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Abstract. A fork stack is a stack that allows pushes and pops of several
items at a time. An algorithm to determine which sequences of input
streams can be sorted by a fork stack is given. The minimal unsortable
sequences are found (there are a finite number only). The results are
extended to fork stacks where there are bounds on how many items can
be pushed and popped at one time. Some enumeration results for the
number of sortable sequences are given.

1 Introduction

A standard analogy for explaining the operation of a stack is to speak about
stacks of plates, allowing one plate to be added to, or removed from, the top of
the stack. At this point a disruptive member of the audience generally asks why
it is not possible to move more than one plate at a time from the top of a stack.
In this paper we address his concerns.

In particular we will consider the problem of a dishwasher and his helper.
The dishwasher receives dirty plates, washes them, and adds them one at a time
to a stack to be put away. The helper can remove plates from the stack, but
she can move more than one plate at a time. It so happens, that all the plates
are of slightly differing sizes, and her objective is to make sure that when they
are placed in the cupboard, they range in order from biggest at the bottom, to
smallest at the top. It is easy to see that if the dishwasher processes three dishes
in order: middle, smallest, largest then his helper can easily succeed in the model
given (simply waiting for the largest plate, and then moving the two smaller ones
on top as a pair). However, if she is replaced by a small child who can only move
a single plate at a time, then the desired order cannot be achieved.

The characterisation of those permutations that can be sorted using the stan-
dard single push and pop operations of a stack is a classical result found in [6].
Similar characterisations for sorting using other data structures are considered
in [2], [7], and [9] among others. In this paper we will consider the correspond-
ing problems when we allow multiple additions to, or removals from the stack
according to the analogy above.

An alternative, slightly more general, analogy provides the source of our title.
We begin with a stack of boxes, called the input, labelled 1 through n in some
order. We have at our disposal a powerful forklift which can remove any segment
of boxes from the top of the stack, and move it to the top of another stack, the
working stack. From there another forklift can move the boxes to a final, output,
stack. Physical limitations, or union rules, prevent boxes being moved from the



working stack to the input, or from the output to the working stack. The desired
outcome is that the output should be ordered with box number 1 on top, then
2, then 3, . . . , with box n at the bottom. An example of a sorting procedure in
progress is shown in Figure 1.
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To complete the sort, move the pair 41 to the working stack, 
move 5 to the working stack and then to output, move 4 to 
output, and move the triple 123 to output.

Fig. 1. A snapshot of sorting

The problems we wish to consider in this context are:

– How should such permutations be sorted?
– Which permutations can be successfully sorted?
– How many such permutations are there?

We will also consider these questions in the restricted context where one or both
of the moves allowed are of limited power – for example, say, at most three boxes
at a time can be moved from the input stack to the working stack, and at most
six from the working stack to the output stack. The case where both moves are
restricted to a single box, is, or course, the problem discussed above of sorting
a permutation using a stack. We will omit most proofs entirely, or give a brief
discussion of them – they will appear in subsequent papers.

The process of sorting 236415 is documented below. Note that, at the stage
shown in Figure 1 it is essential that 41 be moved as a pair – moving either 4
alone, or the triple 415 would result (eventually) in 1 lying on top of 4 or 5 in
the working stack, and thereby prevent sorting.

Input Working Output
236415

6415 23
415 623
415 23 6 (See Figure 1)

5 4123 6
54123 6
4123 56
123 456

123456 Finished



Some permutations, such as 35142 cannot be sorted. Here, we may move 3 to
the working stack, and then 5 to the output, but now whether we move 1 alone,
14, or 142, we wind up with 1 lying on top of 3 or 4 in the working stack, and
cannot complete the sorting procedure. We will see below that if we can avoid
creating this type of obstruction in the working stack, then sorting is possible.

2 Definitions and formalities

In the subsequent sections we will tend to continue to use the terminology of
the introduction speaking of the input stack, forklifts, etc. However, it will be
convenient to introduce a certain amount of basic notation in order to facilitate
discussion. As we will always take the initial input to be a permutation of 1
through n for some n, the contents of each stack at any time can and will be
represented by sequences of natural numbers (not containing repetitions). Our
ultimate objective is always to reach a state where the contents of the output
stack are the permutation

1 2 · · · (n − 1) n

and we will refer to this outcome as success.

In the basic situation where both forklifts are of unlimited capacity, we use
F to denote the collection of all permutations for which success is possible. If
the input to working stack forklift is limited to moving j boxes in a single move,
and the working to output one to moving k, then we denote the corresponding
class F(j, k). Here j and k are either natural numbers, or ∞. We do not concern
ourselves with the case where either of the forklifts is broken and incapable of
making any moves!

