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Abstract. A recursive construction is provided for sequence sets which
possess good Hamming Distance and low Peak-to-Average Power Ratio
(PAR) under any Local Unitary Unimodular Transform. We identify a
subset of these sequences that map to binary indicators for linear and
nonlinear Factor Graphs, after application of subspace Walsh-Hadamard
Transforms. Finally we investigate the quantum PARl measure of ’Linear
Entanglement’ (LE) under any Local Unitary Transform, where optimum
LE implies optimum weight hierarchy of an associated linear code.

1 Introduction

Golay Complementary sequences of length 2n form sequences with Peak-to-
Average Power Ratio (PAR) ≤ 2 under the one-dimensional continuous Discrete
Fourier Transform (DFT∞

1 ) [9]. The upper PAR bound of 2 follows by form-
ing these Complementary Sequences using Rudin-Shapiro construction [25, 26].
This set is the union of certain quadratic cosets of Reed-Muller (RM) (1, n) [5].
Moreover the quadratic coset representatives can be viewed as ’line graphs’ in
Algebraic Normal Form (ANF) [21]. As these sequences are a subset of RM(2, n),
the Hamming Distance, D, between sequences in the set satisfies D ≥ 2n−2. The
problem of finding error-correcting codes where each codeword also has low PAR
has application to Orthogonal Frequency Division Multiplexing (OFDM) com-
munications systems [11]. However the fundamental codeset identified by Davis
and Jedwab [5] (DJ sequences) suffers from vanishing rate as n increases, and
much higher rates are possible and desirable, where PAR ≤ O(n) [27, 22]. A gen-
eralisation of Rudin-Shapiro construction to other starting seeds [16, 17]. allows
inclusion of more low PAR quadratic cosets of RM(1, n) in the code, thereby
improving code rate somewhat. Higher degree cosets...etc can also be added,
increasing code rate at price of distance, D, which decreases. However these rate
improvements are marginal. In this paper we present a construction for much
larger codesets of sequences with PAR ≤ 2t, comprising ANFs up to degree u,
where u ≤ t for t > 1, and u = 2 for t = 1 [19]. These codesets have PAR ≤ 2t

under all Linear Unimodular Unitary Transforms (LUUTs), including one and
multi-dimensional continuous DFTs. As LUUTs include the Walsh-Hadamard



Transform (WHT) then our construction gives large codesets of Almost-Bent
functions [3, 23]. The functions are cryptographically even stronger, as the bi-
nary sequences are distant from linear sequences over all alphabets, not just
over Z2. We then describe a mapping of a subset of the bipolar sequences, gen-
erated using our construction, to Factor Graphs [12]. By applying tensor prod-
ucts of Hadamard and Identity kernels to our bipolar sequence we transform to
a Factor Graph in a Normal Realisation [7] representing a linear or nonlinear
error-correcting code. This transformation provides spectral characterisation for
Factor Graphs (and Quantum Factor Graphs [15]). Finally we present PARl,
which is a partial measure of quantum entanglement and measures PAR under
all Linear Unitary Transforms (LUTs) [17, 18]. We also define ’Linear Entangle-
ment’ (LE), and ’Stubborness of Entanglement’ (SE), which is a series of pa-
rameters related to PARl over all sequence subspaces. At least in the bipartite
quadratic case, a length 2n bipolar sequence with optimal LE and SE represents
a [n, k, d] binary linear code with optimal weight hierarchy. We conjecture that
optimally entangled subsystems represent optimal linear and nonlinear codes -
and vice versa. A similar relationship between secrecy and entanglement has
recently been highlighted by [4].

2 A Construction For Low PAR Error-Correcting Codes

Joint work with C.Tellambura [19]

PAR is a spectral measure. We must therefore define the transforms over which
the spectrum is computed:

2.1 Definitions

Definition 1 Ln is the infinite set of length 2n complex linear unimodular se-

quences, l = (l0, l1, . . . , l2n−1), where |li| = |lj |, ∀i, j,
∑2n−1

i=0 |li|
2 = 1, and,

l = {2
−n
2 (a0, b0) ⊗ (a1, b1) ⊗ . . . ⊗ (an−1, bn−1)}

where ⊗ means ’tensor product’.

Definition 2 A 2n × 2n Linear Unimodular Unitary Transform (LUUT) ma-
trix L has rows taken from Ln such that LL† = I2n , where † means conjugate
transpose, and I2n is the 2n × 2n identity matrix.

Definition 3 Gn is the infinite set of length 2n complex linear sequences, l =

(l0, l1, . . . , l2n−1), where
∑2n−1

i=0 |li|2 = 1 and,

l = {2
−n
2 (a0, b0) ⊗ (a1, b1) ⊗ . . . ⊗ (an−1, bn−1)}

Note that Gn ⊃ Ln.

