
Les Cahiers du GERAD ISSN: 0711–2440

How Far Is, Should and Could Be
Conjecture-Making in Graph
Theory an Automated Process ?

Pierre Hansen

G-2002-44

August 2002
Revised: August 2003
Draft. Do not cite without the

author’s permission.

Les textes publiés dans la série des rapports de recherche HEC n’engagent que la responsabilité de leurs
auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds F.C.A.R.



How Far Is, Should and Could Be

Conjecture-Making in Graph Theory an

Automated Process ?

Pierre Hansen

GERAD
and

École des Hautes Études Commerciales
Montréal

August, 2002
Revised: August, 2003

Les Cahiers du GERAD

G–2002–44

Copyright c© 2002 GERAD

Draft. Do not cite without the author’s permission.



Abstract

Computer-assisted and automated conjecture-making in graph theory is reviewed,
focusing on the three operational systems GRAPH, Graffiti and AutoGraphiX (AGX).
A series of possible enhancements, mostly through hybridisation of these systems, are
proposed as well as several research paths for development of the area.

Keywords: graph, conjecture, computer-assisted, automated.

Résumé

On passe en revue la génération de conjectures assitée par ordinateur et automa-
tisée en théorie des graphes, en considérant plus particulièrement les trois systèmes
opérationnels GRAPH, Graffiti et AutoGraphiX (AGX). Une série d’améliorations
possibles, le plus souvent par hybridation de ces systèmes, sont proposées ainsi que
plusieurs voies de recherche pour le développement du domaine dans son ensemble.

Mots clés: graphe, conjecture, assisté par ordinateur, automatisé.



Les Cahiers du GERAD G–2002–44 — Revised 1

1 Introduction

1.1 Conjectures

Roget’s New thesaurus [147] defines conjecture as

“a judgment, estimate or opinion arrived at by guessing: guess, guesswork,
speculation, supposition, surmise”.

So, uncertainty is stressed. In mathematics, the word “conjecture” has a more precise
meaning. In their Dictionary of Mathematics, Bouvier and George [22] define it as follows:

“Conjecture: An a priori hypothesis on the exactness or falseness of a statement
of which one ignores the proof”.

Knowledge should back this hypothesis, and make the conjecture valuable, as stressed
by Mac Lane [128]:

“Conjecture has long been accepted in mathematics, but the customs are clear.
If a mathematician has really studied the subject and made advances therein,
then he is entitled to formulate an insight as a conjecture, which usually has
the form of a specific proposed theorem. Riemann, Poincaré, Hilbert, Mordell,
Bieberbach, and many others have made such deep conjectures”.

Further examples of important conjectures, this time in graph theory, are the four-color
conjecture [149], proved in 1976 by Appel and Haken [7] [8] [9] (see also the more recent
proof of Robertson et al. [146]) and the strong perfect graph conjecture of Berge [16] [17]
very recently proved by Chudnovsky et al. [47] [48]. The former may have initially been a
happy guess of a student, Francis Guthrie, but was popularized by a major mathematician,
Augustus de Morgan. Its (correct) proof took 125 years and was computer-assisted. No
proof without partial automation is known. The latter was proposed in 1961 by one of
the most prominent graph theorist of the time. It took 41 years and the work of scores
of mathematicians to be finally proved (without computer assistance). So, conjecturing
supposes knowledge and insight. Guessing is easy but conjecturing is hard; we will see that
this holds for computers as for humans.

1.2 Automation

Again according to Mac Lane [128], the sequence for the understanding of mathematics
may be:

“Intuition, Trial, Error, Speculation, Conjecture, Proof”.

Proof is the ultimate goal and has attracted the most attention, including in attempts
to automate mathematics. Yet, it is far from the whole story. Hardy [114] reminds us that

“All physicists and a good many quite respectable mathematicians are con-
temptuous about proof”.

Discovering interesting or beautiful conjectures, even if someone else proves (or refutes)
them, is of importance.



Les Cahiers du GERAD G–2002–44 — Revised 2

Clearly, theorems are first conjectures, possibly known as such only to those who prove
them. Often, only the final result, i.e., the theorem, is published. The discovery process is
not explained, and further discoveries may be made more difficult than necessary. A few
mathematicians and philosophers of science have focused on this process. Prominent among
them are Euler, Polya [138] [139] and Lakatos [123]. Recent studies of the application of
Popper’s ideas in mathematics [140] and their development are also of interest [94] [95].

Automated theorem proving is a well-developed field, with numerous researchers, tens
of books and a rapidly increasing record of successes [162]. A good example is the recent
16-line automated proof by Mc Cune [133] of the Robbins conjecture:

“All Robbinsonian algebras are Boolean algebras”,

which had been open for 63 years.
In graph theory, only simple propositions can at present be proved in an entirely auto-

mated way (see Section 2 for a brief discussion). Computer-assisted proofs, mostly based on
enumeration routines, are becoming common. To illustrate, the survey of Radzizowski [145]
on small Ramsey numbers mentions computer-assisted results from 71 papers.

In contrast, computer-assisted and automated conjecture-making in mathematics, the
mathematical branch of discovery science, has attracted few researchers up to now, despite
some notable successes. Outside of graph theory one may mention the important work of
several mathematicians on integer relation detection [115] [11] [21]. This led, among other
applications to Apéry-like formulae for ζ(4n+3), new Euler sums and formulae for various
constants including one for π with the astonishing consequence that one can compute, in
base 2, the digits of π beginning at any place (e.g. from the trillionth’ one) without knowing
the previous ones. While the important work of Wu [163] [164], and Chou et al. [42] [44]
[45] in plane geometry is mostly aimed at automating proofs, it includes conjecture-making
routines. This led to the discovery of new families of Pascal conics [44]; recently a procedure
for finding all relations implied by a given configuration of lines and curves in the plane
has been obtained [45]. Hájek and Havránek [100] [101] and Hájek and Holeňa [102] have
studied mathematical formulations for a general theory of the mechanization of hypothesis
formation. They introduce formal logics for that purpose and may have been one of the
sources of inspiration for the system GRAPH discussed below.

Graph-theoretic work will be discussed throughout this paper. This will be done by
a study and discussion of some of the best developed systems, no general mathematical
framework for making conjectures in graph theory being in current use. But a preliminary
question should be addressed:

How far should conjecture-making in graph theory be automated?

Langley [121] comments as follows on discovery science systems:

“Although the term computational discovery suggests an automated process,
close inspection of the literature reveals that the human developer or user plays
an important role in any successful project. Early computational research on
scientific discovery downplayed this fact and emphasized the automation aspect



Les Cahiers du GERAD G–2002–44 — Revised 3

in general keeping with the goals of artificial intelligence at the time. However,
the new climate in AI systems that advise humans rather than replace them,
and recent analyses of machine learning applications. . . suggest an important
role for the developer”.

Two things should be distinguished here: on the one hand, that knowledge due to
the developer, and possibly many others (e.g. numerous algorithms for computing graph
theoretic invariants) is embedded in the system appears to be necessary to obtain conjec-
tures; on the other hand, that the user may interact or not with the system, leading to
computer-assisted or to automated discoveries.

In graph theory, three additional reasons may be adduced for preferring computer-
assisted systems to automated ones:

(i) the difficulty of automation may limit the scope of problems addressed;
(ii) the ultimate goal being proof, interaction with the system is more likely to lead to

insights about how to prove the conjectures found than just reading their statement;
(iii) such interaction may also be very fruitful from the pedagogical point of view. This

question will be discussed further in Section 3.

However, automating a system for making conjectures in graph theory is a challenge,
and may lead to original ways of addressing this problem. Moreover, comparison of this
work with the treatment of similar problems within close fields such as automated theorem
proving or data mining, may foster cross-fertilization.

This author’s view is that both computer-assisted and automated conjecture-making
are of interest; in this paper, the main focus is on the latter.

1.3 Definitions

We will adopt the following terminology: an automated system will be synonymous with a
fully automated one, and this means that

(i) input should be limited to the problem statement which implies further information
on the problem or closely related ones cannot be introduced at that time, but may
of course already belong to one or another of the systems databases;

(ii) there should be no human intervention between problem statement and output of the
results;

(iii) output of the results should be the final step, which implies there should be no human
selection of those conjectures about the problem under study which are publicized;
of course the users are then free to choose those they will try to prove.

Otherwise, the system will be called computer-assisted.
This is in keeping with usual practice. To illustrate points (i) and (ii), “Deep Blue” [30]

[118] is an automated system which includes considerable knowledge about chess-playing
(and Kasparov’s way to play chess) due to the developers. In competition it can be tuned
before a game but not when this game is in process, and it only receives notice of the
opponent’s moves [118].



Les Cahiers du GERAD G–2002–44 — Revised 4

To illustrate point (iii) observe that some researchers (e.g. [120]) claim that computers
can compose poetry and try to make their point by selecting among a large output, obtained
by their system from some poets vocabulary, usually very short “poems” which appear to
make sense. If one generates a sufficiently large number of “poems” and selects drastically
among them, this is bound to work (to some extent), but the conclusion is far from clear.

When an automated system makes conjectures we will say they are obtained by the
system; when a computer-assisted system does so, we will say the conjectures are obtained
with the system.

Refuting or corroborating conjectures known beforehand with a computerized system
will be referred to as testing them; conjectures which are corroborated may be improved
(e.g. stronger bounds may be considered) and this will be called strengthening them;
finding new conjectures will be called conjecture-making, and can be unassisted (or done
by hand), computer-assisted or automated.

To the best of our knowledge, present systems for conjecture-making in graph-theory
are either computer-assisted or can be used both in computer-assisted mode and, in rare
cases, in automated mode. The question of whether one computer-assisted system is more
automated than another cannot be answered in a clear-cut way as different systems perform
different tasks. Therefore, we will describe these tasks, state which of them are automated
and how, which are not and how they are done, and let the reader judge.

About half a dozen systems for conjecture-making in graph theory and other close pur-
poses have been developed. We distinguish between experimental and operational systems.
An experimental system explores an idea, without necessarily leading to new results (or to
just a few, due to its developers); its aim is often to understand the way mathematicians
reason or to help them in various tasks. Such systems, while they may be inactive for the
time being, have potential, particularly in conjunction with others, as discussed briefly in
various places of this paper. They include:

(a) the INGRID system of Brigham and Dutton [25] [26] [27] [28], which manipulates
formulae on graph invariants from a database to compute bounds on some invariants
when others are limited to some range. INGRID can be used to

(i) help solve practical problems,

(ii) derive new theorems (by selecting relations leading to them),

(iii) test the effectiveness of new theorems (by showing they are or not consequences
of one or several previously known ones),

(iv) test conjectures (viewed as “temporary theorem” to see if this implies some
contradiction),

(v) resolve open problems (by showing they imply some contradiction), and

(vi) help to study graph theory.

As explained in [113], some of these functions may be viewed as obtaining particular
types of conjectures.



Les Cahiers du GERAD G–2002–44 — Revised 5

(b) the graph theorist system of Epstein [73] [74] [75] [76]; this knowledge intensive,
specific domain learning system uses algorithmic descriptions of classes of graphs
such as connected, acyclic, bipartite and so forth. It mainly uses theory-driven
discovery of concepts, conjectures and theorems, based upon search heuristics, but
also infers explanations from factual input about graphs.

There are three main operational systems:

(a) the GRAPH system, developed by Cvetković and co-workers [59] [60] [54] [61] [55]
[56] [62] [63], which pioneered the man-machine type of research in graph theory.
Built between 1980 and 1984 this system was extensively used to find conjectures
and prove theorems in graph theory (usually the latter only being published), with
an emphasis on algebraic graph theory. Cvetković and Simić [64] review 92 papers
by 23 authors on GRAPH, its uses and results obtained with it from 1982 onwards.
GRAPH comprises

(i) a bibliographic component, BIBLI,

(ii) an algorithmic component, ALGOR, and

(iii) an automated theorem proving one, THEOR.

(b) the Graffiti system, due to Fajtlowicz [81] [80] [82][83] [84] [85] [79] [87] and devel-
oped since the mid-eighties, with from 1990 onwards collaboration of De La Vina,
notably in the development of its DALMATIAN version. This system generates a
large number of a priori conjectures, under the form of algebraic relations between
graph invariants, then selects among them, by eliminating false or uninteresting con-
jectures through testing them on a database of graphs, applying heuristics and build-
ing counter-examples. Conjectures which pass these correctness and interestingness
tests are proposed, after further selection, to the mathematical community in the
large email file “Written on the Wall” which is updated from time to time. More
than 70 mathematicians, among them some famous ones, sent proofs, or refutations
of those conjectures, listed in that file. Many papers on proofs, and more often
disproofs, sometimes with corrected results which led to further developments or
strengthened conjectures, have been published. De La Vina [67] lists 75 such papers,
technical reports and theses from 1986 onwards.

(c) the AutoGraphiX (AGX) system, due to Caporossi and Hansen [37] [31] [65] [34] [35]
[106] [33] [6] [32] [36] [107] which generates many extremal or near-extremal graphs
for some invariant or formula involving several invariants, then derives various results
from them. This system may be used to

(i) find a graph satisfying given constraints;

(ii) find optimal or near-optimal values for a graph invariant on a family of graphs
with given constraints;

(iii) refute, corroborate or strengthen a conjecture;

(iv) make a conjecture in computer-assisted or automated mode;



Les Cahiers du GERAD G–2002–44 — Revised 6

(v) suggest ideas of proof.

A series of papers on the system, its uses, results and comparative performance have
been published. Aouchiche [5] lists 40 papers on AGX and its results, or related to
its results, published since 1999, submitted, or to appear.

Collectively, this number of papers (over 200) is among the largest in the field of dis-
covery science.

Some programs from graph theory not designed specifically for making conjectures may
be useful to do so, either on their own or in conjunction with others. This is the case in
enumeration where e.g. programs such as Nauty and geng of McKay [131] [132] helped to
conjecture and then determine many Ramsey numbers.

Conjectures can also be obtained by serendipity. As explained in more detail in [104],
a program for coloring planar graphs written in Mathematica by Wagon, always used 3
colors when applied to rhombic Penrose tilings; Sibley and Wagon [152] then proved 3
colors suffice, a problem that had been open for 20 years. Another example relies on a
program from mathematical programming: a mixed-integer formulation of the problem of
determining the Clar number of a benzenoid [110], due to Hansen and Zheng [111], never
used branching. The conjecture that linear programming sufficed to solve this problem
was later proved by Abeledo and Atkinson [1] [2].

