is that these iterates either have a finite set of attractors or else are
equidistributed in the unit interval. In particular, it is shown that the question of whether π is 
normal base 16 (and hence base 2) can be reduced to the assertion that the dynamical iteration
x0 = 0,

is equidistributed in [0, 1). There are also connections between the question of normality for
certain constants and the theory of linear congruential pseudorandom number generators. All of
these results derive from the discovery of the individual digit-calculating formulas mentioned
above. For details, see [].

5  Identities for the Riemann Zeta Function
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Another application of computer technology in mathematics is to determine whether or not a
given constant α, whose value can be computed to high precision, is algebraic of some degree n
or less. This can be done by first computing the vector x = (1, α,α2, …, αn) to high precision and 
then applying an integer relation algorithm. If a relation is found for x, then this relation vector
is precisely the set of integer coefficients of a polynomial satisfied by α. Even if no relation is
found, integer relation detection programs can produce bounds within which no relation can
exist. In fact, exclusions of this type are solidly established by integer relation calculations,
whereas ``identities'' discovered in this fashion are only approximately established, as noted
above.

Consider, for example, the following identities, with that for ζ(3) due to Apéry [,]:

where ζ(n) = ∑k k-n is the Riemann zeta function at n. These results have led many to hope that

might also be a simple rational or algebraic number. However, computations using PSLQ
established, for instance, that if Z5 satisfies a polynomial of degree 25 or less, then the Euclidean
norm of the coefficients must exceed 2 ×1037. Given these results, there is no ``easy'' identity,
and researchers are licensed to investigate the possibility of multi-term identities for ζ(5). One
recently discovered [], using a PSLQ computation, was the polylogarithmic identity
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where L = log(ρ) and ρ = (√5 - 1)/2. This illuastrates neatly that one can only find a closed form
if one knows where to look.

Other earlier evaluations involving the central binomial coefficient suggested general formulas
[], which were pursued by a combination of PSLQ and heavy-duty symbolic manipulation. This
led, most unexpectedly, to the identity

Experimental analysis of the first ten terms showed that the rightmost above series necessarily
had the form

where

Also discovered in this process was the intriguing equivalent combinatorial identity

This evaluation was discovered as the result of an serendipitous error in an input to Maple2- the 
computational equivalent of discovering penicillin after a mistake in a Petri dish.

With the recent proof of this last conjectured identity, by Almkvist and Granville [], the above
identities have now been rigorously established. But other numerically discovered ``identities''
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of this type appear well beyond the reach of current formal proof methods. For example, in 1999
British physicist David Broadhurst used a PSLQ program to recover an explicit expression for
ζ(20) involving 118 terms. The problem required 5,000 digit arithmetic and over six hours
computer run time. The complete solution is given in [].

6  Identification of Multiple Sum Constants

Numerous identities were experimentally discovered in some recent research on multiple sum
constants. After computing high-precision numerical values of these constants, a PSLQ program
was used to determine if a given constant satisfied an identity of a conjectured form. These
efforts produced empirical evaluations and suggested general results []. Later, elegant proofs
were found for many of these specific and general results [], using a combination of human
intuition and computer-aided symbolic manipulation. Three examples of experimentally
discovered results that were subsequently proven are:

where again ζ(n) = ∑j = 1∞ j-n is a value of the Riemann zeta function, and Li n (x) = ∑j = 1∞ xj j-n

denotes the classical polylogarithm function.

More generally, one may define multi-dimensional Euler sums (or multiple zeta values) by
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= ζ(2,1,2,1,…,2,1).

where σj = ±1 are signs and sj > 0 are integers. When all the signs are positive, one has a multiple
zeta value. The integer r is the sum's depth and s1 + s2 + …+ sr is the weight. These sums have
connections with diverse fields such as knot theory, quantum field theory and combinatorics.
Constants of this form with alternating signs appear in problems such as computation of the
magnetic moment of the electron.

