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We consider the “volume conjecture,” which states that an
asymptotic limit of Kashaev’s invariant (or, the colored Jones type
invariant) of knot K gives the hyperbolic volume of the com-
plement of knot K. In the first part, we analytically study an
asymptotic behavior of the invariant for the torus knot, and pro-
pose identities concerning an asymptotic expansion of q-series
which reduces to the invariant with q being the N -th root of
unity. This is a generalization of an identity recently studied by
Zagier. In the second part, we show that “volume conjecture” is
numerically supported for hyperbolic knots and links (knots up
to 6-crossing, Whitehead link, and Borromean rings).

1. INTRODUCTION

In [Kashaev 95, Kashaev 97], Kashaev defined an invari-
ant 〈K〉N for knot K using a quantum dilogarithm func-
tion at the N -th root of unity, and proposed the stimulat-
ing conjecture that for a hyperbolic knot K an asymptotic
limit N → ∞ of the invariant 〈K〉N gives a hyperbolic
volume of a knot complement,

lim
N→∞

2π

N
log
∣∣〈K〉N

∣∣ = v3 ·
∥∥S3 \ K∥∥, (2–8)

where v3 is the hyperbolic volume of the regular ideal
tetrahedron, and ‖ · ‖ denotes the Gromov norm. It
was later proved [Murakami and Murakami 01] that
Kashaev’s invariant coincides with a specific value of the
colored Jones polynomial. In several attempts since then,
a geometrical aspect to relate Kashaev’s R-matrix with
an ideal octahedron in the three-dimensional hyperbolic
space has been clarified (see, e.g., [Thurston 99, Yokota
00, Hikami 01]). Furthermore, a relationship with the
Chern–Simons invariant was pointed out [Murakami et
al. 02].

In this paper, we are interested in an explicit form
of Kashaev’s invariant for the knot K. In general, this
invariant can be regarded as a reduction of certain q-
series. In [Zagier 01], Zagier derived a strange identity
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for a q-series, F (3,2)(q) =
∑∞

n=0(q)n, which was origi-
nally introduced in [Stoimenow 98] as an upper bound
of the number of linearly independent Vassiliev invari-
ants. He showed that F (3,2)(e−t) is related to the half-
differential of the Dedekind η-function. From our view-
point, F (3,2)(q) with q → e2πi/N is nothing but Kashaev’s
invariant for the trefoil, 〈31〉N = F (3,2)(e2πi/N ). This
motivates us to study an asymptotic expansion of the q-
series which, when q is the N -th root of unity, reduces
to Kashaev’s invariant for the torus knot. We introduce
the q-series F (2m+1,2)(q) as a generalization of Zagier’s
q-series and prove an identity,

F (2m+1,2)(e2πi/N )

� 2√
2m + 1

N
3
2 e

πi
4 −πi

N
(2m−1)2

4(2m+1)

×
m−1∑
j=0

(−1)j (m − j) sin
(

2 j + 1
2m + 1

π

)
e−Nπi

(2j+1)2

4(2m+1)

+ e−
πi
N

(2m−1)2

4(2m+1)

∞∑
n=0

T
(2m+1,2)
n

n!

(
π

4 (2m + 1)N i

)n

,

(3–15)

and then propose a conjecture,

F (2m+1,2)(e−t)

= e
(2m−1)2

8(2m+1) t
∞∑

n=0

T
(2m+1,2)
n

n!

(
t

23 (2m + 1)

)n

. (3–24)

Here F (2m+1,2)(q), respectively T -number T
(2m+1,2)
n , are

defined in Equations (3–22), respectively (3–10).
In Section 2, we review the volume conjecture and

explain how to construct Kashaev’s invariant from the
enhanced Yang–Baxter operator. In Section 3, we study
analytically in detail Kashaev’s invariant for the torus
knot. We consider an asymptotic expansion of the invari-
ant following Kashaev-Tirkkonen [Kashaev and Tirkko-
nen 00], and derive an asymptotic formula for q-series
with q → e2πi/N . In Section 4, we study numerically an
asymptotic behavior of invariants for hyperbolic knots
and links. We use PARI/GP [PARI 00], and show that
there is a universal logarithmic correction to invariants.
We then propose a conjecture as an extension of Equa-
tion (2–8),

log
∣∣〈K〉N

∣∣ ∼ v3 ·
∥∥S3 \K∥∥ · N

2π
+

3
2

#(K) · log N +O(N0),

(4–1)
where #(K) is the number of prime factors of a knot
considered as a connected-sum of prime knots.

2. KASHAEV’S INVARIANT
AND VOLUME CONJECTURE

The quantum invariant of knot K can be constructed once
we have the enhanced Yang–Baxter operator [Turaev 88],
(R,µ, α, β), satisfying

(R ⊗ 1)(1 ⊗ R)(R ⊗ 1) = (1 ⊗ R)(R ⊗ 1)(1 ⊗ R), (2–1)(
µ ⊗ µ

)
R = R

(
µ ⊗ µ

)
, (2–2)

Tr2
(
R±1 (1 ⊗ µ)

)
= α±1 β. (2–3)

The operators R±1 and µ±1 are usually depicted as fol-
lows;

Rij
k� =

�� ��

i j

k �

(
R−1

)ij
k�

=
�� ��

i j

k �

µk
� =

��

k � (
µ−1
)k
�

=

��

k �

When the knot K is given as a closure of a braid ξ with
n strands, the invariant τ1(K) is computed as for the
(1,1)-tangle of knot K as

τ1(K) = α−w(ξ) β−n Tr2,...,n

(
bR(ξ) (1 ⊗ µ⊗(n−1))

)
.

(2–4)
Here we have associated the homomorphism bR(ξ) by re-
placing the braid group σ±1

i in ξ with R±1, and w(ξ)
denotes a writhe (a sum of exponents).