1.4 Plan of the paper

This paper has two complementary aims:

(i) assess the state-of-the art in computer-assisted and automated conjecture-making
in graph theory. This will be done in the next three sections, devoted respectively
to GRAPH, Graffiti and AGX, with special emphasis on their conjecture-making
functions;

(ii) make a series of proposals for advancement of this field. They will be interspersed in
the next three sections and will take two forms. First, Proposed Enhancements (PE)
will suggest ways to improve specific steps or functions of the system under study;
they will often be suggested by ways to solve similar problems in other systems and
the suggestions will then amount to hybridizing them. Second, Research paths (RP)
will draw attention upon open problems or general questions related to conjecture-
making in graph theory, as well as links to establish with other domains of research.
They are often long-term goals, sometimes quite speculative. Separation between
study of systems and proposals will be indicated by numbering them PEk or RPk,
with a � sign as the end of the corresponding statement.

The three operational systems GRAPH, Graffiti and AGX will be studied in sections 2, 3
and 4 respectively. Conclusions will be drawn in Section 5.



Les Cahiers du GERAD G–2002–44 — Revised 7

2 Graph

As mentioned in the introduction, GRAPH has three components, BIBLI, ALGOR and
THEOR. ALGOR is the most directly related to conjecture-making but both BIBLI and
THEOR bear upon problems of importance for conjecture-making systems too. So we
examine all three of them in turn.

2.1 BIBLI

The GRAPH system uses a formalized subset of the everyday English language, called
Graph Theoretic Computer Language. It is described in [59]. It is an interactive language
used from a terminal keyboard; in recent versions a mouse can be used also for some
operations.

The BIBLI component is devoted to bibliographic data processing: it allows storage
and retrieval of information on papers, books, proceedings, reports, abstracts, manuscripts
and documents. Its functions, rarely available at the time of inception, are now in wide
use in systems accessible on the web such as Google, Web of Science or Citeseer, but it
remains useful for tailor-made bibliographies such as that one of the book of Cvetković et
al. ”Recent Results in the Theory of Graph Spectra” [57].

While very large amounts of data are now available online and special sites devoted to
graph theory, such as the Graph Theory White Pages are open to the general public, the
documentation problem in graph theory is far from solved (All those who have painstak-
ingly derived a series of conjectures, transformed them by proof into theorems only to find
in a last check most or all results to be known but expressed in a different language are well
aware of this problem). Indeed, the graph theory literature is vast, dispersed over many
fields, growing in a savage way and, as a consequence, terminology is far from unified.
Moreover, due to dependence between concepts, the same results can take different forms
e.g. in the graph G or its complement Ḡ, or after eliminating one or another invariant
by a linear equation such as those of Gallai’s theorem [92]. Finally, some results can be
expressed in different ways because concepts have a nonlinear dependence. To illustrate,
even if one knows that the Wiener index of a tree T [72] is another name for the sum of
distances between pairs of vertices of T , one might miss equivalent results expressed in
terms of average distance between pairs of distinct vertices of T .

Brigham and Dutton [26] [27] have gathered 458 relations between graph invariants, used
in their system INGRID. They can help in checking whether a result is new, but if this has
to be done with a chance of success, a much more comprehensive system should be built,
in a collaborative effort, similar to that which gave rise to Sloane’s On-line Encyclopedia
of Integer Sequences [157]. The following research paths sketch how this might be done:

RP1. Find linear equality relations between graph invariants. Consider a large number
of graph invariants and programs to compute them (available in the cited systems, in
Graphbase [119] or LEDA [134] and on the Web). Compute values of these invariants for a
large set of graphs. Then use the numerical relation-finding routine of AGX (see Section 4)



Les Cahiers du GERAD G–2002–44 — Revised 8

to obtain a basis of affine relations on these invariants. If some new relations are found,
prove them. �

RP2. Define a standard set of invariants in terms of which all others will be expressed
and (one or several) standard forms for relations in graph theory. Write a translator
program which will express (as far as possible) any formula in standard form and conversely
express a standard-form formula in one or all equivalent forms. Programs for algebraic
manipulations such as Mathematica [161] or Matlab [130] might be used for that purpose.

�
RP3. Organize a site for interactive addition to and consultation of a database of graph

theory relations. These relations might be valid for all graphs, or for important families of
subgraphs, e.g. bipartite, triangle-free, of girth at least 5, and so forth. �

Another important open problem, related to storing graph theory relations is to find if a
given relation is redundant, i.e., implied by one or more relations already in the database.
This can be done by finding a graph within a database for which it is not the case, as
in the DALMATIAN version of Graffiti [84] (see Section 3) or in an algebraic way as in
INGRID [28] or by showing that the relation is not best possible (assuming a best possible
relation is known).

Given invariants i1, i2, . . . , ip of a graph G one can define, as in [109], a canonical form
for relations involving these invariants as

ik ≤ f(i1, i2, . . . , ik−1, ik+1, . . . , ip) (2.1)

or

ik ≥ g(i1, i2, . . . , ik−1, ik+1, . . . , ip); (2.2)

such relations are sharp (or best possible) if for all values of i1, i2, . . . ,
ik−1, ik+1, . . . , ip compatible with the existence of a graph there is a graph such that the
relation is satisfied as an equality. A set of canonical relations is complete if the 2p relations
(2.1) and (2.2) on x1, x2, . . . , xp are sharp. One such set for the three parameters α(G)
(independence number), n (order) and m (size) is given in [109]. The relation [105] [88]

α(G) ≥


2n− 2m

� 2m
n

�
�2m

n �+ 1




(2.3)

is sharp, while the following one, derived from Turan’s theorem [159],

α(G) ≥ n2

2m+ n
(2.4)

is not. It is thus redundant but might be kept also if one is more interested in simplicity
than in sharpness. Observe also that if a sharp relation is known one might consider that
it is not useful to compare it to another one, yet the latter could also be sharp and simpler
as is the case for (2.3) which is equivalent to but simpler than the relation given in [105].



Les Cahiers du GERAD G–2002–44 — Revised 9

2.2 ALGOR

This part of the system GRAPH is directly connected to conjecture-making ([59], p20):
“The part of the system “GRAPH” described is primarily meant as a means for
quick[ly] checking, disproving or making conjectures in graph theory. Facilities
provided by the system enable to get the answer on a great number of questions
on graphs of a reasonable size in a few seconds (of course, what does a reasonable
size mean depends on the problem considered).”

Also:
“Another situation in which the system can help is the following. Many results
in graph theory begin with an observation which proves the desired statement
for all but a finite number of graphs. These exceptional graphs are, as a rule,
of a small size. The next part of the proof consists then in checking whether
the statements hold for these graphs and that can be performed with the help
of the system.”

ALGOR solves a series of problems on particular graphs. They can be divided as
follows: ([59], p11):
(a) manipulative tasks (setting and displaying values of the mentioned objects (i.e.,

graphs, values of the type integer, real and complex, and families of sets of inte-
ger values),

(b) creating common graphs (e.g. complete graphs, circuits, etc) or random graphs,
(c) creating graphs by performing graph-theoretic operations (e.g. complement of a

graph, product of two graphs, etc),
(d) relabelling (points or lines of) graphs (by given permutations, at random, etc),
(e) determining integer invariants in graphs (e.g. number of some subgraphs, order of

some point, etc.),
(f) determining real invariants of a graph (e.g. eigenvalues, eigenvectors, etc),
(g) checking properties of graphs, (e.g. whether a graph is planar or hamiltonian, whether

two graphs are isomorphic, etc),
(h) listing families of graph characteristics (e.g. point degrees, components; etc).
Each group of operations is characterized by a verb in the commands used. They have

a simple and transparent form, e.g.
CREATE < g-name > [AS] < type of graph > [OF] [ORDER] < integer >,

for instance:
CREATE G1 CIRCUIT OF ORDER 12

or
FORM [g-name] [AS] [THE] < integer > [TH] < operations > [GRAPH]

[OF] < g-name >,
for instance:



Les Cahiers du GERAD G–2002–44 — Revised 10

FORM H AS THE 4TH SUBDIVISION GRAPH OF G

The operations are: DISTANCE, (PATH), POWER, SUBDIVISION, (TRAIL),
(WALK). Names in parentheses correspond to operations not yet implemented when [53]
was written.

PE1. Complete GRAPH by enriching its functions as planned. This task is in progress
in the system NEWGRAPH, currently developed. �

Determining invariants is broken down in four categories:

(a) Invariants of the graph
(b) Invariants of point of the graph
(c) Invariants of a given size
(d) Invariants of two points of the graph

Commands for invariants of a graph have two forms:

(i) determining the number of objects in the graph, which can be
(automorphisms), blocks, bridges, central points, (circuits), cliques,
(cocliques), components, cutpoints, (independent lines), lines, loops,
maxdegree, mindegree, (orbits), pendant lines, (pentagons), points, quad-
rangles, triangles;

(ii) computing the value of an invariant such as
(chromatic class), (chromatic index), chromatic number, circonference,
(clique number), (coarseness), (complexity), (crossing number), cyclo-
matic number, (determinant), diameter, (exterior stability), (genus),
girth, (interior stability), (line connectivity), (permanent), (point con-
nectivity), radius, rank, (thickness).

For instance:

DETERMINE THE NUMBER OF TRIANGLES OF G,
DETERMINE DH THE DIAMETER OF H.

A point invariant such as DEGREE, ECCENTRICITY, etc would be found by making
a command such as

DETERMINE DEGREE OF 7 OF G

where 7 is the label of a point. Commands for invariants involving two points or real invari-
ants of a graph are similar. Possible objects are (circuits containing), common neigh-
bours, (disjoint paths), distance, line label, lines incident, (paths), (trails),
(walks) in the former case and (admittance spectrum), (angles), bond orders,
charges, distance, index, (distance spectrum), eigenvalues, eigenvectors, en-
ergy, (main angles), (r-spectrum), seidel spectrum in the latter.

The GRAPH system can check many properties of graphs such as acyclic, bipar-
tite, block, (block cutpoint graph), (block graph), circuit, (clique graph),



Les Cahiers du GERAD G–2002–44 — Revised 11

complete, connected, (cutpoint graph), eulerian, forest, hamiltonian, hy-
pohamiltonian, (interval graph), line graph, loopless, (moore graph), (out-
erplaner), (perfect), planar, (prime), (selfcomplementary), (selfdual), semi
regular, (semitotal line graph), (semitotal point graph), strongly regular,
(subdivision graph), (total graph), totaly disconnected, (traversible), tree,
triangle free, trivial, unicyclic, wheel, without multiple lines.

Commands are for instance

CHECK WHETHER G1 IS PLANAR,
CHECK WHETHER G2 IS A TREE.

or, for properties of a point of a graph:

CHECK WHETHER THE POINT 5 IS ISOLATED IN G,

or of two graphs

CHECK WHETHER G1 AND G2 ARE ISOMORPHIC.

Clearly the system GRAPH can answer a large number of questions regarding particular
graphs. It can also check for graphs with some property among several lists of graphs, e.g.
connected graphs up to 6 points, regular graphs up to 7 points, trees up to 10 points, cubic
graphs op to 12 points, etc.

Results of GRAPH consist, as mentioned above, of computer-assisted conjectures, refu-
tations and proofs. Most of the published results are theorems, and while mention of
system GRAPH is made, details on how it led interactively to conjectures, refutations or
proofs are unfortunately not given except in [59] (automated theorem-proving is discussed
in more detail [62] [56]).

We list a couple of results obtained with GRAPH, see [64] for a more comprehensive
set. Let G be a graph, v a distinguished vertex, and N1(v), N2(v) a partition of the
neighbours of v. If G′ is obtained from G − v by adding vertices v1, v2 and edges {v1, w}
with w ∈ N1(v) and {v1, w} with w ∈ N2(v), G′ is obtained by splitting vertex v.

The following result was conjectured with the system GRAPH and proved in [153]: If
G is a connected graph and G′ is obtained from G by splitting a vertex then λ1(G′) < λ1(G)
(where λ1(G) is the index of G or largest eigenvalue of its adjacency matrix).

Denote by ρ(k) the largest eigenvalue of the graph obtained from the cycle Cn with
n ≥ 6 by adding an edge between two vertices at distance k = 2, 3, . . . , 	n/2
. On the basis
of experiments conducted with GRAPH it was conjectured that ρ(k) is monotonous and
decreases. This was proved in [148] [154].

2.3 THEOR

The THEOR component of GRAPH is designed for computer-assisted or automated
theorem-proving in graph theory, and is described in Cvetković and Pevac [62]. We only
discuss it briefly as this paper’s topic is not automated theorem proving. Graph theory



Les Cahiers du GERAD G–2002–44 — Revised 12

is formalized using a special first-order predicate calculus, called “arithmetic graph the-
ory” (AGT). It contains point variables, line variables, integer variables, graph names,
constraints, function names, operations over graphs and predicates.

The effectiveness of the prover depends largely on a set of lemmas which represent
beginner’s knowledge of graph theory. The user may select more advanced lemmas.

A resolution-based prover is a subsystem of a natural deduction interactive theorem
prover. The interactive prover provides a proof for a given goal sentence P by splitting
it into subgoals, which are further split, thus generating a proof tree memorized by the
system. This tree is a rooted one, and the user can move the current root, i.e., select the
subgoal next considered. He can also inform the system about the truth of a subgoal. The
resolution-based prover can be applied to any subgoal and the proof is completed when all
subgoals are proved. Subgoals may be processed by case analysis, forward chaining, reductio
ad absurdum, simplification or extension of the formula, expressing it in an equivalent form,
etc.

A completely automated proof of the simple sentence

“If the graph is connected, then the graph is trivial or there is no point x such
that x is isolated”

is obtained and has 10 lines. The sentence

“If the graph is not connected, then the complement is connected”

is proved interactively, in 38 lines. Further examples are given in [56].
These examples show the difficulty inherent in full formalization of graph theory. Its

language, close to English, is deceptively simple. The situation is much easier in logic [162],
or in plane geometry where a method of reduction of problems to systems of linear and
quadratic equations applies, see e.g. Chou [43]. But as the speed of equally priced com-
puters has augmented since the time GRAPH was developed by a factor of 104 to 105 and
automated theorem proving made much progress, another attempt might be worthwhile.

PE2. Test the automated theorem proving approach of THEOR with a modern com-
puter and a prover such as OTTER [136]. �

Should this attempt be successful, it should meet a wish of Fajtlowicz [84]:

“the problem of trivial conjectures could be solved if we had automated theorem
provers capable of proving the easiest conjectures of Graffiti . . . ”

3 Graffiti

3.1 Structure

The Graffiti program is discussed in the series of papers “On conjectures of Graffiti” [81]
[80] [82] [83] [84] a paper “On conjectures and methods of Graffiti” [87] as well as in the
more recent paper “Towards fully automated fragments of graph theory” [85], and a couple
of papers of Larson [124] [125]. De La Vina [68] presents the system Graffiti.pc and, very



Les Cahiers du GERAD G–2002–44 — Revised 13

recently, some recollections about early development and use of Graffiti [69]. Conjectures
obtained with Graffiti and their status i.e., proved, refuted or open, are listed in [79].