Given a permutation π as input, a sequence of operations is allowed, if it
does not result in an output state which provides clear evidence that sorting is
not being carried out. That is, a sequence of operations is allowed if at the end
of the sequence the output stack contains some tail of 12 · · ·n.

Finally, in discussing the algorithms for sorting it will be useful to pretend
that it is possible to move boxes directly from the input stack to the output
stack – and such an operation, as well as the more normal type of output is
called direct output. So a direct output move consists either of output from the
working stack, or moving a part of the input stack to the working stack (in a
single lift), and then moving exactly that set of boxes to the output stack, again
in a single lift.

Just as the case where two forklifts of unit capacity corresponds to sorting
with a stack, the general case we are considering corresponds to sorting with
a data structure which has a more powerful set of operations than a normal
stack. Namely, we are allowed to push a sequence of objects onto the top of the
structure, and likewise pop such a sequence. This structure will be called a fork

stack (and roughly it corresponds to the working stack in our analogy).



3 The sorting algorithms

How should a fork stack actually carry out its task of sorting a permutation
when this is possible? It turns out that there is a straightforward algorithm to
accomplish this operation. Broadly speaking, we may use a simple modification
of a greedy algorithm:

– perform any output as soon as possible,
– otherwise move the maximum decreasing sequence from the head of the input

onto the working stack.

Before we justify this claim (and make some technical changes to the second
option) we need a slightly more abstract characterisation of unsortability.

Definition 1. For positive integers a and b, a << b means a < b − 1. In a

series of fork stack moves, we say that the dreaded 13 occurs if at some point

the working stack contains adjacent elements ab with a << b.

Proposition 2. A permutation π is unsortable if and only if every allowable

sequence of fork stack operations that empties the input produces, at some point,

the dreaded 13.

This is easily justified. If we cannot avoid producing a 13, then we cannot
sort π for there is no way to insert the missing elements into the gap between the
elements a << b witnessing the 13. On the other hand, if there is some allowable
sequence of operations that empties the input stack and avoids producing a 13,
then on completing them, the contents of the working stack will be a decreasing

sequence, except possibly for some blocks of consecutive increasing elements. Such
a stack is easily moved to the output in its sorted order.

We refer to a sequence of the type emphasised above, as a near-decreasing se-
quence. Suppose that no immediate output is possible and consider the maximal
near-decreasing sequence at the top of the input stack. If the symbols occurring
in this sequence do not form an interval, then it is easy to see that any move
other than taking the whole sequence and transferring it to the top of the work-
ing stack will eventually cause the dreaded 13. If the symbols occurring in the
sequence do form a consecutive interval, then we can arrange to place them on
the working stack in order, with largest deepest (to subsequently be moved as a
block to the output). This is preferable to any other arrangement on the working
stack, for it makes the top element of the working stack as small as possible,
minimising the possibility of later creating a dreaded 13.

Doing direct output as soon as it becomes available can never interfere with
sorting. For if we have a successful sequence of sorting moves which we modify
by doing some direct output earlier, we can simply continue to carry out the suc-
cessful sequence, ignoring any effect on symbols which have already been moved
to output – and we will still succeed. So we may assume that any sorting algo-
rithm does in fact perform direct output whenever it can. Then the observations
of the preceding paragraph imply that when direct output is not available, the



maximal near-decreasing sequence at the top of the input stack must be moved.
If this sequence contains gaps, there is no choice in how to move it, and we have
argued that if it does not, then moving it so that it forms an increasing sequence
on the working stack is at least as effective as any other choice.

This establishes that Algorithm 1 will correctly sort any input stack, if it is
sortable at all:

Algorithm 1 Sorting with a powerful fork-lift
repeat

Perform as many direct output moves as possible.
Move the maximal near-decreasing sequence from the top of the input stack to
the working stack, as a block if it contains gaps, so that it becomes increasing if
it does not.

until input stack is empty
if working stack is empty then

Success!
else

Failure.
end if

How does Algorithm 1 need to be modified in the case where either or both
of the forklifts moving from input to working stack, or from working stack to
output, are of limited power? The first issue is how to modify Proposition 2. The
13 configuration is bad regardless of the power of our forklifts, but if our output
lift is limited to moving k boxes we must add the condition that the working
stack should not contain an increasing sequence of length longer than k. Now
modifying the algorithm is straightforward. In the case where the maximal near-
decreasing sequence contains gaps it must be moved as a block to avoid 13’s.
So, if this block is larger than the capacity of our working forklift, we fail. In
the non-gap case, we would normally attempt to make the sequence increasing.
Of course this would be foolish if it overwhelmed the capacity of our output lift
(and it could be impossible depending on the capacity of our input lift). The only
other choice that does not create a 13 is to make it decreasing, so this should be
attempted if the first choice is unavailable. Failure may later occur because we
create a block that is too long to move in the working stack, or a 13 there, but
if not, then the algorithm will succeed.