Kashaev’s invariant is originally defined by use of
the quantum dilogarithm function with a deformation
parameter being the N -th root of unity [Fadeev and
Kashaev 94],

ω = exp (2π i/N) . (2–5)

The invariant is then defined as follows: We use the q-
product,

(ω)n =
n∏

i=1

(1 − ωi),

(ω) ∗
n =

n∏
i=1

(1 − ω−i).
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Theorem 2.1. [Kashaev 95, Kashaev 97] (See also
[Murakami and Murakami 01].) Kashaev’s invariant
〈K〉N for the knot K is defined by Equation (2–4) with
the following R and µ matrices;

Rij
k� =

N ω1−(k−j+1)(�−i)

(ω)[�−k−1] (ω) ∗
[j−�] (ω)[i−j] (ω) ∗

[k−i]

· θ
[
i j
k �

]
,

(2–6a)

(R−1)ij
k� =

N ω−1+(�−i−1)(k−j)

(ω) ∗
[�−k−1] (ω)[j−�] (ω) ∗

[i−j] (ω)[k−i]
· θ
[
i j
k �

]
,

(2–6b)

µk
� = −δk,�+1 ω

1
2 . (2–6c)

Here [x] ∈ {0, 1, . . . , N − 1} modulo N , and

θ

[
i j
k �

]
= 1, if and only if




i ≤ k < � ≤ j,

j ≤ i ≤ k < �,

� ≤ j ≤ i ≤ k (with � < k),
k < � ≤ j ≤ i.

In [Murakami and Murakami 01], it was shown that
this invariant coincides with a specific value of the col-
ored Jones polynomial, the invariant of knot K colored
by the irreducible SU(2)q-module of dimension N with a
parameter q → exp(2π i/N).

Theorem 2.2. [Murakami and Murakami 01] Kashaev’s
invariant 〈K〉N coincides with the colored Jones polyno-
mial at the N -th root of unity, whose R-matrix is given
by

Rij
k� =

min(N−1−i,j)∑
n=0

δ�,i+n δk,j−n (−1)i+j+n

× (ω) ∗
i+n (ω)j

(ω) ∗
i (ω)j−n (ω) ∗

n

ωij+ 1
2 (i+j−n),

(2–7a)

(
R−1

)ij
k�

=
min(N−1−j,i)∑

n=0

δ�,i−n δk,j+n (−1)i+j+n

× (ω) ∗
i (ω)j+n

(ω) ∗
i−n (ω)j (ω)n

ω−ij− 1
2 (i+j−n),

(2–7b)

µk
� = −δk,� ωk+ 1

2 . (2–7c)

In this article, we focus on the following stimulating
conjecture.

Conjecture 2.3. [Kashaev 97, Murakami and Murakami
01] The asymptotic behavior of Kashaev’s invariant gives
the hyperbolic volume of the knot complement of knot K;

lim
N→∞

2π

N
log
∣∣〈K〉N

∣∣ = v3 ·
∥∥S3 \ K∥∥, (2–8)

where v3 is the hyperbolic volume of the regular ideal
tetrahedron, and ‖ · ‖ denotes the Gromov norm.

A mathematically rigorous proof of this conjecture has
not been established yet (only thea case of the figure-
eight knot was proved (see, e.g., [Murakami 00]). How-
ever, several geometrical studies have been done; the
relationship between Kashaev’s R-matrix and the ideal
hyperbolic octahedron has been established [Thurston
99, Yokota 00, Hikami 01], and it was found that the
saddle point equation of the invariant coincides with the
hyperbolicity consistency condition.

As it is well known [Neumann and Zagier 85, Yoshida
85] that the hyperbolic volume is closely related to the
Chern–Simons invariant, we also propose a complexifica-
tion of Conjecture 2.3.

Conjecture 2.4. [Murakami et al. 02, Baseilhac and
Benedetti 01]

lim
N→∞

2π

N
log
(〈K〉N

)
= v3 ·

∥∥S3 \ K∥∥+ i CS(K), (2–9)

where CS denotes the Chern–Simons invariant,

CS(M) = 2π2 cs(M),

csM(A) =
1

8π2

∫
M

Tr
(

A ∧ dA +
2
3

A ∧ A ∧ A

)
.

3. TORUS KNOTS AND q-SERIES

3.1 Invariant of the Torus Knot

We consider the (m, p)-torus knot, where we suppose that
m and p are coprime integers. The knot is expressed in
terms of generators of Artin’s braid group as

ξ =
(
σ1 σ2 · · ·σm−1

)p
.

Hereafter, we denote it as Trs(m, p). For (m, p) = (3, 2)
and (5, 2) case, they are called the trefoil knot and the
Solomon’s Seal knot, respectively (see Figure 1).

Using results from quantum groups, the explicit form
of the colored Jones polynomial of the torus knot is ob-
tainable.
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FIGURE 1. Trefoil Knot and Solomon’s Seal Knot.

Proposition 3.1. [Morton 95, Rosso and Jones 93] The
colored Jones polynomial JK(h;N) for K = Trs(m, p) is
given by

2 sh
(

N h

2

)
JK(h;N)
JO(h;N)

=
∑

ε=±1

(N−1)/2∑
r=−(N−1)/2

ε eh m p r2+h r(m+ε p)+ 1
2 ε h, (3–1)

where a parameter q is set to be q = exp(h). Unknot is
denoted by O, and we have

JO(h;N) =
sh(N h/2)
sh(h/2)

.

By use of the relationship between the colored Jones
polynomial and Kashaev’s invariant (Theorem 2.2), we
can give an asymptotic expansion of the invariant of the
torus knot.

Proposition 3.2. [Kashaev and Tirkkonen 00] For the
torus knot K = Trs(m, p) with m and p being coprime,
Kashaev’s invariant is represented by the following inte-
gral:

〈Trs(m, p)〉N

=
(

mpN

2

)3/2

eπi(N+ 1
N )− πi

2N ( m
p + p

m )−πi
4

×
∫
C

dz empNπ(z+ i
2 z2) z2 sh(mπ z) sh(p π z)

sh(mpπ z)
. (3–2)

Proof: We follow [Kashaev and Tirkkonen 00]. As
Kashaev’s invariant is defined for the (1,1)-tangle of
knots due to Theorem 2.2, we have for K = Trs(m, p)
that

〈Trs(m, p)〉N = eπi(N+ 1
N ) lim

h→2πi/N

JK(h;N)
JO(h;N)

. (3–3)

We rewrite the r.h.s. using the Gauss integral formula

√
π h ehw2

=
∫
C

dz exp
(
−z2

h
+ 2w z

)
,

where a path C is to be chosen by the convergence con-
dition. We apply the Gaussian integral formula to Equa-
tion (3–1) and get

2 e
h
4 ( m

p + p
m ) sh

(
N h

2

)
JK(h;N)
JO(h;N)

=
∑

ε=±1

(N−1)/2∑
r=−(N−1)/2

ε eh m p
(
r+ m+εp

2mp

)2

=
∑

ε=±1

ε

(N−1)/2∑
r=−(N−1)/2

1√
π hmp

∫
C

dz e−
z2

hmp +z(2r+ 1
p + ε

m )

=
2√

π hmp

∫
C

dz e−
z2

hmp + z
p

sh(N z) sh( z
m )

sh(z)
.