There are many versions of Graffiti, not all of which appear to have been fully docu-
mented [69]. The two main ones appear to be the initial version (with a few developments)
described in [80] [81] [82] [83] [87] and the DALMATIAN version described in [84] [85] [124]
[125] and [68]. In this subsection we list the steps of both of them. These steps will be
discussed in detail in the following subsections.

Unfortunately, no complete and precise description of all steps of the process of obtain-
ing conjectures with Graffiti has been provided. Instead, partial and informal descriptions
of the automated steps are scattered over a good half-dozen publications; information about
the other steps is given similarly, but in much less detail. This makes rational discussion
of the Graffiti system and its applications extremely difficult as it must be preceded by a
long reconstruction process, i.e., finding what really happened, or happens, from scant and
sometimes contradictory information (as e.g. when computing invariants is attributed to
Graffiti in one place and to Algernon in others). The paper of De La Vina [68], written
after the first version of the present paper was completed, and remarks of an anonymous
referee have been very helpful in this reconstruction process.

Graffiti uses two databases; a database of graphs and a database of conjectures. The
former contains graphs proposed by the authors or other researchers, which have refuted
some conjectures, together with precomputed values for all invariants considered in the
system. The latter contains conjectures generated by the system and not refuted or viewed
as non-interesting, or possibly in the DALMATIAN version, viewed as non-informative.

Steps of the process of finding conjectures with the initial version of Graffiti appear to
be the following:

Step 1. Problem statement: Find relations between a set of invariants i1(G), i2(G) . . .
chosen by the user.

Step 2. Conjecture generation: The program generates a set of inequalities of the forms
i1(G) ≤ i2(G), i1(G) ≤ i2(G) + i3(G), or similar ones using the selected invariants
and possibly small integers (mostly 1).

Step 3. Correctness Test: The program evaluates the inequalities obtained. If one graph
refutes them, they are deleted.

Step 4. Heuristic Tests (see below): The program deletes the conjectures which do not
pass the test.

Step 5. Counter-example: Find by hand (a) counter-example(s) to at least one of the new
conjectures. If one is found, delete the corresponding conjecture.

Step 6. Update of Graph Database: If at least one counter-example has been found com-
pute values of all invariants for the corresponding graph(s). Adds these graphs to
the database of graphs and return to Step 3.

Step 7. Elimination of true conjectures: Prove by hand easy new and true conjectures
and eliminate them from the database of conjectures (if they are not judged to be
interesting).



Les Cahiers du GERAD G–2002–44 — Revised 14

Step 8. Selection of conjectures: Select, by hand, among the remaining conjectures those
considered to be worthy of publication. Make them known, e.g. by including them
in the “Written on the wall” file.



Les Cahiers du GERAD G–2002–44 — Revised 15

Fajtlowicz ([80] p.189) comments as follows on this process, and its interactive character:
“Graffiti makes conjectures by first verifying that it does not know a counter-example

to a formula and then by deciding whether the formula makes an interesting conjecture.
The first function of the program is highly interactive because a user is expected to find
counterexamples to false conjectures and then describe them to the program.”

Steps of the process of finding conjectures with the DALMATIAN version of Graffiti
appear to be the following:

Step 1. Problem statement: Find lower (or upper) bounds for a user-selected invariant.
Step 2. Conjecture Generation: The program generates an inequality and evaluates the

values of both sides of all graphs in the database.
Step 3. DALMATIAN test for informativeness (see below): The program deletes the

conjecture if it does not pass the test.
Step 4. Correctness test: The program deletes the conjecture if the inequality does not

hold for at least one graph in the database.
Step 5. Other heuristic tests (see below): The program deletes the conjecture if it does

not pass one of these tests.
Step 6. Database updating: The program shelves conjectures viewed as less informative

due to the addition of the new conjecture.
Step 7. Test for ending conjecture generation: If for each graph in the database of graphs,

there is a conjecture for the selected invariant and direction of inequality in the
database of conjectures which is sharp (i.e., satisfied as an equality), proceed to the
next step. Otherwise, return to Step 2.

Step 8. Counter-example: Find, by hand, a counter-example to one at least of the in-
equalities generated.

Step 9. Updating database of graphs: If a counter-example has been found, compute with
an auxiliary program (Called Algernon) the values of all invariants for this graph,
introduce it, together with those values in the database of graphs and return to Step
2.

Step 10. Elimination of true conjectures: Prove by hand easy new and true conjectures
and eliminate them from the database of conjectures.

Step 11. Selection of conjectures: Select by hand among the remaining conjectures, those
considered to be worthy of publication. Make them known, e.g., by including them
in the “Written on the Wall” file.

Note that the correctness test now follows the first interestingness test; the reason
appears to be that the DALMATIAN test is quicker than the other one on average.

Observe that as the new conjectures have the same left-hand side invariant and direction
of inequality they may be viewed as a system. Note that the procedure described does not
necessarily converge (a simple example is given below). It may thus have to be stopped
manually, after some time.



Les Cahiers du GERAD G–2002–44 — Revised 16

At this point, a divergence of opinion between the authors of the Graffiti system and
the present author should be clearly stated. Fajtlowicz focuses on what is automated and
wishes to limit Graffiti to Steps 1 to 7 above. When they are finished, which constitutes a
round, the user takes over, does whatever he wishes (eventually with the help of Algernon)
and may proceed or not to a further round. So the non-automated part of the conjecture
generation process is viewed to be in some sense, outside of Graffiti, while the final conjec-
tures are still attributed to Graffiti alone, as shown by referring to them as “conjectures
of Graffiti” or “conjectures obtained by Graffiti”.

This author could only accept this view if what is not automated did not substantially
affect the final result, i.e., the list of conjectures to be publicized. That steps 8 to 11
play an important role will be documented in the following subsections. Note also that
isolating automated parts from the other ones, and giving them a name, then considering
the remaining parts to be outside of the process, can lead to a claim that the resulting
process is (fully) automated, for any interactive process. The present author cannot agree
with such an argument and therefore views Graffiti as a computer-assisted system and not
a (fully) automated one. The reader is left to judge.

3.2 Problem statement and generation of a priori conjectures.

In the initial version, the problem statement consists in specifying the invariants to be
studied (e.g., a set of 20 from the rich library of Graffiti) as well as, possibly, operators
such as sum, maximum, minimum, complement etc acting on them, and the desired form
of the relations derived. The program then generates systematically such relations.

Forms of conjectures are simple ones, such as i1 ≤ i2 or i1 ≤ i2 + i3 or sometimes
i1 + i2 ≤ i3 + i4. Later, ratios were introduced and finally a real algebra on the invariants.

In the DALMATIAN version, the problem statement step has the following form: Find
lower (or upper, instead) bounds for a (user selected) invariant. The system then generates
a term, as right-hand side of the inequality. This term is obtained by selecting invariants
and performing unary or binary operations on them. Examples of such operations are the
reciprocal, the natural logarithm, ceiling, addition and multiplication [68].

Details on how this is done, i.e., how many invariants and operations are chosen, within
which set, according to which rules and whether or not there is any further user interven-
tion before the session or at the moment the user states his query, are not given. As a
consequence, results of Graffiti cannot be reproduced by other researchers.

As the conjecture-generation step conditions the results obtained, it should be analyzed
carefully.

First, one may note that the system does not at this stage, use any knowledge of graph
theory at all, so one should speak of guesses rather than conjectures (that the subsequent
process, which uses graph theoretic algorithms as well as heuristics transforms or not these
guesses into conjectures by its selection process will be the crucial point).

In view of this lack of knowledge, one may expect that initially

(i) many conjectures will be false;



Les Cahiers du GERAD G–2002–44 — Revised 17

(ii) many conjectures will be true but trivial;
(iii) if a very large number of conjectures are generated some of them may be interesting.

Reading all papers written on Graffiti and its conjectures suggests that all three propo-
sitions, including the redeeming third one, are true. Fajtlowicz comments as follows on
trivial conjectures ([81], p.113) obtained with the initial version of Graffiti. “The number
of conjectures, particularly those which are completely trivial, is the main problem and
more than half of the program consists of various heuristics whose purpose is detection of
trivial and otherwise non-interesting but true conjectures“. As documented below in the
subsection on selection of conjectures, a substantial number of the selected ones remains
false with the initial version and also, to a lesser extent, with the DALMATIAN one.

Second, generation of some important formulae may be, in practice, out of reach of
Graffiti, even if the necessary invariants and operations are available, because their al-
gebraic expression is too complex. To illustrate, consider again the bound (2.3) on the
stability number α(G). It implies only 2 invariants, m and n, but 12 product, division,
sum, subtraction or upper bound operation. The probability that the right invariants and
operations, as well as their order can be found a priori must be extremely small.

Consequently, Graffiti is not a good tool for obtaining strongest conjectures, i.e., graph
theoretical bounds which are best possible in the strong sense, that is, as formula (2.3),
tight for all m and n. That other systems, together with a few algebraic manipulations,
can do so is illustrated in [107] for the case of an upper bound on the irregularity of a
graph.

A related problem arises if the formulae have numerical coefficients; Graffiti introduces
a few, usually small, integers. However, if the coefficients are real ones, the number of
possible formulae is infinite even in the linear case. How could Graffiti guess a priori the
right values in such a case?

Third, observe that no computer is needed to generate systematically relations between
graph invariants: the (tedious) task of writing down i1 ≤ i2, i1 ≥ i2, i1 ≤ i3 and so on can
be done by hand without any difficulty; enumerating relations with more complicated forms
as done in the DALMATIAN version is only slightly more complicated. Programming this
task is also easy.

Fourth, while some a priori conjectures are simple and appealing, more complicated
ones might not be attractive. To illustrate, the formulae

l̄(G) ≤ α(G) (Graffiti 2)

where l̄(G) denotes the average distance between distinct vertices of G and

r(G) ≤ α(G) (Graffiti 0)

where r(G) denotes the radius of G, or minimum over all vertices of the largest distance
to another vertex, have attracted mathematicians and led to several papers; contrarywise,
most mathematicians might consider that the conjecture

“The minimum of derivative of eigenvalues of the gravity matrix is ≤ n/average distance”
(Graffiti 150)



Les Cahiers du GERAD G–2002–44 — Revised 18

is too complicated and specialized.
Fifth, a priori conjectures of Graffiti may not have the simplest form they may take.

To illustrate the temperature tj of a vertex j is defined by Fajtlowicz as

tj =
dj

n− dj

where dj is the degree of j. The conjecture

l̄(G) ≤ 1 + max
j

tj(Ḡ) (Graffiti 834)

where Ḡ is the complementary graph of G, can be reformulated into

(1 + δ(G))l̄(G) ≤ n

which is simpler, more intuitive, and was refuted [37].
PE3. Add to Graffiti a translation routine which would automatically simplify conjec-

tures. �

3.3 Dalmatian and other heuristics

We now describe and discuss the various heuristics designed to select interesting conjec-
tures among those listed a priori. The DALMATIAN one [84] is the most recent and
apparently also the most powerful. It is based on the notion of information content (or
informativeness). Basically, a conjecture on an invariant is considered as interesting if and
only if it provides some new information for at least one graph in the system’s database, i.e.
it provides for that graph a strictly better bound than all previous relations. Otherwise,
the conjecture is deleted. If it is added to the database of conjectures it may happen that
some other conjectures are no more informative and are shelved, i.e., kept separately of the
database of conjectures (or tagged); if later on some conjecture(s) giving a better or equal
bound on i1 is (are) refuted they can be unshelved, or considered as interesting conjecture
once again.

Several comments are in order. First, the definition of interestingness on which the
dalmatian heuristic is based is local, as it depends on the database of conjectures and the
database of graphs of Graffiti, and unstable, as these databases evolve over time. This
implies this definition is not universal, i.e., contrary to other mathematical definitions, it
cannot be used by all researchers in all places with consistent answers as to whether a
conjecture is or not interesting.

Second, the definition may be too lax, if the database of conjectures is small or the
database of graphs is large (but this would be only temporary as new conjectures are
introduced and initial ones shelved), or too severe if the database of conjectures is large.
Indeed, the situation in which the values of a large set of invariants and many relations on
the invariant i1 under study are known is atypical in graph theory research. Much more
often, graph theorists study one invariant as a function of two or three others, ignoring
temporarily the other ones.



Les Cahiers du GERAD G–2002–44 — Revised 19

Four other heuristics were used in early versions of Graffiti. The IRIN heuristic “deletes
conjectures which follow from others by transitivity” [81]. The CNCL heuristic deletes
conjectures ”. . . in which one invariant on the left is always smaller than an invariant
on the right” [81]. The ECHO heuristic [80] applies to conjectures defined for restricted
classes of graphs: “its main idea is that a conjecture about a class of objects A is considered
noninteresting if it can be generalized to a larger class B ..., the background of A”. This
heuristic appears still to be used in recent versions of Graffiti. The BEAGLE heuristic is
based upon the idea that conjectures involving concepts of a different type are more likely
to be interesting [82].

The idea of difference in concept types is related to a representation of concepts as a
rooted tree: a graph G is associated with the root and various numerical invariants to
its vertices. A concept is a descendant of another one if it is computed in terms of that
one. The distance between vertices in the tree can be viewed as a distance between the
corresponding concepts.

The BEAGLE heuristic removes conjectures involving concepts that are too close; it
appears that the DALMATIAN also removes most but not all of them. Larson ([124] p.12)
comments on this as follows:

“The BEAGLE heuristic of Graffiti was central to early versions of the program [82].
The function was largely superseded with the introduction of the DALMATIAN heuristic.”

Note that the BEAGLE heuristic, as the DALMATIAN one, is defined in terms of the
Graffiti system. One may wonder if distance between concepts in graph theory could be
defined in a more general mathematical way. This seems to be the case, as lattices of graph
theoretic concepts are considered by the Graph Theorist system of Epstein [74] [75] [76]
as well as by the Hardy-Ramanujan system of Colton [50] (which is more often applied,
however to algebra or number theory than to graph problems). A concept of distance
follows. It seems worthy of further study to see to what extent this framework, or more
general ones, apply:

RP4. Apply the theory as formal concept analysis [93] to graph theory definitions and
see if a concept of distance between concepts can be derived. In particular, study to what
extent concepts in graph theory can be represented by a lattice (or several). Deduce new
concepts from this(these) lattice(s). �

Note that Graffiti is not designed for finding new concepts (except in the trivial sense
that any inequality can be viewed as defining a new concept); it is claimed however in one
place ([84]) that

“the current version can define its own properties. One of the properties dis-
covered by Graffiti is the class of all graphs in which the smallest eigenvalue has
multiplicity 1. Graffiti defined this concept because it knew many examples of
such graphs”.