Definition 4 A 2n × 2n Linear Unitary Transform (LUT) matrix G has rows
taken from Gn such that GG† = I2n . LUUTs are a special case of LUT.



Let si be an element of a length 2n vector, s. PAR(s) is computed by measur-
ing maximum possible correlation of s with any length 2n ’linear’ unimodular
sequence, l ∈ Ln:

Definition 5 PAR(s) = 2nmaxl(|s · l|2)
where l ∈ Ln and · means ’inner product’ [17].

Let x = {x0, x1, . . . , xn−1}. Then p(x): Zn
2 → Z2 has a bipolar representation,

s = (−1)p(x) = (s0, s1, . . . , s2n−1), where si = (−1)p(x0=i0,x1=i1,...,xn−1=in−1),

and i =
∑n−1

k=0 ik2k is a radix-2 decomposition of i.

2.2 Construction

This paper focuses on a special case of a more general construction. Here, all
xi are two-state binary variables, and the fundamental recursion is based on
Walsh-Hadamard Transform (WHT) kernels. The more general construction is
presented in [19]. We now present the construction:

p(x) =
∑L−2

j=0

∑t−1
l=0 xπ(tj+l)fl,j(xπ(t(j+1)), xπ(t(j+1)+1), . . . , xπ(t(j+2)−1))

+
∑L−1

j=0 gj(xπ(tj), xπ(tj+1), . . . , xπ(tj+t−1))
(1)

where n = Lt, π permutes Zn, and where fl,j : Zt
2 → Z2 is such that fγj

=
(f0,j , f1,j , . . . , ft−1,j) is an invertible boolean function (permutation polynomial)

from Zt
2 → Zt

2, governed by the permutation, i′ = γj(i), where i′ =
∑t−1

l=0 i′l2
l is

a radix-2 decomposition, i′l = fl,j(i0, i1, . . . , it−1), and each γj permutes Zt. To
avoid unnecessary duplications, we exclude the fγj

where one or more fl,j has
a ’+1’ constant offset, and also the cases where all fl,j are monomials, except
when fγj

is the identity function.

Theorem 1 [19] The length N = 2n bipolar sequence s = (−1)p satisfies
PAR(s) ≤ 2t under all LUUTs, where p is generated using construction (1).

Proof. (sketch) Let m factor fully as m =
∏F−1

i=0 pi, pi not necessarily distinct. A

length m vector, l, is defined linear if it satisfies l =
⊗F−1

i=0 vi where length(vi) =

pi, and
∑m−1

j=0 |lj |2 = 1. Let Ej and Aj , 1 ≤ j ≤ L, be a series of N × N and

N × N j complex matrices, respectively, where A1 = E1 is unitary. Let the
rows of Aj−1, (a0,j−1, a1,j−1, . . . , aN−1,j−1), form a complementary set of N
sequences under any N j−1 × N j−1 unitary transform with linear unimodular
rows. Let l and lj be normalised linear rows of length N j−1 and N , respectively.
Let r = Aj−1l. Let γ permute ZN . Construct the N × N j matrix, Aj , such
that ai,j = ((aγ(0),j−1|aγ(1),j−1| . . . , |aγ(N−1),j−1)�(ei,j⊗1)) where x�y =
(x0y0, x1y1, . . . , xNj−1yNj−1), 1 is the length N j−1 all-ones vector, ei,j is the ith
row of Ej , and ′|′ means concatenation. The rows of Aj form a complementary

N -set under any unitary transform if r′ = Aj(lj ⊗ l) satisfies,
∑N−1

k=0 |r′i|
2 = 1.

This follows if
∑N−1

i=0 |
∑N−1

k=0 (rγ(k)ei,klk)|2 = 1, for rk , ei,k and lk elements of



r ,ei,j and lj , respectively. This is true if Ej is unitary, and if ei,j � lj is
unimodular, which follows if ei,j and lj are unimodular. Construction (1) occurs
when successive Aj are recursively generated, where all Ei are 2t × 2t WHTs.
The γ permutation essentially maps to fγ , and concatenation is widened to a
more general permutation, π, over all linear variables.

Theorem 2 For a fixed t, let P be the codeset of length 2n binary sequences of
degree µ or less, generated using (1). Then,

|P |
2n+1 ≤

( Γ
t!

)
n
t
−1

n!(22t
−t−1)

n
t

2t! , µ = 2

≤ ((2t−1)!)
n
t
−1

n!(22t
−t−1)

n
t

2t! , µ ≥ 2
(2)

where Γ =
∏t−1

i=0(2
t − 2i) = |GL(t, 2)|. (GL is the General Linear Group). (Only

for t = 1 is the upper bound exact).

