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Abstract

Let u be a sequence of non-decreasing positive integers. A u-parking function of length n is a
sequence (x1, x2, . . . , xn) whose order statistics (the sequence (x(1), x(2), . . . , x(n)) obtained by rear-
ranging the original sequence in non-decreasing order) satisfy x(i) ≤ ui. The Gonc̆arov polynomials
gn(x;a0, a1, . . . , an−1) are polynomials defined by the biorthogonality relation:

ε(ai)D
ign(x; a0, a1, . . . , an−1) = n!δin,

where ε(a) is evaluation at a. Gonc̆arov polynomials form a “natural basis” of polynomials for working
with u-parking functions. For example, the number of u-parking functions of length n is (−1)ngn(0; u1, u2, . . . , un).
Gonc̆arov polynomials also satisfy a linear recursion obtained by expanding xn as a linear combination
of Gonc̆arov polynomials. The combinatorial structure underlying this recursion is a decomposition of
an arbitrary sequence of positive integers into two subsequences: a “maximum” u-parking function and
a subsequence consisting of terms of higher values. From this combinatorial decomposition, we derive
linear recursions for sum enumerators, expected sums of u-parking functions, and higher moments of
sums of u-parking functions. These recursions yield explicit formulas for these quantities in terms of
Gonc̆arov polynomials.

Key Words: Gonc̆arov polynomials, parking functions, linear recurrence, sum enumerators, factorial
moments
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1 Introduction

We shall think of finite sequences (x1, x2, . . . , xn) interchangably as sequences and functions with
domain {1, 2, . . . , n}. If (x1, x2, . . . , xn) is a sequence of real numbers of length n, then the sequence
(x(1), x(2), . . . , x(n)) of order statistics is obtained by rearranging the original sequence (x1, x2, . . . , xn) in
non-decreasing order. Let u be a non-decreasing sequence (u1, u2, u3, . . . ) of positive integers. A u-parking
function of length n is a sequence (x1, x2, . . . , xn) of length n whose sequence of order statistics satisfies
x(i) ≤ ui.

We shall call (1, 2, 3, . . . )-parking functions ordinary parking functions. Intuitively, an ordinary parking
function can take on as many smaller values as one wishes, but it cannot take on too many larger values.
Ordinary parking functions originated in the theory of hashing and searching in computer science (see [11, 9]).
They have been extensively studied. In particular, it is known that the number of ordinary parking functions
of length n is

(n + 1)n−1,

a formula which is closely related to Cayley’s formula for the number of labelled trees. This relation with
trees had motivated much work in this area, particularly in finding bijections between ordinary parking
functions and labelled trees. Less obvious, perhaps, is the observation that the formula is (up to a sign) an
evaluation of an Abel polynomial. It is this observation which led us to Gonc̆arov polynomials.

Gonc̆arov polynomials (see [1, 2, 7]) arose in the following special case of Hermite interpolation in nu-
merical analysis.

Gonc̆arov Interpolation. Given two sequences of real or complex numbers a0, a1, . . . , an and b0, b1, . . . , bn,
find a polynomial p(x) of degree n such that for each i, 0 ≤ i ≤ n, the ith derivative p(i)(x) evaluated at ai

equals bi.

The natural basis of polynomials for this interpolation problem is the sequence of Gonc̆arov polynomials
defined in Section 3. A special case of this is Abel interpolation, where the point ai is the integer i. The
Gonc̆arov polynomials for this case are the Abel polynomials.

The appearance of Abel polynomials in both the enumeration of parking functions and Abel interpolation
was one of the motivations behind this paper. We shall show that the enumerative theory of ordinary
parking functions can be generalized to u-parking functions using Gonc̆arov polynomials. We hope that it
will become evident that the Gonc̆arov polynomials are the natural basis of polynomials for working with
parking functions, even in the ordinary case. In particular, we shall give explicit linear recursions which
would allow one to compute any specific moment of the sum of a random u-parking function of length n.

The approach in this paper is to apply results about Gonc̆arov polynomials to parking functions. We start
with a discussion of a general theory of biorthogonal polynomials in Section 2 and specialize this theory to
Gonc̆arov polynomials in Section 3. In Section 4, we present a combinatorial description of the coefficients of
Gonc̆arov polynomials in terms of rankings on ordered partitions. The key tool in this paper, a decomposition
of an arbitrary sequence of positive integers into two subsequences, a “maximum” u-parking functions of
length m and a subsequence all of whose terms are strictly larger than um, is given in Section 5. An
immediate application yields formulas for the number of parking functions (Section 5). This decomposition
also yields results about sum enumerators (Section 6), expected sums (Section 7), and higher moments of
sums of parking functions (Sections 11 and 12). In Section 10, we discuss the conjecture that the expected
sum is an increasing function of the “gaps” ui+1 − ui in the sequence u. We also derive formulas for the
expected sum in the “classical” case when the sequence u is an arithmetic progression. Two methods are
used. The first, involving Abel identities, is presented in Section 8. The second, using a matrix inverse
relation, is presented in Section 9. With substantially more work, the matrix method can also be used to
obtain formulas for higher moments of sums of classical parking functions. We shall present this in [14].
We end this paper with a brief discussion of variants of parking functions (Section 13) and some historical
remarks (Section 14).

We shall use the following notation. If a and b are integers with a ≤ b, then the discrete interval [a, b] is
the set {a, a + 1, a + 2, . . . , b}.
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2 Sequences of biorthogonal polynomials

We shall need several results about Gonc̆arov polynomials in this paper. Many of these results are special
cases of a general algebraic, that is to say, non-analytic, theory of sequences of polynomials biorthogonal to
a sequence of linear functionals. Although this theory must be well-known (for some examples, see [1] or
[2]), we have not been able to find an explicit description in the literature.

Consider the vector space P of all polynomials in the variable x over a field F of characteristic zero. Let
D : P → P be the differentiation operator. For a scalar a in the field F, let

ε(a) : P → F, p(x) �→ p(a)

be the linear functional which evaluates p(x) at a.
Let ϕs(D), s = 0, 1, 2, . . . be a sequence of linear operators on P of the form

ϕs(D) = Ds
∞∑

r=0

bsrD
r,

where the coefficients bs0 are assumed to be non-zero. Note that, although ϕs(D) are infinite formal
sums, they become finite sums when applied to a specific polynomial. Then there exists a unique sequence
pn(x), n = 0, 1, 2, . . . of polynomials such that pn(x) has degree n and

ε(0)ϕs(D)pn(x) = n!δsn, (2.1)

where δsn is the Kronecker delta. To see this, let

pn(x) =
n∑

k=0

cnkxk.

Then, for a given index n, the orthogonality relations are equivalent to the following upper triangular system
of linear equations in the unknowns cn,0, cn,1, cn,2, . . . , cn,n :

b00cn0 + b01cn1 + 2!b02cn2 + 3!b03cn3 + . . . + n!b0ncnn = 0
b10cn1 + 2!b11cn2 + 3!b12cn3 + . . . + n!b1,n−1cnn = 0

2!b20cn2 + 3!b21cn3 + . . . + n!b2,n−2cnn = 0
. . .

n!bn0cnn = n!.

This system of linear equations can be solved uniquely for every index n. Hence, the polynomials pn(x) exist
and they are uniquely determined by the orthogonality relations (2.1). Note also that pn(x) depends only on
the operators ϕ0(D), ϕ1(D), . . . , ϕn−1(D). When solving this system, we need only divide by the diagonal
entries bs0. Hence, if we put on the extra assumption that the entries bs0 all equal 1, then pn(x) is monic
and the coefficients of pn(x) are polynomials in the entries bsr.

The polynomial sequence pn(x) is said to be biorthogonal to the sequence ϕs(D) of operators, or, as some
would prefer, the sequence ε(0)ϕs(D) of linear functionals. Using Cramer’s rule to solve the linear system
and Laplace’s expansion to group the results, we obtain the following determinantal formula:

pn(x) =
n!

b00b10 · · · bn0

∣∣∣∣∣∣∣∣∣∣∣∣∣

b00 b01 b02 . . . b0,n−1 b0n

0 b10 b11 . . . b1,n−2 b1,n−1

0 0 b20 . . . b2,n−3 b2,n−2

...
...

...
. . .

...
...

0 0 0 . . . bn−1,0 bn−1,1

1 x x2/2! . . . xn−1/(n − 1)! xn/n!

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.2)
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Another important consequence of the fact that the initial segment ϕs(D), s = 0, 1, 2, . . . , n gives a
non-singular upper triangular system of linear equations is that if p(x) is a degree-n polynomial, then the
conditions

ε(0)ϕi(D)p(x) = 0 for 0 ≤ i ≤ n

imply that p(x) is identically zero. In particular, if p(x) has degree n, then

p(x) =
n∑

i=0

ε(0)ϕi(D)p(x)
i!

pi(x). (2.3)

This gives an expansion formula. Furthermore, the unique solution to the interpolation problem, given
numbers d0, d1, . . . , dn, find a degree-n polynomial p(x) such that for i = 0, 1, . . . , n,

ε(0)ϕi(D)p(x) = di,

is given by the formula

p(x) =
n∑

i=0

dipi(x)
i!

. (2.4)

Since
ε(0)ϕi(D)xn = n!bi,n−i,

a special case of equation (2.3) or equation (2.4) is

xn =
n∑

i=0

n!bi,n−ipi(x)
i!

. (2.5)

Equation (2.5) gives a linear recursion for pn(x). These linear recursions are perhaps the most efficient
way to calculate the sequence pn(x) explicitly on a computer. Multiplying these equations by tn/n!, summing
over all non-negative integers n, and rearranging the right-hand side into products, we obtain the following
formal power series equation (which is an instance of what one might called an Appell relation):

ext =
∞∑

n=0

pn(x)ϕn(t)
n!

. (2.6)

Another way to prove the Appell relation (2.6) is to observe that when one applies ϕs(D) to both sides,
one obtains the same result. Observe also that when restricted to the subspace Pm of all polynomials of
degree less than or equal to m in P , the operators Ds are expressible as linear combinations of the operators
ϕt(D), t = 0, 1, 2, . . . , m. Hence, one also obtains the same result when Ds is applied to both sides of the
Appell relation, that is, the coefficient of xs are the same on both sides.