However, as no routine for concept discovery is described in the papers on Graffiti, this
appears to be more an observation of the user than a discovery of the system.



Les Cahiers du GERAD G–2002–44 — Revised 20

PE4. Add to Graffiti a data mining routine to find frequent patterns in its database
of graphs, as well as a routine and a database to check if they correspond or not to known
concepts. �

Considering results of the heuristics, one may note that

(i) some of the conjectures of Graffiti which passed the tests are simple and attracted
much attention of graph theorists;

(ii) the simplest ones are of the form i1 ≤ i2, and the best known is probably conjecture
Graffiti 2: For any graph G

l̄(G) ≤ α(G),

(where l̄ denotes average distance and α the independence number) proved by
Chung [49].

It is surprising, as it connects very different concepts, on the one hand average distance,
based on paths and on the other hand independence, based on non-adjacency. Perhaps
this is the reason why it was not suggested by anyone before.

Other conjectures of the same form involve concepts which had been little studied, or
not studied at all, by mathematicians at the time they were introduced into Graffiti; this
is the case for the Randić index [144] defined for any graph G = (V,E) by

Ra(G) =
∑

i,j/vi,vj∈E

1√
didj

where dj is the degree of vertex vj . This concept appears in the following conjecture: For
any connected graph G

l̄(G) ≤ Ra(G), (Graffiti 3)

which is still open (conjectures involving the Randić index tend to be hard to prove as
the value of this invariant may increase or decrease upon addition of an edge to the graph
considered).
Yet other conjectures use concepts invented by Fajtlowicz. The Havel-Hakimi operation on
the set of degrees of vertices of a graph, ranked in order of non-increasing values, consist
in deleting the first degree d1 and reducing by 1 the next d1 degrees. Havel [116] and
Hakimi [103] independently proved that a degree sequence is graphical, i.e., corresponds to
a graph, if and only if the degree sequence obtained by the above operation does. Iterating
this operation finally leads to a series of zeros; their number is the residue Re(G) Fajtlowicz
considered it as an invariant and obtained with Graffiti the conjecture: For any graph G,

Re(G) ≤ α(G), (Graffiti 69)

which was proved by Favaron, Mahéo and Saclé [88]. Several further papers [66] [90] [96]
followed.

The question of whether or not the concepts involved in a conjecture bear upon its
interestingness has not been much studied. Fajtlowicz notes that finding new concepts is



Les Cahiers du GERAD G–2002–44 — Revised 21

not difficult at all, contrary to the case of conjectures. Indeed concepts are not true or
false, but simple or not, convenient or not and, more importantly, able or not to unify
previous results. Finding new ones by computer is as easy as making guesses, but finding
interesting ones may be another matter. Fajtlowicz argues that any sufficiently simple
concept is interesting. While this may be true for most concepts which Fajtlowicz invented,
as he found several nice ones (see Written on the Wall, passim), and attracted attention of
mathematicians to them, it is hard to agree with his argument in general. Indeed, graph
theory suffers from a plethora of concepts, the number of which suggests several questions.

First, to illustrate, one might argue that average distance is a simpler, or more central,
concept than residue, and that the independence number is simpler and more central
than both. Indeed, independence depends only on the basic concept of adjacency, average
distance on the central concept of paths and their length while Residue depends on a
particular algorithm. Of course, both average distance and residue give lower bounds on the
independence number, and could be used in a branch-and-bound algorithm to determine
its value. This may not be their main attraction, particularly for average distance which
gives a usually loose bound.

Then considering general questions, we may propose:
RP5. Define the simplicity of a concept by the minimal number of operations to be

applied to a graph G to compute it (operations not being considered here as elementary
operations as in complexity theory but in more abstract terms as “checking adjacency for
all pairs of vertices” or “computing all shortest distances between pairs of vertices”). This
research would continue that of Graffiti on distance between concepts. �

RP6. Do the same as RP5 but using the concept of Information (or Kolmogorov)
Complexity[127], i.e. the minimum length of a program to compute the invariant consid-
ered.

RP7. Evaluate empirically the importance of concepts in graph theory by a statistical
analysis of their use in the literature. �

The next research proposal is inspired by the analysis of research networks as done in
scientometrics [141] [126].

RP8. Construct a network of graph-theoretical concepts by associating them to the
the vertices of a complete graph, and weighting edges by the number of times concepts
corresponding to their end vertices are used in the same paper of some chosen corpus.
Then analyze this network with standard tools of scientometrics to find central concepts,
cliques of concepts used jointly, distance between concepts and other information. �

3.4 Refutation

Conjectures which passed the heuristic tests (or some of them) are tested on the database
of graphs for correctness. If they do not hold for one of these graphs they are deleted.

Several remarks on the selection of graphs, heuristic or exact algorithms and graph
representation are in order, as these questions bear upon the efficiency of the refutation
process.



Les Cahiers du GERAD G–2002–44 — Revised 22

First, checking conjectures on the few hundred graphs of the database is not a severe
test. Indeed, the classes of graphs under consideration are usually infinite.

Other systems are more powerful and/or more original in this respect: GRAPH uses
interactive modifications, which constitute an informal descent method and can also get
out of local optima; AGX applies the efficient and versatile Variable Neighborhood Search
metaheuristic (see below); Geng and other enumeration programs list systematically much
larger sets of graphs; INGRID combines relations between graph invariants, assuming the
conjecture to be true, i.e., a temporary theorem, in order to derive a contradiction.

Some hybrids of Graffiti and enumeration programs have been sporadically explored:
Fajtlowicz mentions using the CaGe program of Brinkmann [29] to generate fullerenes and
De La Vina [68] applies Makeg of Mc Kay to obtain all trees satisfying given constraints
and uses them in Graffiti.pc. She proposes as criterion of interestingness the touch number
or number of graphs for which the conjecture is sharp (a criterion already used informally
in [31] where it seems to have been mentioned in print, without the name, for the first
time). In a recent paper, De La Vina [69] claims it was used in Graffiti since the early
90’s, but for some reason it was not mentioned in the previous papers on that system, and
notes that with a large database, conjectures with an important touch number tend to be
true. Such a development appears to be promising.

Second, graphs in the Graffiti database are often those which refuted some conjecture
and were proposed by various researchers. A set of 195 of them is described in the “Graphs
of Graffiti” file [156]. The implicit assumption behind their selection appears to be that
graphs which have refuted some conjecture may be more useful than randomly generated
ones to refute others. This appears to be worthy of further study.

RP9. Study statistically which graphs are the most efficient for refuting conjectures of
a given corpus, representative of the various types of algebraic ones. Examine also which
conjectures are hardest to refute. �

Third, Graffiti (or Algernon) uses heuristics to compute the value of invariants such
as the independence number, which are NP-complete to determine. This introduces an
unnecessary error for small graphs; moreover up-to-date heuristics and metaheuristics could
be used for evaluating such invariants, instead of simple heuristics such as MAXINE ([83])
for the independence number which are adequate for small graphs but not competitive for
larger ones (see e.g. [14] [112] for state-of-the-art heuristics for the clique or independence
number).

PE5. Replace heuristics for NP-hard invariants in Graffiti by exact algorithms, coupled
with the best available heuristics for the same problems, to be used on large instances. �

In addition to automated refutation the process of finding conjectures with Graffiti uses
further counter-examples obtained by hand by the user. In the DALMATIAN version, after
introducing the corresponding graph(s) into the system a conjecture is generated again.

Here, knowledge and work of the user is incorporated and may strongly influence the
quality of the conjectures obtained. Indeed, it is well known that when discovering and
proving a theorem one often goes through a sequence of conjectures and refutations getting



Les Cahiers du GERAD G–2002–44 — Revised 23

progressively closer to the correct statement. So this procedure is certainly reasonable and
appears to be efficient; however, it is not automated. Probably, as discussed above, in
the present state of graph theoretical theorem proving, it could not be. However, what is
examined here is the impact of the counter-example obtained by hand on the new, further
conjectures obtained. This is essential to evaluate how far the process of finding conjectures
with Graffiti is automated.

To illustrate, consider Graffiti conjecture 117. Initially, this conjecture was stated as
follows: For any connected graph

l̄(G) ≤
n∑

j=1

1
dj

It was disproved by Erdös, Pach and Spencer [77]. Fajtlowicz then proposed the weaker
version:
For any connected graph G with girth g(G) ≥ 5, average distance is not more than

inverse degree (where inverse degree is shorthand for the sum of inverses of degrees of
all vertices) and surmised that given the known counter-examples, Graffiti would come
up with that version. Granting the hypothetical, it remains that a non-trivial result by
famous graph theorists was needed to transform an initial conjecture which turned out to
be false into an interesting and still open one.

Another example is Graffiti’s conjectures 67 and 119; they involve the new invariant
f(G) defined as the maximum frequency of occurrence of a degree in G (or mode of the
degree sequence). For conjecture 67, i.e.,
For any graph G without K3 (i.e., with g(G) ≥ 4)

χ(G) ≤ f(G)

counter-examples were found by Staton and later by Erdös and Staton [78]; knowing some
counter-examples, conjecture 119 was obtained:
For any graph G without K3 or K4, (i.e., with g(G) ≥ 5) χ(G) ≤ f(G).
So, once again, a counter-example obtained by hand was needed to transform a false

conjecture into an interesting open one. Recently, Caro [39] proved that this last conjecture
is true for all sufficiently large graphs.

The fact that this step is not automated does not appear to be discussed in the parts
of papers on Graffiti which concern automation. One may wonder how often one had
recourse to counter-examples obtained by hand before reaching the conjectures publicized
in “Written on the Wall”. Very recently some information on that point has been provided
in [80], it is stated that

“... in the 1980’s once the conjectures were output, then as described by Fajtlowicz
in [81] he would categorize the program’s conjectures as false, proven and open. Counter-
examples to conjectures were reported to the program, the program was re-executed and
again the conjectures would be categorized. As further described in [80] after a few rounds
of this process, as is the academic custom, Fajtlowicz announced the open conjectures”.



Les Cahiers du GERAD G–2002–44 — Revised 24

3.5 Proofs

Many conjectures of Graffiti are true but trivial. Some of them are deleted as they are
not informative according to the criterion of the DALMATIAN heuristic. This selection
process could be made much more efficient by considering true relations (theorems) as well
as conjectures.

PE6. Add to Graffiti a database of theorems containing both classical ones and others,
proved with possible help of that or other systems. Then apply the DALMATIAN heuristic
with a joint database of conjectures and theorems. �

True conjectures which pass the DALMATIAN heuristic test are studied by the user,
and discarded if they appear to be trivial (which is not synonymous with, but implies the
conclusion that they are trivial to prove). No operational system for theorem-proving in
graph theory being available, this is done by hand.

Note that if a database of theorems is available it can also be used, as in INGRID [28],
to find if a conjecture is implied by one or several theorems from that database and which.
Then, if the resulting system is not too complicated, a proof might be obtained automati-
cally by a system for algebraic manipulations such as Mathematica [161] or Matlab [130].

Presently, that one conjecture obtained with Graffiti (or a theorem if it has been proved)
follows from another is only discovered with a web database or by a chance remark from
one or another graph theorist.

To illustrate, the conjecture Graffiti 1 is: For any graph G,

χ ≤ 1 + rank(A(G))

where A(G) is the adjacency matrix of G. Jaeger told Fajtlowicz ([79], p5) that Van
Nuffelen [160] had proposed earlier the stronger conjecture
For any graph G,

χ ≤ rank(A(G)).

Both conjectures were refuted by Alon and Seymour [4].
This example shows the interest of a database of graph theory formulae, as discussed

in Section 2.

3.6 Selection of conjectures

Until the version of Graffiti comprising the DALMATIAN heuristic, conjectures which
passed the tests of the heuristics and could neither be refuted nor proved were further
selected by the user. This new heuristic raised big hopes ([84], p 370):

“There are strong indications that the new version of Graffiti can be used so
that it will make very few trivial conjectures . . . If these early indications, based
on test runs, are right, it would mean that the program can be fully automated
and can make conjectures without any help of humans. By contrast, as I was
always clearly stating this, conjectures of previous versions of Graffiti had to
be approved by myself, before they were included in “Written on the Wall”.”



Les Cahiers du GERAD G–2002–44 — Revised 25

However, it seems that proofs of easy true conjectures are still done by hand, per-
haps some non-automated selection of conjectures still takes place and counter-examples
obtained by hand are added to the database within the conjecture-making process. Au-
tomation of Graffiti is further discussed when considering the “Little Red Riding Hood”
version of Graffiti in Subsection 3.8 below.

A few studies allow evaluation of the proportion of conjectures of “Written on the Wall”
which are false. The two first of them correspond to the initial version. Favaron, Mahéo
and Saclé [88] studied extensively eigenvalue properties of graphs conjectured with Graffiti.
They proved 3 of them in their original form, 9 others as corrolaries of stronger results
and disproved 49 of them. Brewster, Dineen and Faber [24] program a series of invariants
and tested about 200 conjectures of Graffiti using a database of all graphs with up to 10
vertices. They refuted 49 of these conjectures (some with such simple graphs as a single
edge and proved one).

As the DALMATIAN heuristic is more selective than previous ones, one may wonder if
conjectures obtained with the DALMATIAN version of Graffiti are more often true than
before. They are numbered from 700 upwards in “Written on the Wall”. Pujol [142]
studied 12 conjectures, in that range pertaining to cubic graphs. For that purpose he
used the AutoGraphiX system (see Section 4 below) in interactive mode together with a
program for cubic graph enumeration, due to Brinkmann [29]. 5 out of the 12 conjectures
could be refuted. For the other ones, it was shown that a minimal counter-example would
have at least 18 vertices. While this is a small sample, it nevertheless indicates that
the proportion of false conjectures obtained with the DALMATIAN version of Graffiti,
and after elimination of false or trivially true conjectures by both automated and non-
automated methods may still be large.

3.7 Minuteman and Discriminant Analysis

The Minuteman version of Graffiti [86] is designed to solve problems of discriminant anal-
ysis, i.e., separating entities from given sets by values of a function, which corresponds
geometrically to a surface, often a hyperplane. A motivating application was to discover
stability sorting patterns of fullerenes. An additional routine works as follows ([85] p.21):

“To study conjectures, objects are sorted by the difference between both sides
of the inequality and sometimes when this is done for fullerene conjectures they
show a conspicuous pattern by displaying the known stable examples on the
top of the list and those with the largest sum of eigenvalues (i.e., presumed
candidates for the least stable) at the bottom”.

