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Abstract

We consider the design of asymmetric multiple description lattice quantizers that cover the entire

spectrum of the distortion pro�le� ranging from symmetric or balanced to successively re�nable�

We present a solution to a labeling problem� which is an important part of the construction� along

with a general design procedure� The high rate asymptotic performance of the quantizer is also

studied� We evaluate the rate�distortion performance of the quantizer and compare it to known

information theoretic bounds� The high rate asymptotic analysis is compared to the performance of

the quantizer�

Keywords� cubic lattice� lattice quantization� multiple descriptions� high rate

quantization� source coding� vector quantization� successive re�nement�

quantization�

I Introduction

A multiple description source encoder generates a set of binary streams or descriptions

of a source sequence� each with its own rate constraint� The transmission medium may
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deliver some or all of the descriptions to the decoder� The objective is to minimize the

distortion between the source sequence and the decoded sequence when all the descriptions

are available� while ensuring that the distortion which results when only a subset of the

descriptions are available remains below a pre�speci�ed value that depends on the subset� If

there are D descriptions� the distortion pro�le is a vector of length �D whose components

give the distortion constraints for each subset of the descriptions�

In recent years� multiple description coders have received considerable attention� driven

by the interest in packet voice and video communications �see the bibliography�� Most of

the work �with the exception of ���	� has centered around the successively re�nable case and

the balanced
symmetric case� which are in a sense two extremes of the distortion pro�le�

Successive re�nement coders �nd application in networks with a priority structure whereas

balanced codes are useful in networks that do not have such a structure� the best example

at the present time being the Internet�

In this paper we propose a structured scheme that bridges the two cases� in the sense

that it permits a fairly general distortion pro�le to be speci�ed� By allowing the individual

descriptions to have di�erent distortions� the quantizer behavior can range from the balanced

case �where each description is equally important� to a strict hierarchy �where the loss of

some descriptions could make decoding impossible�� The new design is described in terms of a

lattice vector quantizer� but the general principle of asymmetric multiple description coding

can be extended to many other quantizers� such as trellis coded quantizers� unstructured

vector quantizers� etc� This could potentially allow us to incorporate channel �or network

route� reliability information into the transmission� Also� it might be a useful way to allow

for less intrinsic wastage of network tra�c as some descriptions could be given to the decoder

without necessarily waiting for the more important descriptions to arrive �as in successive

re�nement��

For previous work on the information theoretic aspects of the multiple description prob�

lem see �� ��� ��� �� ��	� The problem of designing quantizers for the multiple description

problem has been considered in ���� ��� �� ��� ��� ��	� The work presented in ���	 considered

only the balanced
symmetric lattice quantizer design� Unlike the work in ���	� we do not use

a training approach� instead we use the geometry of the underlying lattice to solve a labeling
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problem� Other approaches to multiple description coding based on overcomplete expansions

are presented in ��� �� ��	 and methods based on optimizing transforms and predictors are

presented in ���� ��� ��	�

The paper is organized as follows� The source coding problem is formulated in Section

II� the design method is described in Section III� properties of the lattices and sublattices

needed for the construction are developed in Section IV� a high rate analysis is presented in

Section V� and numerical results are presented in Section VI�

II Preliminaries
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Figure �� Block diagram of a multiple description vector quantizer�

A block diagram of a two�channel multiple description vector quantizer �MDVQ� using a

lattice codebook is shown in Fig� �� An L�dimensional source vector x is �rst encoded as the

closest vector � in a lattice � � R
L� We will write � � Q�x�� Information about the selected

code vector � is then sent across the two channels� subject to rate constraints imposed by

the individual channels� This is done through a labeling function �� At the decoder� if only

channel � works� the received information is used to select a vector ��� from the channel �

codebook� If only channel � works� the information received over channel � is used to select

a code vector ��� from the channel � codebook� If both channels work� it is assumed that

enough information is available to recover ��

We will assume that the channel � and channel � codebooks� denoted by �� and ��
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respectively� are sublattices� of �� The index �� � �i	 is denoted by Ni� i � �� �� Ni is also

called the re�use index of sublattice �i� We assume that each �i is geometrically similar to

�� i�e� that �i can be obtained from � by applying a similarity �a rotation� change of scale

and possibly a re�ection�� To simplify the analysis we will usually assume that the �i are

strictly similar to �� i�e� that re�ections are not used�

Property P�� Let � be an L�dimensional lattice with generator matrix G �the rows of G

span ��� A sublattice �� � � is geometrically strictly similar to � if and only if the following

condition holds� there is an invertible L�L matrix U� with integer entries� a scalar c�� and

an orthogonal L� L matrix K� with determinant � such that a generator matrix for �� can

be written as

G� � U�G � c�GK� � ���

If ��� holds then the index of �� in � is equal to

N� � �� � ��	 �

r
det ��

det �
�

detG�

detG

� detU� � cL� � ���

Furthermore� �� has Gram matrix

A� � G�G
tr
� � U�GG

trU tr
� � U�AU

tr
� � c��A � ���

where A � GGtr is a Gram matrix for ��

Even if the similarity is not strict� equations ���� ��� and ��� still hold but with detK� �

��� Note that the constant c� � � represents the scaling between the lattice � and ��

and thus the index N� � cL� represents the scaling between the respective volumes of the

fundamental regions of the lattices�

We will also usually assume that the sublattices �� and �� are clean ��	� that is� no point

of � lies on the boundary of the Voronoi cells of �� or ��� Our algorithm still applies if this

condition is not satis�ed� but the book�keeping becomes more complicated�

�Strictly speaking� the codebooks are �nite subsets of the sublattices �� and ��� but we will ignore that

distinction in this paper
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Finally� we require a sublattice of ��

T
��� �s� �the product sublattice� which is geomet�

rically strictly similar to � and has index Ns � N�N� in �� To reduce the complexity of

the design we will also sometimes make use of a sublattice �� of ��

T
�� which has index

N� � lcm�N�� N�� in � �such sublattices do not always exist � see Section IV��

Since the information sent over channel � is used to identify a code vector �� � ��� and

the information over channel � is used to identify a code vector �� � ��� we will assume

that the labeling function � is a mapping from � into �� � �� and that ���� ��� � �����

The component mappings are �� � ����� and �� � ������ In order to recover � when both

channels work� it is necessary that � be one�to�one� This is accomplished by requiring that

the ordered pair ���� ��� is used only once in any labeling scheme�

Given �� ��� �� and �� there are three distortions and two rates associated with the

quantizer� For a given source vector x mapped to the triple ��� ��� ���� the two�channel

distortion d� is given by kx � �k�� the side distortions di by kx � �ik�� i � �� �� where

jjxjj� def
� ���L�

PL
i�� x

�
i is the dimension�normalized Euclidean norm� The corresponding

average distortions are denoted by �d�� �d� and �d�� �We will also refer to �d� as the central

distortion�� We assume that an entropy coder is used to transmit the labeled vectors at a

rate arbitrarily close to the entropy� i�e�� Ri � H��i�Q�X����L� i � �� �� where H is the

binary entropy function� The problem is to design the labeling function � so as to minimize

�d� subject to �d� � D� and �d� � D�� for given rates �R�� R�� and distortions D� and D��

We will assume that the source is memoryless with probability density function �pdf�

p� The L�fold pdf will be denoted by pL where pL��x�� x�� � � � � xL�� �
QL

i�� p�xi�� The

di�erential entropies satisfy the relation h�pL� � Lh�p��

Given a lattice �� a sublattice �� and a point �� � ��� we denote by V�������� the set of

all points in � that are closer to �� than to any other point in ��� This set is the discrete

Voronoi set of �� in �� If �� is a clean sublattice of � we do not need to worry about ties

when calculating V��������� The Voronoi cell V���� of a point � � � is the set of all points

in RL that are at least as close to � as to any other point of �� Also E���� � ��V����������

�� � ��� will denote the set of all labels of the points in V���� �����
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A Distortion Computation

The average two�channel distortion �d� is given by

�d� �
X
���

Z
V����

kx� �k�pL�x�dx� ���

Since the codebook of the quantizer is a lattice� all the Voronoi sets in the above summation

are congruent� Furthermore� upon assuming that each Voronoi cell is small and letting �

denote the L�dimensional volume of a Voronoi cell� we obtain the two�channel distortion

�d� �

R
V����

kxk�dx
�

� G������L� ���

where the normalized second moment G��� is de�ned by ���	�

G��� �

R
V����

kxk�dx
�����L

� ���

When only description i is available� for i � �� �� the distortion is given by

�di � �d� �
X
���

k�� �i���k�P ���� ���

where P ��� is the probability of lattice point �� and we have assumed that � is the centroid

of its Voronoi cell� This is true for the uniform density� For nonuniform densities� there is

an error term which goes to zero with the size of the Voronoi cell ���	� The �rst term in ���

is the two�channel distortion and the second term is the excess distortion which is incurred

when only description i is available� Note that� for a given �� only the excess distortion term

is a�ected by the labeling ��

At this point we impose a constraint on the labeling function that allows us to reduce the

problem to that of labeling a �nite number of points� We assume that the labeling function

has the shift invariance property that ��� � �s� � ���� � �s� for all �s � �s� This leads to

the following simpli�cation�

�di � �d� � ���Ns�
X

��V���s���

k� � �i���k�� ���

where we have assumed that P ��� is approximately constant over a Voronoi cell of the

sublattice �s� but may vary from one Voronoi cell to another� The consequence of this

structural property is that we focus on the labeling of a set of points in V���s��� and use

shifts of this labeling scheme to generate labels for the entire space�
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B Rate Computation

Let R� bits
sample be the rate required to address the two�channel codebook for a single

channel system�� We �rst derive an expression for R� and then determine the rates R�

and R�� We use the fact that each quantizer bin has identical volume � and that pL�x� is

approximately piecewise constant over each Voronoi cell of �� and ��� This assumption is

valid in the limit as the Voronoi cells become small and is standard in asymptotic quantization

theory�

The rate R� � H�Q�X�� is given by

R� � ����L�
X
�

Z
V����

pL�x�dx log�

Z
V����

pL�x�dx

� ����L�
X
�

Z
V����

pL�x�dx log� pL����

� h�p� � ���L� log����� ��

It can be shown that the rate for description i is given by

Ri � R� � ���L� log��Ni�� i � �� � � ����

A single channel system would have used R� bits
sample� Instead a multiple description

system uses a total of R� � R� � �R� � ���L� log��N�N�� bits
sample� and so the rate

overhead is R� � ���L� log��N�N���

III Construction of the Labeling Function

Suppose � is an L�dimensional lattice with a pair of geometrically strictly similar� clean

sublattices �� and ��� and let �s �the product sublattice� be a geometrically strictly similar�

clean sublattice of both �� and ��� with indices �� � ��	 � N�� �� � ��	 � N� and �� � �s	 �

N�N��

In order to construct a labeling function we �rst identify E� the subset of points of �����

that will be used to label the points of �� Informally� we call the ordered pair ���� ��� an

�This quantity is useful for evaluating the twochannel distortion as well as for evaluating the rate overhead

associated with the multiple description system
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edge and therefore the labeling function is to associate lattice points with edges� A one�to�

one correspondence will be established between V���s��� and a proper subset of E so as to

minimize an appropriate objective function� while ensuring that the labeling can be extended

uniquely to the entire lattice� To this end we �rst start by formulating a cost criterion that

will be used in the design�

A Cost criterion

The multiple description problem may be formulated �	 as a problem of minimizing the

central distortion subject to constraints on the side distortion� The associated Lagrangian

cost criterion is given by

J � �d� �

�X
i��

�i �di ����

� ��� � �� � �� �d� �

�X
i��

�i
X
���

k�� �i���k�P ���

� ��� � �� � �� �d� �
X
���

P ���

�X
i��

�ik� � �i���k��

where ��� �� are Lagrange multipliers�

The central distortion �d� is determined by the lattice �� If we assume that P ��� is

approximately constant over the Voronoi cell of �s� we can rewrite the cost criterion in

terms of the cost over a Voronoi cell of �s� Then the design problem reduces to �nding a

labeling scheme ���� which minimizes

�

Ns

X
��V���s���

�
��k� � �����k� � ��k� � �����k�� � ����

After some algebra� the expression inside the summation can be rewritten as

����
�� � ��

k������ �����k� � ��� � ���k�� ������� � �������

�� � ��
k�� ����

The values of �� and �� determine the relative values of the two side�distortions �d� and �d��

Therefore our design principle is �informally� for a given pair �� and ��� to �nd a labeling

function ���� such that the sublattice points ����� � ��� ����� � �� are not very far apart





and the lattice point � � � that is being labeled is not very far from the weighted mean

�the second term of ����� of these two sublattice points� This general guiding principle leads

to our lattice design� �Note that if we have �� � �� then R� � R�� although we may still

introduce some distortion asymmetry by choosing �� �� ���� We will �rst describe the basic

quantizer design and then illustrate it using the lattice Z��

B Lattice Quantizer

The quantizer construction is based on the following steps�

Step � We are given an L�dimensional lattice �� rates R�� R� and distortions D��D�� These

determine the indices N�� N� using ����� and we attempt to �nd �strictly similar� clean�

sublattices ����� with these indices� together with a product sublattice �s� We also

choose appropriate values for the weights �� and ��� For example� a successively

re�nable quantizer corresponds to choosing �� � �� �� � � and N� � �� For the

balanced case we take �� � ��� By appropriately choosing N�� N�� ��� ��� one can

achieve di�erent levels of asymmetry in rate and distortion�

Step � We �nd the discrete Voronoi set	 V�
def
� V���s��� for the sublattice �s� This is the

fundamental set of points that we will label� The labeling is then extended to the full

lattice using the shift invariance property �see Section II�� We also �nd the sets

P� � V����s��� � V� 	 �� � ����

P� � V����s��� � V� 	 �� � ����

which are the points of �� and �� belonging to the Voronoi set V��

Step � We determine the set

L����� � f�� � �� � �� � V� � ��g ����

for all �� � P�� These are the points in the sublattice �� which are in the Voronoi set

V� of �s when translated to be centered at �� � P�� By using these points we ensure

