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Abstract

Conjectures in graph theory have multiple forms and involve graph invariants, graph
classes, subgraphs, minors and other concepts in premisses and/or conclusions. Various
abstract criteria have been proposed in order to find interesting ones with computer-
aided or automated systems for conjecture-making. Beginning with the observation
that famous theorems (and others) have first been conjectures, if only in the minds
of those who obtained them, we review forms that they take. We also give examples
of conjectures of such forms obtained with the help of, or by, computers when it is
the case. It appears that many forms are unexplored and so computer-assisted and
automated conjecture-making in graph theory, despite many successes, is pretty much
at its beginning.

Keywords: graph, conjecture, computer-aided system, automated system, invariant,
subgraph, minor.

Résumé

Les conjectures en théorie des graphes ont des formes multiples et impliquent des
invariants graphiques, des classes de graphes, des sous-graphes, des mineurs et d’autres
concepts dans les prémisses et /ou conclusions. Divers critéres abstraits ont été proposés
afin de trouver des conjectures intéressantes avec l’assistance de 'ordinateur ou a l'aide
de systémes automatisés. A partir de 'observation que les théorémes célebres (et les
autres) ont d’abord été des conjectures, ne fut-ce que dans l’esprit de ceux qui les ont
obtenus, on passe en revue les formes qu’elles peuvent prendre. On donne également
des exemples pour les formes pour lesquelles des systémes assistés ou automatisés
ont donné des résultats. Il apparait que de nombreuses formes sont inexplorées et en
conséquence la recherche de conjectures assistée par ordinateur ou automatisée, malgré
de nombreux succes, en est encore a ses débuts.

Mots clés: graphe, conjecture, systeme assisté, systéme automatisé, invariant, sous-
graphe, mineur.
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1 Introduction

“What makes a mathematical result interesting?’ This difficult question of mathematical
philosophy is seldom discussed, despite its obvious interest. Recently, needs of computer-
assisted or automated systems for finding interesting new concepts, theorems or conjectures
have given it some actuality, notably in graph theory. Views of several famous scientists
on this topic are interspersed with discussions of graph theoretical conjectures in the large
Written on the wall file of Fajtlowicz [50]. Colton et al. [32] and Larson [67], also address
this question in detail.

We next mention and briefly discuss a few proposed criteria:

(a)

simplicity: simple formulae are the most used ones, and thus the most likely to have
many consequences. They also have the most potential falsifiers, as explained by
Popper in his famous book “The Logic of scientific discovery’[76]. However, it may
be hard to find many simple, new and true formulae. Moreover, some of them may
be trivial, e.g., that the clique number of a graph is not larger than its chromatic
number.

In a similar vein, one might suggest the two following criteria:

centrality: conjectures should preferably involve the most central concepts of graph
theory as e.g. connectedness, stability, colorability, and so forth. To illustrate, some
new concepts proved to be interesting and lead to numerous results, as e.g. pancyclic-
ity or having elementary cycles of all possible lengths, introduced by Bondy [10],
which is close to the basic concept of cycle. This is far from being always the case for
the numerous new concepts which nowadays proliferate and, to some extent, threaten
the unity of graph theory.

problem solving: instead of considering centrality in terms of concepts, one may
examine it in terms of problems posed by scientists in a given field. This leads to
another criterion, again stated by Popper in “The Logic of Scientific Discovery” [76]:
“Only if it is the answer to a problem — a difficult, a fertile problem, a problem
of some depth — does a truth, or a conjecture about the truth, become relevant to
science. This is so in pure mathematics, and it is so in the natural sciences.”

A quite different criterion is the following:

surprisingness: Conway’s answer to the question “What makes a good conjecture?”
was “It should be outrageous” [50]. This means a trained mathematician finds some-
thing contrary to what suggests his well-educated intuition, and so gets a new insight.
Of course, it remains to be examined whether some explanation may be found, to-
gether with new results, or the conjecture will remain an isolated curiosity.

distance between concepts is one version of surprisingness: a conjecture will be the
more interesting the farther the concepts involved are one from another. This implies
an operational notion of distance, either in the conjecture-making program or possibly
in a lattice of graph-theoretical concepts.
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Another view comes from information theory:

(f) information-content relative to databases of conjectures and graphs. A conjecture is
interesting if it tells more, for at least one graph than the conjunction of all other
conjectures. This is the criterion of the “DALMATIAN” version of Graffiti [50],
discussed in [60]. It also means the conjecture should not be redundant.

A more demanding related criterion is:

(g) sharpness: the conjecture should be best possible in the weak sense, i.e., sharp for
some values of the parameters, or in the strong sense, i.e., sharp for all values of the
parameters compatible with the existence of a graph [60].

In addition to such abstract criteria one might take a pragmatic view and say that a
conjecture is interesting if it has attracted the attention of mathematicians, whoever they
may be. This is fairly tautological. Note, moreover, that popularity of a result depends
not only on its intrinsic merits but also on its visibility (Journal where it was published,
computer systems which mention it or give access to it, as well as relations and aptitude
for marketing of its author(s)).

In this paper, we follow a different approach, beginning from the observation that well-
known theorems in graph-theoretical books and papers were first conjectures, if only in the
minds of those which proved them. Instead of seeking an abstract and general criterion
we more modestly try to find what forms have a number of well-known results in graph
theory. On this base we reflect on what is done by available conjecture making systems,
and what remains to be done.