We do not discuss the chemical relevance of the patterns and conjectures so found here.
Regarding the routine, note that checking if there is a pattern in the one-dimensional data
obtained for a conjecture is done visually. It could of course easily be automated and
simple statistical tests applied.



Les Cahiers du GERAD G–2002–44 — Revised 26

Now, if computer-assisted or automated systems for conjecture-making in graph theory
are still rare, the situation is completely different in discriminant analysis. Indeed, this
is a well established field, beginning in statistics at least 65 years ago [91] and presently
central to data mining. Automated methods to find separating planes or surfaces in low
or high dimensional spaces are operational for various criteria. Let us just mention that if
perfect separation by a plane is possible this can be done by linear programming [129] and
that otherwise one can use decision trees [143] [23], support vector machines [46], logical
analysis of data (LAD, [19]) or other methods.

So while Minuteman is far from the state of the art in discriminant analysis, it suggests
the interest of using more powerful discrimination methods in graph theory. In a similar
vein, Colton [52] recently stressed that mathematics could be viewed as a new field for
data mining. Some techniques using Boolean variables appear particularly well-suited to
the case of graph problems, e.g. LAD and decision trees.

RP10. Apply decision trees and LAD to discriminant problems in graph theory. Such
problems may be mathematical ones (e.g. belonging or not to a particular class of graphs)
or applications based on measurements relative to the problem under study (as in the
fullerene example discussed above). Compare results with those of other conjecture-making
systems. �

RP11. Study criteria for approximate separation in graph theory using various discrim-
inant analysis methods, both for mathematical problems and for applications. Examine
when and how an approximate separation (e.g. a linear one) can lead to an exact one (e.g.
by restricting the class of graphs considered or barring exceptional cases). �

3.8 Pedagogical versions of Graffiti

Computer systems have long been used with success in teaching graph theory. This was
already the case of GRAPH [59], Chinn [41] reports on her use of INGRID for that purpose
and the “CABRI-graphes” system [38] developed in Grenoble led to the widely distributed
“CABRI-géomètre” package.

Recently, versions of Graffiti devoted to teaching graph theory with an active pedagogy
were developed. They met with equal success when used in special project classes. Pep-
per [137] gives an enthusiastic record of his discovery and use of Graffiti, and Chervenka [40]
describes more briefly how she used De La Vina’s Graffiti.pc [68].

The main difference with previous versions of Graffiti is in use: initially the database
of graphs is empty. When a first graph is entered, conjectures are formulated and the
corresponding invariants studied. These conjectures are often easy to prove or refute.
For that reason, more work is asked from the students than merely to provide a counter-
example: they are requested

(i) if the conjecture is refuted, to find a smallest counter-example in terms of number of
vertices and, as a secondary criterion, of number of edges;

(ii) if the conjecture is true, to determine whether it is NP-hard or not to determine if a
graph G satisfies the relation (assumed to be an inequality) as an equality.



Les Cahiers du GERAD G–2002–44 — Revised 27

While such tasks are initially easy to accomplish, their difficulty will augment with the
number of graphs in the database. Graffiti does not contain routines to do them automat-
ically or in computer-aided mode. At an early stage, this is reasonable if one wants the
students to practice their refuting and proving skills. Later, they might want to have some
help, which could be provided by a system such as GRAPH or AGX.

PE7. Add to the pedagogical versions of Graffiti a program for visualizing graphs
on screen, modifying them online and computing automatically a series of invariants or
formulae involving invariants. �

While the main advantage of such an enhancement would be to make interaction with
the system easier and more effective, another one would be to show students that tedious
computations may be delegated to the machine, so that they may concentrate on reasoning.

PE8. Add to the pedagogical versions of Graffiti a routine similar to AGX’s func-
tion for evaluating invariants subject to constraints: then use it if the relation is false to
find smallest counter-examples by parametrizing on numbers of vertices and edges and
attempting to find a graph which does not satisfy the given relation. �

Such an enhancement should be made available only after students have tried to find
minimum counter-examples on their own, and submitted them to the system.

PE9. With the same function, and assuming that the relation is true, find graphs
which satisfy it as an equality, to help estimate how difficult it is to recognize them. �

The same comment as for PE8 holds here too.
In the “Little Red Riding Hood” version, the task of proving true conjectures is ignored.

It is then claimed ([85] p. 18) that it is “an offshot aimed at fully automating the program
apart from the invention of concepts”.

Observe however that no additional functions have been automated since the last gen-
eral version. Some tasks have been abandoned (proving true conjectures) and some others,
done by hand, made harder (finding counter-examples which are smallest possible). As
previously, the fact that generation of counter-examples is not automated is overlooked
in the comment cited above. In fact, steps of automated generation of conjectures alter-
nate with steps of finding smallest counter-examples, in what appears to be a typically
interactive man-machine process.

3.9 Complexity and the P = NP problem

Some considerations on the condition for stopping of “Red Burton” and its relation to
complexity issues, i.e., the P = NP problem, are given in ([85] p.24). As many researchers
(e.g. Smale [158]) consider this last problem as the most important one of computer science
we examine this text in detail.

A first paragraph tells us that:

“Once in a while it may happen that all conjectures of a given round are true.
The natural interpretation of this situation-called bingo- is that for every object
(under consideration, not just those in the database of the program) there is



Les Cahiers du GERAD G–2002–44 — Revised 28

a conjecture made in this round such that the left and the right sides of the
inequality have the same value for this object. Unless this indeed is the case,
supplying the program with a counter-example to this situation will still break
the stalemate and one can proceed to the next round.”

One may wonder if this interpretation is “natural”; the set of objects (graphs) under
consideration may be very large, and in some cases, discussed below, infinite. Extrapolating
the fact that there is a tight relation for every object in the database to this much larger
set is a very risk step. But, clearly, as indicated, if this property does not hold and one can
find an object for which there is no tight relation, one can proceed to the next round. Note
that this task is different from those of Red Burton as described earlier in [85], in which
one asks for objects which refute a conjecture, not for objects for which no conjecture is
tight.

The next paragraph of the text begins as follows

“Most of the interesting runs of the program will yield at least one false con-
jecture in each round. This will always happen if the leading invariant L is
NP-hard and all the remaining invariants from N are polynomially computable.
These versions of the program will run forever modifying some of its conjectures
after each round. Some of the conjectures are cyclically and some are contin-
uously repeated in rounds providing more and more experimental evidence for
their correctness.”

The second sentence does not appear to be true. No proof is given and a counter-
example is easy to find: let the leading invariant L be the independence number α, the
class of graphs under consideration being all non-trivial graphs, i.e., all graphs with at
least one edge and the only graph in the database in the first round a star, say S4. Then
the system will give the relation α(G) ≤ n− 1 and the first round will end without a false
conjecture. If another graph, say C4, is introduced, there will be an infinite, incomplete
second round, still without a false conjecture. Moreover, if as stated at the beginning of
the third sentence

“These versions of the program will run forever ...”,

it does not seem they can lead to a “bingo” which implies that they stop. This contradicts
the first statement of the remainder of this second paragraph, next reproduced, which gets
to the main question:

“One can still end up with a correct bingo but this would imply P = NP in
which case the more appropriate term for the situation would be “big bang”.
Penrose does not question that in a sense a machine’s insights may be superior
to human. It is not unthinkable that P = NP can be proved, because machines
may conjure up hundred of novel radius, average distance, residue, and δ-like
bounds, constituting a valid bingo.”

For the last sentence to make sense, one should write “big bang” instead of “bingo”.
Then, one may wonder if it is true, and if it has information content. Recall from elementary



Les Cahiers du GERAD G–2002–44 — Revised 29

logic that B holds because of A is equivalent to the implication A => B and means that
A is false or B is true. Let B denote the proposition “It is not unthinkable that P = NP”.
As long as it has not been proved that P �= NP this is a tautology, i.e., certainly true.
But then the implication holds regardless of the antecedent A, i.e., one can adopt for A
any statement whatsoever, true or false, instead of “machines may conjure...”. So for the
last sentence to have information content, one must show that a “big bang” has some
plausibility not that it is merely possible. For this to be done along the proposed lines one
must show it is plausible that one can:

(a) find relations given sets of graphs (various systems do this);
(b) find in each round graphs which are not tight for any of the relations involving the

chosen invariant and direction in the database of conjectures. This task increases
in difficulty with the size of that database. Moreover, such graphs are likely to be
increasingly and finally enormously large (clearly no machine could find such graphs
if they must have billions of vertices).

(c) prove that all relations considered in the last round are true;
(d) prove that there exists no graph under consideration, the set of which is necessarily

infinite for the problem under study to bear upon P = NP , for which none of the
relations considered in the last round are tight.

Clearly, this proof scheme is incredibly difficult to carry out. Except for step (a) the
necessary steps are not even listed, nor of course discussed. As no argument is provided for
a “big bang” to be plausible, the last sentence of the cited text has no information content.
In other words, that “machines may conjure up hundred of novel ... bounds” provides no
argument of any weight for or against P �= NP .

4 AutoGraphiX (AGX)

4.1 Uses and structure

As mentioned in the introduction AGX has several aims. We focus here on computer-
assisted and automated conjecture-making. Indeed, AGX can be used in both modes, and
the steps involved as well as their sequence must be carefully distinguished.

When working in computer-assisted mode, AGX’s follows the following ones.

Step 1. Problem formulation.
Step 2. Obtention of a set extremal or near-extremal graphs for the chosen objective

subject to the stated constraints.
Step 3. Visual display of the graphs found and parametric value curves.
Step 4. Interactive improvement of graphs which do not appear to be optimal.
Step 5. Interactive derivation of structural and algebraic conjectures.

When AGX is used in automated mode, steps 3 to 5 are replaced by the following ones

Step 6. Recognition of extremal graphs belonging to known families.



Les Cahiers du GERAD G–2002–44 — Revised 30

Step 7. Determination of linear equations between invariants associated with all or some
subset of the external graphs obtained by the numerical method.

Step 8. Determination of linear inequality relations between invariants by the geometric
method.

Step 9. Determination of linear or nonlinear relations between invariants by the algebraic
method.

Step 10. Results: output external graphs found, families to which they belong, parametric
curves of values for the objective, and conjectures found.

Note that not all methods for finding conjectures automatically need be used in the same
experiment: one of steps 7, 8 or 9 suffices; step 6 is also optional except if step 9 is used.

4.2 Problem formulation

When the aim of using AGX is conjecture-making, one leading invariant is usually selected
and others (most often n and m) used as parameters. Moreover, the class of graphs
considered is specified by constraints, which will be added to the objective function with
large coefficients (as in Lagrangian relaxation). Such coefficients must be chosen to be
sufficiently large to exclude any graph not in the class considered; if this is not possible, a
large value indicating a contradiction will be obtained.

Moreover, in some cases it is necessary to add a secondary criterion or progressive
series of weights in order to transform the graphs in directions which will tend to satisfy
the constraints.

An example occurred at Graph Theory Day 42, where after a presentation on Computers
in Graph Theory [104] a demonstration of AGX was made. Cowen [53] asked for graphs
with a maximum number of K4 for a given number of K3. This last number was chosen
as a parameter and the number of K4 maximized, which led on the spot to rediscovery of
a series of extremal graphs for those parameters. Running AGX for a longer time gave a
series of further extremal graphs of larger size.

At another (early) demonstration of the system, Seymour [151] asked for cubic graphs
of diameter 3 with a maximum number of vertices. A first try where the diameter was
minimized under the constraint that all degrees be equal to 3 yielded examples with 14
and 16 vertices but not more (the constraint on the degree was imposed by penalizing the
numbers of vertices of degree smaller or greater than 3 increasingly with their distance to
that value). Adding as secondary criterion minimization of the average distance, and so
smoothing the objective function, led to cubic graphs of diameter 3 with 18 and 20 vertices
in 35 seconds and 1 minute respectively; the latter graph is optimal.

Presently AGX disposes of about 60 invariants to be used in the objective function
and constraints. They are order, size, independence number, chromatic number, chromatic
index, minimum degree, maximum degree, average distance, degrees of the vertices, eigen-
values of the adjacency matrix and others.

However, this is not a very large set, as compared with those of GRAPH, Graffiti, LEDA
or other systems.



Les Cahiers du GERAD G–2002–44 — Revised 31

PE10. Add to AGX routines to compute the main graph theoretic invariants not yet
included (e.g. matching number, domination number, etc) �

Graph invariants are invented every day, so if AGX is to accommodate all needs of the
users, it must let them add their own routines for their favorite invariants.

PE11. Construct a version of AGX in which the user can add routines to compute new
invariants. �

This enhancement is being implemented in the new version, AGX2, of AGX, which is
currently being built.

At present, standard algebraic expressions can be taken in the objective function and
constraints as well as some simple graph transformations such as complementation. Other
operations should be made possible.

PE12. Add to AGX routines for the main graph operations, such as sum or product
of graph, etc, as done in GRAPH.

4.3 Finding extremal graphs

The principle of AGX is to use heuristic optimization to find a family of extremal or
near-extremal graphs for some objective, subject to constraints, then to exploit the corre-
sponding information.

Heuristic optimization in AGX follows the Variable Neighborhood Search (VNS) meta-
heuristic [108], or framework for building heuristics. VNS exploits the still rather new
idea of systematic change of neighborhood within the search. This is done in two ways:
first in a descent routine, called Variable Neighborhood Descent (VND), which leads to a
local optimum, and, second, in a systematic effort to get away from this local optimum by
applying increasingly strong perturbations and descents.

Rules of VNS are as follows:
0. Select the set of neighborhood structures Nk, k = 1, . . . , kmax that will be used in

the search for a better local optimum, and a stopping condition. Find an initial solution
(or graph) x.
Repeat until the stopping condition is met:

1. Set k = 1;
2. Until k = kmax, repeat the following steps

(a) (shaking) generate a point x′ at random from the kth neighborhood of x (i.e.,
x′ ∈ Nk(x)):

(b) (descent) Apply the Variable Neighborhood Descent routine with x′ as initial
solution: denote by x′′ the local optimum obtained;

(c) (improvement or continuation) If the solution x′′ so obtained is better than
the best known one x, move there (x ← x′′) and continue the search within
N1(x)(k = 1); otherwise set k ← k + 1.



Les Cahiers du GERAD G–2002–44 — Revised 32

The stopping condition may be a maximum number of iterations, a maximum CPU
time or a maximum number of iterations or CPU time since the last improvement.

Rules of VND are as follows:
0. Select the set of neighborhood structures N ′

k, k = 1, 2, . . . , k′max that will be used in
the descent. Consider an initial solution x.
Main step: Set k = 1 and i = FALSE (improvement indicator).
Until k = k′max, repeat the following steps:

(a) Find the best neighbor x′ of x in N ′
k(x);

(b) If the solution x′ so obtained is better than x, set x ← x′ and i = TRUE;
(c) Set k ← k + 1;
(d) if k = k′max and i = TRUE set k = 1.