Proof. By counting arguments we can show that, for µ = 2,

|P |

2n+1
≤

∏t
l=1

(

ln
t
n
t

)

t!
×

(n
t
)!t

2
× (

Γ

t!
)

n
t
−1 × (2

(

t/2
)

)
n
t

For µ ≥ 2, we replace Γ
t′

with (2t)!
2t , which is the number of permutations exclud-

ing those with a constant offset, ’+1’. The Theorem follows.

In Section 2.4 we show how to generate all degree-one permutation polynomials,
via an isomorphism to the General Linear Group, where the number of degree-
one permutation polynomials is Γ .

2.3 Examples

The 2n × 2n Walsh-Hadamard (WHT) and Negahadamard (NHT) Transform

matrices are
⊗n−1

i=0 H, and
⊗n−1

i=0 N , respectively, where H =
(

1 1

1 −1

)

and N =
(

1 i

1 −i

)

, and i2 = −1. DFT∞
1 is the set of 2n×2n matrices, the union of whose rows

form a subset of Ln such that each row satisfies ai = 1, bi = ωik for some fixed
k, and ω is a complex root of unity (see Definition 1). These three transforms
are used as ’spot-checks’ in the examples to validate the PAR upper-bound.

Example 1 Let γj be the identity permutation ∀j. Then,
fl,j(xπ(t(j+1)), xπ(t(j+1)+1), . . . , xπ(t(j+2)−1)) = xπ(t(j+1)+l), and (1) becomes,

p(x) =

L−2
∑

j=0

t−1
∑

l=0

xπ(tj+l)xπ(t(j+1)+l) +

L−1
∑

j=0

gj(xπ(tj , xπ(tj+1), . . . , xπ(tj+t−1)) (3)

When deg(gj) < 2, ∀j, it is well-known that s = (−1)p(x) is Bent (PAR = 1
under the WHT) for L even [14] and (perhaps not known) that s has PAR = 2t



under the WHT for L odd. In general, for any gj , s has PAR ≤ 2t under all
LUUTs. For example, if L = 4 and,

p(x) = x0x3 + x1x4 + x2x5 + x3x6 + x4x7 + x5x8 + x6x9 + x7x10 + x8x11

then s = (−1)p(x) has PAR = 1.0 under the WHT, PAR = 1.0 under the
NHT, and PAR = 7.09 under DFT∞

1 . Similarly, let g0(x0, x1, x2) = x1x2,
g1(x3, x4, x5) = x3x4x5, and g2(x6, x7, x8) = 0. Then s′ = (−1)p(x)+g0+g1+g2

has PAR = 4.0 under the WHT, PAR = 2.0 under the NHT, and PAR = 7.54
under DFT∞

1 . In all cases, PAR ≤ 8.0 under any LUUT.

Example 2, PAR ≤ 2.0 Let t = 1. Then we have one possible permutation
polynomial, namely, fγ = x, (we exclude fγ = x + 1). From (1) we obtain,

p(x) =
∑L−2

j=0 xπ(j)xπ(j+1) + cjxj + d, cj , d ∈ Z2 (4)

This is exactly the DJ set of binary quadratic cosets of RM(1, n), where n = L
[5]. This set has PAR ≤ 2.0 under DFT∞

1 [5]. Such sequences are Bent for n
even [14, 23] and, in [16, 17] it was shown that such a set has PAR = 2.0 under
the WHT for n odd, and also, under the NHT, has PAR = 1.0 for n 6= 2 mod 3
(NegaBent), and PAR = 2.0 for n = 2 mod 3. More generally the DJ set has
PAR ≤ 2.0 under any LUUT [17], and this agrees with Theorem 1. For example,
let p(x) = x0x4 + x4x1 + x1x2 + x2x3 + x1 + 1 . Then s = (−1)p(x) has PAR = 2.0
under the WHT, PAR = 2.0 under the NHT, and PAR = 2.0 under DFT∞

1 .
The DJ set, being cosets of R(2, n), forms a codeset with Hamming Distance,

D >= 2n−2. The rate of the DJ codeset follows
( n!

2
)2n+1

22n as n increases. This is
their primary drawback as the code rate vanishes rapidly as n increases.

Example 3, PAR ≤ 4.0 [5, 22, 17, 23] have all proposed techniques for the
inclusion of further quadratic cosets, so as to improve rate at the price of in-
creased PAR. We here propose an improved rate code (although still vanishing),

where PAR ≤ 4.0. To achieve this we set t = 2 in (1). There are (2t)!
2tt! = 3 valid

permutation polynomials, fγ = (f0, f1). These polynomials map from Z2
2 → Z2

2 ,
and are taken from the set,

fγ(x0, x1) ∈ {(x0, x1), (x0 + x1, x1), (x0, x0 + x1)}

Substituting for fl,j and gj in (1) gives a large set of polynomials with PAR≤ 4.0
under all LUUTs. We now list, for this construction, the p(x) arising from the
the 3 invertible polynomial functions, fγ , for one ’section’ of the polynomial, i.e.
for L = 2, where we fix π to the identity permutation.