�We usually omit the word �discrete� when referring to this set
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that the edge length k����� � �����k� will be minimized �see Property P���� We will

show that each member of L����� lies in a di�erent coset with respect to the sublattice

shifts in �s �Property P���� Similarly� we determine the set

L����� � f�� � �� � �� � V� � ��g ����

for all �� � P�� The set of edges emanating from V� is given by

Eedges � f���� ��� � �� � P� � �� � L�����g
�

����

f���� ��� � �� � P� � �� � L�����g �

We �nd a set of coset representatives E� for the equivalence classes of Eedges modulo

�s� Property P�� will establish that we can write E� either as

E� � f���� ��� � �� � P� and �� � L�����g ���

or equally well as

E� � f���� ��� � �� � P� and �� � L�����g � ����

Step � Matching the edges to the lattice points in the Voronoi set is now a straightforward

and easily solved assignment problem �cf� ���	�� The objective is to label each point in

V� with edges that are distinct modulo �s� in order that the shift invariance property be

satis�ed� To formulate this assignment problem we compute the cost given by ���� for

each lattice point and each equivalence class of edges modulo �s �taking the minimum

over the edge class�� This allows us to construct the set of edges which will later be

used to label the points in V���s �

If there exists a sublattice �� �as de�ned in Section II� which is also a geometrically

strictly similar� clean sublattice of �� and �� the computational complexity of the

design can be further reduced� For then we need only label the points in V����
���� We

will show that this does not reduce the performance of the quantizer � see Property

P�� In this case we replace the sets P� and P� by the sets P �

� � V�� ���
��� and

P �

� � V�����
���� The rest of the procedure is unchanged�
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C Properties of the quantizer

In this section we state some of the properties of the construction proposed in Section B�

We have imposed the following restrictions on the labeling scheme�

Constraint � The labels satisfy the shift property� i�e� �����s� � ������s�
�s � �s� � �
��

Constraint � The labels for V� lie in di�erent cosets of the product sublattice� i�e� if

���� ��� and ���� �
�

�� are valid edges then �� and �
�

� are in di�erent cosets with respect

to the product sublattice�

Property P�� Each member of L����� lies in a di�erent coset with respect to the sublattice

shifts in �s� and jL�����j � N�� Similarly each member of L����� lies in a di�erent coset

with respect to the sublattice shifts in �s� and jL�����j � N��

Proof� Let ��� �
�

� � L������ and �
�

� � ����s for some �s � �s� Then �
�

���� � �������s�

Hence ����� and �
�

���� cannot both lie in V�� But since ��� �
�

� � L������ ����� and �
�

����
are in V�� a contradiction� Thus each �� � L����� is in a di�erent coset with respect to the

sublattice shifts in �s� Now fV� � �
�

�g��������s��s��s is a partitioning of the points of �� and

each of these disjoint sets contains points from di�erent cosets of �� �with respect to shifts

in �s�� Since there are only N� di�erent cosets of ��� jL�����j � N�� In fact equality must

hold� because the space is tiled by such sets and if there were a �
�

� for which jL���
�

��j � N�

then would be a �� for which jL�����j � N�� which impossible� An identical proof holds for

L������ �

Property P�� L����� consists of the N� points �� � �� closest to �� subject to the constraint

that each �� is in a di�erent coset�

Proof� We know that �� � L����� � �� � V� � �� � �� � �� � V�� Then �� � �� � V� �
jj�� � ��jj� � jj�� � �� � �sjj�� for all �s � �s� Thus for any �

�

� � �� � �s� �s �� � we have

jj�� � ��jj� � jj��

� � ��jj�� and the claim follows� �

Property P�� �� � L����� � �� � L������
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Proof� For clean lattices� if x � V� then �x � V� ��	� Then �� � L����� � �� � V� � �� �
�� � �� � V� � �� � �� � V� � �� � V� � �� � �� � L������ �

Property P�� As lattice points in � are labeled� the number of times each point from �� is

used is N� and the number of times each point from �� is used is N��

Proof� Let N���� denote the number of lattice points labeled by �� � ��� Certainly

N���� � N� since �� is used N� times when we form the edges f���� ��� � �� � L�����g�
If �� is used in more than N� labels then there is a valid edge ���� ��� with �� �� L������

But this is impossible by Property P��� Therefore N���� � N� for all �� � �� and similarly

N���� � N� for all �� � ��� �

Property P�	 The number of cosets in the edge set E� modulo �s is equal to the number of

lattice points in V��

Proof� Consider the edge set E� � f���� ��� � �� � P�� �� � L�����g� From Property P��

each �� � L����� lies in a di�erent coset modulo �s and hence each edge ���� ��� � E���� lies

in a di�erent coset� As jE���� j � N�N�� there are at least that many cosets in the edge set�

�

Property P�
 The labeling scheme produces a unique label for each lattice point�

Proof� This is immediate from the fact that the labels for the cosets of ���s are taken

from distinct cosets of E���s� �

Property P�� The labeling scheme minimizes the cost criterion given in ���� subject to the

coset restriction�

Proof� This is an immediate consequence of Property P��� �

Property P�� Suppose N� and N� are not relatively prime� and there exists a sublattice ��

with index lcmfN�� N�g in � which is a geometrically strictly similar� clean sublattice of ��

and ��� and contains �s� Then we may construct the labeling to be invariant under shifts by

��� and obtain the same edge set as if we used the product lattice �s� With this procedure it

is necessary to label only lcmfN�� N�g lattice points rather than N�N� points�
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Proof� If such a �� exists then we just need to show that the edge set constructed by using

the algorithm with �s can be produced by sublattice shifts of the edge set constructed using

��� As we saw in the proof of Property P��� the coset representatives for the edge set are

constructed by using E� � f���� ��� � �� � P�� �� � L�����g� where P� �
S

�����

S
���P

�

�
����

���� Therefore E� �
S

�����
E �

�� where E �

� � f���� ��� � �� � P �

�� �� � L�����g� where

P �

� � V�� ���
���� It follows that there are exactly lcm fN�� N�g coset leader edges in E� with

respect to the sublattice �� and they are given in E �

�� Therefore� by matching the cosets of

the edges modulo �� with the lattice points in the Voronoi set for ��� using the assignment

algorithm �as before�� and then shifting by �� we produce exactly the same labeling as we

obtained using �s� �

The property P� illustrates that we can reduce computational complexity in the design

of the quantizer by using the shift�invariance property of the design over a smaller set of

points without any sacri�ce in performance� The following property P��� can be used to

obtain a �ner scale of global asymmetry by mixing con�gurations with di�erent levels of

asymmetry� For example by equally mixing con�gurations with complementary distortion

ratios� we can create globally symmetric side distortions� We call the weighted average of

the lattice points� ���������
�����

� representation points as they are chosen to be close to the lattice

point that the edge represents� Note that distinct edges may share representation points�

Property P�� If there exist several labeling schemes achieving the same cost we can mix

these con�gurations to achieve di�erent levels of asymmetry� A su	cient condition for this

to occur is for the number of unique representation points to be smaller than the number of

lattice points in the product lattice �s�

Proof� The number of representation points is equal to the number of lattice points in

the Voronoi set V� �see Property P���� Therefore� if there are some representation points

which overlap �i�e� the number of unique representation points is less than the number of

points in V��� then there is more than one labeling scheme that produces the same Lagrangian

