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The Malfatti Problem

Oene Bottema

Abstract. A solution is given of Steiner’s variation of the classical Malfatti
problem in which the triangle is replaced by three circles mutually tangent to
each other externally. The two circles tangent to the three given ones, presently
known as Soddy’s circles, are encountered as well.

In this well known problem, construction is sought for three circlesC′
1, C ′

2 and
C ′

3, tangent to each other pairwise, and of whichC′
1 is tangent to the sidesA1A2

andA1A3 of a given triangleA1A2A3, while C ′
2 is tangent toA2A3 andA2A1

and C′
3 to A3A1 and A3A2. The problem was posed by Malfatti in 1803 and

solved by him with the help of an algebraic analysis. Very well known is the
extraordinarily elegant geometric solution that Steiner announced without proof
in 1826. This solution, together with the proof Hart gave in 1857, one can find
in various textbooks.1 Steiner has also considered extensions of the problem and
given solutions. The first is the one where the linesA2A3, A3A1 andA1A2 are
replaced by circles. Further generalizations concern the figures of three circles on
a sphere, and of three conic sections on a quadric surface. In the nineteenth century
many mathematicians have worked on this problem. Among these were Cayley
(1852) 2, Schellbach (who in 1853 published a very nice goniometric solution),
and Clebsch (who in 1857 extended Schellbach’s solution to three conic sections
on a quadric surface, and for that he made use of elliptic functions). If one allows
in Malfatti’s original problem also escribed and internally tangent circles, then
there are a total of 32 (real) solutions. One can find all these solutions mentioned
by Pampuch (1904).3 The generalizations mentioned above even have, as appears
from investigation by Clebsch, 64 solutions.
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The literature about the problem is so vast and widespread that it is hardly pos-
sible to consult completely. As far as we have been able to check, the following
special case of the generalization by Steiner has not drawn attention. It is attrac-
tive by the simplicity of the results and by the possibility of a certain stereometric
interpretation.

The problem of Malfatti-Steiner is as follows: Given are three circlesC1, C2

andC3. Three circlesC′
1, C ′

2 andC′
3 are sought such thatC′

1 is tangent toC2, C3,
C ′

2 andC′
3, the circleC′

2 to C3, C1, C ′
3 andC′

1, and,C ′
3 to C1, C2, C ′

1 andC′
2.

Now we examine the special case, where thethree given circles C1, C2, C3 are
pairwise tangent as well.

This problem certainly can be solved following Steiner’s general method. We
choose another route, in which the simplicity of the problem appears immediately.
If one applies aninversion with center the point of tangency ofC2 andC3, then
these two circles are transformed into two parallel lines�2 and�3, andC1 into a
circle K tangent to both (Figure 1). In this figure the construction of the required
circlesKi is very simple. If the distance between�2 and�3 is 4r, then the radii
of K2 andK3 are equal tor, that of K1 equal to2r, while the distance of the
centers ofK andK1 is equal to4r

√
2. Clearly, the problem always hastwo (real)

solutions.4

�3

�2

K

K2

K3

K1

Figure 1

Our goal is the computation of the radiiR′
1, R′

2 andR′
3 of C ′

1, C ′
2 andC′

3 if the
radii R1, R2 andR3 of the given circlesC1, C2 andC3 (which fix the figure of
these circles) are given. For this purpose we let the objects in Figure 1 undergo an
arbitrary inversion. LetO be the center of inversion and we choose a rectangular
grid with O as its origin and such that�2 and�3 are parallel to thex−axis. For the
power of inversion we can without any objection choose the unit. The inversion is
then given by

x′ =
x

x2 + y2
, y′ =

y

x2 + y2
.