We end with a matrix version of the linear recursion. We can rewrite the first n+1 instances of equation
(2.5) as the matrix equation −→

xi = B−−→
pi(x),

where −→
xi = [1, x, x2, . . . , xn]T ,

−−→
pi(x) = [p0(x), p1(x), p2(x), . . . , pn(x)]T ,

and B is the (n + 1) × (n + 1) lower triangular matrix[(
i

j

)
(i − j)!bj,i−j

]
0≤i,j≤n

.
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We use the convention that the binomial coefficient
(

i
j

)
is zero if j > i. For example, when n = 3, we have⎡

⎢⎢⎣
1
x
x2

x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
b01 1 0 0
2b02 2b11 1 0
6b03 6b12 3b21 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
p1(x)
p2(x)
p3(x)

⎤
⎥⎥⎦

However, we also have −−→
pi(x) = C −→

xi ,

where C is the (n + 1) × (n + 1) lower triangular coefficient matrix

[cij ]0≤i,j≤n

whose entries cij are coefficients of the polynomials pi(x). We use the convention that cij is zero when j > i.
Hence, we conclude that the two lower triangular matrices B and C are inverses of each other. In particular,

−−→
pi(x) = B−1

−→
xi . (2.7)

This gives a determinantal formula for pn(x) which is row and column reducible to equation (2.2).
Summarizing, we have shown that the biorthogonality relations, the linear recursions, the Appell relation,

and the matrix form of the linear recursions all define the same sequence pn(x) of polynomials.
Sequences of polynomials of binomial type are special cases of sequences of biorthogonal polynomials.

We shall use a description of polynomials of binomial type given in the classic paper of Mullin and Rota
[16]. Recall that a sequence pn(x) of polynomials is of binomial type if and only if

∞∑
n=0

pn(x)
tn

n!
= exf(t), (2.8)

for some formal power series f(t) such that f(0) = 0 and Df(0) �= 0. These conditions are equivalent to
the condition that f(t) have a compositional inverse in the ring of formal power series. Let g(t) be the
compositional inverse of f(t). Then, substituting g(t) for t in equation (2.8), we obtain the Appell relation

ext =
∞∑

n=0

pn(x)
[g(t)]n

n!
.

From this, we conclude that sequences of polynomials of binomial type are precisely sequences of polynomials
biorthogonal to operator sequences of the form

ϕs(D) = [g(D)]s,

where g(t) is a formal power series with g(0) = 0 and Dg(0) �= 0.

3 Algebraic properties of Gonc̆arov polynomials

Let (a0, a1, a3, . . . ) be a sequence of numbers or variables called nodes. The sequence of Gonc̆arov
polynomials

gn(x; a0, a1, . . . , an−1), n = 0, 1, 2, . . .

is the sequence of polynomials biorthogonal to the operators

EasDs,

where for any number or variable a, the operator Ea is the shift by a, that is,

Eap(x) = p(x + a).
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Because ε(0)Ea = ε(a), the sequence of Gonc̆arov polynomials gn(x; a0, a1, . . . , an−1) are defined by the
orthogonality relations

ε(as)Dsgn(x; a0, a1, . . . , an−1) = n!δsn.

Since

Ea =
∞∑

r=0

arDr

r!
= eaiD,

the sequence of Gonc̆arov polynomials is biorthogonal to the sequence

Ds
∞∑

r=0

ar
sD

r

r!
.

As indicated by the notation, gn(x; a0, a1, . . . , an−1) depends only on the nodes a0, a1, . . . , an−1. Indeed,
from equation (2.2), we have the determinantal formula,

gn(x; a0, a1, . . . , an−1) = n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a0
a2
0

2!
a3
0

3! . . .
an−1
0

(n−1)!
an
0

n!

0 1 a1
a2
1

2! . . .
an−2
1

(n−2)!
an−1
1

(n−1)!

0 0 1 a2 . . .
an−3
2

(n−3)!

an−2
2

(n−2)!

...
...

...
...

. . .
...

0 0 0 0 . . . 1 an−1

1 x x2

2!
x3

3! . . . xn−1

(n−1)!
xn

n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

From equations (2.5) and (2.6), we have the linear recursion

xn =
n∑

i=0

(
n

i

)
an−i

i gi(x; a0, a1, . . . , ai−1)

and the Appell relation

ext =
∞∑

n=0

gn(x; a0, a1, . . . , an−1)
tneant

n!
.

Finally, from equation (2.3), we have the expansion formula. If p(x) is a polynomial of degree n, then

p(x) =
n∑

i=0

ε(ai)Dip(x)
i!

gi(x; a0, a1, . . . , ai−1).

We turn now to properties specific to the sequence of Gonc̆arov polynomials. The Gonc̆arov polynomials
can be equivalently defined by the differential relations

Dgn(x; a0, a1, . . . , an−1) = ngn−1(x; a1, a2, . . . , an−1),

with initial conditions
gn(a0; a0, a1, . . . , an−1) = δ0n.

(To see this, check that the orthogonality relations are satisfied.) Integrating the differential relations, we
obtain the integral relation

gn(x; a0, a1, . . . , an−1) = n

∫ x

a0

gn−1(t; a1, a2, . . . , an−1)dt.

Iterating this, we obtain the integral formula

gn(x; a0, a1, . . . , an−1) = n!
∫ x

a0

dt1

∫ t1

a1

dt2 · · ·
∫ tn−1

an−1

dtn.
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The integral relation makes it clear (by induction) that gn(x; a0, a1, . . . , an−1) is a homogeneous polyno-
mial with integer coefficients in the variables x, a0, a1, . . . , an−1 of total degree n. It also gives a quick way
to calculate Gonc̆arov polynomials of low degree by hand. For example,

g0(x) = 1,

g1(x; a0) = x − a0,

g2(x; a0, a1) = x2 − 2a1x + 2a0a1 − a2
0,

g3(x; a0, a1, a2) = x3 − 3a2x
2 + (6a1a2 − 3a2

1)x − a3
0 + 3a2

0a2 − 6a0a1a2 + 3a0a
2
1.

Using a change of variable, the integral relation and induction, or, observing that the differential operator
is “shift-invariant” or commutes with shifts, one obtains the following useful shift formula:

gn(x + ξ; a0 + ξ, a1 + ξ, . . . , an−1 + ξ) = gn(x; a0, a1, . . . , an−1).

The integral formula also suggests a formula which shows the effect of shifting or perturbing a single node.
Using the identity ∫ t

am

F (t)dt =
∫ am+bm

am

F (t)dt +
∫ t

am+bm

F (t)dt

at the mth integral in the integral formula, we obtain the perturbation formula:

gn(x; a0, . . . , am−1, am + bm, am+1, . . . , an−1) = gn(x; a0, . . . am−1, am, am+1, . . . , an−1)

−
(

n

m

)
gn−m(am + bm; am, am+1, . . . , an−1)gm(x; a0, a1, . . . , am−1).

Applying the perturbation formula repeatedly, we can perturb any subset of nodes. For example, the
following formula allows us to perturb an initial segment of length n − m + 1 :

gn(x; a0 + b0, a1 + b1, . . . , an−m + bn−m, an−m+1, . . . , an−1)
= gn(x; a0, a1, . . . , an−m, an−m+1, . . . , an−1)

−
n−m∑
i=0

(
n

i

)
gn−i(ai + bi; ai, ai+1, . . . , an−1)gi(x; a0 + b0, a1 + b1, . . . , ai−1 + bi−1).

In general, perturbation formulas can also be obtained by expanding the unperturbed polynomial gn(x; a0, a1, . . . , an−1)
as a series in suitably perturbed Gonc̆arov polynomials.

In general, there are no nice closed-form expressions for Gonc̆arov polynomials. But such expressions
exist for two special cases studied in analysis. The first is the case when all the nodes ai equals a. In this
case,

gn(x; a, a, . . . , a) = (x − a)n

and Gonc̆arov interpolation is just expansion as a power series at x = a. For this case, the linear recursion
specializes to the binomial identity

xn =
n∑

i=0

(
n

i

)
an−i(x − a)i,

The second case (which includes the first as a special case) is when a0, a1, a2, . . . form an arithmetic pro-
gression. This is the case of Abel polynomials and we have

gn(x; y, y + b, y + 2b, . . . , y + (n − 1)b) = (x − y)(x − y − nb)n−1. (3.1)

In particular,
gn(x; 0, 1, 2, . . . , n − 1) = x(x − n)n−1.
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The linear recursion is

xn =
n∑

i=0

(
n

i

)
(y + ib)n−i(x − y)(x − y − ib)i−1.

Substituting x + y for x in the second identity, we obtain Abel’s binomial theorem,

(x + y)n =
n∑

i=0

(
n

i

)
(y + ib)n−ix(x − ib)i−1.

With the substitution x + y + nb for x, y + nb for y, and −b for b, we obtain Hurwitz’s versions of Abel’s
binomial theorem:

(x + y + nb)n =
n∑

i=0

(
n

i

)
(y + (n − i)b)n−ix(x + ib)i−1,

or, changing indices from i to n − i,

(x + y + nb)n =
n∑

i=0

(
n

i

)
(y + ib)ix(x + (n − i)b)n−i−1. (3.2)

Differentiating both sides of equation (3.2) with respect to y, we obtain

n(x + y + nb)n−1 =
n∑

i=1

(
n

i

)
i(y + ib)i−1x(x + (n − i)b)n−i−1

=
n∑

i=1

(
n

i − 1

)
(n − i + 1)(y + ib)i−1x(x + (n − i)b)n−i−1.

Taking the case n − 1 of this identity and setting x = b and y = a, we obtain

(n − 1)(a + nb)n−2 =
n−1∑
i=1

(
n − 1
i − 1

)
bn−i−1(n − i)n−i−1(a + ib)i−1. (3.3)

We shall need identity (3.3) in Section 8.
Abel’s binomial theorem is a member of a family of Abel identities studied by Hurwitz, Riordan and

others (see [21], pp. 18 to 22). The following identity is a slightly modified version of the identity called
An(x, y; 1,−1) from this family:

n∑
i=0

(
n

i

)
(x + ib)i+1y(y + (n − i)b)n−i−1 =

n∑
i=0

n!
i!

(x + y + nb)ibn−i(x + (n − i)b).

We shall use two special cases of this Abel identity in Section 8.
A proof of this identity can be found in [21], but it is part of a larger proof and difficult to extract.

For this reason, we provide a simple self-contained proof. Observe that the left hand side is an expansion
in terms of Abel polynomials y(y + mb)m−1 in y with nodes at −mb. Hence, the identity follows from the
following computation, where Dy is differentiation with respect to y :

ε(−(n − i)b)Dn−i
y

⎛
⎝ n∑

j=0

n!
j!

(x + y + nb)jbn−j(x + (n − j)b)

⎞
⎠

= n!
i∑

k=0

bi−k(x + ib)k(x + (i − k)b)
k!

.

The zeroth term in the sum is bi(x + ib). When k > 0, we can rewrite the kth term as

bi−k(x + ib)k+1

k!
− bi−(k−1)(x + ib)k

(k − 1)!
.
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Hence, the sum telescopes and the right hand side equals

n!(x + ib)i+1

i!
.

The identity now follows from the expansion formula.
The first special case is obtained by setting x = a + b and y = b in the case n − 2 of the Abel identity.

Doing so, we obtain

n−2∑
i=0

(
n − 2

j

)
(a + (j + 1)b)j+1bn−j−3(n − 1 − i)n−j−3

=
n−2∑
i=0

(n − 2)!
j!

(a + nb)jbn−j−3(a + (n − j − 1)b). (3.4)

Setting x = a and y = 0 on the left hand side, we obtain the second special case:

(a + nb)n+1 =
n∑

i=0

n!
i!