�� �d���� �d�� with each labeling producing di�erent �d�� �d�� Suppose one extremal con�guration

produces the lowest �dmin
� and �therefore� the largest �dmax

� � and another extremal con�guration

produces the highest �dmax
� and the lowest �dmin

� � Then by using the �rst con�guration in



��

proportion � and the second in proportion �� � � � � one can produce side distortions

�d� � � �dmin
� � �� �dmax

� and �d� � � �dmax
� � �� �dmin

� � Thus by keeping the Lagrangian cost the

same� one can obtain di�erent levels of asymmetry in the distortions �d�� �d�� �

The case of the scalar quantizer �L � �� is of particular interest as these are widely used

in practice� For a scalar quantizer� � � Zwith �� � N�Z� �� � N�Z� �� � lcm�N�� N��Z

and �s � N�N�Z� The points of �� � �� closest to a point �� � �� are in di�erent cosets

with respect to the lattice �s� Therefore the edge selection procedure outlined in Section

IIIB is optimal� in that the quantizer design produces the smallest cost as given by �����
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Figure �� Elements of �� and �� in Voronoi set V� of �s�

D Example

In this section we illustrate the design procedure with an example in two dimensions using

the lattice Z�� We choose j��j � � and j��j � � Portions of the two sublattices are shown

in Figure � where the points of �� are marked with circles� the points of �� with asterisks�

and the points of �s with both circles and asterisks� 
 There are �� points in the Voronoi

set V� for �s� The set P� contains  points of �� and the set P� contains � points of ���

�In the enhanced �pdf� version of this document the circles are blue and the crosses are red




��

The edges Eedges �see Eq� ����� emanating from the points of V� are shown in Figure ��

These are found using the sets L����� and L����� for �� � ��� �� � ��� For example� if we

take the point �� � ��� �� � P�� we see that there are � points in the set L������ namely

f��� ��� ��� ��� ��� ��� ��� ��� ��� ��g� Note that there are several edges emanating from V� which

are a sublattice �s shift apart� For example the edge f�������� ���� ��g is a sublattice �s

shift away from the edge f��� ��� ��� ��g� To satisfy the shift invariance constraint� we must

use only one of these edges to label a point in V�� This constraint is built into the optimization

procedure� The result of the optimization procedure is illustrated in Figure �� Here we have

shown only the points in ��� The points in �� 	 �� are marked by circles and those in

�� 	�� by asterisks� Each point carries a pair of labels ���� ��� with �� � ��� �� � ��� The

complete listing of the labeling is given in Table �� In this example we have set �� �  and

�� � �� which determines the respective distortions �di obtained by the design� A comparison

of these distortions with that predicted by information theory is given in Section VI�
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Figure �� Edges emanating from the Voronoi cell of the sublattice�
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� �� �� � �� �� � �� ��

����� ����� ����� ������ ����� ������ ������ ����� ������

����� ����� ����� ����� ����� ����� ������� ������� �����

������ ������ ����� ������ ������ ����� ����� ����� �����

������ ������ ����� ������ ������� ����� ����� ������ �����

����� ����� ����� ������ ������ ������ ������ ������ ������

������� ������� ������ ������ ������ ����� ����� ����� �����

������ ������ ����� ������� ������� ������ ����� ����� �����

������ ������ ������ ������� ������� ������� ������ ������ ������

����� ����� ����� ������ ������� ������ ����� ������ �����

������ ������ ������ ����� ����� ����� ������ ������ ������

������� ������� ������ ������ ������ ������ ������� ������� �������

������ ������ ������ ������ ������ ����� ����� ����� �����

����� ����� ����� ������ ������ ������ ������ ������ �����

������� ������� ������ ����� ����� ����� ������ ������ ������

������ ����� ������ ������� ������ ������� ����� ����� �����

Table �� Lattice points and labels for a Voronoi set of the product sublattice as labeled in

Figure ��
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Figure �� Labels generated by the algorithm�

IV Good lattices

The lattices that we will investigate and apply in this paper are Zn for n � �� � or a multiple

of �� together with the root lattices D
 and E� ��	� The analysis could be extended to treat

other lattices such as Z	� Z�� the ���dimensional Coxeter�Todd lattice� the ���dimensional

Barnes�Wall lattice or the ���dimensional Leech lattice ���	� ���	�� but we shall not discuss

these here�

A The construction of similar sublattices

We begin with the observation that multiplication of points in the square latticeZ� �regarded

as points in the complex plane� by � � i produces a similar sublattice of index �� All our

sublattices will be constructed by generalizing this remark�

We will make use of �ve types of integers� Z� the ordinary rational integers� G� the

ring of Gaussian integers fa � bi � a� b � Zg� where i �
p��� J � the ring of Eisenstein

integers fa � b	 � a� b � Zg� where 	 � e��i�	� H � � the ring of Lipschitz integral quaternions

fa� bi � cj � dk � a� b� c� b �Zg� where i� j� k are the familiar unit quaternions� and H �� the



��

ring of Hurwitz integral quaternions fa � bi � cj � dk � a� b� c� d all in Zor all in Z� �
�
g�

Other rings of integers could also be used� but these su�ce for the lattices considered in this

paper�

If � � Z� multiplication of lattice points by 
 � Zgives 
Z� a similar sublattice of index

N � j
j�
If � � Z

� � G� multiplication by the Gaussian integer 
 � a � bi � G gives a similar

sublattice �� � 
� of index N � a� � b�� A number N is of the form a� � b� if and only if it

is of the form

�e�
Y

pi���
�

pfii
Y

qj�	�
�

q
�gj
j � ����

where the �rst product is over primes pi congruent to � �mod ��� the second product is over

primes qj congruent to � �mod �� and e�� fi and gj are nonnegative integers� These indices

are the numbers

�� �� �� �� �� � ��� ��� ��� ��� ��� ��� � � � ����

�Sequence A���� of ���	��

If � � A� � J � the planar hexagonal lattice� multiplication by the Eisenstein integer


 � a� b	 � J gives a similar sublattice �� � 
� of index N � a� � ab� b�� A number N is

of the form a� � ab� b� if and only if primes congruent to � �mod �� appear to even powers�

These indices are the numbers

�� �� �� �� � ��� ��� ��� �� ��� ��� ��� � � � ����

�Sequence A���� of ���	��

It is shown in ��	 that the above conditions are also necessary� if Z�Z� or A� has a similar

sublattice of index N then N must have the form described in the preceding paragraphs�

For the lattices � � Z

� Z�� Z��� � � � �D
 and E� a necessary condition for the existence of

a geometrically similar sublattice of index N is that N should be of the form mL�� for some

integer m� where L is the dimension� This condition is also su�cient� since such sublattices

can be obtained by writing m � a� � b� � c� � d�� regarding � as a sublattice of HL�

� � and

multiplying � on the left or on the right by the quaternion 
 � a � bi � cj � dk� Left and



�

right multiplications in general give di�erent sublattices� In the case of D
 and E� we may

also multiply by Hurwitz integral quaternions to obtain further similar sublattices�

Odd�dimensional lattices of dimension greater than � are less interesting� For a lattice �

of odd dimension L has a geometrically similar sublattice of index N if and only if N is an