From this it is clear that the circle with center(x0, y0) and radiusρ is transformed
into a circle of radius ∣∣∣∣ ρ

x2
0 + y2

0 − ρ2

∣∣∣∣.
4See Figure 2 in the Appendix, which we add in the present translation.
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If the coordinates of the center ofK are(a, b), then those ofK1 are(a+4r
√

2, b).
From this it follows that

R1 =
∣∣∣∣ 2r
a2 + b2 − 4r2

∣∣∣∣, R′
1 =

∣∣∣∣ 2r
(a + 4r

√
2)2 + b2 − 4r2

∣∣∣∣.
The lines�2 and�3 are inverted into circles of radii

R2 =
1

2|b − 2r| , R3 =
1

2|b + 2r| .
Now we first assume thatO is chosen between�2 and�3, and outsideK. The

circlesC1, C2 andC3 then are pairwise tangentexternally. One hasb − 2r < 0,
b + 2r > 0, anda2 + b2 > 4r2, so that

R2 =
1

2(2r − b)
, R3 =

1
2(2r + b)

, R1 =
2r

a2 + b2 − 4r2
.

Consequently,

a = ±1
2

√
1

R2R3
+

1
R3R1

+
1

R1R2
, b =

1
4

(
1

R3
− 1

R2

)
, r =

1
8

(
1

R3
+

1
R2

)
,

so that one of the solutions has

1
R′

1

=
1

R1
+

2
R2

+
2

R3
+ 2

√
2
(

1
R2R3

+
1

R3R1
+

1
R1R2

)
,

and in the same way

1
R′

2

=
2

R1
+

1
R2

+
2

R3
+ 2

√
2
(

1
R2R3

+
1

R3R1
+

1
R1R2

)
,

1
R′

3

=
2

R1
+

2
R2

+
1

R3
+ 2

√
2
(

1
R2R3

+
1

R3R1
+

1
R1R2

)
, (1)

while the second solution is found by replacing the square roots on the right hand
sides by their opposites and then taking absolute values. The first solution consists
of three circles which are pairwise tangent externally. For the second there are dif-
ferent possibilities. It may consist of three circles tangent to each other externally,
or of three circles, two tangent externally, and with a third circle tangent internally
to each of them.5 One can check the correctness of this remark by choosingO
outside each of the circlesK1, K2 andK3 respectively, or inside these. According
as one choosesO on the circumference of one of the circles, or at the point of tan-
gency of two of these circles, respectively one , or two, straight lines6 appear in the
solution.

Finally, if one takesO outside the strip bordered by�2 and�3, or insideK, then
the resulting circles have two internal and one external tangencies. If the circleC1

is tangentinternally to C2 andC3, then one should replace in solution (1)R1 by
−R1, and the same for the second solution. In both solutions the circles are tangent

5See Figures 2 and 3 in the Appendix.
6See Figures 4, 5, and 6 in the Appendix.
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to each other externally.7 Incidentally, one can take (1) and the corresponding
expression, where the sign of the square root is taken oppositely, as the general
solution for each case, if one agrees to accept also negative values for a radius
and to understand that two externally tangent circles have radii of equal signs and
internally tangent circles of opposite signs.

There are two circles that are tangent to the three given circles.8 This also
follows immediately from Figure 1. In this figure the radii of these circles are both
2r, the coordinates of their centers(a ± 4r, b). After inversion one finds for the
radii of these ‘inscribed’ circles of the figureC1, C2, C3:

1
ρ1,2

=
1

R1
+

1
R2

+
1

R3
± 2

√
1

R2R3
+

1
R3R1

+
1

R1R2
, (2)

expressions showing great analogy to (1). One finds these already in Steiner9

(Werke I, pp. 61 – 63, with a clarifying remark by Weierstrass, p.524).10 While
ρ1 is always positive,1ρ2

can be greater than, equal to, or smaller than zero. One
of the circles is tangent to all the given circles externally, the other is tangent to
them all externally, or all internally, (or in the transitional case a straight line). One
can read these properties easily from Figure 1 as well. Steiner proves (2) by a
straightforward calculation with the help of a formula for the altitude of a triangle.

From (1) and (2) one can derive a large number of relations among the radii
Ri of the given circles, the radiiR′

i of the Malfatti circles, and the radiiρi of the
tangent circles. We only mention

1
R1

+
1

R′
1

=
1

R2
+

1
R′

2

=
1

R3
+

1
R′

3

.