(a + nb)ibn−i(a + (n − i)b),

or, changing indices from i to n − i,

(a + nb)n+1 =
n∑

i=0

n!
(n − i)!

(a + nb)n−ibi(a + ib). (3.5)

4 Coefficients of Gonc̆arov polynomials

The main result in this section is a combinatorial interpretation of the coefficients of Gonc̆arov polyno-
mials. We first show that it suffices to consider only the constant terms.

Expanding gn(x + y; a0, . . . , an−1) as a Taylor expansion in x and using the differential relations, we
obtain

gn(x + y; a0, a1, . . . , an−1) =
n∑

i=0

(
n

i

)
gn−i(y; ai, ai+1, . . . , an−1)xi. (4.1)

This is a shifted or parametrized analogue of a Sheffer relation, but not an actual Sheffer relation unless all
the nodes ai are equal. Thus, the Gonc̆arov polynomials may be viewed as a “shifted” Sheffer sequence for
the operator D (see [17]). The beginnings of a theory of “shifted” or “decentralized” umbral calculus has
been developed in [22].

Setting y = 0 in equation (4.1), we obtain

gn(x; a0, a1, . . . , an−1) =
n∑

i=0

(
n

i

)
gn−i(0; ai, ai+1, . . . , an−1)xi. (4.2)

Thus, coefficients of Gonc̆arov polynomials are constant terms of (shifted) Gonc̆arov polynomials. In partic-
ular, we have the following special case of equation (2.7).

(4.1) Lemma. Let A be the lower triangular matrix[(
i

j

)
ai−j

j

]
0≤i,j≤n

.
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Then, its inverse A−1 is the lower triangular coefficient matrix[(
i

j

)
gi−j(0; aj, aj+1, . . . , ai−1)

]
0≤i,j≤n

.

In particular,
A−1

−→
xi =

−−−−−−−−−−−−−−−−→
gi(x; a0, a1, . . . , an−1).

We shall now give a combinatorial interpretation of the constant terms of Gonc̆arov polynomials. This in-
terpretation is obtained by considering the number fn of monomials in the constant term gn(0; a0, a1, . . . , an−1),
counted with multiplicity. The sequence fn starts 1, 1, 3, 13, 75, . . . . Using, say, the integral relation, it is
easy to show that the numbers fn satisfy the recurrence

fn =
n∑

i=1

(
n

i

)
fn−i

and have exponential generating function

∞∑
n=0

fntn

n!
=

1
2 − et

.

From this, we see (from [23], say) that fn is the number of preferential arrangements, or ordered partitions
of the set with n elements. These observations suggest that there is an interpretation of the constant term
gn(0; a0, a1, . . . , an−1) in terms of objects related to ordered partitions.

From an ordered partition B1, B2, . . . , Bm of a set {x1, x2, . . . , xn} with n elements, one can associate a
ranking ρ : {x1, x2, . . . , xn} → {0, 1, 2, . . . , n − 1} as follows: if an element xi is in the jth block Bj , then
defined

ρ(xi) =
∑
l<j

|Bl|.

In particular, ρ(xi) = 0 whenever xi is in the first block B1. We define the order |ρ| to be the size of the
image of ρ, which is also the number of blocks in the ordered partition associated with ρ. For example, from
the ordered partition {2, 4}, {5}, {1, 3} of {1, 2, 3, 4, 5}, one obtains the ranking defined by ρ(2) = ρ(4) = 0,
ρ(5) = 2, and ρ(1) = ρ(3) = 3. Rankings are characterized by the property: for every element xi, there are
exactly ρ(xi) elements xj such that ρ(xj) < ρ(xi).

(4.2) Theorem.

gn(0; a0, a1, . . . , an−1) =
∑

ρ

(−1)|ρ|
n−1∏
j=0

aρ(j),

where the sum ranges over all rankings ρ of {1, 2, . . . , n}.
Proof. The theorem holds when n = 0. When n > 0, the constant terms of Gonc̆arov polynomials satisfy
the recursion

gn(0; a0, a1, . . . , an−1) = −
n−1∑
i=0

(
n

i

)
an−i

i gi(0; a0, a1, . . . , ai−1)

obtained by setting x = 0 in the linear recursion. We shall show that the sum on the right hand side of the
equation in Theorem 4.2 satisfies the same recursion. Let R[n] be the set of all rankings on {1, 2, . . . , n}.
Divide R[n] into groups R[n, i] according to the maximum value i taken by the ranking, so that

R[n, i] = {ρ : max{ρ(1), ρ(2), . . . , ρ(n)} = i}.
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If ρ is in R[n, i], then the inverse image ρ−1(i) must contain exactly n− i numbers. Thus, there is a bijection
between rankings ρ in Ri and pairs consisting of an i-element subset of {1, 2, . . . , n} (the complement of
ρ−1(i)) and a ranking ρ′ (having order |ρ| − 1) on that i-element subset obtained by restricting ρ. Hence,

∑
ρ∈R[n]

(−1)|ρ|
n∏

j=1

aρ(j) = −
n−1∑
i=0

an−i
i

(
n

i

) ⎛
⎝ ∑

ρ∈R[n,i]

(−1)|ρ
′|

i−1∏
j=0

aρ(j)

⎞
⎠ .

Since both sides of the equation in Theorem 4.2 satisfy the same recursion and initial condition, they are
equal by induction.

By Theorem 4.2 and the shift formula, we obtain the following formula for Gonc̆arov polynomials.

gn(x; a0, a1, . . . , an−1) = gn(0; a0 − x, . . . , an−1 − x)

=
∑

ρ

(−1)|ρ|
n∏

i=1

(aρ(i) − x).

Abel polynomials are intimately related to the enumeration of trees. In particular, if one set ai = i, then
the constant term (−1)ngn(0; a0, a1, . . . , an) is the number of labelled trees on n + 1 vertices. Is there an
interpretation for (−1)ngn(0; a0, a1, . . . , an) in terms of labelled trees?

5 A decomposition for sequences of positive integers

In this section, we describe the combinatorial decomposition underlying the theory of parking functions.
For us, this decomposition was motivated by the linear recursion for Gonc̆arov polynomials. After discovering
this decomposition, we found out from Julian Gilbey that the special case of this decomposition for ordinary
parking functions was already used by Konheim and Weiss in the first paper [11] on the subject.

(5.1) Theorem. Let (u1, u2, . . . , un) be a sequence of non-decreasing positive integers and let x be a
positive integer. Then, every sequence (x1, x2, . . . , xn) of length n with terms xi integers from the discrete
interval [1, x] can be decomposed into a pair of subsequences

(xi1 , xi2 , . . . , xim ), (xj1 , xj2 , . . . , xjn−m)

such that the first subsequence (xi1 , xi2 , . . . , xim) is a u-parking function of length m, and all the terms in
the second subsequence, the complementary subsequence of length n − m obtained by removing the terms
in the first subsequence from (x1, x2, . . . , xn) are in the discrete interval [um+1 + 1, x]. This decomposition
provides a bijection between all sequences of length n with terms in [1, x] and all pairs of complementary
subsequences, the first a u-parking function of length m and the second a sequence of length n − m taking
values in [um+1 + 1, x].

Proof. Consider the sequence (x(1), x(2), . . . , x(n)) of order statistics. Let m be the maximum index such
that

x(i) ≤ ui for i = 1, 2, . . . , m. (5.1)

Then, the subsequence (xi1 , xi2 , . . . , xim) from which the sequence (x(1), x(2), . . . , x(m)) was obtained by
rearrangement is a u-parking function of length m. Furthermore, m is the maximum index satisfying condition
(5.1) if and only if

x(n) ≥ x(n−1) ≥ . . . ≥ x(m+1) > um+1,

or, equivalently, the complementary subsequence (xj1 , xj2 , . . . , xjn−m), obtained by deleting the subsequence
(xi1 , xi2 , . . . , xim) from the original sequence, takes values in the interval [um+1 + 1, x]. Since the maximum
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index m and hence, the set {i1, i2, . . . , im} are uniquely determined by the sequence (x1, x2, . . . , xn), and
any pair of subsequences satisfying the conditions in the theorem can be reassembled into a sequence in
[1, x]n, this decomposition yields a bijection.

It will be useful to state the decomposition more explicitly.

(5.2) Corollary. There is a bijection between the set [1, x]n of all length-n integer sequences with terms in
the discrete interval [1, x] and the disjoint union of cartesian products⋃

{i1,i2,... ,im}
Park(i1, i2, . . . , im) × [um+1 + 1, x]n−m,

where Park(i1, i2, . . . , im) is the set of length-m u-parking functions indexed by the set {i1, i2, . . . , im} and
[um+1 + 1, x]n−m is the set of length-(n − m) integer sequences with terms in [um+1 + 1, x] indexed by the
complement of {i1, i2, . . . , im}.

Let Pn(u) be the number of u-parking functions of length m. Since Pn(u) depends only on the first n
terms of u, we will often write Pn(u1, u2, . . . , un) instead of Pn(u) to make explicit the parameters on which
Pn(u) is dependent. The decomposition in Theorem 5.1 yields the following identity.

(5.3) Corollary. Let x be an integer greater than or equal to un. Then

xn =
n∑

m=0

(
n

m

)
(x − um+1)n−mPm(u1, u2, . . . , um).

Comparing the recursion in Corollary 5.3 with the linear recursion for Gonc̆arov polynomials given in
Section 3, we obtain

Pn(u1, u2, . . . , un) = gn(x; x − u1, x − u2, . . . , x − un).

By the shift formula, the Gonc̆arov polynomial equals

gn(0;−u1,−u2, . . . ,−un).

Since the Gonc̆arov polynomial gn(x; a0, a1, . . . , an−1) is a homogeneous polynomial of total degree n in
x, a0, a1, . . . , an−1, we have

gn(0;−u1,−u2, . . . ,−un) = (−1)ngn(0; u1, u2, . . . , un).

All three forms of the formula for Pn(u) are useful.

(5.4) Theorem.

Pn(u1, u2, . . . , un) = gn(x; x − u1, x − u2, . . . , x − un)
= gn(0;−u1,−u2, . . . ,−un)
= (−1)ngn(0; u1, u2, . . . , un).

When ui = a + (i − 1)b, we obtain the following special case.

(5.5) Corollary.
Pn(a, a + b, a + 2b, . . . , a + (n − 1)b) = a(a + nb)n−1.

In particular, we have rederived the classic formula for ordinary parking functions:

Pn(1, 2, 3, . . . , n) = (n + 1)n−1.
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From the fact that Gonc̆arov polynomials are homogeneous, we obtain another consequence of Theorem
5.4.

(5.6) Corollary.
Pn(bu1, bu2, . . . , bun) = bnP (u1, u2, . . . , un).