Summing the integrand with one replacing z → −z, we
have

=
2√

π hmp

∫
C

dz e−
z2

hmp

sh(N z) sh( z
m ) sh( z

p )

sh z
.

Decomposing sh(N z) into (eNz − e−Nz)/2 and using an
invariance under z → −z, we see that

=
2√

π hmp

∫
C

dz e−
z2

hmp +Nz
sh( z

m ) sh( z
p )

sh z

=
√

mp

π h

∫
C

dz emp(Nz− z2
h ) 2 sh(mz) sh(p z)

sh(mpz)
.

To obtain Kashaev’s invariant 〈Trs(m, p)〉N defined in
Equation (3–3), we differentiate the above integral with
respect to h, and we obtain Equation (3–2).

Proposition 3.3. An asymptotic expansion of Kashaev’s
invariant for K = Trs(m, p) is given by

〈Trs(m, p)〉N

�
(

mpN

2

)3/2

eπiN+ πi
N

(
1− 1

2 ( p
m + m

p )
)
−πi

4

× Res(m, p)

+ (−1)(m+1)(p+1) eπiN(1+ 1
2 mp)+ πi

N (1− 1
2 ( p

m + m
p ))

×
∞∑

n=0

T
(m,p)
n

n!

(
π

2mpN i

)n

. (3–4)
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Here we have set

Res(m, p)

=
2 i

(mp)3

mp−1∑
n=1

(−1)n+1 n2 sh
(

nπ

p
i
)

sh
(nπ

m
i
)

× eNπi(n− n2
2mp ), (3–5)

and the T -series is given by

sh(mw) sh(pw)
sh(mpw)

=
∞∑

n=0

T
(m,p)
n

(2n + 1)!
(−1)n w2n+1. (3–6)

Proof: We use an integral representation (3–2) of the
invariant. When we shift the path C to C + i, we get

〈Trs(m, p)〉N =
(

mpN

2

)3/2

eπi(N+ 1
N )− πi

2N ( m
p + p

m )−πi
4

×
(

Res(m, p)

+
∫

C+i

dz empNπ(z+ i
2 z2) z2 sh(mπ z) sh(p π z)

sh(mpπ z)

)
.

Here, the first term, Res(m, p), comes from residues of
the integral at z = n

m p π i for n = 1, 2, . . . ,mp − 1, and
it is computed as Equation (3–5). In the second term,
we introduce z = w + i, and using a fact that the even
functions only survive in the integrand, we get

〈Trs(m, p)〉N

=
(

mpN

2

)3/2

eπi(N+ 1
N )− πi

2N ( m
p + p

m )−πi
4

×
(
Res(m, p) + 2 i (−1)mp+m+pe

1
2 mpNπi

×
∫
C

dw e
1
2 impNπw2

w
sh(mπ w) sh(p π w)

sh(mpπ w)

)
. (3–7)

Substituting the expansion (3–6) into an integrand, we
recover Equation (3–4).

Remark 3.4. The T -numbers can be written in terms
of the L-series. The left-hand side of Equation (3–6) is
expanded as

sh(mw) sh(pw)
sh(mpw)

=
1
2

∞∑
n=0

χ2mp(n) e−nw, (3–8)

where χ2mp(n) is a periodic function modulo 2mp:

n mod 2mp χ2mp(n)
mp − m − p 1
mp − m + p -1
mp + m − p -1
mp + m + p 1

others 0

(3–9)

We apply the Mellin transformation to Equa-
tions (3–6) and (3–8), 1

2

∑∞
n=0 χ2mp(n) e−nw �∑∞

n=0
T (m,p)

n

(2n+1)! (−1)n w2n+1. The left-hand side is inte-
grated as

1
2

∞∑
n=0

χ2mp(n)
∫ ∞

0

ws−1 e−nw dw

=
Γ(s)

2

∞∑
n=0

χ2mp(n)
1
ns

=
Γ(s)

2
L(s, χ2mp),

while the right-hand side is

∫ ∞

0

(N−1∑
n=0

T
(m,p)
n

(2n + 1)!
(−1)n w2n+1

+ O(w2N+1)
)

ws−1 dw

=
N−1∑
n=0

T
(m,p)
n

(2n + 1)!
(−1)n 1

2n + s + 1
+ R2N+1(s),

with RN (s) holomorphic in (s) > −N . Comparing the
residues at s = −2n − 1, we find that the T -numbers
T

(m,p)
n can be given in terms of the associated L-series as

T (m,p)
n =

1
2

(−1)n+1 L(−2n − 1, χ2mp) (3–10)

=
1
2

(−1)n (2mp)2n+1

2n + 2

×
2mp∑
a=1

χ2mp(a)B2n+2

(
a

2mp

)
,

where Bn(x) is the Bernoulli polynomial. It is noted that
the T -number with (m, p) = (3, 2) is called the Glaisher
T -number [Sloane 02]. A table of T -numbers is given in
Table 1.

We now give an explicit form of the invariant for the
(2m + 1, 2)-torus knot (for m ≥ 1) by use of Kashaev’s
R-matrix in Theorem 2.1.

Lemma 3.5. Kashaev’s invariant for the (2m+1, 2)-torus
knot is given explicitly as follows:
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n 0 1 2 3 4 5
T

(3,2)
n 1 23 1681 257543 67637281 27138236663

T
(5,2)
n 1 71 14641 6242711 4555133281 5076970085351

T
(7,2)
n 1 143 58081 48571823 69471000001 151763444497103

T
(9,2)
n 1 239 160801 222359759 525750911041 1898604115708079

T
(11,2)
n 1 359 361201 746248439 2635820840161 14219082731542919

T
(13,2)
n 1 503 707281 2041111463 10069440665761 75868751534107223

T
(15,2)
n 1 671 1256641 4828434911 31713479172481 318124890738776351

T
(17,2)
n 1 863 2076481 10248374303 86458934113921 1113984641517368543

T
(19,2)
n 1 1079 3243601 19997487719 210737173733281 3391720107333707159

T
(21,2)
n 1 1319 4844401 36486145079 469706038871521 9234991712596896839

TABLE 1. T -numbers.