Multi-dimensional Euler sums satisfy many striking identities. The discovery of the more
recondite identities was facilitated by the development of Hölder convolution algorithms that
permit very high precision numerical values to be rapidly computed. See [] and a computational
interface at www.cecm.sfu.ca/projects/ezface+/. One beautiful general identity
discovered by Zagier [] in the course of similar research is

where there are n instances of `(3,1)' and `2' in the arguments to ζ(·). This has now been proven
in [] and the proof, while entirely conventional, was obtained by guided experimentation. A
related conjecture for which overwhelming evidence but no hint of a proof exists is the
``identity''

Along this line, Broadhurst conjectured, based on low-degree numerical results, that the
dimension of the space of Euler sums with weight w is the Fibonacci number Fw+1 = Fw + Fw-1, 
with F1 = F2 = 1. In testing this conjecture, complete reductions of all Euler sums to a basis of
size Fw+1 were obtained with PSLQ at weights w ≤ 9. At weights w = 10 and w = 11 the conjecture
was stringently tested by application of PSLQ in more than 600 cases. At weight w = 11 such
tests involve solving integer relations of size n = F12 + 1 = 145. In a typical case, each of the 145
constants was computed to more than 5,000 digit accuracy, and a working precision level of
5,000 digits was employed in an advanced ``multi-pair'' PSLQ program. In these problems the
ratios of adjacent coefficients in the recovered integer vector usually have special values, such as
11! = 39916800. These facts, combined with confidence ratios typically on the order of 10-300 in 
the detected relations, render remote the chance that these identities are spurious numerical
artifacts, and lend substantial support to this conjecture [].

7  Mathematical Computing Meets Parallel Computing

The potential future power of highly parallel computing technology has been underscored in
some recent results. Not surprisingly, many of these computations involve the constant π, 
underscoring the enduring interest in this most famous of mathematical constants. In 1997
Fabrice Bellard of INRIA used a more efficient formula, similar to the one mentioned in section
three, programmed on a network of workstations, to compute 150 binary digits of π starting at 
the trillionth position. Not to be outdone, 17-year-old Colin Percival of Simon Fraser University
in Canada organized a computation of 80 binary digits of π beginning at the five trillionth 
position, using a network of 25 laboratory computers. He an many others are presently
computing binary digits at the quadrillionth position on the web []. As we write, the most recent
computational result was Yasumasa Kanada's calculation (September 1999) of the first 206
billion decimal digits of π. This spectacular computation was made on a Hitachi parallel
supercomputer with 128 processors, in little over a day, and employed the Salamin-Brent



Experimental Mathematics: Recent Developments and Future O... http://www.cecm.sfu.ca/projects/IntegerRelations/2001/future...

9 of 17 2004/11/29 04:42

α630-1 = 

(α315-1) (α210-1) (α126-1)2 (α90-1) (α3-1)3 (α2-1)5 (α-1)3

(α35-1) (α15-1)2 (α14-1)2 (α5-1)6 α68

0 = 1 + α- α3 - α4 - α5 - α6 - α7 + α9 + α10.

a ζ(17) =

8 

∑
j = 0 

bj π2j(logα)17-2j+ ∑
k ∈ D(S) 

ck Li17(α-k)

S = {29,47,50,52,56,57,64,74,75,76,78,84,86,92,96,98,108,110,118,

124,130, 132,138,144,154,160,165,175,182,186,195,204,212,240,

246,270,286,360,630}.

algorithm [], with a quartically convergent algorithm from [] as an independent check.

Several large-scale parallel integer relation detection computations have also been performed in
the past year or two. One arose from the discovery by Broadhurst that

where α = 1.176280818… is the largest real root of Lehmer's polynomial []

The above cyclotomic relation was first discovered by a PSLQ computation, and only
subsequently proven. Broadhurst then conjectured that there might be integers a, bj, ck such 
that

where the 115 indices k are drawn from the set, D(S), of positive integers that divide at least one
element of

Indeed, such a relation was found, using a parallel multi-pair PSLQ program running on a
SGI/Cray T3E computer system at Lawrence Berkeley Laboratory. The run employed 50,000
decimal digit arithmetic and required approximately 44 hours on 32 processors. The resulting
integer coefficients are as large as 10292, but the ``identity'' nonetheless was confirmed to
13,000 digits beyond the level of numerical artifact [].