Any reasonable formula for Gonc̆arov polynomials yields a reasonable formula for parking functions. We
give an example which is motivated by results in [17] and [31]. Consider the sequence a0, a1, . . . , an−m, c +
(n − m + 1)d, c + (n − m + 2)d, . . . , c + (n − 1)d of n nodes. This sequence can be obtained by perturbing
the arithmetic progression c, c + d, . . . , c + (n − 1)d by bi = ai − (c + id) for i = 0, 1, . . . , n − m. Using the
perturbation formula, we have

gn(x; a0, a1, . . . , an−m, c + (n − m + 1)d, c + (n − m + 2)d, . . . , c + (n − 1)d)
= (x − c)(x − c − nd)n−1

−
n−m∑
i=0

(
n

i

)
(ai − c − id)(ai − c − nd)n−i−1gi(x; a0, a1, . . . , ai−1).

Using this and Theorem 5.4, we obtain the following result.

(5.7) Corollary. If c + (n − m + 1)d ≥ an−m, then

Pn(u1, u2, . . . , un−m+1, c + (n − m + 1)d, c + (n − m + 2)d, . . . , c + (n − 1)d)

= c(c + nd)n−1 −
n−m∑
i=0

(
n

i

)
(c + id − ui+1)(c + id − ui+1)n−i−1Pi(u1, u2, . . . , ui).

Note that c need not be positive and some of the terms in the sum may be negative in Corollary 5.7.
By the determinantal formula for Gonc̆arov polynomials in Section 3, we have the discrete analog of a

result for real-valued parking functions usually attributed to Steck [28].

(5.8) Corollary. The number Pn(u1, u2, . . . , un) of u-parking functions of length n equals (−1)nn! detD,
where D is the matrix with ijth entry equal to

uj−i+1
i

(j − i + 1)!

if j − i + 1 ≥ 0 and 0 otherwise.

Note that Lemma 4.1 and Jacobi’s formula for the inverse of a matrix yields another determinantal
formula for Pn(u). However, this formula can easily be derived from the formula in Corollary 5.8 by row and
column operations.

6 Sum enumerators of parking functions

In this section, we extend several results for enumerators of trees and ordinary parking functions to
u-parking functions. Let u be a sequence of non-decreasing positive integers. The sum enumerator Sn(q;u)
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for the set of u-parking functions is the polynomial in q defined by

Sn(q;u) =
∑

(a1,a2,... ,an)

qa1+a2+...+an−n

where the sum ranges over all u-parking functions (a1, a2, . . . , an). The sum enumerator may be regarded
as a “q-analogue” of Pn(u). The sum enumerator for a subset S of [1, x]n is defined analogously by summing
over all sequences in S. Sum enumerators are multiplicative in the following sense. Suppose that S1 and
S2 are two sets of subsequences on disjoint index sets. Then the sum enumerator of the cartesian product
S1 × S2 consisting of all sequences formed by combining a subsequence from S1 and a subsequence from S1

is the product of the sum enumerators of S1 and S2.
For a u-parking function, the maximum value of the ith order statistic x(i) is at most ui and hence,

ui − x(i) ≥ 0. The reversed sum enumerator Rn(q;u) is defined by

Rn(q;u) =
∑

(a1,a2,... ,an)

qu1+u2+...+un−(a1+a2+...+an),

where the sum ranges over all u-parking functions (a1, a2, . . . , an). Equivalently,

Rn(q;u) = qu1+u2+...+un−nSn(1/q;u). (6.1)

The reversed sum enumerator is a polynomial in the variable q of degree u1 + u2 + . . . + un − n.

(6.1) Lemma.

(1 + q + q2 + . . . + qx−1)n =
n∑

m=0

(
n

m

)
(qum+1 + qum+1+1 + . . . + qx−1)n−mSm(q;u).

Proof. Since sum enumerators are multiplicative, the sum enumerator of [1, x]n is

(1 + q + q2 + . . . + qx−1)n.

For the same reason, the sum enumerator of functions which are decomposed into a u-parking function of
length m and a sequence in [um+1 + 1, x]n−m is

(qum+1 + qum+1+1 + . . . + qx−1)n−mSm(q,u).

The recursion now follows.

Comparing this recursion with the linear recursion in Corollary 5.3, we obtain the following theorem.

(6.2) Theorem.

Sn(q;u) = Pn(1 + q + . . . + qu1−1, 1 + q + . . . + qu2−1, . . . , 1 + q + . . . + qun−1).

Theorem 6.2 can also be obtain directly using a decomposition for the set of u-parking functions due to
Pitman and Stanley [19]. Given a u-parking function (β1, β2, . . . , βn), we can associate an ordinary parking
function (α1, α2, . . . , αn) by setting αi = r if βi is in the discrete interval [ur−1 + 1, ur]. Conversely, given
an ordinary parking function (α1, α2, . . . , αn), there are

(uα1 − uα1−1)(uα2 − uα2−1) · · · (uαn − uαn−1)

u-parking functions associated with it. These are obtained by choosing a number from each discrete interval
[uαj−1 + 1, uαj ]. Here, we use the convention that u0 = 0. Hence,

Pn(u1, u2, . . . , un) =
∑

(α1,α2,... ,αn)

(uα1 − uα1−1)(uα2 − uα2−1) · · · (uαn − uαn−1),
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where the sum ranges over all ordinary parking functions of length n. Replacing the number of elements
uαj − uαj−1 in the discrete interval [uαj−1 + 1, uαj ] by its sum enumerator and using the fact that sum
enumerators are multiplicative, we obtain Theorem 6.2.

Using Theorem 5.3, Theorem 6.1, and the shift formula, we can express sum enumerators in terms of
Gonc̆arov polynomials:

Sn(q;u) = gn

(
1

1 − q
;

qu1

1 − q
,

qu2

1 − q
, . . . ,

qun

1 − q

)
.

By homogeneity of Gonc̆arov polynomials,

(1 − q)nSn(q;u) = gn(1; qu1 , qu2 , . . . , qun).

Hence, sum enumerators satisfy the simpler linear recursion

1 =
n∑

m=0

(
n

m

)
qum+1(n−m)(1 − q)mSm(q;u). (6.2)

They also satisfy the following Appell relation

exp(t) =
∞∑

n=0

(1 − q)nSn(q;u) exp(qun+1t)
tn

n!
.

In the case of ordinary parking functions, ui = i and we have

(1 − q)nSn(q; 1, 2, . . . , n) = gn(1; q, q2, . . . , qn).

For example,

(1 − q)2S2(q; 1, 2) = 1 − 3q2 + 2q3

(1 − q)3S3(q; 1, 2, 3) = 1 − 4q3 − 3q4 + 12q5 − 6q6.

One does not expect simple generating functions for sum enumerators in general. However, when ui is an
arithmetic progression, we can group terms together to obtain a recursion which yields a simple exponential
generating function. We shall show how this can be done for reversed sum enumerators.

Substituting 1/q for q in equation (6.2) and using equation (6.1), we obtain

qu1+u2+...+un =
n∑

m=0

(
n

m

)
(q − 1)mRm(q;u)q−(n−m)um+1+um+1+um+2+...+un .

If the exponent
−(n − m)um+1 + um+1 + um+2 + . . . + un

is a function τ(n − m) depending only on n − m, then we have

qu1+u2+...+un =
n∑

m=0

(
n

m

)
(q − 1)mRm(q;u)qτ(n−m).

Multiplying this by tn/n!, summing over all non-negative integers n, and manipulating the resulting formal
power series, we obtain

∞∑
n=0

(q − 1)nRn(q;u)
tn

n!
=

∞∑
n=0

qu1+u2+...+un
tn

n!
∞∑

n=0

qτ(1)+τ(2)+...+τ(n) t
n

n!

.
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The condition that the exponent is a function τ(n − m) of n − m is in fact very strong. Consider the
case n − m = 2. Then the condition implies that for all m, −2um+1 + um+1 + um+2 equals a number τ(2)
independently of m, that is, um+2 − um+1 is a constant b for all m. This in turn implies that u is an
arithmetic progression with common difference b. Conversely, if ui = a + (i − 1)b, then

n∑
j=1

uj = an + b

(
n

2

)

and
n∑

j=1

τ(j) = b

(
n

2

)
.

We have thus proved the following theorem, which is best possible.

(6.3) Theorem. Let u be the arithmetic progression (a, a + b, a + 2b, . . . ). Then

∞∑
n=0

(q − 1)nRn(q;u)
tn

n!
=

∞∑
n=0

qan+b(n
2) tn

n!
∞∑

n=0

qb(n
2) tn

n!

.

The reversed sum enumerator Rn(q;u) also enumerates the number of inversions for certain sequences
of rooted b-forests. For more details about this and the relation between rooted b-forests and generalized
parking functions, see [32]. In particular, the reversed sum enumerator Rn(q; 1, 2, . . . , n) for ordinary parking
functions equals the inversion enumerator In(q) for labelled trees (see [15, 12, 26, 27]). Hence, we obtain, as
a special case of Theorem 6.3, the following result of Stanley ([26, 27]):

∞∑
n=0

(q − 1)nIn(q)
tn

n!
=

∞∑
n=0

q(
n+1
2 ) tn

n!
∞∑

n=0

q(
n
2) tn

n!

.

The theory of sum enumerators suggests that Gonc̆arov polynomials with nodes forming a geometric
progression 1, q, q2, . . . are worthy of study. For example,

g2(x; 1, q) = x2 − 2qx + 2q − 1,

g3(x; 1, q, q2) = x3 − 3q2x2 + (6q3 − 3q2)x + −6q3 + 6q2 − 1,

g4(x; 1, q, q2, q3) = x4 − 4q3x3 + (12q5 − 6q4)x2 + (−24q6 + 24q5 − 4q3)x
+24q6 − 36q5 + 6q4 + 8q3 − 1.

These Gonc̆arov polynomials can be regarded as q-analogues of Abel polynomials.

7 Expected sums of parking functions

In the remainder of this paper, we shall use methods from elementary probability theory. A subset S
of the set [1, x]n of length-n sequences with terms in the discrete interval [1, x] can be made into a discrete
probability space with a uniform probability measure by assigning a probability of 1/|S| to each sequence
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in S. When S is [1, x]n, then each sequence has probability 1/xn. In this case, the probability measure can
also be obtained by choosing each term xi independently and randomly with uniform distribution from the
discrete interval [1, x].

Given a subset S of length-n sequences, we define the random variable Sn to be the sum x1 +x2 + . . .+xn

of a random sequence in S. The expected sum of a random sequence from S is the expectation E[Sn]. Let
(x)k be the k-falling factorial, that is,

(x)k = x(x − 1) · · · (x − k + 1).

The kth (falling) factorial moment of the sum of a random sequence in S is the expectation E[(Sn)k]. More
explicitly, E[(Sn)k] equals

1
|S|

∑
(x1,x2,... ,xn)∈S

(x1 + x2 + . . . + xn)k.

In particular, let Ek(n;u) be the kth falling factorial moment of the sum of a random u-parking function,
that is,

Ek(n;u) =
1

Pn(u)

∑
(x1,x2,... ,xn)

(x1 + x2 + . . . + xn)k,

where the sum ranges over all u-parking functions of length n.
The decomposition in Theorem 5.1 also gives recursions for expected values of moments of sums of parking

functions. From these recursions, one can, with some difficulty, get explicit formulas for the moments. In
this section, we shall show how this can be done for the first moment or the expected sum. We begin with
the linear recursion.