Let us recall the definition of conjecture in Bouvier and George’s [13]| Dictionary of
Mathematics:

Conjecture: An a priori hypothesis on the exactness or falseness of a statement of
which one ignores the proof.

As a statement is a very general concept in mathematics, one can expect to find con-
jectures of many forms. We are, as mentioned above, interested here in the various forms
of graph-theoretic conjectures. We therefore make a tentative, and necessarily incomplete,
catalog of such forms using books by Berge [6], Biggs [7], Bondy and Murty [12], Busacker
and Saaty [20], Cvetkovi¢, Doob and Sachs [34], Haynes, Hedetniemi and Slater [61] and a
few others prominent among which is Chung and Graham’s book Erdds on Graphs [30].

We also mention, with an example if possible, if a form has been explored by one or
another system for computer-assisted or automated conjecture-making in graph theory.
In accordance with the terminology of [60] we say a conjecture has been obtained with a
system if this was done in computer-assisted mode and by a system if this was done in
(fully) automated mode. Note that several systems can be used in either of those modes.
Moreover, we mention some cases where systems, designed for other purposes, could be
used for conjecture-making. As will be seen, many unexplored cases remain, most of which
could apparently be explored by some enhanced version of one or another existing system.



Les Cahiers du GERAD G-2002-46 — Revised 3

2 Algebraic relations

2.1 General form

A first class of graph-theoretic conjectures consist in algebraic relations between graph
invariants, i.e., quantities which are independent of vertices and edge labelings. Such
relations may be valid for any graph G or for some particular class of graphs.

To date, this class of conjectures is the most studied, but far from the only one, in
computer-assisted and automated conjecture-making, see [60] for a discussion.

Let R denote a relation and C' a class of graphs; any graph G can be associated with
a boolean variable, true (or equal to 1) if G belongs to this class and false (or equal to 0)
otherwise [14] [16].

The general form of conjectures considered in this section can then be written

R|C (or C = R)

which reads:

“For any graph of class C, relation R holds”.
If a relation holds for all graphs, C can be omitted.

We now review theorems and conjectures of this form, considering first R, then C, and
going from the simplest to the more elaborate ones.

2.2 Linear relations and extensions

Let G = (V, E) be a simple undirected graph without loops, with order n = |V| and size
m = |E|. Let a(G) denote the independence number of G, i.e., the largest number of
pairwise non adjacent vertices, v(G) the matching number of G, i.e., the largest number
of pairwise non-incident edges, 7(G) the vertex covering number of G, i.e., the smallest
number of vertices in a set such that each edge contains at least one of those vertices,
and €(G), the edge covering number of G, i.e., the smallest number of edges in a set such
that each vertex belongs to at least one of those edges. Denote by R; the class of linear
equalities between invariants of G.

Theorem 1 (Norman, Rabin [71], Gallai [55]) For any graph G with matching number
v(G), edge covering number €(G), vertex covering number T(G), independence number
a(G) and order n,

v(G)+¢e(G)=n

and if G has mo isolated vertex
a(G) +7(G) =n.

Such equalities, valid for all graphs (or for a very large class) are rare. They are more
common for particular classes of graphs. Recall that a tree T is a connected graph without
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cycles (paths with the last vertex equal to the first one). Let w(G) denote the cliqgue number
of G, i.e., the largest number of pairwise adjacent vertices and x(G) the chromatic number
of G, i.e., the smallest number of colors to be assigned to the vertices of G such that no
pair of adjacent vertices get the same color.

Theorem 2 (Folklore) For any tree T,

m=mn—1,

w(T) =2
and

x(T) =2.

Observe that coefficients of invariants in these relations are equal to 1. This need not
always be the case.

Let ny denote the number of pending vertices of G, i.e., the number of vertices each
belonging to a single edge. Recall the distance l;; between a pair of vertices v; and v; of
a graph G is the number of edges in a shortest path joining them. The eccentricity ecc;
of a vertex v; is the largest distance between that vertex and another one. A center of G
is a vertex v; with smallest eccentricity; this eccentricity is called the radius of G. The
diameter D(G) of a graph G is the maximum eccentricity of its vertices, (or the largest
distance between two vertices of G). The index (or spectral radius) of G is the largest
eigenvalue of its adjacency matriz A = (a;j), where a;; = 1 if v; and v; are adjacent and 0
otherwise.

Conjecture 1 (Caporossi, Hansen [25] [24]) For any tree T of size m and order n with
ny black and n, white vertices, n = ny + Ny, with minimum indez, independence number
a(T), ny1 pending vertices, radius r and diameter D(T),

20(T) —m —n1 +2r(T) — D(T) = 0.

This conjecture, obtained by AGX, is open. It is unlikely that an equality conjecture
with as many invariants could be found by hand. Note that coefficients of invariants are
small integers. AGX can also obtain conjectures with real numbers (approximated to a
reasonable extent, as computations are made by machine).

Let dj, for j = 1,2, ..,n, denote the degree of vertex v;,i.e., the number of edges incident
with v;. Recall that the Randic index [79] of a graph G = (V, E) is defined by

1
Ra(G) =
al@)= 2 4id;
(6:3)/{vivi}€E
and the irregularity irr(G) [1] of G by
iTT’(G) = Z |dz — dj .

(6,5)/{vi v YEE
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Conjecture 2 For any tree T of size m with mazximum degree A < 3 and maximum
irregularity irr(T'), Randic index Ra(T), and ny pending vertices,

Ra(T) = —0.027421 irr(T) + 0.538005 m — 0.1104848 ny + 0.614014.