About the formulas (1) we want to make some more remarks. After finding for
the figureS of given circlesC1, C2, C3 one of the two setsS′ of Malfatti circles
C ′

1, C ′
2, C ′

3, clearly one may repeat the same construction toS′. One of the two
sets of Malfatti circles that belong toS′ clearly isS. Continuing this way in two
directionsa chain of triads of circles arises, with the property that each of two
consecutive triples is a Malfatti figure of the other.

By iteration of formula (1) one can express the radii of the circles in thenth

triple in terms of the radii of the circles one begins with. If one applies (1) to1
R′

i
,

and chooses the negative square root, then one gets back1
Ri

. For the new set we
find

1
R′′

1

=
17
R1

+
16
R2

+
16
R3

+ 20

√
2
(

1
R2R3

+
1

R3R1
+

1
R1R2

)

7See Figure 7 in the Appendix.
8See Figure 8 in the Appendix.
9Steiner [15].
10This formula has become famous in modern times since the appearance of Soddy [5]. See [6].

According to Boyer and Merzbach [2], however, an equivalent formula was already known to Ren´e
Descartes, long before Soddy and Steiner.



The Malfatti problem 47

and cyclic permutations. For the next sets,

1

R
(3)
1

=
161
R1

+
162
R2

+
162
R3

+ 198

√
2
(

1
R2R3

+
1

R3R1
+

1
R1R2

)

1

R
(4)
1

=
1601
R1

+
1600
R2

+
1600
R3

+ 1960

√
2
(

1
R2R3

+
1

R3R1
+

1
R1R2

)

If one takes

1

R
(2p)
1

=
a2p + 1

R1
+

a2p

R2
+

a2p

R3
+ b2p

√
2
(

1
R2R3

+
1

R3R1
+

1
R1R2

)
1

R
(2p+1)
1

=
a2p+1 + 1

R1
+

a2p+1 + 2
R2

+
a2p+1 + 2

R3

+b2p+1

√
2
(

1
R2R3

+
1

R3R1
+

1
R1R2

)
,

then one finds the recurrences11

a2p+1 = 10a2p − a2p−1,
a2p = 10a2p−1 − a2p−2 + 16,
bk = 10bk−1 − bk−2,

from which one can compute the radii of the circles in the triples.
The figure of three pairwise tangent circlesC1, C2, C3 forms with a set of

Malfatti circlesC′
1, C ′

2, C ′
3 a configuration of six circles, of which each is tangent

to four others. If one maps the circles of the plane to points in a three dimensional
projective space, where the point-circles correspond with the points of a quadric
surfaceΩ, then the configuration matches with an octahedron, of which the edges
are tangent toΩ. The construction that was under discussion is thus the same as the
following problem:around a quadric surface Ω (for instance a sphere) construct
an octahedron, of which the edges are tangent to Ω, and the vertices of one face
are given. This problem therefore has two solutions. And with the above chain
corresponds a chain of triangles, all circumscribingΩ, and having the property that
two consecutive triangles are opposite faces of a circumscribing octahedron.

From the formulas derived above for the radii it follows that these are decreasing
if one goes in one direction along the chain, and increasing in the other direction,
a fact that is apparent from the figure. Continuing in one direction, the triple of
circles will eventually converge to a single point. With the question of how this
point is positioned with respect to the given circles, we wish to end this modest
contribution to the knowledge of the curious problem of Malfatti.

11These are the sequences A001078 and A053410 in N.J.A. Sloane’sEncyclopedia of Integer
Sequences [13].
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Appendix
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Figure 4

Figure 5

Figure 6

Figure 7
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53 S. 10 Taf.4◦.
[13] N. J. A. Sloane (ed.),On-Line Encyclopedia of Integer Sequences,

http://www.research.att.com/˜njas/sequences/.
[14] F. Soddy, The Kiss Precise,Nature, 137 (1936) 1021.
[15] J. Steiner,Gesammelte Werke, 2 volumes, edited by K. Weierstrass, 1881; Chelsea reprint.

Translated by FLOOR VAN LAMOEN

Floor van Lamoen, Statenhof 3, 4463 TV Goes, The Netherlands
E-mail address: f.v.lamoen@wxs.nl