In words, VND applies a series of transformations to the current graph, keeping each
time that transformation giving the best improvement. It there is no improvement within
the current neighborhood, VND proceeds to the next one. If there is no further improve-
ment when considering all neighborhoods in turn, VND stops; otherwise it begins again at
the first neighborhood.

Moves corresponding to the different VND neighborhoods in AGX are the following:
rotation of an edge, deletion of an edge, addition of an edge, move of an edge, i.e., deletion
plus addition, detour, i.e., removal of an edge and addition of two edges between endpoints
of the deleted one and a vertex not adjacent to either of their endpoints, short cut, i.e., the
operation that is the reverse of detour, 2-opt, i.e., removal of two non adjacent edges, and
addition of two different edges connecting the endpoints of the removed ones: add pendant
vertex: i.e., add a new edge from an old vertex to a new one; delete vertex of bounded
degree and all adjacent edges.

The neighborhoods rotation, addition, deletion and move are the most frequently used,
and the least time consuming ones.

If all moves within a neighborhood are examined before choosing the last one, only
graphs of moderate size may be considered, particularly if the objective function to be
computed after each potential move is hard to evaluate. A speed-up can be obtained by
using a ”first improvement” instead of a ”best improvement” rule.

The choice of moves is presently left to the user (with a standard option of using them
all). However, this choice could be automated:

PE.13 Add a routine which evaluates the effect of all moves during an initial period,
then selects for continuation of the search those which proved to be the most efficient. �

One could also try to find new moves systematically:
PE.14 Construct moves by all possible transformations on a small graphs (e.g. with 4

vertices). Eliminate redundant ones which are the same as others up to symmetry. �
Contrary to VND, which uses systematically a series of different local moves, VNS

makes random use of more global moves, often deriving from a simple principle. The most



Les Cahiers du GERAD G–2002–44 — Revised 33

frequently used one is to repeat a move k times, e.g., one first moves an edge chosen at
random (a move in N1(x)) then 2 (a move in N2(x)) and so on.

VNS appears to be quite powerful, i.e., very often, but not always, it gives extremal
graphs. Cases where it does not give the best graph, which can often be recognized by
comparison with graphs obtained for close values of the parameters, can be exploited to
define new neighborhoods.

RP12. Systematically explore cases in which the neighborhoods of VND and VNS are
not enough to find consistently extremal graphs. Define new neighborhoods accordingly
and study the complexity of implementing them.

4.4 Display of results

Results of AGX, when used in interactive mode are of two types:
a) Extremal or near-extremal graphs;
b) Parametric curves of values of the objective function.
Extremal graphs can be visualized on screen or printed. Drawings can be modified

interactively by moving vertices; classes of vertices or of edges can also be highlighted, in
various colors (e.g. edges which are critical for some invariants, edges of a spanning tree
or a shortest path tree, vertices of various degrees, . . . )

Up to now only simple tools of graph drawing have been implemented in AGX, i.e., a
specialized routine for representation of trees with edges parallel to the axes, a “spring”
type heuristic to avoid cluttering parts of the drawing with closely spaced vertices, and a
few more. As the field of graph drawing is very active (see e.g. Di Battista et et al. [70]
[71]) further results obtained there could be exploited. Note however that the frequently
adopted criterion of minimizing edge crossings does not seem adequate for AGX’s needs.
Easy recognition of subgraphs of one or another type (cliques, cycles, . . . ) seems more
important.

RP13. Study precise needs of AGX for graph drawing and how they can be met by
methods of that field. In particular consider ways to make structure (particular subgraphs,
graphs formed from them) visible in individual graphs as well as in sequences of graphs.�

While there may be no closed-form formulae for some invariants on general graphs, there
may be some for particular classes of graphs. Recognizing them can lead to conjectures,
as discussed further below.

Curves of values can be represented in three dimensions, corresponding usually to some
invariant i1, n, and m. These curves can be rotated, superposed, isolated, etc. . .Moreover,
graphs corresponding to particular points on these curves e.g. minima or maxima can be
displayed in a window. Finally, if one has some idea about a conjecture it can be introduced
into AGX, checked, displayed with the curves, and both the differences in ordinates and
the points of contact highlighted.

These facilities should be extended to higher dimensions.
PE15. Add to AGX a routine for projection of points in Rp with p > 3 but moderate,

corresponding to extremal graphs, on subspaces with 2 or 3 dimensions. �



Les Cahiers du GERAD G–2002–44 — Revised 34

4.5 Recognizing structure interactively

When visualizing the extremal graphs obtained with AGX, it is not uncommon to find
that

(i) they belong to some well-known family, e.g. paths, circuits, trees, stars, bipartite,
complete,. . . ,

or

(ii) they have some recognizable but more complicated structure.

There may be some exceptions among them, and one should then find out whether this
is due to the VNS heuristic not finding the (or an) extremal graph for the corresponding
values of the parameters or to the particularities of the objective function under study.

Usually, significant differences in structure or an outlier position with respect to the
curve of values make such exceptions conspicuous. One can then deduce from close ex-
amples what might be the true extremal graph for those parameter values and build it by
moving edges with the mouse; then the system will compute its value and, if it is better
than the previous near-extremal graph, substitute them.

This step is not mandatory, and not used when applying AGX in automated mode
(outliers may be removed in other ways, see below). However, it could be automated, or
at least more automated than it presently is.

PE16. Augment the number of routines for recognition of classes of graphs in AGX.�
PE17. Add a routine which will test if extremal graphs frequently belong to some

parameterized family; for those parameter values for which it is not the case, compute
their value and substitute them if there is an improvement. �

Note that such developments are close to those needed in the third (algebraic) way to
find conjectures automatically (see below). The automated parts correspond to step 6 of
AGX, which will not be discussed further.

4.6 Obtaining conjectures interactively

Conjectures most often made have the two following forms (see also [113])

(i) Algebraic relations between graph invariants, valid for some class of graphs (e.g. all
graphs, connected, bipartite, split, stars, trees, complete. . . )

(ii) Description of the structure of extremal graphs (i.e., of a known or new class of
graphs) or of a subset of them.

Conjectures of the former type can be obtained from the parametric curves of values of
the objective. Consider for instance the energy E of a graph defined [31] [97] [98] as

E =
n∑

i=1

|λi|.



Les Cahiers du GERAD G–2002–44 — Revised 35

Minimizing this function with parameters n and m, then superposing the curves of E(m)
for fixed n shows very clearly all values to be above a parabola. Its equation is then readily
found and leads to the lower bound [31]

E ≥ 2
√
m.

Moreover, the equation of this curve can be entered in AGX, which represents it in the
plane of values and highlights points where it is attained, i.e., graphs reaching the bound, as
well as differences for other points. One can thus see if the bound is sharp and if it remains
so over the range of parameter values or not. In the case discussed, when m becomes large
the curve lies increasingly below observed values. Then, looking at curves for one value of
n at a time suggests a linear lower bound for each, from where the inequality

E ≥ 4m
n

follows. It is sharp for fewer values than the first bound, though still sharp several times.
Conjectures of the second type are obtained by examining the graphs obtained and,

possibly, exploiting conjectures on these graphs obtained automatically (see below). Some-
times, results are straightforward. For instance minimizing with AGX the energy of uni-
cyclic graphs (a problem of interest to chemists) led to extremal graphs which were cycles
for n ≤ 7 or n =9, 10, 11, 13 and 15 and 6-cycles with an appended path for all other
values of n considered. The natural conjecture that these and only these graphs were the
true extremal ones [31] has recently been partially proved [99] [117].

4.7 Numerical method of conjecture-making

We now turn to the automated mode of using AGX and consider the three ways in which
this has been done (up to now). A first method uses the mathematics of principal compo-
nent analysis to find resemblances between objects, in the form of affine relations they all
satisfy, instead of differences as usually done.

The method works as follows [35] [36]:

(a) Find extremal or near-extremal graphs for some objective with AGX;
(b) Filter this set to remove outliers (optional but often useful);
(c) Compute values for a set of invariants on all remaining graphs;
(d) Center the vectors of values for each invariant (thus transforming the problems of

finding affine relations into that of finding linear ones);
(e) Compute the variance-covariance matrix V between centered vectors;
(f) Diagonalize V , with, however, some empty lines if there are relations. In the resulting

matrix V ′, Dim(Im(V )) lines contain non-zero terms and correspond to independent
variables. The remaining n − Dim(Im(V )) lines contain only zeros and correspond
to dependent variables which may be expressed as linear combinations of the inde-
pendent ones. These relations form a basis of the null-space of V . Using the initial
data one can then compute the right-hand sides of the corresponding affine relations.



Les Cahiers du GERAD G–2002–44 — Revised 36

To illustrate, consider the irregularity irr(G) of a graph G as defined by Albertson [3]:
let the imbalance imbij of edge (vi, vj) of G be defined by

imbij = |di − dj |

and the irregularity irr(G) of (G) by

irr(G) =
∑

i,j|(vi,vj)∈E

imbij .

Applying AGX [107] led automatically to the following conjectures valid for graphs G
with maximum irregularity:

r(G) = 1
χ(G) = ω(G)

n = ∆+ 1
α(G) = −ω(G) + ∆+ 2,

from where it follows that
α(G) + ω(G) = n+ 1

which implies that the extremal graphs are split graphs, i.e., graphs consisting of a clique, a
disjoint independent set and edges joining vertices of the clique to those of the independent
set. (For further use of this information and of the external graphs found, see [107]).

Several comments are in order. First, note that the algorithm described takes polyno-
mial time: if the number of graphs considered is fixed and t invariants are computed, it
requires O(t3) time.

Second, observe that it gives relations for subsets of the set of invariants considered,
not necessarily for the whole set. So the combinatorial problem of finding the right subset
is avoided. This implies that given a sufficiently large set of graphs of some class, and
sufficient computing time, one could find a basis of affine relations among a large set of
invariants (maybe several hundred of them). Should such relations exist and be up to now
unnoticed, it would prove that interesting relations may be found without focussing on a
particular problem, or domain (such as e.g. problems of distances in graphs).

Third, the algorithm subsumes some other ones, which have met with success. For
instance the BACON algorithm developed by Simon and co-workers [122], gives rational
reconstructions (or possible reasonings) for great discoveries of the past in physics and
chemistry. It uses four rules, given a set of observations involving several variables:

(a) If a variable is constant, a law has been found;
(b) If a variable is a linear function of another one, a law has been found;
(c) If a variable increases while another one decreases, add a new variable equal to their

product, and iterate;



Les Cahiers du GERAD G–2002–44 — Revised 37

(d) If a variable increases while another one increases, add a new variable equal to their
ratio and iterate.

BACON rediscovered Kepler’s third law, in three iterations only, as well as several
other famous ones. The numerical method of AGX reproduced these results in much less
computer time [36]. These laws are expressed as monomials, i.e., products of variables
with integer powers. Taking logarithms gives affine functions.

However, there are many more complicated cases: Langley et al. [122] have observed
that laws in chemistry may take a more general form, the logic of which had, apparently, not
yet been studied [155]: in addition to the variables, there are substance-specific constants,
such as e.g. specific heat. BACON could be extended to this case.

RP14. Study how to extend the numerical method of AGX in order to apply it to
problems with both variables and substance-specific constants. �

Fourth, one would clearly like to extend the discovery of conjectures to more general
cases than affine relations. Note first that inequalities are obtained in a straightforward
way: it suffices to check on which side lie graphs which are not extremal for the objective
under study. Then one might add, as new variables, products of variables, or simple powers
such as squares, cubes, inverses, square roots and the like.
All this increases the number of variables, and thus augments the number of graphs needed
to obtain relations, as well as computing time, but does not change the method itself.

If e.g. only products of two variables are considered it is still possible to consider a few
tens of variables. One would like to do better than this brute-force approach, and in view
of results obtained by support-vector machines, this seems to be possible.

RP15. Study selection of product and power terms in finding nonlinear conjectures
between invariants in graph theory. Devise corresponding heuristics. �

Fifth, even more general sets of relations involving signomial functions (polynomials
in several variables with arbitrary powers and signs) have been studied by using neural
networks. These have reconstructed with fairly good precision a set of such equations.

RP16. Compare conjecture-making by the numerical method of AGX and by neural
networks; define hybrids where neural networks are used to find the form of the relations
and AGX to find the precise values of coefficients. �

Sixth, to determine affine relations, which are equalities, numerical precision is required,
and hence control of errors. Standard tools of numerical analysis are used to do so, but
the guarantee of finding all affine relations is not complete. To attain such a goal one
would need computations in error-free arithmetic (i.e., making computations with rational
numbers using a sufficient number of digits to avoid all approximation errors), which has
been used in solution of equations associated with Euler sums [12], but are very time
consuming.

4.8 Geometric method of conjecture-making

Consider a set of extremal graphs for some objective; they correspond to points in the R
p

space of invariants (or in a sub-space of selected invariants), each of which is associated with



Les Cahiers du GERAD G–2002–44 — Revised 38

one of the p axes. Then constructing the convex hull of these points with a gift-wrapping
algorithm (as e.g. implemented in the package of Avis and Fukuda [10]) immediately yields
a set of conjectures in the form of linear inequalities: for each invariant, faces passing below
all points, or above all points correspond to lower and upper bounds.

To illustrate, consider chemical graphs, in which ∆ ≤ 4 due to the valency of carbon.
The geometric method of AGX could find the two following relations in a very small
computing time:

Ra(G) ≥ n

3
+

m

12
and

Ra(G) ≥ 1
4
(m+ n1).

The main difficulty with this approach is to avoid undue extrapolation. In the case of a
function of a single invariant say i1(n), if it is concave, just the next graph could disprove
the conjecture.

Therefore the conjectures obtained are systematically tested by looking for the few
extremal graph(s) following those used to find them. Also the touch number criterion
discussed above is of interest here: if the inequality found is sharp at only a couple of
points, it appears to be of little interest. Conversely, if it is sharp for many or even
most values of the parameters, as is the case for the two relations just cited, it is clearly
interesting.

One would then like to obtain often sharp relations even when the relationships between
invariants of extremal graphs are nonlinear. Again this could be done by introducing new
variables, i.e., going to a higher dimensions. There are some limitations here, as gift-
wrapping algorithms may become very time consuming with only 10 variables or so.

RP17. Examine how to transform functions in order to get nonlinear relations through
the geometric method. Compare results with those of the numerical approach for the same
problems.

4.9 Algebraic method for conjecture-making

The principle of the third method is to recognize extremal graphs for some objective
function, then to use relations between invariants valid for those classes of graphs in order
to obtain new relations, which are conjectured to hold in general.