This conjecture is proved in the Appendix. Extremal trees have vertices of degree 3
and 1 alternatingly, as far as possible. Note that the system GRAPH [33] [35] could also
have been used to find such extremal trees interactively, and, after characterizing them,
possibly lead to the above result.

Linear inequalities form a class Ry of relations and are more common in graph theory
than linear equalities. Let x/(G) denote the edge-chromatic number (or chromatic index)
of G, i.e., the smallest number of colors needed to color the edges of G such that no two
incident edges have the same color.

Theorem 3 (Vizing [85]) For any graph G with mazimum degree A and chromatic index
X'(G)

A< Y(G) <A+,

Many linear inequality conjectures have been obtained by several systems, and proved,

refuted or remain open. We mention a few. Let [(G) denote the average distance between
pairs of vertices of G.

Conjecture 3 (Graffiti 2, Fajtlowicz [50]) For any connected graph G with average distance
l(G@) and independence number o(G),

I(G) < a(G).
Conjecture 4 (Graffiti 3, Fajtlowicz [50]) For any connected graph G with average distance
I(G) and Randic index Ra(G),

(@) < Ra(G).

Both conjectures were obtained with Graffiti; the former was proved by Chung [29] and
the latter is open.

A chemical graph G has maximum degree 4 (due to the valency of carbon).
Conjecture 5 (Caporossi, Hansen [25] [24]) For any chemical graph G with Randic index

Ra(G), size m and ny pending vertices,

Ra(G) > mznl.

This conjecture, obtained by AGX, was proved using arguments based on linear pro-
gramming.
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A shorter proof is the following. Let G = (V,E) and E = E; U Ey where E; de-
notes the edges of G adjacent to a leaf and FEs those which have both endvertices of
degree at least 2. |Es| = |E| — |E1] = m — ny. Moreover, for any edge {v;,v;} €
Ei,1/\/did; > 1/2 as d; and d; < 4 and one of d; and d; is equal to 1, and for any
edge {v;,v;} € E»,1/\/didj > 1/4. Hence, Ra(G) > (m —n1)/44+n1/2 = (m+ ny)/4.

O

A third class of relations, Rj, is obtained by using floor and ceiling operators.

Let v(G) denote the domination number of G (or exterior stability number), i.e., the
smallest number of vertices in a set such that any vertex not in the set is adjacent to one
in the set; let g(G), the girth of G denote the length of the smallest cycle of G.

Theorem 4 (Brigham, Dutton [15]) For any graph G with minimum degree § > 2 and

girth g(G) = 5,

Not much has been done regarding the use of the operators |a] (floor of a, or largest
integer not larger than a) and [a] (ceiling of a or smallest integer not smaller than a)
in computer-assisted or automated conjecture-making in graph theory. Exceptions are a
few conjectures obtained with Graffiti [38] and the following conjecture. Recall that the
distance polynomial of a graph G is defined as

1257
P(G) =n+mx + Z pra®,
k=1

where pj, denotes the number of pairs of vertices v;,v; at distance k. Then this polynomial
will be palindromic if

D(G)

Pk = Pb(G)-k k=0,1,2,., \_TJ
and the distance to the palindrome condition is defined as
1252
dist(G) = > |pp(c)-k — Pkl
k=0

Clearly if dist(G) = 0 the polynomial is palindromic. AGX [22] could find trees T’
with a palindromic distance polynomial P(T") and an even diameter D(T') (finding graphs
G with a palindromic distance polynomial is easy) but not with an odd diameter D(T).
However, its use led to
Conjecture 6 (Caporossi et al.[22]) For any tree T with odd diameter D(T),

n

dist(T) = [3].
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This conjecture is open (and apparently hard). It was obtained interactively with AGX;
however the non-automated part was easy as AGX produced trees T with odd diameter
and distances dist(T) equal to 5,6,6,7,7,8,8 and so forth for n = 10 to n = 50 without
exception, from where the conjecture follows immediately.

2.3 Non-linear relations

A fourth class of relations, R4, involves powers of invariants or products of them. Usually
powers are squares, cubes, inverses, square or cubic roots. Products usually involve only
a pair of invariants. Recall that the complementary graph G of a graph G has an edge
joining vertices v; and v; if and only if G has not.

Theorem 5 (Nordhaus, Gaddum [70]) For any graph G of order n with chromatic number

x(G), _
2vn < x(G)+x(G) < n+1
and
n 2 ’I’l2
n < Q)@ < %:7%%.

Systems Graffiti and AGX led to several conjectures with powers or products of invariants.
Define [50] the temperature ¢; of vertex v; of G as
d;

t; = 1 =1,2,..,n.
] n_djj 777”

Conjecture 7 (Graffiti 834, Fajtlowicz [50]) For any connected graph G with average

distance [(G) and temperature of vertices of the complementary graph t;(G), j =1,...n,

@) <1+ max t;(G).
j

This conjecture could be reformulated as

(146(G))UG) <n,

and was refuted by AGX [26]; the counter-example consists of two triangles joined by a
path with seven edges. A weaker, but simple and elegant, conjecture is the following:

Conjecture 8 (Graffiti 127, Fajtlowicz [50]) For any connected graph G

5(G).I(G) < n.

After this conjecture remained open for more than 10 years, a stronger result, implying
it as a corollary, was obtained by Beezer et al. [5].
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The energy E of a graph G can be defined [57] [56] as

E=> |\l
=1

where the \; , i = 1,2,...,n are the eigenvalues of the adjacency matrix A(G) of G.