(7.1) Theorem. The expected sums of u-parking functions satisfy the following linear recursion:

n(x + 1)
2

=
n∑

m=0

(
n

m

)
(x − um+1)n−mPm(u)

xn

(
E1(m;u) +

(n − m)(x + um+1 + 1)
2

)
.

Proof. We derive the expected sum of a sequence (x1, x2, . . . , xn) in [1, x]n in two different ways. Since the
expected value of any term xi is (1 + x)/2, the expected sum of a random sequence in [1, x]n is n(1 + x)/2,
the left hand side of the recursion.

By Theorem 5.1, each sequence in [1, x]n decomposes into a u-parking function of length m and a sequence
in [um+1 + 1, x]n−m. For a fixed m-element subset {i1, i2, . . . , im} of {1, 2, . . . , n}, consider the subset of
sequences decomposing into a length-m u-parking function indexed by {i1, i2, . . . , im} and a length-(n−m)
sequence in [um+1 +1, x]n−m indexed by the complement. The probability that a random sequence is in this
set is

(x − um+1)n−mPm(u1, u2, . . . , um)
xn

and the expected sum of such a sequence is

E1(m; u1, u2, . . . , um) +
(n − m)(x + um+1 + 1)

2
.

The right hand side of the recursion can now be obtained by conditioning on the event that the maximal
subsequence forming a u-parking function is indexed by {i1, i2, . . . , im} and summing over subsets of the
index set {1, 2, . . . , n}. This completes the proof of Theorem 7.1.

The recursion in Theorem 7.1 gives an Appell relation for the expected sums. Let a be the sequence
defined by

ai = x − ui+1,

with 0 ≤ i < ∞. Then the expected sum E1(n; u1, u2, . . . , un), as a function of u1, u2, . . . , un, becomes a
function of x and a0, a1, . . . , an−1. Let

e(1)
n (x; a0, a1, . . . , an−1) = E1(n; x − a0, . . . , x − an−1).
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In terms of e
(1)
n (x;a), the recursion in Theorem 7.1 becomes

nxn(x + 1)
2

=
n∑

m=0

(
n

m

)
an−m

m gm(x; a)e(1)
m (x; a)

+
n∑

m=0

(
n

m

)
an−m

m gm(x; a)(n − m)
(

2x − am + 1
2

)
.

From the recursion, we conclude that gn(x; a)e(1)
n (x; a) is the sum of two homogeneous polynomials

in x and a0, a1, . . . , an−1, one having total degree n + 1 and the other having total degree n. The sum
gn(x;a)e(1)

n (x;a) is easier to work with than the expected sum e
(1)
n (x; a). We shall derive an Appell relation

and an explicit formula for gn(x;a)e(1)
n (x;a) in terms of Gonc̆arov polynomials.

We begin with the Appell relation. Multiplying both sides by tn/n! and summing over n, we get

(1 + x)xt

2
ext

on the left hand side. For the first sum on the right hand side, we get

∞∑
n=0

[
n∑

m=0

(
n

m

)
an−m

m gm(x; a)e(1)
m (x; a)

]
tn

n!
=

∞∑
m=0

gm(x; a)e(1)
m (x; a)

eamttm

m!
.

For the second sum, we get

∞∑
n=0

[
n∑

m=0

(
n

m

)
an−m

m gm(x; a)(n − m)
(

2x − am + 1
2

)]
tn

n!

= t

∞∑
n=1

[
n−1∑
m=0

(
n − 1

m

)
a(n−1)−m

m gm(x; a)
(

am

(
x +

1
2

)
− 1

2
a2

m

)]
tn−1

(n − 1)!

= t

∞∑
m=0

gm(x;a)
[(

x +
1
2

)
am − 1

2
a2

m

]
eamttm

m!
.

Therefore we obtain the following Appell relation.

(7.2) Theorem.

∞∑
n=0

gn(x;a)e(1)
n (x; a)

eanttn

n!

=
(1 + x)xt

2
ext −

∞∑
n=0

gn(x; a)
[(

x +
1
2

)
ant − 1

2
a2

nt

]
eanttn

n!
.

Our next objective is to derive an expression for gn(x; a)e(1)
n (x; a) as a linear combination of Gonc̆arov

polynomials. This gives an formula to compute e
(1)
n (x; a) assuming that the Gonc̆arov polynomials are

already computed. We remark that from a computer algebra point of view, the linear recursion in Theorem
7.1 is a very efficient way to calculate a specific expected sum, but “explicit” formulas are also useful.

We shall use the following vector notation introduced in Section 2. If fi(x), i = 0, 1, 2, . . . , n, is a sequence
of polynomials, then

−−→
fi(x) = (f0(x), f1(x), . . . , fn(x))T .
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In particular, the linear recursions for Gonc̆arov polynomials can be rewritten as

A −−−−→
gi(x; a) =

−→
xi ,

where A is the matrix defined in Lemma 4.1. Similarly, we can rewrite the linear recursion in Theorem 7.1
as

x(1 + x)
2

−−−→
ixi−1 = A

−−−−−−−−−−−→
gi(x; a)e(1)

i (x; a) + B
−−−−−−−−−−−−−−−−→(

2x − ai + 1
2

)
gi(x; a).

where B is the (n + 1) × (n + 1) matrix [
i

(
i − 1

j

)
ai−j

j

]
0≤i,j,≤n

.

Note that, as always, we use the convention that the binomial coefficient
(

i
j

)
is zero if j > i. Applying the

inverse of A to both sides, we obtain

x(1 + x)
2

A−1
−−−→
ixi−1 =

−−−−−−−−−−−→
gi(x;a)e(1)

i (x; a) + A−1B
−−−−−−−−−−−−−−−−→(

2x − ai + 1
2

)
gi(x; a). (7.1)

By Lemma 4.1, the inverse of A is the coefficient matrix of the Gonc̆arov polynomials. Hence, observing
that ixi−1 is the derivative of xi,

A−1
−−−→
ixi−1 =

−−−−−−→
Dgi(x; a).

Using the differential relation for Gonc̆arov polynomials, we conclude that the left hand side of equation
(7.2) equals

x(1 + x)
2

−−−−−−−−−−−−−−−−−−→
igi−1(x; a1, a2, . . . , ai−1),

where we use the convention (consistent with the differential relation) that Gonc̆arov polynomials with
negative indices are identically zero.

To simplify the right hand side, consider the matrix A−1B. Since both A and B are lower triangular and
the diagonal entries of B are zero, A−1B is lower triangular with zero diagonal. In particular, the ij-entry
of A−1B is zero if i ≤ j. Suppose that i > j. Then by Lemma 4.1, the ij-th entry of A−1B equals

n∑
k=0

(
i

k

)
gi−k(0; ak, . . . , ai−1)k

(
k − 1

j

)
ak−j

j

= (i − j)
(

i

j

)
aj

n−j−1∑
t=0

(
i − j − 1

t

)
gi−j−1−t(0; aj+1+t, . . . , ai−1)at

j .

By equation (4.2),

gi−j(x; aj , . . . , ai−1) =
i−j∑
t=0

(
i − j

t

)
gt(0; ai−t, . . . , ai−1)xi−j−t.

Taking the derivative on both sides, we obtain

Dgi−j(x; aj , . . . , ai−1) = (i − j)
i−j−1∑

t=0

(
i − j − 1

t

)
gt(0; ai−t, . . . , ai−1)xi−j−t−1

= (i − j)
i−j−1∑

t=0

(
i − j − 1

t

)
gi−j−1−t(0; aj+1+t, . . . , ai−1)xt.

We conclude that the ijth entry of A−1B equals
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(
i

j

)
ajDgi−j(aj ; aj , aj+1, . . . , ai−1).

By the differential relation,

Dgi−j(x; aj , aj+1, . . . , ai−1) = (i − j)gi−j−1(x; aj+1, aj+2, . . . , ai−1)

Hence, an alternate way to write the ijth entry of A−1B is

i

(
i − 1

j

)
ajgi−j−1(aj ; aj+1, aj+2, . . . , ai−1).

Putting all the above into equation (7.1), we obtain the following theorem.

(7.3) Theorem. The sum gn(x;a)e(1)
n (x;a) equals

nx(1 + x)
2

gn−1(x; a1, a2, . . . , an−1)

− n

2

n−1∑
i=0

(
n − 1

i

)
ai(2x − ai + 1)gn−i−1(ai; ai+1, ai+2, . . . , an−1)gi(x; a0, a1, . . . , ai−1).

Setting x = 0 and ai = −ui+1 and using Theorem 5.4 and the shift formula, we obtain a formula for the
expected sum in terms of the sequence u.

(7.4) Theorem. The expected sum E1(n;u) equals

n

2

n∑
j=1

(
n − 1
j − 1

)
uj(uj + 1)

Pn−j(uj+1 − uj , uj+2 − uj , . . . , un − uj)Pj−1(u1, u2, . . . , uj−1)
Pn(u1, u2, . . . , un)

.

This formula, a sum of positive terms, should have an revealing combinatorial interpretation.

8 The classical case with Abel identities

In this section, we shall give several equivalent formulas for the expected sum E1(n; a, a+ b, . . . , a+(n−
1)b). We shall often abbreviate our notation and write E1(n; a, b) instead of E1(n; a, a + b, . . . , a + (n− 1)b).
Using Theorem 7.4 and Corollary 5.5, we obtain the following formula for the expected sum.

(8.1) Theorem.

E1(n; a, b) =
n

2

n−1∑
i=0

(
n − 1

i

)
(a + ib + 1)bn−i−1(n − i)n−i−2 (a + ib)i

(a + nb)n−1
.

In the remainder of this section, we shall use Theorem 7.3 to obtain other formulas for expected sums.
There are many – almost too many – such formulas, due mainly to the existence of Abel identities discussed
in Section 3. We shall use the following substitutions

x = a, a0 = 0, a1 = −b, a2 = −2b, . . . , an = −(n − 1)b.
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We begin by calculating explicitly several values of Gonc̆arov polynomials. By equation (3.1),

gn(a; 0,−b,−2b, . . . ,−(n − 1)b) = Pn(a, a + b, a + 2b, . . . , a + (n − 1)b)
= a(a + nb)n−1,

gn−1(a;−b,−2b, . . . ,−(n − 1)b) = (a + b)(a + nb)n−2,

gn−i−1(−ib;−(i + 1)b, . . . ,−(n − 1)b) = b[(n − i)b]n−i−2

= bn−i−1(n − i)n−i−2.

Substituting these values into the formula in Theorem 7.3, we obtain

a(a + bn)n−1e(1)
n (a; 0,−b,−2b, . . . ,−(n − 1)b)

=
na(a + 1)

2
(a + b)(a + bn)n−2

+n

n−1∑
i=0

(
n − 1

i

)
ibn−i(n − i)n−i−2

(
2a + ib + 1

2

)
a(a + ib)i−1.