L�th power� say mL� and sublattices of this index can be obtained by scalar multiplication

of � by m �see ��	��

The norm of a quaternion 
 � a � bi � cj � dk is 
�
 � a� � b� � c� � d� where the bar

denotes quaternionic conjugation� If 
 belongs to one of the above rings� the index of the

sublattice 
� �or �
� in �� �� � 
�	� is equal to �
�
�L��� where L is the dimension and the

bar is complex or quaternionic conjugation as appropriate�

B Clean sublattices

In dimension one� the sublattice 
Zis clean if and only if 
 is odd�

Reference ��	 gives necessary and su�cient conditions for a similar sublattice of any two�

dimensional lattice to be clean� In particular� the sublattice 
Z� �
 � a� ib� is clean if and

only if N � a� � b� is odd� These indices are obtained by setting e� � � in �����

�� �� � ��� ��� ��� �� ��� ��� ��� � � �

�Sequence A�������

The sublattice 
A� �
 � a � b	� is clean if and only if a and b are relatively prime� It

follows that A� has a clean similar sublattice of index N if and only if N is a product of

primes congruent to � �mod ��� These are the numbers

�� �� ��� �� ��� ��� ��� �� ��� ��� � � � ����

�Sequence A�������

The existence of clean sublattices in dimensions greater than � was not considered in ��	�

We can give a fairly complete answer for the lattices ZL� L � ��

Theorem IV�� Suppose L � � and ZL has a geometrically similar sublattice �� of index

N � Then �� is clean if and only if N is odd�



��

Proof� �If� Let �� � ��ZL�� where � is a similarity� and let ��� � ����ZL�� If � multiplies

lengths by c� �as in ���� then N � cL� � Suppose N � cL� is odd and let �� have generator

matrixK� with KK tr � c��IL � mIL� wherem � c��� �In the notation of ���� U� � c�K� � K��

Note that as KK tr has integer entries� m � c�� is an integer and as N� � mL is odd� so is m�

Since �� is a sublattice of ZL� the entries of K are integers� Then ��� has generator matrix

K�� � �
m
K tr�

We must show that there are no points of ZL on the boundary of the Voronoi cell of ���

or equivalently that there are no points of ��� on the boundary of the Voronoi cell of ZL�

It is enough to consider just one face of the Voronoi cell of ZL� say that consisting of the

points P �
�
�
� �

x�
� �

x�
� � � � � �

xL
�

�
� where jxij � � for � � i � L� If P � ��� then there is a vector

u � �u�� � � � � uL� �ZL such that

P �
�

m
uK tr � ����

Equating the �rst components we get that

�

�
�

�

m
times a vector with integer entries �

Since m is odd this is impossible�

�Only if� Suppose N is even� then as N� � mL� m is also an even integer� We claim

that all the vertices of the Voronoi cell for ZL �i�e� all the deep holes in ZL in the notation

of ��	� belong to ���� In fact� ���� implies that u � PK� Let P be a vector of the form

��
�
��

�
� � � � ��

�
�� and let K � �kij�� From KK tr � K trK � mIL we have

PL
i�� k

�
ij � m

and� since k�ij � kij �mod ���
PL

i�� kij is even �for all j�� Hence PK has integer entries and

is in ZL� �

The following corollary summarizes our results about ZL for the values of L that we are

interested in� Note that since ZL has no �handedness�� there is essentially no di�erence

between �similar� and �strictly similar� for this lattice�

Corollary IV�� Z
L has a geometrically similar sublattice of index N if and only if

� N is an Lth power� if L is odd

� N is of the form a� � b�� if L � �



��

� N is of the form mL�� for some integer m� if L � �k� k � �

In each case the sublattice is clean if and only if N is odd� The same results hold if 
similar�

is replaced by 
strictly similar��

For D
 we have only a partial answer�

Theorem IV�� If M is � or a product of primes congruent to � �mod �� then D
 has a

geometrically strictly similar� clean sublattice of index M�� The values of M mentioned are

�� �� �� ��� ��� ��� �� ��� ��� ��� � � � ����

�� together with Sequence A�����

Proof� We take our standard version of the D
 lattice to have minimal norm � �as in ��	�

and generator matrix

G �

�
�������

� � � �

�� � � �

� �� � �

� �� � ��

�
						


� ����

The four rows v�� v�� v	� v
 of G correspond to the nodes of the Coxeter diagram for D
 shown

in Fig� �� where vi �vi � � �i � �� � � � � ��� two nodes that are joined by an edge correspond to

vectors with inner product ��� and two nodes that are not joined by an edge are orthogonal�

We regard D
 as a subset of H � fw � xi � yj � zk � w� x� y� z � Rg� the space of real

quaternions� Our sublattices �� will be constructed by multiplying D
 either on the left or

on the right by appropriate Hurwitzian integral quaternions� If 
 � a � bi � cj � dk � H
then 
D
 has generator matrix GL�� where

L� �

�
�������

a b c d

�b a d �c
�c �d a b

�d c �b a

�
						


� ����



��

v�

v�

v�

v�

Figure �� Coxeter diagram for any lattice that is geometrically similar to D
� there are four

generating vectors v�� v�� v	� v
 satisfying v� � v� � v� � v� � v	 � v	 � v
 � v
� vi � vj � ��
�
v� � v�

if nodes vi and vj are joined by an edge� and vi � vj � � �i �� j� otherwise�

and D

 has generator matrix GR�� where

R� �

�
�������

a b c d

�b a �d c

�c d a �b
�d �c b a

�
						


� ���

Note that

L�L
tr
� � R�R

tr
� � mI
� L�R� � R�L� � ����

where m � 
�
 � a� � b� � c� � d��

We will show that under certain conditions 
D
 and D

 are clean sublattices� We only

give the proof for D

� the other case being completely analogous�

The Voronoi cell for D
 is a ���cell� with �� octahedral faces ��	� ��	� A typical face �they

are all equivalent� is that lying in the hyperplane

X � v� �
�

�
v� � v� � ����



��

having center �� � �
�
v� and six vertices

�� �
�

�
��v� � v	 � v
� �

�� �
�

�
��v	 � v
� �

�	 �
�

�
��v� � v� � v	� �

�
 �
�

�
��v� � v	� �

� �
�

�
��v� � v� � v
� �

�� �
�

�
��v� � v
� ����

�see Fig� ��� A point X belongs to this face if and only if it satis�es ���� and

��

��

�� ��

��

��

��

Figure �� Labeling for center and vertices of octahedral face of Voronoi cell for D
�

j�X � ��� � ��� � ���j� j�X � ��� � ��	 � ���j� j�X � ��� � �� � ���j � �

�
v� � v� � ����

Let �� � D

� where 
 is a quaternion of the form


 �
�

�
�
�

�
i �



�
j �



�
k � ����



��

and � and  are odd� positive� relatively prime integers� The norm of 
 is �
�
��� � ��� Then

we claim that �� is clean�

To show this� we begin by computing the generator matrix for ���

G� � GR�

�

�
������������

� � � 

����
�

����
�

���
�

����
�

���
�

����
�

���
�

���
�

���
�

����
�

����
�

����
�

�
											

� ����

and denote its rows by v��� v
�
�� v

�
	� v

�

� We will similarly use primes to denote the center �����

and vertices ����� � � � � �
�
�� of an octahedral face of the Voronoi cell of ��� From ���� we �nd

that

��� �
�

�
��� �� �� � �

��� �
�

�
����� � � �

��	 �
�

�
��� �� �� � �

�� �
�

�
��� � � � ����� � �

We must show that it is impossible for a point X � �w� x� y� z� � D
 to satisfy the primed

versions of ���� and ����� which are

�x � z �
�

�
��� � �� � ����

j�w � yj� j � w � �yj� jx� �zj � �

�
��� � �� � ����

Suppose on the contrary that �w� x� y� z� � D
 satis�es ���� and ����� From ���� we have

z �
�

�
��� � � � ��x� ����

and from ����

jx� �zj � �

�
��� � �� �



��

which together imply
�

�
��� � � x � �

�
�� � ��

So we may write x � �
�
�� � ��� say� where � is an odd integer satisfying � � � � � and

from ����

z �
� � ��

�
�

which implies �� � � �mod ��� Since  is odd� � �  �mod ��� and we conclude that

�� �  �mod �� � ���

Thus for some integer k� ��� � �k� and since � and  are relatively prime�  must divide