Conjecture 9 (Caporossi et al. [21]) For any graph G,

E >2ym

and

g 4m
n

Both relations, obtained with AGX, could easily be proved.

A fifth, rare, class of relations, Rs, involve exponentials or logarithms.

Theorem 6 (Berge [6]) For any connected graph G with a maximum degree A > 2 and
radius r(G),
logln A —n+1)

"= T og(a)

A few other conjectures involving logarithms were recently obtained with Graffiti [38].

Let p(G) denote the path covering number of G, i.e., the smallest number of vertex
disjoint paths needed to cover all vertices of G.

Conjecture 10 and 11 (De La Vina et al. [38]) For any graph G with independence
number o(G), radius r(G) and path covering number p(G),

a(G) = r(G) +In(p(G))

and

a(@) = n(r(@)) + p(G).
These conjectures are open.

2.4 Qualitative relations

Relations of another form, i.e., qualitative ones, define class Rg. They are rarely used
in graph theory but quite frequent in other fields such as economics [81], particularly in
comparative statics. Qualitative relations describe trends of invariants. e.g:

“invariant i1 increases when invariant io increases”
or

“invariant i1 decreases when invariant i increases”,
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which may be expressed by

A’il AZA1
Niy >0 and Niy <0

respectively, where Ais is an increase in invariant is and Ai; the corresponding change in
the invariant ;.

A tree with n vertices is bipartite and its vertices can be colored, say, in black and
white; let ny and n,, denote the numbers of black and of white vertices respectively (with
ny + ny = n). In [37] color-constrained trees, i.e., trees with fixed n and ny > n,,, and
with minimum index are studied. This led to the following result:

Conjecture 12 (Cvetkovi¢ et al. [37]) For all trees T" with n vertices, ny, black ones and
Ny white ones, ny > ny,, the minimum value of the index A1 (T') increases monotonously
with ny — ny.

This qualitative conjecture was obtained with AGX and is proved in the cited reference.

2.5 Conditions

We next discuss the classes C' of graphs G which are the most used in conjectures of the
type R|C. Several of them have already been illustrated by examples given above.

A first class, C1, is composed of conditions necessary for the invariants iy, s, .... used
in the relation R to be defined. Quite often the graph will have to be connected, i.e., any
two vertices must be joined by a path.

Examples are conjectures 3,4,7 and 8 above where connectedness is needed for average
distance not to be infinite. In other conjectures, such as those on trees, e.g. conjecture 6
above, connectedness is implicit, as a tree is a connected graph without cycles.

Another class Cy consists of conditions eliminating trivial cases. An example is that
there should be no isolated points, i.e., the minimum degree §(G) > 1. This is illustrated
by the second formula of Gallai’s theorem (Theorem 1 above).

Forbidden subgraphs can also be used to obtain well-known classes of graphs, which we
denote collectively by C'.

A first case is triangle-free graphs.

Theorem 7 (Fraughnaugh, Locke [54]) For any connected triangle-free 3-reqular graph G
with independence number a(G) and order n,

@) _ 11 2 11 2
> — — — iy
n — 30 Ion <0r (@) 2 55m 15)

Conjecture 13 (Graffiti 116, Fajtlowicz [50]) For any triangle-free graph G with index
M (G) and Randié index Ra(G),

A (G) < Ra(G).
This has been proved by Favaron, Mahéo and Saclé [51].
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A generalization is to consider graphs without odd cycles Coy41 for all positive integers
k, i.e., bipartite graphs.

Theorem 8 (Konig [64]) For any bipartite graph G with matching number v(G) and vertex
covering number 7(G),

v(G) =7(G).

A more drastic condition is to exclude all cycles, which of course gives trees, if connec-
tivity is assumed, and forests otherwise.

Conjecture 1 above does not hold for all trees; the following one does

Conjecture 14 (Caporossi, Hansen [25] [24]) For any tree T,

aT) < s(m+ny + D(T) —2r(T))

N —

and 5
n J—
2 ])'
Symbols are defined above. Both relations were found with AGX; the former is proved
in [25] and the latter in [24].

A generalization consists in defining a new class Cjy, in terms of excluded subgraphs of
G obtained by applying some operations. A first such operation is an homomorphism, i.e.,
removal of degree 2 vertices: if d; = 2 and the neighbors of v; are v;, vi, remove v; and
replace its two incident edges by an edge joining v; and vg. Then G is planar if it contains
no induced subgraph homomorphic to K5 or K33 (see below).

o(T) > %(m+ n1+ D(T) —2r(T) — |

Theorem 9 (the four-color theorem, Appel, Haken [2] [3] [4])
If G is planar and has chromatic number x(G) then

X(G) < 4.

This result was conjectured already in 1852 and was proved in 1976, with important
computer aid; see also the more recent and shorter, but still computer-aided proof of
Robertson et al. [80].

3 Conditions for belonging to a class of graphs

A second class of graph theoretic conjectures consists in necessary and/or sufficient con-
ditions, expressed as algebraic relations, for a graph G to belong to a particular class C.
Sufficient conditions appear most often. Their general form is

C<R

which reads:
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“For any graph G, relation R implies G belongs to class C”.

Necessary conditions have the form discussed in section 2, i.e., C' = R. In rare cases, nec-
essary and sufficient conditions are available: C < R. One can have also conditions valid
only for some classes of graphs, e.g. (C1 < R) | Co. Recall that a graph is Hamiltonian if
and only if there exists a cycle of G going once and only once through each vertex.