The sum in this expression can be simplified slightly (by manipulating binomial coefficients) to

n

n−1∑
i=1

(
n − 1
i − 1

)
bn−i(n − i)n−i−1

(
2a + ib + 1

2

)
a(a + ib)i−1.

We break up this sum into two parts by writing

2a + ib + 1
2

=
a + 1

2
+

a + ib

2
.

The first part is the following sum

nab(a + 1)
2

n−1∑
i=1

(
n − 1
i − 1

)
bn−i−1(n − i)n−i−1(a + ib)i−1.

By equation (3.3), the sum equals (n − 1)(a + nb)n−2. Regrouping terms, we conclude that the first part
equals (

n

2

)
ab(a + 1)(a + nb)n−2.

When this quantity is added to na(a + 1)(a + b)(a + nb)n−2/2, we get the refreshingly simple result na(a +
1)(a + nb)n−1/2. The second part,

na

2

n−1∑
i=1

(
n − 1
i − 1

)
bn−i(n − i)n−i−1(a + ib)i, (8.1)

does not simplify into a single term. Hence, the following theorem gives a reasonable formula for the expected
sum.

(8.2) Theorem. The expected sum E1(n; a, b) equals

n(a + 1)
2

+
n

2

n−1∑
i=1

(
n − 1
i − 1

)
bn−i(n − i)n−i−1 (a + ib)i

(a + nb)n−1
.
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For ordinary parking function, this formula specializes to

E1(n; 1, 1) = n +
n

2

n−1∑
i=1

(
n − 1
i − 1

)
(n − i)n−i−1 (i + 1)i

(n + 1)n−1
. (8.2)

This formula does not have the same form (and is not obviously the same) as the formula obtained by
Gessel and Sagan [5] or Knuth [10] for ordinary parking functions, which states

E1(n; 1, 1) =
(

n + 1
2

)
− 1

2

n∑
i=2

(
n

i

)
i!(n + 1)1−i. (8.3)

This formula suggests a third formula for E1(n; a, b) which specializes to equation (8.3) when both a and b
are set equal to 1.

(8.3) Theorem.

E1(n; a, b) =
n(a + 1)

2
+ b

(
n

2

)
− 1

2

n∑
i=2

(
n

i

)
i!bi

(a + nb)i−1
.

There are two ways to prove Theorem 8.3. The first way to show that the expressions in Theorems 8.2
and 8.3 are equal. This can be done using a computer algebra program (see [18]) or by traditional methods.
We will leave the computer algebra method to our silicon-based friends. The traditional method requires
using two Abel identities. It is not particularly illuminating per se, but an intermediate form turns out to
be useful later. Thus, it is worthwhile to show this method in some detail. The main step is to transform
the sum (8.1) into a suitable form.

Using equation (3.4), the sum (8.1) equals

ab2n(n − 1)
2

n−2∑
j=0

(n − 2)!
j!

(a + nb)jbn−j−3(a + (n − j − 1)b).

Changing indices from j to n − j and regrouping terms, this becomes

a

2

n∑
j=2

n!
(n − j)!

(a + nb)n−jbj−1(a + (j − 1)b).

Hence, we have another formula for the expected sum. This formula will be used in Section 10.

(8.4) Theorem. The expected sum E1(n; a, a + b, . . . , a + (n − 1)b) equals

n(a + 1)
2

+
1
2

n∑
j=2

n!
(n − j)!

bj−1(a + (j − 1)b)
(a + nb)j−1

.

This is not yet Theorem 8.3 and we need identity (3.5). Extracting the first two terms in the sum, moving
them to the left, simplifying the left hand side, finding that there is a factor of b on the left hand side, and
dividing by b, we obtain :

n(n − 1)b(a + nb)n−1 =
n∑

j=2

n!
(n − j)!

(a + nb)n−jbj−1(a + jb).

Applying the last identity, we reach the required form for the sum (8.1). Dividing by a(a+nb)n−1, we arrive
finally at the equation in Theorem 8.3.
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9 The classical case with an inverse relation

The second way to prove Theorem 8.3 is to proceed directly from the linear recursion. This method yields
an interesting and simpler special case of the linear recursion. Consider the linear recursion in Theorem 7.1
with ui+1 = a + ib. Multiplying both sides by xn, we obtain

nxn(1 + x)
2

=
n∑

i=0

(
n

i

)
(x − a − ib)n−ia(a + ib)i−1

(
E1(i; a, b) +

(n − i)(x + a + ib + 1)
2

)
.

This identity holds for all integers x greater than or equal to a + (n − 1)b. Hence, it is a polynomial
identity in x and holds for all real numbers x. Setting x = 0 and rearranging terms, we have

n∑
i=0

(−1)n−i

(
n

i

)
a(a + ib)n−1E1(i; a, b)

= −1
2

n∑
i=0

(−1)n−i

(
n

i

)
(n − i)

[
a(a + ib)n−1 + a(a + ib)n

]
. (9.1)

When n = 0, equation (9.1) says that E1(0; a, b) = 0, as expected. When n ≥ 1, the right hand side of
equation (9.1) can be simplified slightly to

n

2

n−1∑
i=0

(−1)n−1−i

(
n − 1

i

) [
a(a + ib)n−1 + a(a + ib)n

]
.

In this form, it can be written as a single term by using the following lemma.

(9.1) Lemma.

n∑
i=0

(−1)n−i

(
n

i

)
a(a + ib)m = abnn!

m−n∑
r=0

(
m

n + r

)
am−n−rbrS(n + r, n).

where S(m, n) is a Stirling number of the second kind and equals the number of partitions of an m-element
set into n non-empty blocks.

Proof. Expand (a + bi)m with the binomial theorem, use the identity of Stirling ([29]; see, for example,
[25], page 34):

n∑
i=0

(−1)n−i

(
n

i

)
im = n!S(m, n),

and observe that S(m, n) = 0 if m < n.

The sum on the right hand side in Lemma 9.1 is empty if m ≤ n − 1. Hence, if m ≤ n − 1,

n∑
i=0

(−1)n−i

(
n

i

)
a(a + ib)m = 0.

Two other useful cases of Lemma 9.1 are
n∑

i=0

(−1)n−i

(
n

i

)
a(a + ib)n = n!abn
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and
n∑

i=0

(−1)n−i

(
n

i

)
a(a + ib)n+1 = n!abn

[
b

(
n + 1

2

)
+ a(n + 1)

]
.

Using Lemma 9.1 (for the case n − 1), the right hand side of equation (9.1) can be written as a single
term and we obtain the following simpler linear recursion for the expected sum when n ≥ 1:

n∑
i=0

(−1)n−i

(
n

i

)
a(a + ib)n−1E1(i; a, b) =

abn−1n!
2

[
b

(
n

2

)
+ an + 1

]
. (9.2)

With a reasonable linear recursion in hand, we have two ways of proving Theorem 8.3. The first and somewhat
unsatisfactory way is to check that the formula for E1(n; a, b) given in Theorem 8.3 yields E1(0) = 0 and
satisfies the linear recursion (9.2). The checking can be done easily by hand (using Lemma 9.1) or by a
computer algebra program. Either way, we obtain Theorem 8.3.

The second is to “discover” the solution in a systematic way. This method will be necessary for finding
formulas for the higher moments for which we have no reasonable guess. See [14]. We begin by transforming
the recursion into a matrix equation.

Let P be the (N + 1) × (N + 1) lower triangular matrix[
(−1)n−i

(
n

i

)
a(a + ib)n−1

]
0≤n,i≤N

.

For example, when N = 3, P is the matrix⎡
⎢⎢⎣

1 0 0 0
−a a 0 0
a2 −2a(a + b) a(a + 2b) 0
−a3 3a(a + b)2 −3a(a + 2b)2 a(a + 3b)2

⎤
⎥⎥⎦

Using the vector notation introduced in Section 2, we can rewrite equation (9.2) as

P−−−−−−→
E1(i; a, b) =

−−−−−−−−−−−−−−−−−−→
i!abi−1

2

[
b

(
i

2

)
+ ai + 1

]
. (9.3)

Our next step is to find the inverse of P . Let Q be the (N + 1) × (N + 1) lower triangular matrix[(
i

j

)
j!bj

(a + ib)j−1

]
0≤i,j≤N

.

For example, when N = 3, Q is the matrix

⎡
⎢⎢⎢⎢⎢⎣

a 0 0 0
a + b b 0 0

a + 2b 2b
2b2

a + 2b
0

a + 3b 3b
6b2

a + 3b

6b3

(a + 3b)2

⎤
⎥⎥⎥⎥⎥⎦

(9.2) Lemma.
PQ = NL

where N is the diagonal matrix whose iith entry is abii! and L is the lower triangular matrix with all ijth
entries equal to 1 whenever i ≥ j and 0 otherwise.

Proof. The njth entry of the product PQ equals
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n∑
i=j

(−1)n−i

(
n

i

)(
i

j

)
j!bja(a + ib)n−j.

Changing indices from i to i − j and regrouping terms, this can be simplified to

n!bj

(n − j)!

n−j∑
i=0

(−1)n−j−i

(
n − j

i

)
a((a + jb) + ib)n−j .

By the case n − j of Lemma 9.1, the sum equals (n − j)!abn−j and the lemma follows.

Lemma 9.2 can be rephrased as follows.

(9.3) Lemma.
P−1 = QL−1N−1.

The inverse matrices N−1 and L−1 have simple interpretations when acting on a column vector −→ai .
Multiplying on the left by N−1 divides the ith coordinate ai by abii!. The matrix L is the summation matrix
and sends the vector −→ai to the vector whose ith coordinate is a0 + a1 + . . . + ai. Hence, the inverse L−1 is
the backward difference matrix, with all diagonal entries 1, all subdiagonal entries −1, and all other entries
zero. Hence, multiplying the vector −→ai on the left by L−1 results in the vector −−−−−−→ai − ai−1, obtained by taking
the backward difference of the coordinates ai, with the convention that a−1 = 0.

Hence, when we apply Lemma 9.3 to the matrix equation (9.3), we obtain

−−−−−−→
E1(i; a, b) =

1
2b

Q(0, a + 1, a + b, a + 2b, . . . , a + (i − 1)b, . . . , a + (N − 1)b)T .

Writing out the nth coordinate explicitly, we obtain the formula in Theorem 8.4.
To obtain Theorem 8.3, we need to “precondition” and consider the adjusted sum S∗

n, defined by

S∗
n =

n(a + 1)
2

+ b

(
n

2

)
− Sn.

For ordinary parking functions, the adjusted sum is the reversed sum (defined in Section 6), but this is not
true in general.

Substituting S∗
n into equation (9.1) and simplifying using Lemma 9.1, we obtain

n∑
i=0

(−1)n−i

(
n

i

)
a(a + ib)n−1E[S∗

i ] = −n!abn(n − 1)
2

.