• Trefoil 31 (m = 1):

〈Trs(3, 2)〉N =
N−1∑
a=0

(ω)a, (3–11a)

• Solomon’s Seal Knot 51 (m = 2):

〈Trs(5, 2)〉N =
N−1∑
a,b=0

0≤a+b≤N−1

ω−ab(ω)a+b, (3–11b)

• (2m + 1, 2)-torus knot (m > 2):

〈Trs(2m + 1, 2)〉N
= N

∑
1≤a2m−2≤···≤a1≤N−1

(−1)
∑2m−2

j=1 aj

× ω
1
2

∑2m−2
j=1 aj(aj−1)∏2m−3

j=1 (ω)aj−aj+1

=
∑

0≤c2m−2≤···≤c2≤N−c1−1≤N−2

(−1)
∑2m−2

j=3 cj

× ω−c1c2+
1
2

∑2m−2
j=3 cj(cj+1) (ω)c1+c2∏2m−3

j=2 (ω)cj−cj+1

=
N−1∑

a1,a2,...,a2m−2=0
0≤a1+a2+···+a2m−2≤N−1

(ω)a1+a2+···+a2m−2∏2m−3
j=2 (ω)aj

× (−1)
∑ 2m−2

j=3 j aj

× ω−a1a2+
∑2m−2

j=3 ( j
2−1−a1) aj+

1
2

∑2m−2
j=3 (aj+aj+1+···+a2m−2)

2
.

(3–11c)

Proof: This is a tedious but straightforward computa-
tion. The following identities are useful [Yokota 00, Mu-
rakami and Murakami 01]:

(ω) ∗
[i−1] (ω)[−i] = N, (3–12)

∑
k∈[�,m]

ω−(m−�+1)k

(ω)[m−k] (ω) ∗
[k−�]

= (−1)[m−�] ω([m−�]+1)([m−�]−2m)/2, (3–13)

∑
k∈[i,j]

ω−k(i−j)

(ω)[i−k] (ω) ∗
[k−j]

= δi,j . (3–14)

Recalling a result of Proposition 3.3, we obtain an
asymptotic expansion for the above set of the ω-series.

Corollary 3.6. We have an asymptotic expansion for the
ω-series with limit N → ∞:

• Trefoil (m = 1):
N−1∑
a=0

(ω)a � N
3
2 exp

(
π i
4

− π iN
12

− π i
12N

)

+ e−
πi

12N

∞∑
n=0

T
(3,2)
n

n!

( π

12 iN

)n

.

(3–15a)

• Solomon’s Seal Knot (m = 2):∑
0≤a+b≤N−1

ω−ab (ω)a+b

� 2√
5

N
3
2 e

π
4 i− 9iπ

20N

(
2 a e−

Nπi
20 − b e−

9Nπi
20

)

+ e−
9iπ
20N

∞∑
n=0

T
(5,2)
n

n!

( π

20 iN

)n

, (3–15b)
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where

a = sin
(π

5

)
=

√
5

2

√
1
2
(
1 − 1√

5

)
,

b = sin
(

2π

5

)
=

√
5

2

√
1
2
(
1 +

1√
5

)
.

• (2m + 1, 2)-torus knot (m > 2):

N−1∑
a1,a2,...,a2m−2=0

0≤a1+a2+···+a2m−2≤N−1

(ω)a1+a2+···+a2m−2∏2m−3
j=2 (ω)aj

(−1)
∑2m−2

j=3 j aj

× ω−a1a2+
∑2m−2

j=3 ( j
2−1−a1) aj+

1
2

∑2m−2
j=3 (aj+aj+1+···+a2m−2)

2

� 2√
2m + 1

N
3
2 e

πi
4 −πi

N
(2m−1)2

4(2m+1)

m−1∑
j=0

(−1)j (m − j)

× sin
(

2 j + 1
2m + 1

π

)
e−Nπi

(2j+1)2

4(2m+1)

+ e−
πi
N

(2m−1)2

4(2m+1)

∞∑
n=0

T
(2m+1,2)
n

n!

(
π

4 (2m + 1)N i

)n

.

(3–15c)

Remark 3.7. Equation (3–15a) was conjectured in [Za-
gier 01] (according to this reference, it was due to Kont-
sevich), and it was discussed that a power exponent 3/2
of N3/2 which appeared on the right-hand side is related
with a weight of the “nearly modular function.” Namely,
we define

Φ(2m+1)(α) = e
(2m−1)2

4(2m+1) πiα F (2m+1,2)(e2πiα), (3–16)

where F (2m+1,2)(q) will be defined in Equation (3–22).
Then, from Equation (3–15), we have the modular trans-
formation property,

Φ(3)(
1
N

) +
(−iN

) 3
2 Φ(3)(−N) =

∞∑
n=0

T
(3,2)
n

n!

( π

12 iN

)n

.

(3–17)

A generalization of this property will be discussed be-
low.

Remark 3.8. The torus knot is not hyperbolic, and we
have ‖S3 \Torus‖ = 0. In view of complexification of the
volume conjecture (Conjecture 2.4), Equation (3–15a)
shows

CS(Trefoil) = −π2

6
. (3–18)

Equations (3–15b) and (3–15c) indicate a decomposition
into several terms labelled by flat connections, and we
have

CS
(
Trs(2m + 1, 2)

)
=
{
− (2 j + 1)2

2 (2m + 1)
π2
∣∣∣ j = 0, 1, . . . ,m − 1

}
. (3–19)

This decomposition may be explained as follows. The
fundamental group of S3 \ Trs(m, p) has a presentation

π1

(
S3 \ Trs(m, p)

)
=
〈
x, y |xm = yp

〉
. (3–20)

As was discussed in [Klassen 91], there are (m − 1) (p −
1)/2 disjoint irreducible representations, ρ : π1(S3 \
Trs(m, p)) → SU(2), up to conjugacy. This corresponds
to a decomposition in Equation (3–5). Especially, in
the case of Trs(2 m + 1, 2), we have m representations
in which the eigenvalues of ρ(y), respectively ρ(x), are
given by exp(±π i/2), respecively exp(± 2 j+1

2 m+1 π i) with
j = 0, 1, . . . ,m− 1. The Chern–Simons invariant may be
computed by considering a path of representation along
a line of [Kirk and Klassen 93].

For our later discussion, we comment on asymp-
totics of the invariant which simply follows from Equa-
tion (3–4).