8  Connections to Quantum Field Theory

In another surprising recent development, David Broadhurst has found, using these methods,
that there is an intimate connection between Euler sums and constants resulting from
evaluation of Feynman diagrams in quantum field theory [,]. In particular, the renormalization
procedure (which removes infinities from the perturbation expansion) involves multiple zeta
values. As before, a fruitful theory has emerged, including a large number of both specific and
general results [].

Some recent quantum field theory results are even more remarkable. Broadhurst has now shown
[], using PSLQ computations, that in each of ten cases with unit or zero mass, the finite part the
scalar 3-loop tetrahedral vacuum Feynman diagram reduces to 4-letter ``words'' that represent
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V : = Real [ζ(Ω2ω3ω1)] = ∑
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(-1)j cos(2 πk / 3)

j3 k
.

V1 = 6 ζ(3) + 3 ζ(4) 

iterated integrals in an alphabet of seven ``letters'' comprising the one-forms Ω: = dx/x and ωk : 
= dx / (λ-k-x), where λ: = (1 + √[(-3)])/2 is the primitive sixth root of unity, and k runs from 0 to
5. A 4-letter word is a 4-dimensional iterated integral, such as

There are 74 such four-letter words. Only two of these are primitive terms occurring in the
3-loop Feynman diagrams: U, above, and

The remaining terms in the diagrams reduce to products of constants found in Feynman
diagrams with fewer loops. These ten cases as shown in Figure 1. In these diagrams, dots
indicate particles with nonzero rest mass. The formulas that have been found, using PSLQ, for
the corresponding constants are given in Table 2. In the table the constant C = ∑k > 0 sin(πk / 3) 
/ k2.
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Figure 1: The ten tetrahedral cases
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0 

sin(x)

x

sin(x/3)

x/3
 dx =

π

2

2Formulas found by PSLQ for the ten cases of Figure 1

9  A Note of Caution

In spite of the remarkable successes of this methodology, some caution is in order. First of all,
the fact that an identity is established to high precision is not a guarantee that it is indeed true.
One example is

which holds to 267 digits, yet is not an exact identity, failing in the 268'th place. Several other
such bogus ``identities'' are exhibited and explained in [].

More generally speaking, caution must be exercised when extrapolating results true for small n
to all n. For example,
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…

⌠
⌡

∞ 

0 

sin(x)

x

sin(x/3)

x/3
…

sin(x/13)

x/13
 dx =

π

2

⌠
⌡

∞ 

0 

sin(x)

x

sin(x/3)

x/3
…

sin(x/15)

x/15
 dx =

467807924713440738696537864469

935615849440640907310521750000
π.

⌠
⌡

∞ 

0 

sin(x)

x

sin(x/h1)

x/h1
…

sin(x/hn)

x/hn
 dx =

π

2

yet

When this fact was recently observed by a researcher using a mathematical software package, he
concluded that there must be a ``bug'' in the software. Not so. What is happening here is that

only so long as 1/h1 + 1/h2 + …+ 1/hn < 1. In the above example, 1/3 + 1/5 + …+ 1/13 < 1, but
with the addition of 1/15, the sum exceeds 1 and the identity no longer holds []. Changing the hn
lets this pattern persist indefinitely but still fail in the large.

10  Future Outlook

Computer mathematics software is now becoming a staple of university departments and
government research laboratories. Many university departments now offer courses where the
usage of one of these software packages is an integral part of the course. But further expansion
of these facilities into high schools has been inhibited by a number of factors, including the fairly
high cost of such software, the lack of appropriate computer equipment, difficulties in
standardizing such coursework at a regional or national level, a paucity of good texts
incorporating such tools into a realistic curriculum, lack of trained teachers and many other
demands on their time.