This converts to the matrix equation

P−−−→
E[S∗

i ] = −1
2
(0, 0, 2ab2, 12ab3, . . . , i!abi(i − 1), . . . , N !abN (N − 1))T .

Inverting this, we obtain
−−−→
E[S∗

i ] = −1
2
Q(0, 0, 1, 1, . . . , 1)T ,

from which the formula in Theorem 8.3 follows immediately.

10 Order properties of expected sums

In this section, we shall consider the following conjecture.
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(10.1) Conjecture. The expected sum E1(n; u1, u2, . . . , un) is an increasing function of n and the gaps
ui+1 − ui.

This conjecture may seem obvious. However, there are two factors to consider when n and the gaps are
increased. On the positive side, the parking functions are allowed to take on higher values. On the negative
side, there are more parking functions, and since parking functions cannot take on too many higher values,
the sample might consist mostly of parking functions with smaller sums. Our intuition is that the positive
factor always predominates.

We begin with a simple general result supporting this conjecture.

(10.2) Proposition. If γ is a rational number greater than 1, then

E1(n; u1, u2, . . . , un) < E1(n; γu1, γu2, . . . , γun).

Proof. Writing uj(uj + 1) as u2
j + uj in the formula in Theorem 7.5, we can write E1(n;u)Pn(u) as the

sum F (u)+G(u) of two homogeneous functions in the variables u1, u2, . . . , un, where F (u) has total degree
n + 1 and G(u) has total degree n. Using Corollary 5.6, we have

E1(n; γu1, γu2, . . . , γun) =
γn+1F (u) + γnG(u)

γnPn(u)

=
(γ − 1)F (u)

Pn(u)
+

F (u) + G(u)
Pn(u)

=
(γ − 1)F (u)

Pn(u)
+ E1(n; u1, u2, . . . , un).

Since γ > 1, the proposition follows.

For the classical case, when ui = a + (i − 1)b, Conjecture 10.1 states that the expected sums E1(n; a, b)
are increasing functions of n, a, and b. We shall verify this special case.

(10.3) Lemma. If 0 < a < c,
E1(n; a, b) < E1(n; c, b).

Proof. Use the formula in Theorem 8.3 and observe that −(c + nb)−1 > −(a + nb)−1.

Hence, E1(n; a, b) is an increasing function of a (for fixed n and b).

(10.4) Lemma.
E1(n; a, b) < E1(n + 1; a, b).

Proof. Rewrite the formula in Theorem 8.3 in the form

E1(n; a, b) =
n(a + 1)

2
+ b

(
n

2

)
− b

2

n∑
i=2

(n)i

(γ + n)i−1
,

where (n)i is a falling factorial and γ = a/b. Then, the forward difference

E1(n + 1; a, b)− E1(n; a, b)

equals
a + 1

2
+ bn − b

2

n∑
i=2

[
(n + 1)i

(n + 1 + γ)i−1
− (n)i

(n + γ)i−1

]
− b

2
(n + 1)!

(n + 1 + γ)n
.
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By an elementary induction argument, one can show that for γ a positive real number and i = 2, 3, . . . , n,

(n + 1)i

(n + 1 + γ)i−1
− (n)i

(n + γ)i−1
< 1. (10.1)

The induction argument runs as follows. If i = 2,

(n + 1)n
n + 1 + γ

− n(n − 1)
n + γ

=
n2 + 2γn + n

n2 + 2γn + n + γ2 + γ
< 1.

Now assume that the inequality is true for i ≤ k. When i = k + 1,

(n + 1)k+1

(n + 1 + γ)k
− (n)k+1

(n + γ)k

=
[

(n + 1)k

(n + 1 + γ)k−1
− (n)k

(n + γ)k−1

]
n − k + 1
n + γ + 1

+
(n)k

(n + γ)k−1

[
n − k + 1
n + γ + 1

− n − k

n + γ

]

<
n − k + 1
n + γ + 1

+
(n)k

(n + γ)k−1

[
(γ + k)

(n + γ)(n + γ + 1)

]

= 1 − γ + k

n + γ + 1
+

(n)k

(n + γ)k
· γ + k

n + γ + 1
< 1.

From inequality (10.1), we conclude that

E1(n + 1; a, b)− E1(n; a, b) > bn +
a + 1

2
− b(n − 1)

2
− b

2

=
bn + a + 1

2
> 0.

(10.5) Lemma. If c is an integer strictly greater than b, then

E1(n; a, b) < E1(n; a, c).

Proof. Rewrite the formula for the expected sum E1(n; a, a + b, . . . , a + (n − 1)b) given in Theorem 8.4 in
the form

n(a + 1)
2

+
1
2

n∑
j=2

n!
(n − j)!

[
abj−1

(a + nb)j−1
+

(j − 1)bj

(a + nb)j−1

]
.

From this, the lemma follows from the easy inequality: if a > 0 and c > b, then

b

a + nb
<

c

a + nc
.

The three lemmas imply the following theorem.

(10.6) Theorem. The expected sum E1(n; a, a + b, . . . , a + (n − 1)b) is a strictly increasing function of n,
a and b.

11 Factorial moments of parking functions

The decomposition in Section 5 can also be used to obtain linear recursions for higher factorial moments
of sums of random parking functions. Let u be a sequence of non-decreasing positive integers. Let a be the
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sequence defined by aj = x − uj+1 and let

e
(k)
i (x; a0, . . . , an−1) = E[(Si)k],

the k-factorial moment of the sum of a random u-parking function as a function of x, a0, a1, . . . , ai−1. The
factorial moment generating function Si(t;a) for u-parking functions of length i is defined by the following
formula:

Si(t; a) =
∞∑

k=0

e
(k)
i (x; a)

tk

k!
.

Given a discrete interval [α, β], let Ui(α, β) be the sum of a random (integer) sequence chosen with
uniform distribution from the space [α, β]i of all length-i sequences with terms in [α, β]. Then Ui(α, β) can
also be thought of as a length-i random sequence obtained by choosing each term independently with uniform
distribution from [α, β]. The factorial moments of Ui(α, β) are known and they can be expressed in a compact
form by exponential generating functions (see, for example, [8]). Let

Ui(t; α, β) =
∞∑

k=0

E[(Ui(α, β))k]
tk

k!
.

Then

Ui(t; α, β) =
(

(1 + t)β+1 − (1 + t)α

(β − α + 1)t

)i

.

(11.1) Theorem. Let k be a positive integer. Then the factorial moments of the sum of a random u-parking
function of length n satisfies the following linear recursion:

E[(Un(1, x))k] =
n∑

m=0

(
n

m

)
an−m

m gm(x; a)
xn

⎛
⎝ k∑

j=0

(
k

j

)
e(j)

m (x; a)E[(Un−m(um+1 + 1, x))k−j ]

⎞
⎠ .

Proof. The proof is almost the same as the proof of Theorem 7.1. Consider the event that the maximum
subsequence forming a u-parking function is indexed by {i1, i2, . . . , im}. Because the length-m u-parking
function and the length-(n−m) sequence from [um+1 + 1, x]n−m are chosen independently and an analogue
of the binomial theorem holds for falling factorials, the expected value of (Un(1, x))k conditioned on this
event is

k∑
j=0

(
k

j

)
e(j)

m (x; a)E[(Un−m(um+1 + 1, x))k−j ].

Summing over the conditional expectations, we obtain the linear recursion.

As with the expected sum, it follows from the linear recursion that gi(x; a)e(k)
i (x; a) is a sum of k + 1

homogeneous polynomial in the variables x, a0, a1, . . . , ai−1 having total degree i, i + 1, . . . , and i + k.
When Theorem 11.1 is restated in terms of exponential generating functions, we obtain the following

linear recursion for the factorial moment generating functions Si(t; a) :

xnUn(t; 1, x) =
n∑

i=0

(
n

i

)
an−i

i gi(x; a)Si(t; a)Un−i(t; ui+1 + 1, x), (11.1)

We can use the matrix method in Section 7 to rewrite equation (11.1) in the following more compact form:

M−−−−−−−−−−→
gi(x; a)Si(t; a) =

−−−−−−−→
xiUi(t; 1, x),

where M is the lower triangular matrix with ijth entry equal to(
i

j

)
ai−j

j Ui−j(t; uj+1 + 1, x)
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if i ≥ j and zero if i < j. From this linear equation, one can obtain by Cramer’s rule a rather complicated
determinantal formula for Si(t;a). This determinantal formula seems to have no simple form.

After this, it is a pleasant surprise that there is a simple Appell relation for Si(t; a). First observe that

∞∑
n=0

xnUn(t; 1, x)
qn

n!
=

∞∑
n=0

[
(1 + t)x+1 − (1 + t)

t

]n
qn

n!

= exp(
q

t
((1 + t)x+1 − (1 + t)))

and ∞∑
n=i

an−i
i Un−i(t; ui+1 + 1, x)

qn−i

(n − i)!
= exp(

q

t
((1 + t)x+1 − (1 + t)1+x−ai)).

Hence, multiplying equation (11.1) by qn/n!, summing over all non-negative integers n, and dividing both
sides by exp(q(i + t)x+1/t), we obtain

exp(−q

t
(1 + t)) =

∞∑
i=0

giSi(t) exp(−q

t
(1 + t)1+x−ai)

qi

i!
.

Changing variables from q to qt, we obtain the following Appell relation.

(11.3) Theorem.

exp(−q(1 + t)) =
∞∑

i=0

gi(x; a)Si(t; a) exp(−q(1 + t)1+x−ai)
tiqi

i!
.

The left hand side of the Appell relation does not depend on x (which is not surprising, as the linear
recursion from which it is derived holds for all sufficiently large integer x). Hence, simpler Appell relations
can be obtained by setting x to be 0 or any convenient constant or variable.

12 Second factorial moments of sums of parking functions

The second power moment is of particular importance in estimating the spread of a distribution. In
this section, we shall derive an explicit formula for the second factorial moment of the sum of a random
u-parking function with the matrix method used in Section 7.

We start with the linear recursion for the second factorial moment.

(12.1) Lemma. The second factorial moment e
(2)
n (x; a) satisfies the linear recursion

xnE[(Un(1, x))2]

=
n∑

m=0

(
n

m

)
an−m

m gm(x;a)

·(e(2)
m (x;a) + 2e(1)

m (x;a)E[Un−m(x − am + 1, x)]) + E[(Un−m(x − am + 1, x))2]

with
E[Un−m(x − am + 1, x)] =

(n − m)(2x − am + 1)
2

,

E[(Un−m(x − am + 1, x))2] =
(2x − am + 1)2(n − m)2

4
+ (n − m)

[
a2

m

12
− 2x − am

2
− 7

12

]
,

and
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E[(Un(1, x))2] =
n(n − 1)(x + 1)2

4
+

n(x2 − 1)
3

.