Corollary 3.9. For the torus knot K = Trs(m, p), we have
in the limit N → ∞ that

log
∣∣〈Trs(m, p)〉N

∣∣ ∼ 3
2

log N. (3–21)

3.2 q-Series

We define the q-series based on Kashaev’s invariant of
the (2m + 1, 2)-torus knot which was given in Equa-
tion (3–11).

• Trefoil (m = 1):

F (3,2)(q) =
∞∑

n=0

(q)n, (3–22a)

• Solomon’s Seal Knot (m = 2):

F (5,2)(q) =
∞∑

a,b=0

q−ab (q)a+b, (3–22b)
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• (2m + 1, 2)-Torus Knot (m > 2):

F (2m+1,2)(q)

=
∑

0≤c1<∞
0≤c2m−2≤···≤c2<∞

(−1)
∑ 2m−2

j=3 cj q−c1c2+
1
2

∑2m−2
j=3 cj(cj+1)

× (q)c1+c2∏2m−3
j=2 (q)cj−cj+1

=
∞∑

a1,...,a2m−2=0

(q)a1+a2+···+a2m−2∏2m−3
j=2 (q)aj

(−1)
∑2m−2

j=3 j aj

× q−a1a2+
∑2m−2

j=3 ( j
2−1−a1)aj+

1
2

∑2m−2
j=3 (aj+aj+1+···+a2m−2)

2
.

(3–22c)

In this section, we use the following notation:

(x)n = (x; q)n =
n∏

i=1

(1 − x qi−1).

Note that generally the q-series functions F (2m+1,2)(q)
do not converge in any open set, but in the limit q → ω ≡
exp(2π i/N) the functions reduce to the invariant of the
torus knot:

F (2m+1,2)(ω) =
〈
Trs(2m + 1, 2)

〉
N

. (3–23)

Collecting these observations, we propose the follow-
ing conjecture on the asymptotic expansion of the q-
series. We have numerically checked the validity of this
conjecture for several n and m.

Conjecture 3.10. We have the asymptotic expansions of
the q-series F (2m+1,2)(q) defined in Equation (3–22) as
(q = e−t)

F (2m+1,2)(e−t)

= e
(2m−1)2

8(2m+1) t
∞∑

n=0

T
(2m+1,2)
n

n!

(
t

23 (2m + 1)

)n

, (3–24)

where the T -number is defined by Equation (3–10) (or
Equation (3–6)).

This conjecture is proved in [Zagier 01] for the case
m = 1 as follows.

Theorem 3.11. [Zagier 01] Conjecture 3.10 for m = 1 is
correct.

∞∑
n=0

(1 − e−t) (1 − e−2t) · · · (1 − e−nt)

= et/24
∞∑

n=0

T
(3,2)
n

n!

(
t

24

)n

. (3–25)

Proof: We outline a proof following [Zagier 01] (see also
[Andrews et al. 01] for a generalization of this identity).
We define a function S(x) by

S(x) =
∞∑

n=0

(x)n+1 xn

= (x q)∞ + (1 − x)
∞∑

n=0

(
(x q)n − (x q)∞

)
xn.

(3–26)

The subtraction of (x q)∞ in the summation is to avoid
divergence in the limit x → 1, and the second equality is
proved using the Euler identity,

∞∑
n=0

xn

(q)n
=

1
(x)∞

.

We can check that it solves the q-difference equation,

S(x) = 1 − q x2 − q2 x3 S(q x). (3–27)

On the other hand, we can easily see that a function

S(x) =
∞∑

n=1

χ12(n)x
1
2 (n−1) q

1
24 (n2−1), (3–28)

also solves the same q-difference equation (3–27). Here
χ12(n) is the Dirichlet character which follows from
Equation (3–9) with (m, p) = (3, 2):

n mod 12 1 5 7 11 others
χ12(n) 1 −1 −1 1 0

.

It is remarked that S(x = 1) coincides with the Dedekind
η-function,

(q)∞ =
∞∑

n=1

χ12(n) q
1
24 (n2−1), (3–29)

where the equality follows from the Jacobi triple product
identity. Thus, from Equations (3–26) and (3–28), we
find that

(x q)∞ + (1 − x)
∞∑

n=0

(
(x q)n − (x q)∞

)
xn

=
∞∑

n=0

χ12(n)x
1
2 (n−1) q

1
24 (n2−1). (3–30)

By differentiating with respect to x and setting x → 1,
we get

(q)∞ ·
(

1
2
−

∞∑
n=1

qn

1 − qn

)
−

∞∑
n=0

(
(q)n − (q)∞

)

=
1
2

∞∑
n=0

nχ12(n) q
1
24 (n2−1). (3–31)
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Thus, in the limit t → 0, we obtain

−2 e−t/24 F (3,2)(e−t) �
∞∑

n=0

nχ12(n) e−
1
24 n2t, (3–32)

because (q)∞ induces an infinite order of t when we set
q = e−t. Applying the Mellin transformation to an equal-
ity
∑∞

n=0 nχ12(n) e−
1
24 n2t ∼∑∞

n=0 γn tn, we get

γn =
(−1)n

24n n!
L(−2n − 1, χ12).

By use of the relationship (3–10) between the L-series
and the T -numbers, we find

γn = −2
T

(3,2)
n

24n n!
,

which proves Equation (3–25).

Remark 3.12. From Equation (3–29), the right-hand side
of Equation (3–25) is regarded as a “half-differential” of
the Dedekind η-function [Zagier 01].

Remark 3.13. Conjecture 3.10 is formally derived as fol-
lows: Equation (3–25), i.e., a proof of Conjecture 3.10
in the case m = 1, suggests that we may apply a naive
analytic continuation

N ←→ 2π

i t
, (3–33)

in the integral (3–7), i.e., we may set

F (2m+1,2)(e−t)

� i
(

2 (2m + 1)π

t

)3/2

e
(2m−1)2

8(2m+1) t

×
∫
C

dw e
2(2m+1)π2

t w2
w

sh(2π w)
ch((2m + 1)π w)

. (3–34)

In fact, substituting the expansion (3–8) with (m, p) →
(2m + 1, 2),

sh(2x)
ch((2m + 1)x)

=
∞∑

n=0

χ8m+4(n) e−n x

= 2
∞∑

n=0

(−1)n T
(2m+1,2)
n

(2n + 1)!
x2n+1, (3–35)

n mod (8 m + 4) 2 m − 1 2 m + 3 6 m + 1 6 m + 5 others

χ8m+4(n) 1 −1 −1 1 0

we obtain the right-hand side of Equation (3–24). Using
the Mellin transformation, we also see that

F (2m+1,2)(e−t)

∼ −1
2

∞∑
n=0

nχ8m+4(n) e−
t

8(2m+1) (n
2−(2m−1)2). (3–36)

It is noted that the right-hand side is now a “half-
differential” of the infinite q-product defined by

∞∑
n=1

χ8m+4(n) q
1

8(2m+1) (n
2−(2m−1)2)

= (q, q2m, q2m+1; q2m+1)∞ (3–37)

=
∞∑

k=−∞
(−1)k q(m+ 1

2 )k2+(m− 1
2 )k

= (q)∞ ·
∑

nm−1≥···≥n1≥0

qn 2
1 +···+n 2

m−1+n1+···+nm−1

(q)nm−1−nm−2 . . . (q)n2−n1 (q)n1

,

where the last equality is the Gordon–Andrews identity,
a generalization of the Rogers–Ramanujan identity (m =
2).