To illustrate, consider the objective function Ra(G)− l̄(G), (which corresponds to con-
jecture Graffiti 3, i.e., l̄(G) ≤ Ra(G)). Minimizing this relation systematically gave stars,
for which the Randić index is equal to

√
n− 1 (and is minimum for fixed n as shown by

Bollobas and Erdös [18]) and the average distance is 2− 2
n . This leads to the conjecture

For any connected graph G

Ra(G)− l̄(G) ≥ √
n− 1 +

2
n
− 2,

which strengthens Graffiti 3. If true, the new bound is sharp for all n ≥ 1.



Les Cahiers du GERAD G–2002–44 — Revised 39

The difficulty of this method is the large amount of information needed: on the one
hand, specific algorithms are required to recognize to which class belong extremal graphs,
and on the other hand a database of relations between graph invariants is needed for each
class considered. Presently this method is working in experimental mode.

PE18. Extend the set of graph recognition routines of AGX. �
PE19. Extend the database of relations between graph invariants. �
PE20. Couple the algebraic method with Mathematica or Matlab to simplify the

relations obtained. �
Clearly it will not always be the case that extremal graphs all belong to a single well-

defined class, for which relations are known. A first difficulty is then that one will have
to use lower or upper bounds (e.g. if all one can find is that extremal graphs are trees),
although that would not change the approach too much.

PE21. Extend the algebraic approach to manipulate bounds rather than equalities
between invariants. �

Another extension would be to recognize the various classes of graphs which are extremal
for some values of the parameters (a problem already evoked above) and modify again the
way bounds are computed and relations obtained.

Finally, once again one should compare methods.
RP18. Compare systematically results of the three methods proposed for automated

conjecture-making on the same set of problems, including some which led to well-known
graph theorems. Deduce from this comparison intimations about what makes a relation
difficult to find for one or all of them. �

5 Conclusions

Computer-assisted and automated conjecture-making in graph-theory appears to be very
successful and has led collectively to more than 200 papers research reports and theses.
This makes it probably the most active subfield of discovery science.

Three systems are operational and largely used: GRAPH, Graffiti and AGX. Their prin-
ciples are different: interactive computing, generation of a priori conjectures and selection
amongst them, heuristic optimization to get extremal graphs and deduction of conjectures
from them. All three have large parts which are automated, but only the last can presently
be used in (fully) automated mode, that is with a problem statement unaccompanied by
further information, no human intervention between problem statement and reading the
final results as well as no selection among results so obtained. Note that this is not the only
way to use this system, nor necessarily the most efficient one, as interactive modification of
the extremal graphs obtained may give insight on how to prove the conjectures it delivers.

All three systems (and others) are susceptible of fuller automation in the near future.
A series of suggestions on 21 possible enhancements are given in this paper, as well as a
list of 18 more general questions, or research paths, of possible interest to the whole field.



Les Cahiers du GERAD G–2002–44 — Revised 40

As a final point, observe that the conjectures considered in this paper are mainly alge-
braic inequalities (or, in some rare case, equalities) among graph invariants. As discussed
more fully in [113] there are many other forms which interesting conjectures in graph theory
can take. So there is plenty of room for further achievement in this young and promising
field.

Acknowledgments:

This paper was written in part during a visit to SMG, University of Brussels; support
of the Research in Brussels program is gratefully acknowledged as well as NSERC grant
# 105574-98. Thanks to Mustapha Aouchiche, Gilles Caporossi, Hadrien Mélot and Dra-
gan Stevanović for discussions as well as Dragos Cvetković and Siemion Fajtlowicz for
correspondence which helped to clarify issues discussed.

References

[1] abeledo, h., and atkinson, g.w. The Clar and Fries problems for benzenoid
hydrocarbons are linear programs. In: Discrete Mathematical Chemistry, P. Hansen,
P. Fowler, and M. Zheng, Eds., vol. 51 of DIMACS Series on Discrete Mathematics
and Theoretical Computer Science. American Mathematical Society, Providence RI,
2000, pp. 1–8.

[2] abeledo, h., and atkinson, g.w. Polyhedral combinatorics of benzenoid problems.
Proceedings of IPCO VI, Houston (1998). Lecture Notes in Computer Science, New-
York, Springer 1412.

[3] albertson, m.o. The irregularity of a graph. Ars Combinatoria, 46 (1997) 215–225.
[4] alon, n. and seymour, p. A counter-example to the rank-coloring conjecture.

Journal of Graph Theory, 13 (1989) 523–525.
[5] aouchiche, m. www.gerad.ca/AGX . A Bibliography on AutoGraphiX, its Results

and Related Topics (forthcoming).
[6] aouchiche, m., caporossi, g., and hansen, p. Variable neighborhood search for

extremal graphs 8. Variations on Graffiti 105. Congr. Numer., 148 (2001) 129–144.
[7] appel, k., and haken, w. Every planar map is four colorable. Part I. Discharging.

Illinois J. Math., 21 (1977) 429–490.
[8] appel, k., and haken, w. Every planar map is four colorable. Part II. Reducibility.

Illinois J. Math., 21 (1977) 491–567.
[9] appel, k., and haken, w. Every planar map is four colorable. Contemp. Math., 98

(1989) 1–743.
[10] avis, p., and fukuda, k. lrs home page; cdd and ccd plus page.
[11] bailey, d. Integer Relation Detection. Computing in Science and Engineering 2

(2000) 24–28.
[12] bailey, d.h., borwein, p.b. and plouffe, s.a. New formulas for picking up pieces

of Pi. Science News, 148 (1995) 279.



Les Cahiers du GERAD G–2002–44 — Revised 41

[13] bailey, d.h., borwein, p.b. and plouffe, s.a. On the rapid computation of
various polylogarithmic constants. Mathematics of Computation, 66 (1997) 903–913.

[14] battiti, r., and protasi, m. Reactive local search for the maximum clique problem.
Algorithmica 29 (2001) 610–637.

[15] beezer, r.a., riegsecker, j. and smith, b.a. Using minimum degree to bound
average distance. Discrete Mathematics, 226 (2001) 365–377.

[16] berge, c. Färbung von Graphen deren sämtliche bzw. deren ungerade Kreise starr
sind (Zusammenfassung), Wissenschaftliche Zeitschrift, Martin-Luther-Universität
Halle-Wittenberg, Mathematisch-Naturwissenschaftliche Reihe, (1961) 114–115.

[17] berge, c. Perfect graphs I. Six papers on graph theory. Indian Statistical Institute,
Calcutta (1963).

[18] bollobas, b. and erdös, p. Graphs of extremal Weights. Ars combinatoria, 50
(1998) 255–233.

[19] boros, e., hammer, p.l., ibaraki, t., mayoraz, e., and muchnik, i. An im-
plementation of logical analysis of data. IEEE TRANS. On Knowledge and Data
Engineering, 12 (2000) 292-306.

[20] borwein, j., bradley, r. Empirically determined Apéry-like formulae for zeta
(4n+3). Experimental Mathematics 6 (1997) 181–194.

[21] borwein, j.m., lisoněk, p. Applications of integer relation algorithms. Discrete
Mathematics 217 (2000) 65–82.

[22] bouvier, a., and george, m. Dictionnaire des Mathématiques. Presses Universi-
taires de France (1979). (in french)

[23] breiman, l., friedman j., stone, c.j. and olshen, r.a. Classification and Re-
gression Trees. Chapman and Hall (1984).

[24] brewster, t.l., dinneen, m.j. and faber, v. A computational attack on the
conjectures of Graffiti: New counterexamples and proofs. Discrete Mathematics 147
(1995) 35–55.

[25] brigham, r.c., and dutton, r.d. INGRID: A software tool for extremal graph
theory research. Congressum Numerantium, 39 (1983) 337–352.

[26] brigham, r.c., and dutton, r.d. A compilation of relations between graph invari-
ants. Networks, 15 (1985) 73–107.

[27] brigham, r.c., and dutton, r.d. A compilation of relations between graph invari-
ants. Supplement 1. Networks, 21 (1991) 421–455.

[28] brigham, r.c., dutton, r.d., and gomez, f. INGRID: A graph invariant manip-
ulator. J. Symb. Comp., 7 (1989) 163–177.

[29] cage. The chemical and abstract graph environment. Homepage: http://www.
mathematik.uni-bielefeld.de/∼CaGe/ .

[30] campbell, m., hoane, a.j. and hsu, f.m. Deep Blue. Artificial Intelligence 134
(2002) 57–83.



Les Cahiers du GERAD G–2002–44 — Revised 42

[31] caporossi, g., cvetkovic, d., gutman, i., and hansen, p. Variable neighborhood
search for extremal graphs 2. Finding graphs with extremal energy. J. Chem. Inf.
Comp. Sci., 39 (1999) 984–996.

[32] caporossi, g., dobrynin, a.a., hansen, p., and gutman, i. Trees with palin-
dromic Hosoya polynomials. Graph Theory Notes N.Y., 37 (1999) 10–16.

[33] caporossi, g., fowler, p.w., hansen, p., and soncini, a. Variable neighbor-
hood for extremal graphs 7. Polyenes with maximum HOMO-LUMO gap. Chemical
Physics Letters.

[34] caporossi, g., gutman, i., and hansen, p. Variable neighborhood search for
extremal graphs 4. Chemical trees with extremal connectivity index. Computers and
Chemistry, 23 (1999) 469–477.

[35] caporossi, g., and hansen, p. Variable neighborhood for extremal graphs 5. Three
ways to automate finding conjectures. Discrete Mathematics. (To appear).

[36] caporossi, g., and hansen, p. Finding Relations in Polynomial Time. In XVIth
International Joint Conference on Artificial Intelligence (IJCAI) (Stockholm, 1999),
vol. 2.

[37] caporossi, g., and hansen, p. Variable neighborhood search for extremal graphs
1. The system AutoGraphiX. Discr. Math., 212 (2000) 29–44.

[38] carbonneaux, y., laborde, j.-n. and madani, m. Cabri-graphes: A tool for
research and teaching in graph theory. In Lecture Notes in Computer Science. Vol.
1027, Berlin:Springer, 1995, pp. 123–127.

[39] caro, y. Colorability, frequency and Graffiti-119. Journal of Combinatorial Math-
ematics and Combinatorial Computing, 27 (1998) 129–134.

[40] chervenka, b. Graffiti.pc Red Burton Style – A Student’s perspective. preprint,
(2002).

[41] chinn, p.z. Discovery-method teaching in graph theory. Annals of Discrete Mathe-
matics 55 (1993) 375–384.

[42] chou, s.c. Proving and Discovering Theorem in Elementary Geometrics using Wu’s
Method, Ph.D. Thesis, Department of Mathematics, University of Texas, Austin
(1985).

[43] chou, s.c. Mechanical Geometry Theorem Proving. Mathematics and its Applica-
tions, 41, Dordrecht: Reidel, 1988.

[44] chou, s.c., gao, x.s. The computer searches for Pascal conics. Computers and
Mathematics with Applications 29 (1995) 63–71.

[45] chou, s.c., gao, x.s., zhang, j.z. A deductive database approach to automated
geometry theorem proving and discovering. Journal of Automated Reasoning 25
(2000) 129–246.

[46] christiani, n., and shaw-taylor, j. Support Vector Machines. Cambridge: Cam-
bridge University Press (2001).



Les Cahiers du GERAD G–2002–44 — Revised 43

[47] chudnovsky, m., robertson, n., seymour, p., and thomas, r. Progress on
perfect graphs, Mathematical Programming B 97 (2003) 405–422.

[48] chudnovsky, m., robertson, n., seymour, p., and thomas, r. The strong
perfect graph tehorem, manuscript. http://www.gatech.adv/∼thomas/sqge.html .

[49] chung, f. The average distance is not more than the independence number. J.
Graph Theory, 12 (1988) 229–235.

[50] colton, s. Refactorable numbers – A machine invention. Journal of Integer Se-
quences, 2 (1999).

[51] colton, s. On the notion of interestingness in automated mathematical discov-
ery. International Journal of Human Computer Studies special issue on Machine
Discovery, 53 (2000).

[52] colton, s. Mathematics: A new domain for data mining. IJCAI 01 Proceedings,
2001.

[53] cowen, r. Personal Communication at Graph Theory Day 42. DIMACS, Rutgers,
November 2001.

[54] cvetković, d. Discussing graph theory with a computer, II: Theorems suggested
by the computer. Publ. Inst. Math. (Beograd), 33(47) (1983) 29–33.

[55] cvetković, d. Discussing graph theory with a computer, IV: Knowledge organisa-
tion and examples of theorem proving. In Proc. Fourth Yugoslav Seminar on Graph
Theory (Novi Sad, 1983), pp. 43–68.

[56] cvetković, d. Discussing graph theory with a computer, VI: Theorems proved with
the aid of the computer. Cl. Sci. Math. Natur., Sci. Math., T. XCVII (1988), No. 16,
51–70.

[57] cvetković, d., doob, m., gutman, i., and torgasev, a. Recent results in the
theory of graph spectra. Annals of Discrete Mathematics, 36 (1988) 1–306.

[58] cvetković, d. jovanovic, a., rado savliević, z. and simić, s. Coplanar graphs.
Univ. Beograd, Publ. Elektrotekn. Fak. Mat., 2 (1991) 67–81.

[59] cvetković, d., and kraus, l. “Graph” an expert system for the classification and
extension of the knowledge in the field of graph theory, User’s manual. Elektrotehn.
Fak., Beograd, 1983.

[60] cvetković, d., kraus, l., and simić, s. Discussing graph theory with a computer,
I: Implementation of graph theoretic algorithms. Univ. Beograd Publ. Elektrotehn.
Fak, Ser. Mat. Fiz. No. 716 – No. 734 (1981) 100–104.

[61] cvetković, d., and pevac, i. Discussing graph theory with a computer, III: Man-
machine theorem proving. Publ. Inst. Math. (Beograd), 34(48) (1983) 37–47.

[62] cvetković, d., and pevac, i. Man-machine theorem proving in graph theory.
Artificial Intell., 35 (1988) 1–23.

[63] cvetković, d., and simić, s. Graph theoretical results obtained by the support of
the expert system “Graph”. Cl. Sci. Math. Natur., Sci. Math., T. CVII (1994), No.
19, 19–41.



Les Cahiers du GERAD G–2002–44 — Revised 44

[64] cvetković, d., and simić, s. Graph theoretical results obtained with support of
the expert system “GRAPH”– An extended survey. (submitted)

[65] cvetković, d., simić, s., caporossi, g., and hansen, p. Variable neighborhood
search for extremal graphs 3. On the largest eigenvalue of color-constrained trees.
Lin. and Multilin. Algebra, 2 (2001) 143–160.

[66] dankelmann, p. Average distance and the independence number. Discrete Applied
Mathematics, 51 (1994) 73–83.