Next, we rewrite the linear recursion as the following system of linear equations:

1
4
(x + 1)2

−−−−−−→
i(i − 1)xi +

1
3
(x2 − 1)

−→
ixi

= A
−−−−−−−−−−−→
gi(x;a)e(2)

i (x;a)

+B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
gi(x;a)e(1)

i (x;a)(2x − ai + 1) + gi(x; a)(x2 − xai +
1
3
(a2

i − 1))

+ C
−−−−−−−−−−−−−−−−−→(

2x − ai + 1
2

)2

gi(x; a),

where A, B are the lower triangular matrices described in Section 7 and C is the lower triangular matrix
with ijth entry equal to

i(i − 1)
(

i − 2
j

)
ai−j

j

if i > j + 1 and zero otherwise.
As in Section 7, we apply A−1 to both sides of the linear equation. Using Lemma 4.1, the left hand side

simplifies to

x2(x + 1)2

4
−−−−−−−→
D2gi(x; a) +

x(x2 − 1)
3

−−−−−−→
Dgi(x; a).

To simplify the right hand side, we need the entries of A−1B and A−1C. The entries of A−1B were
calculated in Section 7. The entries of A−1C can be calculated using a similar method. Indeed, the ijth
entry of A−1C is (

i

j

)
a2

jD
2gi−j(aj ; aj , aj+1, . . . , ai−1)

if i ≥ j and zero otherwise. Using these facts and the differential relation for Gonc̆arov polynomials, we
obtain the equation:

gn(x; a0, a1, . . . , an−1)e(2)
n (x; a0, a1, . . . , an−1)

=
x2(x + 1)2

4
n(n − 1)gn−2(x; a2, a3, . . . , an−1) +

x(x2 − 1)
3

ngn−1(x; a1, a2, . . . , an−1)

−n(n− 1)
4

n−2∑
i=0

(
n − 2

i

)
a2

i (2x − ai + 1)2

·gn−i−2(ai; ai+2, ai+3, . . . , an−1)gi(x; a0, a1, . . . , ai−1)

−n

n−1∑
i=0

(
n − 1

i

)
aign−i−1(ai; ai+1, ai+2, . . . , an−1)

·
[
(2x − ai + 1)gi(x; a0, a1, . . . , ai−1)e

(1)
i (x; a0, a1, . . . , ai−1)

+
(

x2 − xai +
a2

i − 1
3

)
gi(x; a0, a1, . . . , ai−1)

]
.

Setting x = 0 and ai = −ui+1, we obtain the following theorem.
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(12.2) Theorem

P (u1, u2, . . . , un)E2(n; u1, u2, . . . , un)

= n
n−1∑
i=0

(
n − 1

i

)
ui+1Pn−i−1(ui+2 − ui+1, ui+3 − ui+1, . . . , un − ui+1)

·
[
(ui+1 + 1)Pi(u1, . . . , ui)E1(i; u1, . . . , ui) +

(
u2

i+1 − 1
3

)
Pi(u1, . . . , ui)

]

− n(n − 1)
4

n−2∑
i=0

(
n − 2

i

)
u2

i+1(ui+1 + 1)2

·Pn−i−2(ui+3 − ui+1, ui+4 − ui+1, . . . , un − ui+1)Pi(u1, . . . , ui).

On comparing the formulas in Theorems 7.4 and 12.2, it is evident that one can obtain, in a mechanical
way, formulas for any higher moments and that these formulas has a recognizable pattern.

For many applications, asymptotic formulas are much more useful than explicit formulas. The only
known results are asymptotic formulas for the expected sum and second moment of random ordinary parking
functions. These formulas can be extracted from [20, 24, 30] (see also [4]). Briefly,

µn = E[Sn] ∼
(

n + 1
2

)
−

√
π

8
n3/2,

E[S2
n] ∼

(
n + 1

2

)2

− n(n + 1)
√

π

8
n3/2 +

5n3

12
+

√
π

8
n3/2.

Hence, if σn is the variance of Sn, then

σ2
n ∼ (

5
12

− π

8
)n3 ≈ 0.0239676n3.

Using these formulas and Chebyshev’s inequality,

Pr(|Sn − µn| ≥
√

π

8
n3/2) ≤ 8σ2

π
≈ 0.061033,

so that about 94% of ordinary parking functions have sums which are at least(
n + 1

2

)
−

√
π

2
n3/2.

Moreover, as K → ∞,

Pr(|Sn − µn| > Kn3/2) ≤ σ2
n

K2
→ 0,

in other words, when n is large, most ordinary parking functions have sums which are close to
(

n+1
2

)
, the

largest possible value. Can one prove a similar result for u-parking functions? A less speculative unsolved
problem is to extend asymptotical results for ordinary parking functions to the classical case when u is an
arithmetic progression.

13 Variants of parking functions

13.1. Reversed parking functions.
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Let u be a sequence of non-decreasing positive integers. A reversed u-parking function of length n on the
discrete interval [1, x] is a sequence (x1, x2, . . . , xn) with terms in [1, x] whose sequence of order statistics
satisfies x(i) ≥ ui. The suites majeures of Kreweras [12] are special cases of reversed parking functions.

As the astute reader might have noticed, Gonc̆arov polynomials are better matched with reversed park-
ing functions. For example, if x ≥ un, the number of reversed u-parking functions on [1, x] is simply
gn(x; u1, u2, . . . , un). Almost all the results about Gonc̆arov polynomials stated in this paper can be given
combinatorial proofs using reversed parking functions. We note also that the slight incompatibility of
Gonc̆arov polynomials and parking functions is overcome in this paper by the substitution ui+1 = x − ai.
This allows us to shift and reflect the domain, so that we are essentially working with reversed parking
functions.

13.2. Injective parking functions.

An ordinary parking function is injective or one-to-one if and only if it is a permutation. Thus, injective
u-parking functions may be considered generalizations of permutations.

Let Qn(u1, u2, . . . , un) be the number of injective u-parking functions of length n. Since it is almost
immediate that the decomposition for integer sequences or discrete functions described in Section 5 works
when restricted to injective functions, we have the following theorem.

(13.1) Theorem. Let x be an integer greater than or equal to un. Then

(x)n =
n∑

m=0

(
n

m

)
(x − um+1)n−mQm(u1, u2, . . . , um).

Injective parking functions has a theory parallel to the one given in this paper. It is based on “difference”
Gonc̆arov polynomials (see [13] for the definition). For example, Qn(u1, u2, . . . , un) equals n! detF , where
F is the matrix with ijth entry equal to

(−ui)j−i+1

(j − i + 1)!

if j − i + 1 ≥ 0 and 0 otherwise.

13.3. Real-valued parking functions.

Let u be a non-decreasing sequence of non-negative real numbers. A real-valued parking function of
length n is a sequence (x1, x2, . . . , xn) of non-negative real numbers whose sequence of order statistics
satisfies x(i) ≤ ui. Using exactly the same proof, one can prove that sequences of length n with terms in the
continuous interval [0, x] satisfies the following decomposition, analogous to the one given in Corollary 5.2.

(13.2) Theorem. There is a bijection between the set [0, x]n of all length-n sequences with terms in the
continuous interval [0, x] and the disjoint union of cartesian products⋃

{i1,i2,... ,im}
Park(i1, i2, . . . , im) × (um+1, x]n−m,

where Park(i1, i2, . . . , im) is the set of real-valued length-m u-parking functions indexed by {i1, i2, . . . , im}
and (um+1, x]n−m is the set of length-(m − n) sequences with terms in the continuous half-open interval
(um+1, x] indexed by the complement of {i1, i2, . . . , im}.

Let P̄n(u) be the probability that a random sequence (X1, X2, . . . , Xn) with the terms Xi chosen in-
dependently with uniform distribution from [0, x] is a u-parking function. Then, by Theorem 13.2, P̄n(u)
satisfies the following linear recursion:

1 =
n∑

m=0

(
n

m

)
(x − um+1)n−m

xn−m
P̄m(u1, u2, . . . , um).
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Comparing this recursion with the recursion in Corollary 5.3, we obtain the following theorem.

(13.3) Theorem.

P̄n(u1, u2, . . . , un) =
Pn(u1, u2, . . . , un)

xn
.

This theorem has appeared earlier in the paper [19]. Pitman and Stanley proved this theorem using their
decomposition for u-parking functions (which works for real numbers ui also) described in Section 6.

Theorems 5.4 and 13.3 together imply that

P̄n(u1, u2, . . . , un) =
(−1)ngn(0; u1, u2, . . . , un)

xn
.

The analogue for “reversed” real-valued u-parking functions is usually stated in terms of an integral.

(13.4) Theorem. Let 0 ≤ un ≤ un−1 ≤ . . . ≤ u1 ≤ x. Then the probability that a length-n sequence
(X1, X2, . . . , Xn) with terms Xi chosen independently with uniform distribution from [0, x] satisfies the
conditions X(i) ≥ ui, i = 1, 2, . . . , n, is

n!
xn

∫ x

u1

∫ t1

u2

. . .

∫ tn−1

un

dtndtn−1 . . . dt1.

Proof. Condition on the size of the (n−1)st order statistics and use some well-known facts (see, for example,
[3], Section 1.7) about independence and densities of the order statistics for a sequence of independent
uniformly distributed random variables on [0, x]. See, for example, [28], [17], or [13].

This theorem seems to be first stated and proved by Steck [28] and rediscovered by many others.
Using the decomposition, we can also obtain the following recursion for the expected sums Ē1(n;u) of

random length-n real-valued u-parking functions:

nx

2
=

n∑
m=0

(
n

m

)
(x − um+1)n−mPm(u)

xn

(
Ē1(m;u) +

(n − m)(x + um+1)
2

)
.

This recursion can be obtained from the recursion for integer-valued parking functions by deleting all terms
not of total degree n + 1. Hence, Pn(u)Ē1(n;u) is a homogeneous polynomial in the variables u1, u2, . . . , un

of total degree n + 1 and equals

n

2

n∑
j=1

(
n − 1
j − 1

)
u2

j

Pn−j(uj+1 − uj , uj+2 − uj, . . . , un − uj)Pj−1(u1, u2, . . . , uj−1)
Pn(u1, u2, . . . , un)

.

In the ordinary case, we have the formula

Ē1(n; a, a + b, . . . , a + (n − 1)b) =
na

2
+

1
2

n∑
j=2

n!
(n − j)!

bj−1(a + (j − 1)b)
(a + nb)j−1

.

14 Historical remarks

The idea behind parking functions has occurred in many different subjects and its history is replete with
rediscoveries. No one paper contains a complete overview, but if one combines four papers, one can obtain
a reasonably complete picture. The first paper is Niederhausen [17]. It offers a good survey of the use
of real-valued parking functions in statistics up to around 1980. A comprehensive account of how parking
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functions occur in statistics and the study of certain polytopes and arrangements of hyperplanes can be
found in Pitman and Stanley [19]. An excellent bibliography of work on bijections between ordinary parking
functions and labelled trees (to around 2000) can be found in Gilbey and Kalikow [6]. Finally, a clear
discussion of hashing and its relations to ordinary parking functions can be found in the paper of Flajolet,
Poblete and Viola [4].
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