p(x) = x0x2 + x1x3 + c0x0x1 + c1x2x3 + RM(1, 4)
p(x) = x0(x2 + x3) + x1x3 + c0x0x1 + c1x2x3 + RM(1, 4)
p(x) = x0x2 + x1(x2 + x3) + c0x0x1 + c1x2x3 + RM(1, 4)

where c0, c1 ∈ Z2. The quadratic part of each of these 3 functions is isomorphic
to a distinct invertible boolean t × t matrix, where t = 2 (Section 2.4), as the



permutation polynomials form a group which is isomorphic to the General Linear

Group, GL(t, 2), where |GL(t, 2)| =
∏t−1

i=0(2t − 2i) [13]. Two of the 3 quadratic
functions are inequivalent under permutation of the four variable indices, e.g.,

p(x) = x0x2 + x1x3 + c0x0x1 + c1x2x3 + RM(1, 4)
p(x) = x0(x2 + x3) + x1x3 + c0x0x1 + c1x2x3 + RM(1, 4)

An upper bound on |P | is given by Theorem 2, (2). Substituting t = 2 into (2),

|P |

2n+1
< n!2

n−4

2 3
n
2
−1 (5)

An exact enumeration and construction for this set remains open, due to extra
’hidden’ symmetries. Computationally we are able to calculate the exact number
of quadratic coset leaders for n = 4, 6, 8, 10, and these are compared to the upper
bound of (5) in Table 1. They are also compared to the number of quadratic
coset leaders, (= n!

2 ) in the binary DJ codeset (Example 2). By assigning t = 2

Table 1. The Number of Quadratic Coset Leaders for Construction (1) when t = 2

n 4 6 8 10

Theorem 2, (5),(2), |P |/2n+1 72 12960 4354560 2351462400

Exact Computation 36 9240 4086096 2317593600
DJ Code

2n+1 12 360 20160 1814400

log2(|P |/2n+1) 6.2 13.7 22.1 31.1

log2(Number of quadratics) 6 15 28 45

we have a construction for a much larger codeset than the DJ codeset and with
the same Hamming Distance, D = 2n−2, but the price paid is that the PAR is
now upper-bounded by 4.0 instead of 2.0. For example, let,
p(x) = x0x2 +x1x2 +x1x6 +x2x5 +x6x3 +x6x5 +x5x4 +x3x7 +x0x1 +x5x3 +x7 +x1

Then s = (−1)p has PAR = 1.0 under the WHT, PAR = 2.0 under the NHT,
and PAR = 3.43 under DFT∞

1 .

Example 4, PAR ≤ 8.0 Set t = 3 in (1). There are now (2t)!
2tt! = 840 valid per-

mutation polynomials, fγ = (f0, f1, f2). These polynomials map from Z3
2 → Z3

2 .
Moreover, (23 − 1)(23 − 2)(23 − 22)/t! = 168

6 = 28 of the polynomials are degree-
one permutations leading to quadratic forms, p(x), and can be represented by
the following 7 permutation polynomials.

fγ(x0, x1, x2) ∈ {
(x0, x1, x2), (x0 + x2, x1, x2), (x0 + x2, x1 + x2, x2), (x0 + x1 + x2, x1, x2),
(x0 + x1, x1 + x2, x2), (x0 + x1 + x2, x1 + x2, x2), (x0 + x2, x1 + x0, x2 + x0 + x1)}

Substituting for fl,j and gj in (1) gives a large set of polynomials with PAR≤ 8.0
under all LUUTs. We now list, for this construction, all quadratic p(x) arising



from the 7 inequivalent degree-one permutation polynomials, fγ , for one ’section’
of the polynomial, i.e. for L = 2, where π is fixed as the identity permutation.

p(x) = x0x3 + x1x4 + x2x5 + g(x)
p(x) = x0x3 + x0x5 + x1x4 + x2x5 + g(x)
p(x) = x0x3 + x0x5 + x1x4 + x1x5 + x2x5 + g(x)
p(x) = x0x3 + x0x4 + x0x5 + x1x4 + x2x5 + g(x)
p(x) = x0x3 + x0x4 + x1x4 + x1x5 + x2x5 + g(x)
p(x) = x0x3 + x0x4 + x0x5 + x1x4 + x1x5 + x2x5 + g(x)
p(x) = x0x3 + x0x5 + x1x3 + x1x4 + x2x3 + x2x4 + x2x5 + g(x)

where g(x) = c0x0x1 +c1x0x2 +c2x1x2 +c3x0x1x2 +c4x3x4 +c5x3x5 +c6x4x5 +
c7x3x4x5 + RM(1, 6), and c0, c1, . . . , c7 ∈ Z2. An upper bound to |P | can be
computed from Theorem 2, (2), and the upper bound is compared to the to-
tal number of quadratics in n binary variables in Table 2. As with t = 2, an

Table 2. The Number of Quadratic Coset Leaders for Construction (1) when t = 3

n 6 9 12 15

Theorem 2, (2), log2(|P |/2n+1) 16.7 33.5 51.7 70.9

log2(Number of quadratics) 15 36 66 105

exact enumeration and construction for this set remains open, due to extra ’hid-
den’ symmetries. By assigning t = 3 we have a construction for a codeset with
Hamming Distance, D ≥ 2n−2 and PAR ≤ 8.0 under all LUUTs.