�� Therefore � � � But this is impossible� For if � � � x � �
��� � �� z � �

���� � ��

x��z � �
���

� � ��� and then ���� implies w � y � �� so w � x� y � z �  �� D
� since 

is odd� A similar argument applies if � � ��

So far we have shown that if � and  are odd� positive and relatively prime� then the

sublattice D

 is clean� where 
 is given by ����� Suppose M is a product of primes congruent

to � �mod ��� From the classical theory of quadratic forms �see for example ��	�� we know

that M � p� � q� with p even� q odd and gcd�p� q� � �� We now simply set � � p � q and

 � jp� qj�
It remains to discuss the case M � �� For this we can multiply on the left or on the right

by either of the quaternions


 �
�

�
�

�

�
i �

�

�
j �

�

�
k or

�

�
�

�

�
i�

�

�
j �

�

�
k �

We omit the straightforward veri�cation that these sublattices are clean� �

In the other direction we have�

Theorem IV�� D
 has no clean� geometrically similar sublattice of index M� if M is �� 

or ���

Proof� The proof is by exhaustive search� using a computer� We produced a list of all

vectors of norm �M in D
� and from this we found all similar sublattices of index M� by

�nding all sets of four vectors corresponding to the Coxeter diagram of Fig� �� Given a



��

sublattice ��� we compute the equations de�ning an octahedral face of the Voronoi cell from

���� and ����� Then AMPL ���	 and CPLEX ��	 were used to verify that in every case there

was a point of D
 on the face� �

The preceding discussion has shown that the lattices Z�Z�� Z
k for k � � and D
 have a

plentiful supply of clean� geometrically similar sublattices� We expect the same will be true

of the E� lattice� but this question is presently under investigation�

Finally� we remark that if �� is a clean sublattice of � and ��� is a clean sublattice of ���

then ��� is a clean sublattice of ��

C Common sublattices of 
� and 
�

We begin with a general comment� Let �� and �� be any two sublattices of a lattice � �they

must have the same dimension as � but are otherwise arbitrary�� Then we may form their

intersection �� � �� 	 �� and their join �� � �� � ��� as shown in Fig� �� The join is

the lattice generated by the vectors of both �� and �� �and in general is not simply their

union�� From the Second Isomorphism Theorem of group theory �e�g� ���	� the indices and

�� ��

�� � h�����i

�

�� � �� � ��

�s

Figure �� Intersection� join and �product� sublattice of two arbitrary sublattices�



��

determinants of these lattices are related by

��� � ��	 � ��� � ��	� ��� � ��	 � ��� � ��	 � ����

det �� det �� � det �� det �� � ����

There are now in general many ways to �nd a �product� sublattice �s � �� with

�� � �s	 � �� � ��	�� � ��	 � ����

Let � be one of Z�Z� or A�� and let �� � 
��� �� � 
�� be geometrically strictly similar

sublattices obtained by multiplying � by elements of Z� G or J respectively� Since these

three rings are unique factorization rings� the notions of greatest common divisor �gcd� and

least common multiple �lcm� are well�de�ned� We set 
� � gcd�
�� 
��� 
� � lcmf
�� 
�g� and

then it is easy to see that �� � 
� �� �� � 
� �� We can also form the product sublattice

�s � 
�
� � �see Fig� ��� The indices of these lattices are given by

�� � ��	 � �
� �
��
L��� �� � ��	 � �
��
��

L�� �

�� � ��	 � �
��
��L��� �� � ��	 � �
��
��L�� �

�� � �s	 � �� � ��	�� � ��	 � ����

In dimension L � �� ���� implies that

�� � ��	 � lcmf �� � ��	� �� � ��	 g � ����

and we can take �lcm � ��� However� if L � �� ���� does not hold in general�

In dimensions � or �� if 
� and 
� are relatively prime �meaning gcd�
�� 
�� � ��� we have


� � �� 
� � 
�
�� � � ��� �s � ���

Because the quaternions form a noncommutative ring their arithmetic theory is more

complicated� For example� it is necessary to distinguish between left gcd s and right gcd s�

Both are well�de�ned in H � and also in H � as long as at least one of the quaternions involved

has odd norm ��	� ���	� We plan to discuss this theory and its applications to the study of

sublattices of Z
 and D
 elsewhere� In the present paper we will restrict our attention to



��

�� � �� � �� � �� �

�� � �� �

�

�s � ���� �

�� � �� �

Figure �� Join ��� intersection �� and product �s of two sublattices ��� �� of �� where �

is one of Z� Z� or A��

a narrow class of sublattices� which however will be general enough to provide an adequate

supply of sublattices for our applications�

For Z
 we choose two Lipschitz integral quaternions 
�� 
� � H � whose norms are odd

and relatively prime� For D
 we choose two Hurwitz integral quaternions


� �
�

�
���� � i� �

�

�
��j � k� � H � �


� �
�

�
���� � i� �

�

�
��j � k� � H � � ����

where ��� ��� �� � are odd positive integers with gcd���� �� � gcd���� �� � gcd����
� �

�
����� ���

� � �
����� � ��

In both cases we take �� � 
��� �� � �
� and �s � �� � 
��
� �see Fig� �� Then

�� � ��	 � �
��
��
�� �� � ��	 � �
��
��

� �

�� � �s	 � �� � ��	�� � ��	 � ����



�

�� � ��� �� � ���

�s � �� � �����

�

Figure � �� �resp� ��� obtained by multiplying � � Z

 or D
 on the left �resp� right� by a

quaternion 
� �resp� 
���

For Z
 this gives sublattices ��� �� of indices M�
� � M�

� � where M� and M� are any two

relatively prime odd numbers �from Corollary IV���� For D
� M� and M� are any two

relatively prime numbers from �����

V High rate asymptotics

In this section we analyze the distortion of the asymmetric multiple description lattice quan�

tizer at high rates�

Let �� be an L�dimensional lattice with geometrically strictly similar� clean sublattices

���� ���� ��� � ��� 	 ���� ��s �as in Figure ��� with indices �N�� �N�� �N� and �Ns� respectively�

where �Ns � �N�
�N�� It is assumed that ���� the volume of a fundamental region for ��� is equal

to unity� A sequence of lattices is then obtained from the base set of lattices by scaling

each component� Let ���n� � n���� ���n� � n���� ���n� � n��� and �s�n� � n���s� These

have indices N��n� � nL �N�� N��n� � nL �N� with N��n� � nLN�� Ns�n� � n�LNs where