Conjecture 3.10 suggests that there should be a
q-series identity as a generalization of Zagier’s iden-
tity (3–31), which we hope to report in a future pub-
lication [Hikami 02].

Remark 3.14. We consider an expansion of the q-series
with q → 1 − x, and define a

(2m+1)
n as coefficients of xn:

F (2m+1,2)(1 − x) =
∞∑

n=0

a(2m+1)
n xn. (3–38)

To calculate a
(2m+1)
n from T

(2m+1)
n , we also define b

(2m+1)
n

following [Zagier 01] by

F (2m+1,2)(e−t) =
∞∑

n=0

b
(2m+1)
n

n!
tn. (3–39)

It is easy to see that a series b
(2m+1)
n is written in terms

of T
(2m+1,2)
n as

b(2m+1)
n =

(
(2m − 1)2

8 (2m + 1)

)n n∑
k=0

(
n

k

)
T

(2m+1,2)
n

(2m − 1)2k
.

(3–40)
Some of the computed terms are given in Table 2.

We use the nonnegative Stirling numbers of the first
kind [Goldberg et al. 72] defined by

n−1∏
j=0

(x + j) =
n∑

m=0

s(n,m)xm. (3–41)

It is known that we have

tm

m!
=

∞∑
n=m

s(n,m)
(1 − e−t)n

n!
. (3–42)
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n 0 1 2 3 4 5 6 7
b
(3)
n 1 1 3 19 207 3451 81663 2602699

b
(5)
n 1 2 10 104 1870 51632 2027470 107354144

b
(7)
n 1 3 21 303 7581 291903 16004541 1184112303

b
(9)
n 1 4 36 664 21276 1050664 73939356 7024817944

b
(11)
n 1 5 55 1235 48235 2906315 249689275 28969703915

b
(13)
n 1 6 78 2064 95082 6762216 686010858 94007233704

b
(15)
n 1 7 105 3199 169785 13919647 1628324985 257347060159

b
(17)
n 1 8 136 4688 281656 26150768 3465278776 620465295248

b
(19)
n 1 9 171 6579 441351 45771579 6776104311 1355621381739

b
(21)
n 1 10 210 8920 660870 75714880 12384774150 2737845857680

TABLE 2.

n 0 1 2 3 4 5 6 7
a
(3)
n 1 1 2 5 15 53 217 1014

a
(5)
n 1 2 6 23 109 621 4149 31851

a
(7)
n 1 3 12 62 402 3162 29308 312975

a
(9)
n 1 4 20 130 1070 10738 127316 1741705

a
(11)
n 1 5 30 235 2345 28623 413441 6896695

a
(13)
n 1 6 42 385 4515 64911 1105573 21759966

a
(15)
n 1 7 56 588 7924 131124 2572640 58354762

a
(17)
n 1 8 72 852 12972 242820 5392464 138497502

a
(19)
n 1 9 90 1185 20115 420201 10419057 298862100

a
(21)
n 1 10 110 1595 29865 688721 18859357 597554925

TABLE 3.

Using this identity, we obtain the a-series from the b-
series as

a(2m+1)
n =

1
n!

n∑
k=1

s(n, k) b
(2m+1)
k . (3–43)

Some of the a-series are given in Table 3.
Table 3 indicates that a

(2m+1)
n is given by the n-th

order polynomial of m, e.g.,

a
(2m+1)
0 = 1,

a
(2m+1)
1 = m,

a
(2m+1)
2 = m (m + 1),

a
(2m+1)
3 =

1
6

m (m + 1) (8m + 7),

a
(2m+1)
4 =

1
6

m (m + 1) (14m2 + 22m + 9),

a
(2m+1)
5 =

1
30

m (m + 1) (8m + 7) (19m2 + 25m + 9),

a
(2m+1)
6 =

1
180

m (m + 1)
(
2360m4 + 6544m3

+ 6841m2 + 3209m + 576
)
,

a
(2m+1)
7 =

1
2520

m (m + 1)
(
99136m5 + 330440m4

+ 440960m3 + 294775m2 + 98919m + 13410
)
.

We should note that the series a
(3)
n coincides with the

upper bound of the number of linearly independent Vas-
siliev invariants of degree n [Stoimenow 98].

Remark 3.15. It would be interesting to construct the ex-
plicit form of Kashaev’s invariant for the arbitrary torus
knot K = Trs(m, p), and to study an asymptotic expan-
sion as a q-series based on Equation (3–4).

Remark 3.16. The Rogers-Ramanujan identities are the
following set of equations:

S0(q) =
∞∑

n=0

qn2

(q)n
=

1
(q, q4; q5)∞

, (3–44a)

S1(q) =
∞∑

n=0

qn2+n

(q)n
=

1
(q2, q3; q5)∞

. (3–44b)



Hikami: Volume Conjecture and Asymptotic Expansion of q-Series 329

With these functions, we have the modular property,

(
c0(− 1

τ )

c1(− 1
τ )

)
=

2√
5

(
sin
(

2π
5

)
sin
(

π
5

)
sin
(

π
5

) − sin
(

2π
5

)
) (

c0(τ)

c1(τ)

)
,

(3–45)
where we have set q = exp(2π i τ), and

c0(q) = q1/40 S0(q), c1(q) = q9/40 S1(q).

Conjecture 3.10 for m = 2 is an identity for a half dif-
ferential of S1(q). We expect that there should exist an
identity for S0(q). For this purpose, we define another
series T̃

(5,2)
n :

sh(4x)
ch(5x)

= 2
∞∑

n=0

(−1)n T̃
(5,2)
n

(2n + 1)!
x2n+1 =

∞∑
n=0

χ̃20(n) e−nx.