For t = 3 we can also include cubic forms in Construction (1). There are
5040−168

6 = 812 degree 2 permutation polynomials, fγ = (f0, f1, f2), that map

from Z3
2 → Z3

2 , and lead to cubic forms, p(x). This set can be represented by
147 degree 2 permutation polynomials which are inequivalent under variable
permutation, and these are listed at [20]. (Along with the 7 inequivalent degree
1 permutation polynomials, this makes a total of 154 inequivalent permutation
polynomials for t = 3 [10, 28]). Substituting for fl,j and gj in (1) gives a large
set of polynomials with PAR≤ 8.0 under all LUUTs, and Hamming Distance,
D ≥ 2n−3. An upper bound to |P | can be computed from Theorem 2, (2), and
the upper bound is compared to the total number of quadratics and cubics in n
binary variables in Table 3. Here is an example from this codeset, where ijk, uv

Table 3. The Number of Cubic and Quadratic Coset Leaders for Construction (1)
when t = 3

n 6 9 12 15

Theorem 2, (2), log2(|P |/2n+1) 23.6 46.3 70.4 95.5

log2(Number of quadratics and cubics) 35 120 286 560



is short for xixjxk + xuxv. Let,

p(x) = 034, 035, 045, 135, 145, 234, 235, 245, 367, 368, 378, 567, 568, 69A, 79A, 7AB,
89A, 345, 9AB, 03, 05, 14, 24, 25, 36, 38, 47, 58, 69, 6A, 6B, 7A, 7B, 89, 8B, 67, 78, AB

then s = (−1)p(x) has PAR = 4.0 under the WHT, PAR = 6.625 under the
NHT, and PAR = 7.66 under DFT∞

1 . In all cases, PAR ≤ 8.0.

2.4 A Matrix Construction for all Quadratic Codes from (1)

Each degree-one permutation polynomial, fγ from Zt
2 → Zt

2 can be viewed as a
t × t binary adjacency matrix. Let x = {x0, x1, . . . , xt−1}. We can write,

M ⇔ fγ(x) = (f0(x), f1(x), . . . , ft−1(x)), M = {mi,l}, deg(fl(x)) = 1, and
mi,l = 1 if xi ∈ fl(x) mi,l = 0 otherwise

The mapping is an isomorphism from the degree-one permutation polynomials
to the General Linear Group, G = GL(t, 2), of all binary t× t invertible matrices
[13]. To construct all quadratic sequences, p(x), for a given n and t we need
to construct all degree one permutation polynomials, fγ . These can, in turn be
constructed by generating all members of G = GL(t, 2), and this is accomplished
as follows [1, 2].

Definition 6 A binary t × t ’transvection’ matrix, Xab, satisfies,

Xab = {ui,j}, where
ui,j = 1, i = j, and i = a, j = b ui,j = 0, otherwise

Definition 7 The Borel subgroup of G over Z2 is the t × t upper-triangular
binary matrices, B.

Definition 8 The Weyl subgroup of G is the t × t permutation matrices, W .

Assign a fixed ordering, O, to the

(

t

2

)

2
matrices, Xab, a < b. Let w ∈ W be a

permutation of Zt and its associated t× t permutation matrix. For each w, form
the matrix product, Xw, comprising all Xab which satisfy a < b = w(a) > w(b),
where the Xab in X are ordered according to O.

Theorem 3 [1, 2]

G = X ′
wWB (6)

where X ′
w is any sub-product of Xw that maintains the ordering of the Xab

matrices in Xw. This is the ’Bruhat’ decomposition.

All quadratic constructions using (1) can be constructed using Theorem 3., where

|G| = Γ =
∏t−1

i=0(2
t − 2i).



3 Graphical Representations

Joint work with V.Rijmen [18]

We now identify a subset of the length 2n sequence constructions of (1), where
(−1)p(x) exhibits a bipolar ↔ binary equivalence under transform by a tensor
product of combinations of H and I 2 × 2 matrices. The resultant length 2n

binary sequences can be interpreted as indicators for binary linear or nonlinear
[n, k, d] error-correcting codes. In such cases, p(x) is closely related to a Normal
Realisation for the Factor Graph of the associated [n, k, d] code [7]. Let s =
(−1)p(x).