Ns�n� � N��n�N��n�� As the index of the lattices grows� we scale the lattices by a factor 

so that the overall rate also grows �see �����

We analyze the rate�distortion performance for the set of lattices f�����n�����n�����n���s�n�g�
However� in order to keep the notation simple� we will only use the sequence index n when it

is necessary to avoid confusion� Thus we will write �s instead of �s�n�� Ns instead of Ns�n�



��

and so on�

Referring to ����� let

Js �
X
���

P ���
X
i

�ik�� �i���k�� ����

We investigate the high�rate behavior of Js and then �nd the approximation for �di� i � �� ��

The latter would also allow us to predict the asymmetry in the distortion behavior of the

quantizer� The reader is referred to Figure �� for the analysis� Note that in the �gure we

have written ��i � �i
�����

for brevity�

Lattice Point
Sublattice
   point

Sublattice
   point

A

F B

C
G

D

E

����� � �����

jj�� ��jj

��

��

�

Figure ��� Relationship of edge length and distortion�

Let

Js� �
X
���

����
�� � ��

k����� � �����k�P ��� ����

and

Js� �
X
���

��� � ���k� � ������� � �������

�� � ��
k�P ���� ���

Then� using �����

Js � Js� � Js�� ����



��

Under the assumption that �� is �ne enough for P��� to be considered a constant over V��

we obtain

Js� �
����

�� � ��

X
�����

P����
X

��V����
��

jj������ �����jj�� ����

By construction� the inner sum in ���� does not depend on ��� Therefore� taking this out of

the outer summation and using
P

�����
P���� � ��N�� we obtain

Js� �
����

�� � ��

�

N�

X
��V�����

jj������ �����jj�� ����

which can be written in terms of the edge endpoints as

Js� �
����

�� � ��

�

N�

X
���V�����

X
���V�s����

k�� � ��k�� ����

Observe that the edges in ���� are not the same as those in ����� since the points � � V��
���

need not be labeled using �� � V��
���� However� in both cases� there is exactly one edge

from each coset of E���s� Since all edges in a coset have equal length� the sums in ���� and

���� are identical�

Using the Riemann approximationZ
V�s����

jjx� ��jj�dx �
X

���V�s����

jj�� � ��jj��� ����

for the summation in ���� we obtain

Js� �
����

�� � ��

�

N�

X
���V�����

�

��

�R
Vs����

jjx� ��jj�dx
�
�����L�
s

�
������L�s ����

The term within the brackets is G��s�� the normalized second moment of a Voronoi cell of

�s �� �
��

for the square lattice�� �� � N�� �s � N�N� and N����� � ��	 � N�� Therefore

Js� �
����

�� � ��

��� � ��	

N���
G��s��

����L
s

�a�
�

����
�� � ��

G��s��
��L
s ����

�
����

�� � ��
G��s��N�N��

��L� ����



��

where �a� follows because ��� � ��	 � N��N� and �s � N�N�� If all the lattices in question

are scaled by � then

Js� � � ����
�� � ��

G��s��N�N��
��L� ����

The rate of the ith description is given by

Ri � h�p�� �

L
log��Ni�� �

L
log��

L�� i � �� �� ���

Therefore

Ni �
�

L
�Lh�p���LRi � i � �� �� ����

The scale factor � is related to the di�erential entropy of the source and the rate R� through

� � ��h�p����R�� ����

Using ������� in ���� we obtain

Js� �
����

�� � ��
G��s��

�h�p�����R��R��R��� ����

A bound for Js� may be obtained in terms of ��� the covering radius of ��� by observing

that for every �� it is possible through a suitable �� shift to satisfy�� ������� � �������

�� � ��

 � ��� ����

Note that �� � !�n� as the volume of �� is growing as nL� Thus we have the inequality

Js� � ��� � ����
�
�

�� ����

By comparing ���� and ���� we observe that Js� � !�n
�� whereas Js� � !�n���� As

�s � N�N� � !�n�L� and �� � !�n� we �nd that Js� dominates Js� and we obtain the

approximation

J � ����
�� � ��

G��s��
�h�p�����R��R��R��� ����

where R� determines the central distortion �d� and is given by �d� � G������h�p��R�� �see

equation �����

�Here the notation f�n� � ��g�n�� denotes that f�n� � O�g�n�� as well as g�n� � O�f�n��
 Here

f�n� � O�g�n�� means limsupn��j
f�n�
g�n� j ��



��

A Side Distortions

The approximations to the side distortions are obtained by using Figure �� and the following

analysis� The channel � distortion is given by

�d� �
�

N�

X
��V�����

jj������ �jj� � �d�� ����

Our goal is to examine the behavior of �
N�

P
��V�����

jj����� � �jj�� at high rates� To this

end we write

jj�� � �jj� � jj��� � ��� � ��� � ��jj� ����

� jj��� � ���jj� � jj��� ���jj� � �h��� � ���� ���� ��i�

where �� � ����� � ��������� � ���� �

jj��� � ���jj� � jj��� ���jj� � �jh��� � ���� ���� ��ij � jj�� � �jj� ����

� jj��� � ���jj� � jj�� � ���jj� � �jh��� � ���� ��� � ��ij

and by use of the Cauchy�Schwartz inequality ���	�

jj��� � ���jj� � jj��� ���jj� � �jj��� � ���jj jj��� ���jj � jj�� � �jj� ���

� jj��� � ���jj� � jj��� ���jj� � �jj��� � ���jj jj��� ���jj�

This can be re�written as

jj�� � ��jj�
�
� � jj�� ��jj

jj�� � ��jj
��

� jj�� ��jj� ����

� jj�� � ��jj�
�
� �

jj�� ��jj
jj�� � ��jj

��
�

We now justify the geometrical relationship shown in Figure �� �note that this only holds

at high rates�� The main point of the analysis is that the distance AD� � jj�� ��jj� is well

approximated by AB� � jj�� � ��jj� at high rate� Note that this need not be true on an

edge�by�edge basis� but is true in an average sense as formalized below�

Summing ��� over � � V��
���� and using jj��� �jj� � � we obtainX

��V�����

�jj�� � ��jj� � �jj�� � ��jjjj��� �jj� �
X

��V�����

jj� � ��jj� ����

�
X

��V�����

�jj�� � ��jj� � jj��� �jj� � �jj�� � ��jjjj��� �jj� �



��

Rewriting the above equation we get�
� X
��V�����

jj�� � ��jj�
�


�

� � �

P
��V�����

jj�� � ��jjjj��� �jjP
��V��

jj�� � ��jj�

�
�

X
��V�����

jj� � ��jj� ����

�
�
� X
��V�����

jj�� � ��jj�
�


�

� �

P
��V�����

jj��� �jj�P
��V�����

jj�� � ��jj� � �

P
��V�����

jj�� � ��jjjj��� �jjP
��V�����

jj�� � ��jj�

�
�

Using these inequalities and the fact that jj�� ��jj � ��� we obtain the following result�

Lemma V�� If �� �� �� �� �� �� limR���

P
��V�����

jj����jj� � limR���

P
��V�����

jj�����jj�

when R� �R� � C for some constant C�

Proof� For our sequence of lattices

� � lim
R���

P
��V�����

jj�� � ��jjjj��� �jjP
��V�����

jj�� � ��jj� ����

� lim
R���

��

P
��V�����

jj�� � ��jjP
��V�����

jj�� � ��jj�

� lim
R���

��

P
��V�����

��
�����

jj�� � ��jjP
��V�����

�
��

�����

��
jj�� � ��jj�

� lim
R���

��

�
�� � ��
��

� P
��V�����

jj�� � ��jjP
��V�����

jj�� � ��jj�

� lim
R���

��

�
�� � ��
��

� P
���V�����

P
���V�s����

jj�� � ��jjP
���V�����

P
���V�s����

jj�� � ��jj�

� lim
R���

P

�
�� � ��
��

�
��

�
��L
s

�

where P � G����s�
G���s�

is a dimensionless constant that depends on ��s� with G���s� the normalized

second moment and G����s� �
R
Vs����

jjx���jjdx

�
�����L�
s

is the normalized �rst moment� Therefore P

is scale�invariant and dimensionless� Now the scaling  a�ects �s by changing it to �s
L�

Also� the scaling a�ects �� by scaling it to ��� As 	�

�
��L
s

� ���n�
���n�� � !�n���� we obtain

limR���
	�

�
��L
s

� limn��
	�

�
��L
s

� �� so the expression in ���� goes to zero asymptotically in

the rate� In a similar manner we can show that

� � lim
R���

P
��V�����

jj��� �jj�P
��V�����

jj�� � ��jj� � lim
R���

���
N�P

��V�����
jj�� � ��jj� ����

� G��s�
���

��� � ����
lim

R���
�
��

�
��L
s

	� � �



��

Using these in ���� we obtain the desired result� �

Using Lemma V�� we can write

X
��V�����

jj� � ��jj� �
X

��V�����

jj�� � ��jj� �
���

��� � ����

X
��V�����

jj�� � ��jj� ����

for a su�ciently high rates� Therefore the side distortions are directly related to Js which

was calculated earlier� Hence the side distortions are approximated by

�d� � ���
��� � ����

G��s��
�h�p�����R��R��R�� ����

�d� � ���
��� � ����

G��s��
�h�p�����R��R��R���

It follows that the distortion ratio�
�d�
�d�

is approximately ���
��

��� a convenient formula when

designing the lattice quantizer� Although this is only a high rate approximation� the examples

have shown that it is also a useful formula at lower rates�

Next we examine the case when �� �� �� �� � �� In this case we can show that

�d� � G��s��
�h�p����R� ����

�d� � G��s��
�h�p�����R��R��R���

The roles are reversed when �� � � and �� �� �� It is worth noting that in a successive

re�nement scheme ���	� the expression for �d� �for �� �� �� �� � �� does not decay exponentially

with rate� since the diameter of the set f� � ����� � ���g is bounded away from zero�

Let R� � R��R�

�
�� � a�� so that R� � R� � R� � R��R�

�
�� � a�� Note that a is chosen so

that a � jR��R�j
R��R�

and therefore R� � R� � R� � min�R�� R��� Here we can clearly see the

tradeo� between the central distortion �d� and the side distortions�

B Minimizing average distortion

Suppose we know that the packet loss probability on channel � is p� and the packet loss

probability on channel � is p�� Then the average distortion is given by

�D � ��� p���� � p�� �d� � ��� p��p� �d� � �� � p��p� �d� � p�p�E �jjxjj�	 ����

Using the high rate approximations developed earlier� we can �nd the optimal ��
��

needed for

minimizing the distortion�



��

Claim V�� The weights which minimize ���� at high rate are given by

��
��

�
��� p��p�
��� p��p�

� ���

Proof� To optimize ���� we use the high rate expressions given in ����� Using ���� in ����

we obtain

�D � A� B��
��

�� � ��
�� � B��

��
�� � ��

��� ����

where A�B�� B� do not depend on ��� �� �they depend on R�� R�� R�� �p�� p��� Without loss

of generality� we can use ��� � ��
�����

and ��� � ��
�����

� Hence de�ning � � ��� � � � ��� and

substituting in ���� we obtain

�D � A � B��
� � B��� � ���� ����

By di�erentiating ���� with respect to � and setting it to zero we obtain the given result�

Note that this problem is convex �the second derivative of ���� is positive� and hence we

have obtained the minimum� with respect to �� �

VI Numerical Results

In this section we illustrate the performance of the proposed quantizer and compare it to

both information theoretic bounds and also the high rate asymptotic analysis developed in

Section V� In comparisons of its performance with that predicted by information theory� we

assume that there is an entropy �lossless� coding of the quantizer output� For a Gaussian

source� the multiple description rate�distortion problem was solved by Ozarow ���	� ElGamal

and Cover �	�

In the �rst example� we design a scalar quantizer and compare its performance to the

high rate asymptotic results presented in Section V� We start with a base lattice � � Z

and use N� � �� N� � � with N��n� � �n�N��n� � �n for the asymptotic growth� We use a

�A referee pointed out an alternative way to see this result
 Note that in ���� only the �rst three terms

depend on ��� �� and so without that term the equation is identical in form to ���� with the substitution

�� � ��� p��p�� �� � ��� p��p�
 Therefore �D is minimized by taking �� � ��� p��p�� �� � ��� p��p�
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Figure ��� Comparison of side distortion ratio to ���
���

predicted by the rate asymptotics in

����

step size of  � �
n�

to ensure that the rate scaling takes place� In Figure �� we illustrate the

rapid convergence of the distortion ratio
�d�
�d�

to the asymptotic value
���
���

as predicted in �����

This is shown for both Gaussian and uniform sources�

Next� in Figure ��� we compare the distortion and the rates of the quantizer to that

predicted by the high rate asymptotics in ���� and ���� Each numerically obtained distortion

pair is tagged with two rate pairs� The rates predicted by ��� are below the � �d�� �d�� curve

and the rates of the quantizer �numerically obtained� are above the curve� This is done for

a unit variance Gaussian source� As can be seen from the �gure� the high�rate predictions

are quite accurate�

The vector quantizer is illustrated with the Z� lattice that we described in Section III�

The rates are chosen so that R� �R� � �
� log��

j��j
j��j

�� In Figure �� we illustrate the tradeo�

between the two side distortions by varying ��� ��� In Figure �� we have plotted the side

distortions and compared them with those predicted by information theory ���	� The key

observation is that the distortion performance of the lattice quantizer is approximately �dB

away from that predicted by the rate�distortion bound� This gap is due to the shaping gain
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Figure ��� Comparison of side distortions and rates with the high rate asymptotics predic�

tions in ���� and ���

that we will pick up when we go to higher dimensions and using sublattices which have

Voronoi cells which are closer to spherical� The Z� lattice used in this example is more for

illustrative purposes and has very little shaping gain�

VII Discussion

In this paper we have designed asymmetric multiple description lattice quantizers� This

source coding scheme bridges the symmetric �balanced� multiple description quantizers and

completely hierarchical successive re�nement quantizers� Though a lattice vector quantizer

was illustrated� this scheme could also be extended to other types of source coding schemes�
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