Theorem 10 A graph G of order n > 3 with degree sequence di < ds < ...d, is Hamil-
tonian if one of the following conditions holds:

(i) (Dirac [40]) d > 5 for all k =1,2,...n;

(ii) (Ore [72] dy, + d,, > n for all pairs of non adjacent vertices u,v;

(iii) (Posa [77]) di, > k for all k with 1 < k < %;

(v) (Bondy [9]) d; + di, > n for all j,k with d; < j,dj <k —1.

Instead of a single relation R, one could have a conjunction or a disjunction of relations
(as shown in the previous theorem, when the four conditions are taken jointly) or some
more complicated logical combination of relations.

Relations of this form do not appear to have been much studied with computer-assisted
or automated conjecture-making systems. One possible approach would be to consider
conjectures which have not yet been refuted or proved, for some class C' of graphs and
test, on a database of examples or with an optimization routine, if one or several of them
appear to be sufficient for G to belong to C.

Another approach would be to study conjectures valid for critical graphs related to the
property defining C (i.e., graphs G belonging to class C' but who cease to be so if a vertex
or an edge is removed), then to see if these conjectures hold for all graphs of C, or can be
modified for this to be the case.

4 Inclusions between classes of graphs

A third class of graph-theoretic conjectures describes inclusion between classes Cy, Co, . ..
of graphs. The simplest form is then

C1CCy
or, in rare cases,
01 = 02
which read
“All graphs of class Cy belong to class Cy”
e.g.

“All trees are bipartite graphs”

and
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“A graph belongs to class C1 if and only if it belongs to class Co”
e.g.
“A tree is a connected graph without cycles”

(this is sometimes taken as a definition but one can also use the following one: ”A tree is
a connected graph with n — 1 edges”).

Definitions of classes can be more general, e.g., correspond to boolean expressions on
simple classes of graphs or subgraphs in G, or possibly some graph derived from G by
transformation such as removing vertices of degree 2.

Theorem 11 (Kuratowski [65]) A graph G is planar if and only if it does not contain an
induced subgraph homeomorphic to K5 or K3 3.

The system Graph Theorist developed by Epstein [42] [43] [44] [45] represents classes of
graphs by constructive definitions, i.e., properties are associated with the classes of graphs
satisfying them and algorithms are specified to construct (at least in principle) all graphs
of these classes. Then inclusion among classes is studied leading to conjectures and their
proof.

Such conjectures seldom appear to be new, the aim of Graph Theorist being more to
understand mathematical reasoning than derive new results.

Relations of the above form do not appear to have been studied with other conjecture-
making systems in graph theory.

5 Implications between relations

A further class of conjectures relates to implications and equivalences between relations
Ri, R, ..., i.e., they are of the form

R1=>R2

or

Ri < Ry

Again these forms may be generalized to consider conjunctions, disjunctions or more
complex logical expressions of several relations.

These forms are basic in mathematics and graph theory. They correspond to several
problems:

5.1 Corollaries

The conjecture is then that corollary Ry is a consequence of theorem R;.

Conjecture 15 The lower bound (Berge [6]) on the independence number a(G) of any
graph G of order n and size m
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n2

a(G) >

m-+n

2
is implied by the lower bound (Favaron et al. [52])

2’:1—@_’,7}W
G >
«{C) 2 (2] +1

This is indeed the case, the latter bound being best possible for all n» and m compatible
with the existence of a simple graph.
Conjecture 16 [52] The second relation in Conjecture 15 is equivalent to the following
one (proposed earlier in [59)]):

o(@) > {n 2m w . {n— [ = 2m/(1+ | 22))(1 + | 22))]

IREEY 2+ %)
This conjecture is correct (but stated without proof in [52]).

Corroborating, refuting or strengthening conjectures such as the two last ones can be
done in several ways:
(i) enumerating small graphs with systems such as Nauty or geng [69];
(#1) building interactively a counter-example, with a system such as GRAPH [33] [36];
(#i) minimizing the difference between the right hand-sides of both conjectures with AGX
while parametrizing on n and m [21] [24].

5.2 Redundancy

If a relation Ry is implied by a relation R; in a database, it may be viewed as redundant
(and possibly deleted). Given R; and Ry, AGX is well-adapted to test a conjecture for
redundancy: it will minimize (or maximize) the latter under the constraint that the former
holds. This can be extended to testing a conjecture such as Ry, Ra, ... Ry imply Rg41, as
well as to equivalence. However, this leads to refuting or corroborating one such conjecture
not to finding it.

More generally,
“When a new inequality relating graph invariants is discovered INGRID can

be employed to determine if the same or better bounds can be obtained from
previously known results” ([17] p.170).

To that effect, INGRID [17] can find among all relations of a large database if there
is a small subset of them which imply a given relation. Thus given a set of relations
R = {R1, Ry, ....Ry} and a relation R, INGRID discovers a statement of the form

RilﬂRigmn-Rik = R
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where k < p. An example follows:

Conjecture 17 (Brigham et al. [17]) The known relation between spectral radius A1, chro-
matic number x and size m of a graph G

A < lgm@
X

1

and

imply the relation (Stanley [83])
M <14+ VItem.

INGRID works as follows: it has built into it 458 relations between 37 graph invariants.
The user can enter values or ranges of values for any of the invariants and INGRID then
returns, using the relations, values or ranges of values for the remaining invariants. There
is also a tracking function which allows the user to see the sequence of relations which led
to the result, if desired.