Definition 9 ”H acting on i” means the action of the 2n × 2n transform, I ⊗
. . .⊗ I⊗H⊗ I⊗ . . .⊗ I on s, where H is preceded by i I matrices, and followed
by n − i − 1 I matrices. We write this as H(i), or H(i)[s].

Definition 10 Let TC, TC⊥ be integer sets chosen so that TC∩TC⊥ = ∅, and
TC∪TC⊥ = {0, 1, . . . , n−1}. This is a bipartite splitting of {0, 1, . . . , n−1}. Let
us also partition the variable set x as x = xC ∪ xC⊥ , where xC = {xi|i ∈ TC},
and xC⊥ = {xi|i ∈ TC⊥}.

Definition 11 κp is the set of all s(x) of the form s(x) = (−1)p(x), where
p(x) =

∑

k qk(xC)rk(xC⊥), where deg(qk(xC)) = 1 ∀k, and where xi ∈ p(x), ∀
i ∈ {0, 1, . . . , n − 1}. We refer to κp as the set of ’half-linear bipartite bipolar’
states. `p is the subset of κp where deg(rk(xC)) = 1 ∀k.

Theorem 4 [18] Let m(x) be a binary ANF. If s(x) ∈ κp, then the action
of

∏

i∈TC
H(i) on s(x) gives s′(x) = m(x). If s(x) ∈ `p, then the action of

∏

i∈T
C⊥

H(i) on s(x) gives s′′(x) = m(x). s′(x) (s′′(x)) is the binary indicator

for a binary linear or nonlinear [n, n − |T|, d] error correcting code, C.

Theorem 4 is particularly relevant when p(x) is constructed using (1), as the
’strongest’ members of κp are generated as a subclass of the construction if
deg(gj) < 2, ∀j. (By considering matrices other than H it is conjectured that it
is always possible to convert a bipolar sequence, s = (−1)p, constructed using
(1) to a binary form, even when deg(gj) ≥ 2). If s can be transformed to a
binary linear indicator, s′, using only tensor products of H and I , then we say
that s is ’HI-equivalent to’ s′.

Theorem 5 [18] The set `p is HI-equivalent to the set of [n, k, d] binary linear
codes.

3.1 Examples

Example A Let t = 2, L = 3. Then (1) can generate,
p(x) = x0x2 + x1x3 + x2x4 + x3x5 + x2x5

Let TC = {0, 1, 4, 5} and TC⊥ = {2, 3}. Applying H(0)H(1)H(4)H(5) (in any
order) to s = (−1)p(x) gives the binary sequence, s′ = m(x) = (x0 +x2 +1)(x1 +



x3 +1)(x2 +x4 +1)(x2 +x3 +x5 +1), which is the indicator for a [6, 2, 2] binary
linear code, C. Graphical representations for s and s′ are shown in Fig 1, where
the graph for s′ is a Normal Realisation of a Factor Graph [7]. If, instead, we
apply H(2)H(3) (in any order) to s = (−1)p(x), we get the binary sequence,
s′′ = m(x) = (x0 +x2 +x4 +x5 +1)(x1 +x3 +x5 +1), which is the indicator for
a [6, 4, 2] binary linear code, C⊥, the dual of C. Applying H(0)H(1)H(4)H(5)

to s′, followed by H(2)H(3), gives s′′. This is the same as applying the WHT
to s′, and it is known that binary indicators of a linear code code, C, and its
dual, C⊥, are related by the WHT [14].

Example B Let t = 3, L = 3. Then (1) can generate,
p(x) = 034, 035, 045, 134, 135, 145, 234, 235, 245, 03, 05, 14, 15, 36, 47, 58

Let TC = {0, 1, 2, 6, 7, 8} and TC⊥ = {3, 4, 5}. Applying
H(0), H(1),H(2), H(6), H(7), H(8) (in any order) to s = (−1)p(x) gives,

s′ = m(x) =
(x0 + x3x4 + x3x5 + x4x5 + x3 + x5 + 1)(x1 + x3x4 + x3x5 + x4x5 + x4 + x5 + 1)
×(x2 + x3x4 + x3x5 + x4x5 + 1)(x3 + x6 + 1)(x4 + x7 + 1)(x5 + x7 + 1)

which is the indicator for a [9, 3, 3] binary nonlinear code, C. Graphical represen-
tations for s and s′ are shown in Fig 1, where the graph for s′ is a Normal Real-
isation of a nonlinear Factor Graph. In this case application of H(3)H(4)H(5)
does not produce the dual code, C⊥, but the nonlinear dual could be obtained
by nonlocal transform over x3, x4, x5.