4 Finite basis results

We now begin our combinatorial investigation of the collections of permutations
sortable by various combinations of forklifts. The problem which we address in
this section is how to identify the sortable or unsortable permutations without
reference to Algorithm 1. In the following section we will consider the problem



of enumerating these classes. For identification purposes we concentrate on pro-
ducing a list of minimal unsortable permutations. We must first prepare the way
with some definitions and notation:

Definition 3. Given permutations σ and π, we say that σ is involved in π,

and write σ � π if some subsequence of π, of the same length as σ, consists of

elements whose relative order agrees with those of the corresponding elements

of σ. A collection of permutations closed downwards under � is called a closed
class.

It is easy to see that each of the collections F(j, k) of sortable permutations
for a particular combination of forklifts is a closed class. This is because we may
sort any subsequence of a sortable sequence by simply ignoring any moves that
do not affect members of the subsequence. This policy cannot increase the load
on a forklift in any single move, so it still sorts the remaining elements. It follows,
that if we take U(j, k) to be the set of �-minimal unsortable permutations then:

π is (j, k)-unsortable ⇐⇒ σ � π for some σ ∈ U(j, k).

In particular, U(j, k) can be thought of as a description of F(j, k) (or rather
of its complement, but that amounts to the same thing!) This description gains
some power owing to the following result.

Proposition 4. For any 1 ≤ j, k ≤ ∞ the set U(j, k) is finite.

The detailed proof of this proposition is technical and dull. It is of course
enough to show that there is some finite set of permutations such that every
(j, k)-unsortable permutation involves one of them. The basic idea is to make
use of the characterisation of unsortability provided by the failure of Algorithm 1
(modified as necessary for the limited power case). One considers the state of the
working stack, and input, at the instant where the next move being attempted
either fails completely or creates a bad configuration on the working stack. The
first case corresponds to a near-decreasing part which is too long for the working
lift. Obviously there are a finite number of minimal examples of such, and any
occurrence of one of these prevents sorting. In the second case, the cause of the
resulting bad configuration can be localised to a bounded number of elements of
the original input. This gives a further finite set of obstructions, from which the
desired result follows.

The actual sets U(j, k) are not that difficult to compute. We may assume
that k ≥ j, since the class F(j, k) consists of the inverses of the elements of
F(k, j), and inversion preserves the relation �. For the case k > j, once we
know U(j,∞), we obtain U(j, k) simply by adding the single permutation:

(k + 1) k (k − 1) · · · 2 1 (k + 2),

and then deleting any elements of U(j,∞) in which it is involved. For j = k,
direct computation is required.



The set U(∞,∞) consists of the permutation 35142, together with 45 per-
mutations of length six, and 6 of length seven. The sets U(1, k) are of particular
interest in connection with the next section and they are:

U(1,∞) = {2314, 3124, 3142}
U(1, k) = {2314, 3124, 3142, (k + 1) k (k − 1) · · · 2 1 (k + 2)} (k ≥ 2)

U(1, 1) = {213}.

5 Enumeration

Associated with any collection C of permutations is a generating function

fC =

∞
∑

n=0

cnxn = c0 + c1x + c2x
2 + · · ·

where
cn = |{π ∈ C : π ∈ Sn}| .

Most often one sets c0 = 1, though algebraic convenience may occasionally dic-
tate c0 = 0. Recurrences which define the sequence cn often translate naturally
into algebraic or differential equations for the generating function, and indeed it
is frequently more illuminating to develop these equations directly rather than
via an initial recurrence (for many examples and an exposition of the theory
see [5] and [10]). Additionally, having an algebraic description of the generating
function, possibly only impicit, allows one to use methods based on complex
analysis to provide asymptotic expansions for the numbers cn as explained in [3]
and [4]. We will pursue this program for the classes F(1, k).

In particular, begin with the class F(1,∞). Note that the sorting algorithm is
completely determined – single elements are moved from input to working stack,
and output is performed whenever possible. Suppose that we have some sortable
permutation π. Choose t to be the maximum integer such that the elements 1
through t occur in π in decreasing order (thus, if 2 follows 1, t = 1). So the
original input was of the form:

π = σt t σt−1 (t − 1) · · ·σ2 2 σ1 1 σ0

for some sequences σ0 through σt, where t + 1 does not occur in σt.
Consider the sorting procedure. The elements of σt are processed, and then

we come to t. Now by the choice of t, t + 1 has not yet been processed, so we
may not output t (except in the trivial case where all the σi are empty). So we
must move t to the working stack. However, if it is non-empty at this time, that
move would create a 13. So the working stack must be empty, and σt must have
been a sortable permutation of a final subinterval of the values occurring in π.
Now proceed to the stage where t − 1 is about to be moved. Again, either t + 1
has turned up by now, and the working stack is empty, or it contains only the
value t. In either case σt−1 is a sortable permutation of a final subinterval of



the remaining values. This argument persists inductively. So in the end we see
that t + 1 occurs in the first non-empty σj , and that the general structure of a
sortable permutation is:

(sortable) t (sortable) (t − 1) · · · (sortable) 1 (sortable)

where we are free to decide the sizes of the “sortable” parts, but having done
so, their elements are uniquely determined. We distinguish two cases according
to whether or not the final “sortable” part is empty. By standard arguments
this yields an identity satisfied by the generating function for this class which
we denote f∞:’

f∞ = 1 + xf∞ + (f − 1)

∞
∑

t=1

xtf t
∞

or, after summing the geometric series:

f∞ = 1 +
xf2

∞

1 − xf∞
.

We can then solve the resulting quadratic to get:

f∞ =
1 + x −

√
1 − 6x + 5x2

4x − 2x2
=

2

1 + x +
√

1 − 6x + 5x2
.

The sequence that this generating function defines:

1, 1 , 2, 6, 21, 79, 311, 1265, 5275 . . .

is number A033321 in [8], and the references provided for it there connect it with
other interesting enumeration problems.

The only change that needs to be made to find the generating function fk

for F(1, k) is to change the upper limit of summation in the relationship above
from ∞ to k, since the maximum increasing sequence that we can deal with on
the working stack is of length k. This allows efficient exact enumeration of these
classes using standard generating function techniques. It also allows asymptotic
expansions of the form:

cn =
r−n

n3/2

(

∑

k=0

ek

nk

)

to be computed to any desired degree of accuracy using the methods developed
in [4].

The behaviour of the radius of convergence r (whose reciprocal gives the
exponential part of the growth rate for the coefficients cn), as k increases from 1
to ∞ is particularly interesting. It begins at 1/4, since k = 1 gives us the Catalan
numbers and then decreases to 1/5 at k = ∞. However, the rate of convergence
to 1/5 is very rapid indeed. The first six values are:

.2500, .2114, .2033, .2010, .2003, .2001



These observations can be formalized and justified using the fact that the radius
of convergence in each case is the smallest positive root of the resultant of the
polynomial that fk satisfies (whose coefficients are linear functions of x). How-
ever, the intuitive content of the result is that once you have a forklift capable
of moving six boxes, you gain little in terms of which initial configurations are
sortable by the addition of more power!

6 Summary and open problems

We have defined a generalised form of stack depending on two parameters j, k.
It allows multiple pushes of up to j elements at a time, and multiple pops of up
to k elements. For each 1 ≤ j, k ≤ ∞ we have shown how to test in linear time
whether an input sequence is sortable, and we have determined the minimal set
of unsortable sequences.

If either j = 1 or k = 1 we have precise enumeration results for the number
of sortable permutations of every length.

The first open problem to attack is the enumeration question for j, k ≥ 2.
Based on counting valid sequences of fork lift operations we have some upper
bounds for these questions. Suppose that we begin with n items of input. A
valid sequence of forklift operations can be represented by a path (with marked
vertices) from (0, 0) to (2n, 0) in the plane, consisting of segments of the form
(s, s) or (p,−p) for positive integers s and p, representing pushing s elements
onto the working stack, or popping p elements from it respectively. The condition
for validity is that the path never pass below the x-axis. Figure ?? illustrates
the lattice path for sorting the sequence 236415.

Fig. 2. The lattice path for sorting 236415

In the context of traditional stack sorting (where s and p are only allowed to
equal 1) two different paths will produce two different permutations of the input.
This is one of the methods for arguing that the stack-sortable permutations are
enumerated by the Catalan numbers.



This same sort of analysis in fact applies to the case where only the push
operation is restricted to be at most one element, and gives an alternative method
of proving the enumeration results of the preceding section. However, when both
s and p may take on multiple values, then it is no longer the case that two
different paths produce different permutations. The simplest instance is with
two input symbols 1 and 2 in that order. Then the paths:

(0, 0) → (2, 2) → (3, 1) → (4, 0) and
(0, 0) → (1, 1) → (2, 2) → (4, 0)

both reverse the input. It is possible to reduce paths to a standard equivalent
form, which reduces the problem to considering when two paths having the same
outline represent the same permutation, but ambiguity is still present. None the
less, by counting lattice paths we can certainly provide upper bounds for the
number of sortable permutations. In particular for j = k = ∞, we get sequence
A059231 from [8], which establishes that the number of sortable permutations
of length n is O(9n).
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