INGRID may be used in interactive or in automated mode, i.e., in the latter case, after
posing a question one just records the results in terms of values or intervals of values for
invariants and of relations used.

It thus appears that the tools it uses for “helping to test the effectiveness of new
theorems”, as is discussed in this subsection, as well as for “helping derive theorems”,
which is discussed in the next subsection, are automated.

Brigham et al. comment as follows on the above example ([17] p.170):

“With this insight we were able to show analytically that substitution of the
second inequality into the first always produces a better bound than Stanley’s
except for one class of extremal graphs where they are equal. This in no way di-
minishes the value of Stanley’s result, which gives an elegant direct relationship
between A1 and e, but the exercise showed we need not include it in INGRID’s
knowledge base.”
So, in this case, INGRID make a conjecture, which was later proved by hand. Observe
that INGRID [17], as Graffiti’s DALMATIAN heuristic ([49, p. 370]), does not include a
relation in its database of relation if it is not informative. In the former case, this means
it is implied by the union of all previous ones and in the latter case that this is true for
the restricted set of graphs in the database of examples.

5.3 Paths towards new relations

The conjecture making function of INGRID just described can be extended to help find-
ing new relations. Indeed, “INGRID does not of itself find new theorems relating graph
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invariants, but it can be a valuable tool in aiding a researcher to do just that” ([17] p.170).
Assuming an unknown but interesting relation exists between two invariants i1 and is,
one may vary one of them, observe the influence on the bounds of the other and use the
tracking function to see which relations (implying quite different invariants than i; and i)
are invoked by the system in computing these bounds. This leads to a conjecture of the
form

“Relations Ry, Ro,... Ry in the database lead to a relation between invariants i1 and
i9.”
Then algebraic manipulations can be used to derive this relation, as illustrated by the
next example:

Conjecture 18 (Brigham et al. [17]) The relations

A< \2,
n
A—1
n—

1%

vz

e <

and
0y < o

where the symbols are described above, except for the clique cover number 0y = x(G), imply
relation(s) between A\ and 0.
This indeed led to the relations

Oo < n[X]/(1+A7)]

and 1 ]
90 S 5 + [n(n — 1) — )\1()\1 — 1) + 1]2,

which could be proved and are new.

6 Structural conjectures

Many theorems in graph theory specify partially or completely the structure of some classes
of graphs. In particular extremal graphs, i.e., graphs for which an invariant takes its
minimum or maximum value have been much studied, as shown in Bollobas’ book [8] on
that topic. Critical graphs have also received much attention.

Theorem 12 (Turan [84]): If G is a graph of order n with independence number a(G),
and minimum number of edges, then G is isomorphic to the graph G, composed of k
disjoint cliques, r of which have q vertices and the others k —r of which have q—1 vertices,
where r and q are such that n = q(k — 1) +r.
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This result has been generalized in many ways.
The energy of a graph has been defined above, and two lower bounds in terms of m and
n given.

Conjecture 19: For any graph G with energy E(G), and size m the bound

E(G) > 2ym

1s attained if and only if G is complete bipartite.

This conjecture obtained with AGX, is proved in [21].

The Randic index of a graph has also been defined above.
Conjecture 20: For any chemical tree T (with a maximum degree 4) of given size m, the
Randic index is minimum if and only if it belongs to one of the three families represented in

Figure 1 or is obtained from such a tree by iterated removal of three pending edges incident
with a same vertex and their addition at another pending verter.

This conjecture, obtained with AGX, is proved in [23].

Figure 1: Three classes of chemical trees with minimum Randic index.

Dendrimers [41] are trees with a given maximum degree A which are as regular as
possible (i.e., regular except for pending vertices) and symmetric around one central vertex
(see Figure 2a). It has long been surmised that:

Conjecture 21: [62] [63] Dendrimers have minimum Wiener index (or total distance
between pairs of vertices) among all trees with mazimum degree A and the same order n.
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(@ (b)

Figure 2: Dendrimers without and with additional edges.

AGX has corroborated this conjecture, and led to observe that if the number of edges
does not correspond to that one of a dendrimer, additional edges should be as close as pos-
sible (see Figure 2b). This conjecture was recently proved, independently by Fischermann
et al. [53] and by Zheng [86].

7 Counting and Enumerating

Many graph theoretic theorems give the number of graphs satisfying some specific property,
often as a function of size, and sometimes provide also an implicit list of all such graphs.
Another related type of problem is to find the minimum order of graphs which satisfy a
given property. Computers have been extensively used in enumerative tasks from graph
theory. They have led to many computer-assisted conjectures and proofs.

7.1 Counting graphs

A graph is labeled if its vertices are numbered 1, 2, ...n. Two isomorphic graphs are viewed
as different when their vertices are not labeled in the same way.

Theorem 13 (Cayley [27]): There are n"~? labeled trees on n > 2 vertices.

An approach to finding conjectures of this type would be to enumerate all graphs
satisfying a given property for n = 1,2, ... with a powerful system such as geng [69], then
(i) to check if the resulting sequence of numbers is known with the Online Encyclopedia
of Integer Sequences [82] ;

(i) if not, use tools from algebra to study the sequence (and submit it to the Encyclopedia).