H(2)H(3)

H(0)H(1)H(4)H(5)

0

1

2

3

4

5 WHT

0

1

2

3

4

5

6

7

8

34

35

45

H(0)H(1)H(2)H(6)H(7)H(8)

Fig. 1. Bipolar ↔ Factor Graph HI-Equivalence for Examples A and B

Example C The nonlinear [16, 8, 6] Nordstrom-Robinson binary code is HI-
equivalent to a half-linear bipolar bipartite sequence, (−1)p(x), where p(x) can
be constructed using (1), and has ANF comprising 96 cubic and 40 quadratic
terms, and where |TC | = |TC⊥ | = 8. The quadratic part of p(x) is HI-equivalent
to a binary linear [16, 8, 4] code, so we can view the 96 cubic terms of p(x) as
further ’doping’ to increase Hamming Distance, d, from 4 to 6.

3.2 Comments

This section has identified an important subset of κp as a subset of the con-
struction of (1), where a member of κp can be transformed to a binary sequence



under selective action of H . Conversely, this gives us a way of analysing a Factor
Graph, by transforming it back into bipolar sequence form. A natural question
to ask is which length 2n bipolar sequences are transform-equivalent to the best
[n, k, d] linear and nonlinear codes? We offer offer the following conjecture,

Conjecture 1 Optimal linear or nonlinear codes can be constructed from (1)
if L = 2, and (−1)gj is, itself, HI-equivalent to an optimal linear or nonlinear
code, ∀j. But what fγj

should be chosen?

In the next section we pose the related question: Which quantum n-qubit states
have optimal Linear Entanglement?

4 PARl and Quantum ’Linear’ Entanglement (LE)

Joint work with V.Rijmen [18]

In previous sections our PAR metric has been measured relative to all LUUTs.
Quantum systems require that we compute our PAR metric (now called PARl)
relative to all LUTs, of which LUUTs are a subset. It is argued in [18] that
PARl and Linear Entanglement (LE) are good partial measures of quantum en-
tanglement. 1 Let s be a length 2n bipolar sequence. In the context of quantum
systems we interpret (after appropriate normalisation) this sequence as a prob-
ability density function of an n-qubit quantum state. Let si be an element of
s. Then |si|2 is the probability of measuring the quantum system in state i.

We must normalise so that
∑2n−1

i=0 |si|2 = 1, although normalisation constants
are usually omitted in this paper. An n-qubit state, s, contains entanglement
if s is not a member of Gn. The definition of PARl is then identical to Defini-
tion 5 except that, now, |li| does not have to equal |lj |, i.e. l is not necessarily
unimodular.

Definition 12 PARl(s) = 2nmaxl(|s · l|2))
where l is any normalised linear sequence from the set, Gn, and · means ’inner
product’ [17, 18].

Linear Entanglement (LE) is then defined as,

Definition 13 LE(s) = n − log2(PARl(s))

Entanglement and LE are invariant under transformation of s by any LUT.
Therefore PARl is Local Unitary (LU)-invariant, and two states, s and s′, related
by a transform from LUT, are LU-equivalent. Code duality under the WHT and
the HI-equivalence between s and s′, as discussed in Section 3, are special cases
of LU-equivalence. One can also view entanglement invariance as a generalisation
of code duality.
1 Quantum information theorists often consider ’mixed-state’ entanglement, where

entanglement with the environment is unavoidable [24, 8]. This is similar to the
analysis of classical communications codes in the context of a corrupting channel. In
this paper we only consider a closed (pure) quantum system with no environmental
entanglements [6].



4.1 PARl for States from `p

Theorem 6 [18] If s ∈ `p, then s is LU equivalent to the indicator for an
[n, k, d] binary linear code, and,

PARl(s) ≥ 2r, where r = max(k, n − k)

Theorem 6 implies that states, s, from `p have a minimum lower bound on PARl

(upper bound on LE) when the associated [n, k, d] code, C, satisfies k = bn
2 c,

with PARl ≥ 2d
n
2
e. Here is a stronger result.

Theorem 7 [18] In (1), let t = 1 and fγj be the identity permutation ∀j. Us-
ing (1), we can generate s(x) = (−1)p(x) for p(x) constructed using (4). Then
PARl(s) = 2d

n
2
e.

Definition 14 PA(s) = 2nmaxi(|si|2)

We now compute PA for any HI transform of a member of `p. Let s ∈ `p.
Recalling Definition 10, let k = |TC⊥ |, k⊥ = |TC|, and k+k⊥ = n. Without loss
of generality we renumber integer sets TC⊥ and TC so that TC⊥ = {0, 1, . . . , k−
1} and TC = {k, k+1, . . . , n−1}. Let tC⊥ ⊂ TC⊥ and tC ⊂ TC, where h = |tC⊥ |
and h⊥ = |tC|. Let xt⊥ = {xi|i ∈ tC⊥}, xt = {xi|i ∈ tC}, and x∗ = xt⊥ ∪ xt.
Define M to be a k × k⊥ binary matrix where Mi,j−k = 1 iff xixj ∈ p(x), and
Mi,j−k = 0 otherwise. Thus p(x) =

∑

i∈T
C⊥

xi(
∑

j∈TC
Mi,j−kxj). Let Mt be a

submatrix of M, which comprises only the rows and columns of M specified by
tC⊥ and tC. Let χt be the rank of Mt.