(3–46)
Here, we have

n mod 20 1 9 11 19 others
χ̃20(n) 1 −1 −1 1 0

and some of the T̃
(5,2)
n , T̃

(5,2)
n = 1

2 (−1)n+1 L(−2n −
1, χ̃20) are as follows:

n 0 1 2 3 4 5

T̃
(5,2)
n 2 118 23762 10104358 7370639522 8214744720598

.

The Jacobi triple identity gives

(q2, q3, q5; q5)∞ = (q)∞ · S0(q) =
∞∑

n=0

χ̃20(n) q
1
40 (n2−1).

(3–47)

Conjecture 3.17. We define

F̃ (5,2)(q) =
∞∑

a,b=0
(a,b) 	=(0,0)

q−ab (q)a+b−1. (3–48)

Then, we have

F̃ (5,2)(e−t) = et/40
∞∑

n=0

T̃
(5,2)
n

n!

(
t

40

)n

. (3–49)

Conjecture 3.18. The q-series F̃ (5,2)(q) with q → ω ≡
e2πi/N has an asymptotic expansion in N → ∞ as

F̃ (5,2)(ω) =
N∑

a,b=0
1≤a+b≤N

ω−ab (ω)a+b−1

� 2√
5

N
3
2 e

πi
4 − πi

20N

(
2 sin

(2π

5
)
e−

Nπi
20

+ sin
(π
5
)
e−

9Nπi
20

)
+ e−

πi
20N

∞∑
n=0

T̃
(5,2)
n

n!

( π

20 iN

)n

.

(3–50)

With the above conjecture and Equation (3–15b), the
transformation property (3–17) should be reformulated
as a variant of Equation (3–45); we set

Φ(5)(α) = e
9
20 πiα F (5,2)(e2πiα), (3–51)

Ψ(5)(α) = e
1
20 πiα F̃ (5,2)(e2πiα). (3–52)

Using the fact that we have

Φ(5)(0) = 1, Ψ(5)(0) = 2,

and a recursion relation,

Φ(5)(α + 1) = e
9
20 πi · Φ(5)(α),

Ψ(5)(α + 1) = e
1
20 πi · Ψ(5)(α),

we get for n ∈ Z

Φ(5)(n) = e
9
20 πin, Ψ(5)(n) = 2 e

1
20 πin.

As a result, we find that the functions Ψ(5) and Φ(5) can
be regarded as a set of “nearly” modular functions [Zagier
01] satisfying

(
Ψ(5)( 1

N )

Φ(5)( 1
N )

)

+ (−iN)
3
2 · 2√

5

(
sin
(

2π
5

)
sin
(

π
5

)
sin
(

π
5

) − sin
(

2π
5

)
) (

Ψ(5)(−N)

Φ(5)(−N)

)

=
∞∑

n=0

1
n!


T̃

(5,2)
n

T
(5,2)
n


 ( π

20 iN

)n

. (3–53)

Note that the transformation matrix coincides with that
of Equation (3–45).

Remark 3.19. As a generalization of the previous re-
mark to the case m > 2, we define a formal q-series
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F̃ (2m+1,2;a)(q) for a = 0, 1, . . . ,m − 2 by

F̃ (2m+1,2;a)(q)

=
∑

0≤c1<∞
0≤c2m−2≤···≤c2<∞

0<c1+c2

(−1)
∑ 2m−2

j=3 cj

q−c1 c2+
1
2

∑2m−2
j=3 cj (cj+1)−∑a

j=1 c2j+2

(q)c1+c2−1∏2m−3
j=2 (q)cj−cj+1

. (3–54)

Conjecture 3.20. We have

F̃ (2m+1,2;a)(e−t)

= e
(2m−2a−3)2

8(2m+1) t
∞∑

n=0

T̃
(2m+1,2;a)
n

n!

(
t

23 (2m + 1)

)n

,

(3–55)

where a = 0, 1, . . . ,m − 2. We have used the T -series

sh
(
(2 a + 4)x

)
ch
(
(2m + 1)x

) =
∞∑

n=0

χ̃
(a)
8m+4(n) e−nx

= 2
∞∑

n=0

(−1)n T̃
(2m+1,2;a)
n

(2n + 1)!
x2n+1,

(3–56)

and the periodic function is defined by

n mod (8m + 4) χ̃
(a)
8m+4(n)

2m − 2 a − 3 1
2m + 2 a + 5 -1
6m − 2 a − 1 -1
6m + 2 a + 7 1

others 0

Conjecture 3.21. In the case where q is the N -th root of
unity, we have

F̃ (2m+1,2;a)(ω)

� 2√
2m + 1

N
3
2 e

πi
4 −πi

N
(2m−2a−3)2

4(2m+1)

×
m−1∑
k=0

(−1)k (m−k) sin
(

(a + 2)
2 k + 1
2m + 1

π

)
e−Nπi

(2k+1)2

4(2m+1)

+e−
πi
N

(2m−2a−3)2

4(2m+1)

∞∑
n=0

T̃
(2m+1,2;a)
n

n!

(
π

4 (2m + 1)N i

)n

.

(3–57)

We define functions Ψ(2m+1)
a (α) for a = 0, 1, . . . ,m−2

by

Ψ(2m+1)
a (α) = e

(2m−2a−3)2

4(2m+1) πiα F̃ (2m+1,2;a)(e2πiα), (3–58)

and with Equation (3–16) introduce a vector Φ(2m+1)(α),

Φ(2m+1)(α) =




Ψ(2m+1)
m−2 (α)

...
Ψ(2m+1)

0 (α)
Φ(2m+1)(α)


 . (3–59)

The above conjecture indicates a nearly modular prop-
erty of weight 1/2,

Φ(2m+1)(
1
N

) + (−iN)
3
2 M(2m+1) Φ(2m+1)(−N)

=
∞∑

n=0

T (2m+1)
n

n!

(
π

4 (2m + 1) iN

)n

, (3–60)

where M(2m+1) is an m × m matrix with an entry

(
M(2m+1)

)
1≤i,j≤m

= (−1)j−1 2√
2m + 1

sin
(

(m − i + 1) (2 j − 1)
2m + 1

π

)

=
2√

2m + 1
cos
(

(2 i − 1) (2 j − 1)
2 (2m + 1)

π

)
,

and

T (2m+1)
n =




T̃
(2m+1,2;m−2)
n

...
T̃

(2m+1,2;1)
n

T̃
(2m+1,2;0)
n

T
(2m+1,2)
n




.