7.2 Enumerating graphs

Benzenoids are molecules which can be represented as planar polyhexes, i.e., simply con-
nected regions of the hexagonal lattice. They can also be viewed as graphs. Many algo-
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rithms have been proposed for enumerating polyhexes with a given number h of hexagons
(see [18] for a recent survey). The first few values are given in Table 1. However, no closed
form formula for these series could be found.

L[ N@h) | b N(@) | b N(h)
1 1 9 6505 | 17 1751594643
2 110 30086 | 18 8553649747
3 3|11 141229 | 19 41892642772
4 7112 669584 | 20 205714411986
5) 22 | 13 3198256 | 21 1012565172403
6 81 | 14 15367577 | 22 4994807695197
7| 331 |15 | 74207910 | 23 | 24687124900540
8 | 1435 | 16 | 359863778 | 24 | 122238208783203

Table 1: Number of planar polyhexes (N(h)) according to h

Conjecture 22: There is no closed-form formula giving the number of polyhexes with h
hezxagons.

While this conjecture could be refuted, it is hard to see how to prove it.

8 Ramseyian Theorems and Conjectures

Conjectures considered up to now are expressed in terms of invariants of a graph G and
structure of such a graph. Another class of results is less direct: one considers a property
which must hold for all partitions of a given type defined on GG, most frequently all colorings
of its edges using a given number of colors. Then the effect of the imposition of this
property on an invariant ¢(G), most often its order, is studied. To illustrate let us consider
all bicoloring of the edges of G. The classical Ramsey number r(k) is the smallest order of
a graph G such that all such bicolorings induce a K}, in G or in G.

Very few Ramsey numbers are known [30], so generalized Ramsey numbers in which
one considers a subgraph G in G or G5 in G have been extensively studied. Computer
enumeration played an important role: in a recent version of his “Dynamic Survey” on
“Small Ramsey Numbers”, Radzizowski [78] cites 71 papers which report on automated or
computer-assisted determination of generalized Ramsey numbers or bounds on them. In

this last case, conjectures are sometimes made on what is the most likely value.
More general questions have been asked, often by Erdos and his collaborators.

Conjecture 23 (Burr, Erdos [19]) For every graph G on n vertices in which every subgraph
has average degree at most c,
r(G) < cdn

where the constraint ¢ depends only on n.
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A conjecture of the same form for subgraphs with maximum degree A,

r(G) < c(A)n

was made by the same authors and proved to hold by Chvatal et al. [31].
An example in which edge 3-colorings are considered is the following:

Conjecture 24 (Bondy and Erdés [11]) Let C), be a cycle with p vertices; then
r(Cyp, Cp, Cp) < 4p — 3.

Luczak [68] has shown that r(C), Cp, Cp) < 4p + o(p).

Other problems concern the number of classes in a family of partition defined on a
graph G.

Conjecture 24 (Erdos, Gallai, 1959 [46]) Every connected graph on m wvertices can be
edge-partitioned into almost |(n +1)/2| paths.

Instead of partitions of edges of GG, one may also consider all subgraphs of GG of a given
type, such as, e.g. cliques. This leads to new questions, e.g.:

Problem 1 (Erdés et al. 1992 [47]) Estimate the cardinality, denoted by T(G), of a
smallest set of vertices in G that shares some verter with every mazimal clique of G.

While computers do not appear to have been used in the study of this problem, it seems
that a specialized algorithm could prove useful.

9 Conclusions

In order to get a clear view of what are interesting conjectures in graph theory, we followed
up on the observation that famous theorems in this field (as in others) were first conjectures,
if only in the minds of those which proved them. This suggests a rich variety of forms.
We attempted to classify them, taking into account the work done in computer-assisted or
automated conjecture-making. Thus we could provide examples of a number of cases in
which one or another system was successful.

Moreover, it appears that

(i) there are many classes of conjectures which have not yet been explored with or by
conjecture-making systems (the more so as the present classification is exploratory and
certainly not exhaustive).

(ii) different systems appear to each have their strong points and none seems presently
able to obtain interesting conjectures in all the cases where the others do.

Therefore, there is much work to do, both in modifying existing systems for doing in
different ways tasks done by others and expanding them to tackle new conjecture-making
tasks. Clearly, while computer-assisted and automated conjecture-making is successful,
the field is still at its beginning.
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Appendix. Proof of Conjecture 2

The trees with maximum degree A < 3 found by AGX with (conjectured) maximum
irregularity are represented on Figure 3.

T
Y
T
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ir=6 ir=8 irr=10 irr=10 irr=12

-
X
e
X

n=10 n=11 n=12 n=13 n=14
irr=14 irr=14 irr=16 irr=18 irr=18
n=15 n=16 n=17 n=18 n=19
irr=20 irr=22 irr=22 irr=24 irr=26
n=20 n=21 n=22 n=23 n=24
irr= 26 irr=28 irr=30 irr=30 irr=32

Figure 3: Extremal trees with A < 3 and maximum irregularity found by AGX

These extremal trees are used in the following proofs, illustrating also the help provided
by AGX in getting proofs.

Theorem 14 For any tree T with A < 3,
irr(T) < A2 if n(mod 3) =1,

< w otherwise.
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Proof. Let T be a tree with maximum degree A < 3 and denote by x;; the number of
edges of T" with endvertices of degree 7 and j.