[67] de la vina, e. Bibliography on conjectures of Graffitti. http://cms.dt.uh.edu/
faculty/delavinae/research/wowref.htm , 2000.

[68] de la vina, e. Graffiti.pc. Graph Theory Notes of New York, XLII (2002) 26–30.
[69] de la vina, e. Some history of the development of Graffiti. Submitted for publica-

tion, 2003.
[70] di battista, g., eades, p., tamassia, r., and tollis, i.g. Algorithms for drawing

graphs: an annotated bibliography. Computational Geometry: Theory and Applica-
tions 4, 5 (1994) 235–282.

[71] di battista, g., eades, p., tamassia, r., and tollis, i.g. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[72] dobrynin, a.a., entringer, r. and gutman, i. Wiener index of trees: Theory
and applications. Acta Applicandae Mathematicae, 66 (2001) 211–240.

[73] epstein, s.l. Ph.D. Thesis, Rutgers University, 1983.
[74] epstein, s.l. On the discovery of mathematical theorems. In Proceedings of the

Tenth International Joint Conference on Artificial Intelligence (Milan, Italy, 1987),
pp. 194–197.

[75] epstein, s.l. Learning and discovery: one system’s search for mathematical knowl-
edge. Comput. Intell., 4 (1988) 42–53.

[76] epstein, s.l., and sridharan, n.s. Knowledge representation for mathematical
discovery: Three experiments in graph theory. J. Applied Intelligence, 1 (1991)
7–33.

[77] erdös, p., pach, j., and spencer, j. On the mean distance between points of a
graph. Congressus Numerantium, 64 (1988) 121–124.

[78] erdös, p., fajtlowicz, s., and staton, w. Degree sequences in the triangle-free
graphs, Discrete Mathematics, 92 (1991) 85–88.

[79] fajtlowicz, s. Written on the Wall. A regularly updated file accessible from
http://www.math.uh.edu/∼clarson/ .

[80] fajtlowicz, s. On conjectures of Graffiti – II. Congr. Numer., 60 (1987) 187–197.
[81] fajtlowicz, s. On conjectures of Graffiti. Discrete Math., 72 (1988) 113–118.
[82] fajtlowicz, s. On conjectures of Graffiti – III. Congr. Numer., 66 (1988) 23–32.
[83] fajtlowicz, s. On conjectures of Graffiti – IV. Congr. Numer., 70 (1990) 231–240.



Les Cahiers du GERAD G–2002–44 — Revised 45

[84] fajtlowicz, s. On conjectures of Graffiti – V. In Seventh International Quadrennial
Conference on Graph Theory. (1995), Vol. 1, pp. 367–376.

[85] fajtlowicz, s. Toward fully automated fragments of graph theory. Graph Theory
Notes of New York, XLII (2002) 18–25.

[86] fajtlowicz, s. Fullerene Expanders, a List of Conjectures of Minuteman. Available
from the author.

[87] fajtlowicz, s. On conjectures and methods of Graffiti. In Proceedings of the 4th

Clemson Miniconference on Discrete Mathematics, Clemson (1989).
[88] favaron, o., mahéo, m., and saclé, j.-f. On the residue of a graph. J. Graph

Theory, 15 (1991) 39–64.
[89] favaron, o., mahéo, m., and saclé, j.-f. Some eigenvalue properties in graphs

(Conjectures of Graffiti-II). Discrete Mathematics 111 (1993) 197–220.
[90] firby, p., and haviland, j., Independence and average distance in graphs. Discrete

Applied Mathematics, 75 (1997) 27–37.
[91] fisher, r.a. The use of multiple measurements in taxonomic problems. Annals of

Eugenics, 7 (1936) 179–188.
[92] gallai, t. Maximum-minimum Satze uber Graphen (german). Acta Math. Acad.

Sci. Hungar., 9 (1958) 395–434.
[93] ganter, b., and wille, r. Formal Concept Analysis – Mathematical Foundations.

Berlin: Springer (1999).
[94] glas, e. The ‘Popperian Programme’ and Mathematics. Part 1: The Faillibilist

Logic of Mathematical Discovery. Studies in History and Philosophy of Science,
32(1) (2001) 119–137.

[95] glas, e. The ‘Popperian Programme’ and Mathematics. Part 2: From Quasi-
Empiriciam to Mathematical Research Programmes. Studies in History and Phi-
losophy of Science, 32(1) (2001) 355–376.

[96] griggs, j.r., and kleitman, d.j. Independence and the Havel-Hakimi residue.
Discrete Mathematics, 127 (1994) 209–212.

[97] gutman, i. Total π-electron energy of benzenoid hydrocarbon. Topics in Current
Chemistry, 162 (1992) 29–63.

[98] gutman, i., and cyvin, s. Introduction to the Theory of Benzenoid Hydrocarbons.
Springer-Verlag, 1989.

[99] gutman, i. and hou, y.p. Bipartite unicyclic graphs with greatest energy. Match-
Commun. Math. comp. Chem. (43) (2001) 17–28.

[100] hájek, p. and havránek, t. On generation of inductive hypotheses. International
Journal of Man-Machine Studies 9 (1977) 415–438.

[101] hájek, p. and havránek, t. Mechanizing Hypothesis Formation. Mathematical
Foundations for a General Theory, Berlin: Springer, 1978.



Les Cahiers du GERAD G–2002–44 — Revised 46

[102] hájek, p. and holeňa, m. Formal logics of discovery and hypothesis formation by
machine. Theoretical Computer Science 292 (2003) 345–357.

[103] hakimi, s.l. On realizability of a set of integers as degrees of the vertices of a linear
graph. 1. Journal of SIAM, 10 (1962) 496–506.

[104] hansen, p. Computers in graph theory. Graph Theory Notes of New York XLIII
(2002) 20–34.

[105] hansen, p. Degrés et nombre de stabilité d’un graphe. Cahiers du Centre d’Etudes
de Recherche Opérationnelle, 17 (1975) 213–220.

[106] hansen, p., and mélot, h. Variable neighborhood for extremal graphs 6. Analysing
bounds for the connectivity index. Journal of Chemical Information and Chemical
Sciences, (2002).

[107] hansen, p., and mélot, h. Variable neighborhood search for extremal graphs.
9. Bounding the irregularity of a graph, in S. Fajtlowicz et al. (eds.), Graphs and
Discovery , American Mathematical Society, forthcoming.

[108] hansen, p., and mladenović, n. Variable neighborhood search: Principles and
applications. European J. of Oper. Res., 130 (2001) 449–467.

[109] hansen, p., and zheng, m.l. Sharp bounds on the order, size, and stability number
of graphs. Networks, 23 (1993) 99–102.

[110] hansen, p., and zheng, m.l. Upper bounds for the Clar number of a benzenoid
hydrocarbon. Faraday Transactions, 88 (1992) 75–83.

[111] hansen, p., and zheng, m.l. The Clar number of a benzenoid hydrocarbon and
linear programming. Journal of Math. Chem., 15 (1994) 93–107.

[112] hansen, p., mladenovic, n., and urosevic, d. Variable neighborhood search for
the maximum clique. Les Cahier du GERAD, G–2001–08, submitted.

[113] hansen, p., aouchiche, m., caporossi, c., mélot, h., and stevanović, d.
What forms have interesting conjectures in graph theory? Les Cahiers du GERAD,
G–2002–46, 2002, submitted.

[114] hardy, g. A Mathematician’s Apology. Cambridge: Cambridge University Press,
1992.

[115] hastad, j., just, b., lagarias, t.c., schnorr, c.p. Polynomial time algorithms
for finding integer relations among real numbers. SIAM Journal on Computing 18
(1989) 859–881.

[116] havel, v., A remark on the existence of finite graphs. Casopis Pest. Mat. 80 (1955)
477–480.

[117] hou, y.p. Unicyclic graphs with minimum energy. J. Mat. Chem., 29 (2001) 163–168.
[118] hsu, f.-h. Behind Deep Blue, Princeton: Princeton University Press, 2002.
[119] knuth, d. The Stanford Graphbase: A Platform for Combinatorial Computing.

Addison-Wesley, Reading, Massachusetts, 1993.
[120] kurzweil, r. The Age of Spiritual Machines. London: Penguin, 2002.



Les Cahiers du GERAD G–2002–44 — Revised 47

[121] langley, p. The Computer-Aided Discovery of Scientific Knowledge. Discovery
Science: Proceedings of the First International Conference on Discovery Science.
Lecture Notes in Artificial Intelligence, 25–39, (1998).

[122] langley, p., simon, h.a, bradshaw, g.l., and zytkow, j.m. Scientific Discovery,
Computational Explorations of the Creative Process. Cambridge, Mass: MIT Press.

[123] lakatos, i. Proofs and Refutations. Cambridge, Mass: Cambridge University Press,
1976.

[124] larson, c. Intelligent machinery and mathematical discovery. Graph Theory Notes
of New York, XLII (2002) 8–17.

[125] larson, c. On progress in the automation of mathematical conjecture-making.
preprint, (2002).

[126] leydesdorff, l. The Challenge of Scientometrics: The Development of Mea-
surement and Self-Organization of Scientific Communications. Universal Publisher
(2001).

[127] li, m., and vitany, p. An Introduction to Kolmogorov Complexity and its Appli-
cations. New York: Springer, 1997.

[128] mac lane, s. Comment on “Theoretical Mathematics”: Towards a cultural synthe-
sis of mathematics and theoretical physics. Bulletin of the American Mathematical
Society, 30 (1994) 13–15.

[129] mangasarian, o.l. Arbitrary-norm separating plane. Operations Research Letters,
24 (1999) 15–23.

[130] mathworks, Inc. Matlab: The Language of Technical Computing. The MathWorks,
Inc.

[131] mc kay, b.d. Nauty user’s guide (version 1.5). Tech. Rep. TR-CS-90-02, Department
of Computer Science, Australian National University, 1990.

[132] mckay, b.d. Isomorph-free exhaustive generation. J. Algorithms, 26 (1998) 306–324.
[133] mc cune, w. Solution of the Robbins problem. J. Automated Reasoning, 19 (1977)

263–276.
[134] mehlhorn, k., and nähger, s. LEDA: A platform for combinatorial and geometric

computing. Communications of the ACM, 38(1) (1995) 96–102.
[135] mladenović, n., and hansen, p. Variable neighborhood search. Computers and

Operations Research, 29 (1997) 1097–1100.
[136] otter. An Automated Deduction System. Web Site.
[137] pepper, r. On New Didactics of Mathematics-Learning Graph Theory via Graffiti.

Preprint, (2002).
[138] polya, g. Mathematics and Plausible Reasoning, Volume 1. (Induction and Analogy

in Mathematics). Princeton: Princeton University Press, 1954.
[139] polya, g. Mathematics and Plausible Reasoning, Volume 2. (Patterns of Plausible

Inference). Princeton: Princeton University Press, 1954.



Les Cahiers du GERAD G–2002–44 — Revised 48

[140] popper, k. The Logic of Scientific Discovery. Hutchinson, London, 1959.
[141] price, d. de solla, Little Science, Big Science. New York; Columbia University

Press (1963).
[142] pujol, f. Étude d’un système automatisé en théorie des graphes (french). Travail

de fin d’études IIE, sous la direction de Gilles Caporossi et Pierre Hansen. Rapport
final. GERAD. 1999.

[143] quinlan, j.r. C4.5. Programs for Machine Learning. Morgan Kaufmann, 1993.
[144] randić, m. On characterization of molecular branching. Journal of the American

Chemical Society, 97 (1975) 6609–6615.
[145] radziszowski, s.p. Small Ramsey numbers. Dynamic survey 1. Electronic Journal

of Combinatorics (1994). Updated 1998.
[146] robertson, n., sanders, d., seymour, p., and thomas, r. The four-color theo-

rem. J. Combinatorial Theory, Ser. B, 70 (1997) 2–44.
[147] roget’s ii. The New Thesaurus@Bartleby.com
[148] rowlinson, p. A deletion–contraction algorithm for the characteristic polynomial of

a multigraph. Proceedings of the Royal Society of Edinburgh A, 105 (1987) 153–160.
[149] saaty, t., and kainen, p. The Four-Color Problem: Assaults and Conquest. New-

York: Dover (1986).
[150] samuelson, p.a. Economics. New York: Mc Graw Hill, 1968.
[151] seymour, p. Personal Communication at the Graph Coloring and Applications

Workshop. CRM, Montreal, May 1998.
[152] sibley, t., and wagon, s. Rhombic Penrose tillings can be 3-colored. American

Mathematical Monthly, (2000) 251–253.
[153] simić, s. Some results on the largest eigenvalue of a graph. Ars Combinatoria, 24A

(1987) 211–219.
[154] simić, s., and kocić, v. On the largest eigenvalue of some homeomorphic graphs.

Publ. Inst. Math. (Beograd) 40 (1986) 3–9.
[155] shen, w., and simon, h.a. Fitness Requirements for scientific theories containing

recursive theoretical terms. British Journal for the Philosophy of Science, 44 (1993)
641-652.

[156] skiena, s. The Graphs of Graffiti:, directory, of a collection of 195 graphs from
the database of Graffiti. The graphs have been converted to Combinatorica format.
The database consists mostly of counterexamples, most of which were found by Noga
Alon, Robert Beezer, Tony Brewster, Michael Dineen, Shui-Tain Chen, Paul Erdös,
Siemion Fajtlowicz, Odile Favaron, Maryvonne Maheo, J. Riegsecker, Jean-Franois
Sacle, Michael Saks, Paul Seymour, James Shearer, B.A. Smith, William Staton and
Peter Winkler.

[157] sloane, n. The On-Line Encyclopedia of Integer Sequences, interactive Web Site.



Les Cahiers du GERAD G–2002–44 — Revised 49

[158] smale, s. Mathematical problems for the next century. The Mathematical Intelli-
gence 20 (1998) 7–15.

[159] turan, p. An extremal problem in graph theory (in Hungarian) Mat. Fiz. Lapok,
48 (1941) 436–452.

[160] van nuffelen, c. A bound for the chromatic number of a graph. American Math-
ematical Monthly, 83 (1976) 265–266.

[161] wolfram, Research Inc. Mathematica Language and Software. Wolfram Research,
Inc.

[162] wos, l. The Automation of Reasoning: An Experimenter’s Notebook with other
Tutorial. New-York, Academic Press (1996).

[163] wu, w.-t. On the decision problem and the mechanization of theorems proving in
elementary geometry. Scientia Simica 21 (1978) 157–179.

[164] wu, w.-t. Basic principles of mechanical theorem proving in geometrics. Journal of
Systems Science and Mathematical Sciences 4 (1984) 207–235, republished in Journal
of Automated Reasoning 2 (1986) 221–252.