But computer hardware continues its downward spiral in cost and its upward spiral in power. It
thus appears that within a very few years, moderately powerful symbolic computation facilities
can be incorporated into relatively inexpensive hand calculators, at which point it will be much
easier to successfully integrate these tools into high school curricula. Thus it seems that we are
poised to see a new generation of students coming into university mathematics and science
programs who are completely comfortable using such tools. This development is bound to have a
profound impact on the future teaching, learning and doing of mathematics.

A likely and fortunate spin-off of this development is that the commercial software vendors who
produce these products will likely enjoy a broader financial base, from which they can afford to
further enhance their products geared at serious researchers. Future enhancements are likely to
include more efficient algorithms, more extensive capabilities mixing numerics and symbolics,
more advanced visualization facilities, and software optimized for emerging symmetric
multiprocessor and highly parallel, distributed memory computer systems. When combined
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with expected increases in raw computing power due to Moore's Law - improvements which
almost certainly will continue unabated for at least ten years and probably much longer - we
conclude that enormously more powerful computer mathematics systems will be available in the
future.

We only now are beginning to experience and comprehend the potential impact of computer
mathematics tools on mathematical research. In ten more years, a new generation of
computer-literate mathematicians, armed with significantly improved software on prodigiously
powerful computer systems, are bound to make discoveries in mathematics that we can only
dream of at the present time. Will computer mathematics eventually replace, in near entirety,
the solely human form of research, typified by Andrew Wiles' recent proof of Fermat's Last
Theorem? Will computer mathematics systems eventually achieve such intelligence that they
discover deep new mathematical results, largely or entirely without human assistance? Will new
computer-based mathematical discovery techniques enable mathematicians to explore the
realm, proved to exist by Gödel, Chaitin and others, that is fundamentally beyond the limits of
formal reasoning?

11  Conclusion

We have shown a small but we hope convincing selection of what the present allows and what
the future holds in store. We have hardly mentioned the growing ubiquity of web based
computation, or of pervasive access to massive data bases, both public domain and commercial.
Neither have we raised the human/computer interface or intellectual property issues and the
myriad other not-purely-technical issues these raise.

Whatever the outcome of these developments, we are still persuaded that mathematics is and
will remain a uniquely human undertaking. One could even argue that these developments
confirm the fundamentally human nature of mathematics. Indeed, Reuben Hersh's arguments []
for a humanist philosophy of mathematics, as paraphrased below, become more convincing in
our setting:

Mathematics is human. It is part of and fits into human culture. It does not match Frege's
concept of an abstract, timeless, tenseless, objective reality.

1.

Mathematical knowledge is fallible. As in science, mathematics can advance by making
mistakes and then correcting or even re-correcting them. The ``fallibilism'' of
mathematics is brilliantly argued in Lakatos' Proofs and Refutations [].

2.

There are different versions of proof or rigor. Standards of rigor can vary depending on
time, place, and other things. The use of computers in formal proofs, exemplified by the
computer-assisted proof of the four color theorem in 1977, is just one example of an
emerging nontraditional standard of rigor.

3.

Empirical evidence, numerical experimentation and probabilistic proof all can help us
decide what to believe in mathematics. Aristotelian logic isn't necessarily always the best
way of deciding.

4.

Mathematical objects are a special variety of a social-cultural-historical object. Contrary
to the assertions of certain post-modern detractors, mathematics cannot be dismissed as
merely a new form of literature or religion. Nevertheless, many mathematical objects can
be seen as shared ideas, like Moby Dick in literature, or the Immaculate Conception in
religion.

5.

Certainly the recognition that ``quasi-intuitive'' analogies can be used to gain insight in
mathematics can assist in the learning of mathematics. And honest mathematicians will
acknowledge their role in discovery as well.
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We look forward to what the future will bring.
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Footnotes:

1 See http://pauillac.inria.fr/algo/bsolve/constant/square/square.html.

2 Typing `infty' for `infinity' revealed that the program had an algorithm when a formal variable
was entered.
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