By definition of the irregularity,
iT‘T’(T) = T19 + 2x13 + To3. (9.1)

We first solve the following system of five linear equations which holds for all trees with
A<3:

T2 +T13 = M (9.2)
Tio + 2T99 + 23 = 2n9 (93)
T13 + T2z + 2233 = 3ng (9.4)
ni+2n,+3ny = 2n-—2 (9.5)
ny+ng+ng = n. (9.6)
with unkowns x13, x23, n1, ny and ng. That gives :
xr13 = g(n —4x19 — x90 + 33 + 5) (9.7)
1
x93 §(2n + x19 — 2299 — 433 — 8) (9.8)
1
ny g(n — X129 — T22 + X33 + 5) (9.9)
1
n9 g(n + 2212 + 22990 — 2233 — 4) (9.10)
1
ns g(n—xlz — X922 + X33 — 1). (9.11)
Replacing z13 by (9.7) and x93 by (9.8) in (9.1) gives
1
iT’I“(G) = §(4n — 4x19 — 4x90 — 2233 + 2) (9.12)

which is maximal for a fixed number of vertices when the values z12 and x33 are equal to

Z€ro.

If n(mod 3) = 1, we can choose x12 = 0, x99 = 0 and z33 = 0 because the solutions
given in Eqgs. (9.7) — (9.11) are in integers. In this case, 13 = (n+5)/3, x23 = (2n —8)/3

(
and irr(T) = (4n + 2)/3.

If n(mod 3) = 0, x12, z22 and x33 cannot be all equal to zero because the solutions
are no more in integers. Looking at (9.12), the best choice is to take x12 = 292 = 0 and
x33 = 1 which is a feasible case. In this case, irr(T") = 4n/3.

If n(mod 3) = 2, there are three feasible solutions with the same irregularity value. One
can choose 19 = x90 = 0 and x33 = 2, or 12 = 1 and x99 = x33 = 0, or x99 = 1 and
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Figure 4: Three trees with maximum irregularity, A < 3 and n = 8

x12 = x33 = 0. These solutions lead to irr(T) = (4n — 2)/3. Figure 4 shows three different
trees with maximum irregularity and n = 8. |

The graphs found by AGX (see Figure 3) are extremal for the irregularity by Theorem
14. The proof of this theorem gives a good characterization of these graphs in terms of
x;5. We now prove Conjecture 2, which was obtained automatically by AGX from these
extremal trees.

Theorem 15 For any tree T of size m with A < 3 and mazimum irreqularity irr(T),
Randic index Ra(T), and ny pending vertices,

Ra(T) = —0.027421 irr(T) + 0.538005 m — 0.110484 ny + 0.614014.

Proof. Before proceeding to the proof itself, we find which real values AGX has approxi-
mated. To do this, we choose 4 extremal trees given by the system (see Figure 5), compute
their values for Ra, irr, m and n; and subsitute these values in

Ra=airr+bm+cn+d (9.13)
where a, b, c,d are the real values sought for. For instance, the tree 71 on Figure 5 has

Ra(Ty) = 1/v/2 +2/V/3 4+ 1/V/6, irr(T1) = 6, m(T1) = 4 and n1(T1) = 3. That gives the
following system of equations with unknows a, b, c and d :

1

1 2

6a+4b+3c+d = —+——+—, 9.14
V2 V3 V6 (9-14)
4 1

8a+5b+dc+d = —+=, 9.15
V3 3 (9:15)

0a+6b+dc+d = —— 4 2 (9.16)

V3B '

5 2

10a+70+5c+d = —+—. 9.17
V3 3 (9.17)
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T1 T2 T3 T4

Figure 5: Four extremal trees with A < 3 and maximum irregularity found by AGX

The unique solution of this system is

V2 V3 V6 1
a = —T—Ffﬁ‘ﬁ—g, (918)
. §_§+?, (9.19)
V2 2v3 VB 2
d = 3—\2/5—\/§+\/76—1. (9.21)

A numerical approximation of these irrational values corresponds to the values given
by AGX in the conjecture.

Let T be a tree with maximum degree A < 3. We have that
m = x12 + T13 + T22 + T23 + T33, (9.22)

and
n = T12 + x13 + T2 + w23 + x33 + 1. (9.23)

Moreover, by definition of the irregularity
irr(T) = 212 + 2213 + 223, (9.24)

and by definition of the Randic index

12 x13 22 x23 €33
Ra(T)= —=+ — 4+ — + —/— + —. 9.25
a( ) \/5 + \/3 + 5 + \/6 + 3 ( )

By Theorem 14, if n(mod 3) =1,
x13 = (n+5)/3, (9.26)

and
Tr12 = X992 — 33 — 0. (9.27)
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Substituting (9.27) in (9.23) and (9.23) in (9.26) gives

Io3 — 2$13 — 6. (928)

By (9.27) and (9.28), Egs. (9.22), (9.24) and (9.25) become

m = 3.%‘13 — 6, (9.29)
irr(T) = 4x13 — 6, (9.30)

and V34 G
Ra(T) = m% VG, (9.31)

respectively. Moreover, Eq. (9.2) gives
ny = I13 (9.32)

Replace irr by (9.30), m by (9.29), nq by (9.32) and a, b, ¢, d by Egs. (9.18) — (9.21) in the
right-hand-side of (9.13) and simplify. This leads to

X

which is equal to the Randic index of T given by (9.32).

The other cases are similar.

If n(mod 3) = 0, we start with 213 = (n +6)/3, x33 = 1 and z12 = z22 = 0 and modify
the remainder of the proof in consequence.

If n(mod 3) = 2 we start with the three different solutions given in Theorem 14 and
apply the same ideas in each case.
g