Theorem 8 [18] Let s′ be the result of
∏

i∈t
C⊥∪tC

H(i) on s ∈ `p. Then,

PA(s′) = 2h+h⊥−2χt

Corollary 1 As 0 ≤ χt ≤ min(h, h⊥), it follows that, for s ∈ `p, PA(s′) ≥

2|h−h⊥|

In general, PARl must consider PA(s) under all LUTs. PA(s) for s ∈ `p is easily
computed. Let the ’HI multispectra’ be the union of the power spectra of s under
the action of

∏

i∈T H(i), for all possible subsets, T , of {0, 1, . . . , n − 1}.

Theorem 9 [18] PARl of s ∈ `p is found in the HI multispectra of s.

Theorem 9 means that, for s ∈ `p, we only need compute the 2n HI transforms
to compute PARl. If PA(s) is optimally low over the HI multispectra, then
s′ = m(x) is an optimal binary linear code when T = TC or T = TC⊥ .



Definition 15 The Weight Hierarchy of a linear code C, is a series of parame-
ters, dj , 0 ≤ j ≤ k, representing the smallest blocklength of a linear sub-code of
C of dimension j, where dk = n, d1 = d, and d0 = 0.

Theorem 10 [18] Let sc be the indicator of an [n, k, d] binary linear code, C.
Let Q ⊂ {0, 1, . . . , n − 1}. Let,

mQ =
|Q| + log2(µ) − n + k

2
, where µ = PA(s′

c) (7)

and s′

c =
∏

t∈Q H(t)[sc]. Then the Weight Hierarchy of C is found from the HI
multispectra of sc, where dj = minQ|mQ=j(|Q|)

Quantum measurement projects a system to a subsystem. This allows us to
equate a series of quantum measurements with a series of subcodes of C. Let the
entanglement order of a system be the size (in qubits) of the largest entangled
subsystem of the system. A most-destructive series of j single-qubit measure-
ments over some set of possible measurements on s produces a final state s′

such that entanglement order(s) − entanglement order(s′) is maximised.

Definition 16 Stubborness of Entanglement (SE) is a series of parameters, βj,
0 ≤ j ≤ k′, representing smallest possible entanglement order, βj , after k′ − j
most-destructive measurements of an n-qubit system, where βk′ = n, β0 = 0.

Theorem 11 [18] Let s ∈ `p where s is LU equivalent to an optimal or near-
optimal binary linear code of dimension ≤ n

2 . Then Stubborness of Entanglement
is equal to the Weight Hierarchy of the code.

Corollary 2 Quantum states from `p which have optimum LE and optimum
SE are LU-equivalent to binary linear codes with optimum Weight Hierarchy.

The results of this section suggests the following modification of Conjecture 1.

Conjecture 2 States with optimal LE can be constructed from (1) if L = 2,
and (−1)gj also has optimal LE, ∀j. But what fγj

should be chosen?

5 Discussion and Open Problems

We have highlighted the importance PAR plays (explicitly or implicitly) in cur-
rent research. We emphasis four areas:
a) Low PAR error-correcting codes for OFDM and CDMA.
b) Highly nonlinear, distinguishable sequence sets for cryptography.
c) Graphical construction primitives for Factor Graphs which represent good
error-correcting codes.
d) Classification and quantification of quantum entanglement.
We finish with a list of a few open problems.

– Construction (1) only provides an exact, implementable encoder if the two
following sub-problems can be solved:



• Provide algorithms to generate all permutation polynomials, fγ , of de-
gree µ − 1. µ = 0 is trivial. Section 2.4 provides an answer for µ = 1.
But, for µ > 1 the situation is unclear.

• Given an algorithm to generate all permutation polynomials, then con-
struction (1) only generates distinct p(x) for t = 1. For t > 1, the
permutation, π, induces extra symmetries which cause many p(x) to be
generated more than once. This situation is reflected in (2), which is a
strict upper bound for t > 1. It remains an open problem to provide an
algorithm for t > 1 which ensures the generated p(x) are distinct and
form the whole code. Such an algorithm would replace of (2) with an
exact expression.

– Construct decoders for the above codes.

– It is considered that successful iteration on a Factor Graph requires few short
graph cycles. This is ensured if the graph has a large girth. How does one
construct Factor Graphs with low PARl and large girth?

– Provide a construction for optimally large sets, P , of pure quantum states
such that each state satisfies a low upper bound on PARl, and where any
two members of P are optimally distinguishable. This problem is ’simply’
the LUT extension of the problem of low PAR error-correcting codes for
OFDM and cryptography.
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