We define an a-series as an expansion of F̃ (2m+1,2;a)(q)
with q → 1 − x:

F̃ (2m+1,2;a)(1 − x) =
∞∑

n=0

ã(2m+1;a)
n xn. (3–61)

Using a b-series defined by

F̃ (2m+1,2;a)(e−t) =
∞∑

n=0

b̃
(2m+1;a)
n

n!
tn, (3–62)
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m n 0 1 2 3 4 5 6 7
2 a

(5)
n 1 2 6 23 109 621 4149 31851

ã
(5;0)
n 2 3 9 35 168 966 6496 50103

3 a
(7)
n 1 3 12 62 402 3162 29308 312975

ã
(7;0)
n 2 5 20 105 690 5478 51102 548244

ã
(7;1)
n 3 6 24 127 840 6699 62689 674091

4 a
(9)
n 1 4 20 130 1070 10738 127316 1741705

ã
(9;0)
n 2 7 35 231 1925 19481 232309 3191199

ã
(9;1)
n 3 9 45 300 2520 25641 306915 4227525

ã
(9;2)
n 4 10 50 335 2825 28821 345618 4767048

5 a
(11)
n 1 5 30 235 2345 28623 413441 6896695

ã
(11;0)
n 2 9 54 429 4329 53235 772863 12939498

ã
(11;1)
n 3 12 72 578 5880 72702 1059436 17785437

ã
(11;2)
n 4 14 84 679 6944 86163 1258684 21168134

ã
(11;3)
n 5 15 90 730 7485 93039 1360788 22905630

6 a
(13)
n 1 6 42 385 4515 64911 1105573 21759966

ã
(13;0)
n 2 11 77 715 8470 122584 2097326 41414087

ã
(13;1)
n 3 15 105 985 11760 171084 2937544 58154346

ã
(13;2)
n 4 18 126 1191 14301 208845 3595347 71312841

ã
(13;3)
n 5 20 140 1330 16030 234682 4047162 80376063

ã
(13;4)
n 6 21 147 1400 16905 247800 4277077 84995664

7 a
(15)
n 1 7 56 588 7924 131124 2572640 58354762

ã
(15;0)
n 2 13 104 1105 15028 250172 4928300 112114184

ã
(15;1)
n 3 18 144 1545 21168 354105 6998985 159603426

ã
(15;2)
n 4 22 176 1903 26224 440363 8726795 199383701

ã
(15;3)
n 5 25 200 2175 30100 506880 10064600 230275675

ã
(15;4)
n 6 27 216 2358 32724 552096 10976580 251378289

ã
(15;5)
n 7 28 224 2450 34048 574966 11438630 262082935

TABLE 4.

we obtain a relationship between the T -series and the
a-series as a result of Equation (3–42):

b̃(2m+1;a)
n =

(
(2m − 2 a − 3)2

8 (2m + 1)

)n

×
n∑

k=0

(
n

k

)
T̃

(2m+1,2;a)
k

(2m − 2 a − 3)2k
, (3–63)

ã(2m+1;a)
n =

1
n!

n∑
k=1

s(n, k) b̃
(2m+1;a)
k . (3–64)

A table of these series is given in Table 4. For conven-
tion, we have also included the a-series defined by Equa-
tion (3–38).

4. HYPERBOLIC KNOTS

In the previous section, we analytically studied an
asymptotic behavior of Kashaev’s invariant of the torus
knot. Here, we consider numerically an asymptotic for-
mula for the invariant of the hyperbolic knots and links:
knots up to 6-crossing, the Whitehead link, and Bor-
romean rings. Our conjecture based on both analytic
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results for the torus knot (Corollary 3.9) and numerical
results for hyperbolic knots is summarized as follows.

Conjecture 4.1. Kashaev’s invariant behaves in a large
N limit as

log
∣∣〈K〉N

∣∣ ∼ v3 ·
∥∥S3 \K∥∥ · N

2π
+

3
2

#(K) · log N +O(N0),

(4–1)
where #(K) is the number of prime factors of a knot as
a connected-sum of prime knots.

Numerical computation is performed with the help of
PARI/GP [PARI 00]. We compute Kashaev’s invariant
〈K〉N for the hyperbolic knot K numerically (see Fig-
ures 2–8). We plot ( 2 π

N log〈K〉N
)

as a function of N ,
and numerical data is given as • in those figures. The
solid line denotes a result of the least-squares method
with a trial function,

vK(N) =
2π

N
log〈K〉N

= c1(K) + c2(K) · 2π

N
log N +

c3(K)
N

+
c4(K)
N2

.

(4–2)

This trial function is motivated from an analytic re-
sult (3–4) of the torus knot.

We also give some computations which support nu-
merical results of c1(K). Although there is no mathemat-
ically rigorous proof of the asymptotics of each invariant,
it is known [Kashaev 95] that a semirigorous proof works
well to obtain an asymptotic limit of Kashaev’s invariant.
In the limit N → ∞, we may replace the ω-series with
the dilogarithm function,

2π i
N

log(ω)n =
2π i
N

n∑
j=1

log(1 − exp(2π i j/N))

∼
∫ x

0

dt log(1 − et)

=
π2

6
− Li2(ex).

Thus, we formally obtain a potential from Kashaev’s
invariant 〈K〉N by the following steps (we set 2πi

N ai =
log xi):

ωaiaj → exp
(
− iN

2π
log xi log xj

)
,

(ω)ai
→ exp

(
iN
2π

(
Li2(xi) − π2

6

))
,

(ω)∗ai
→ exp

(
iN
2π

(
−Li2(x −1

i ) +
π2

6

))
.

(4–3)

This computation is essentially the same as that of the
central charge from the character [Richmond and Szek-
eres 81]. The invariant may be represented by the integral
of the potential VK(x),

〈K〉N ∼
∫∫∫ ∏

i

dxi exp
(

iN
2π

VK(x)
)

. (4–4)

In the large N limit, we apply a stationary phase approx-
imation, and obtain a saddle point x0 as a solution of the
set of equations,

∂

∂xi
VK(x)

∣∣∣∣
x=x0

= 0. (4–5)

With this solution, we may obtain

lim
N→∞

2π

N
log〈K〉N = iVK(x0), (4–6)

whose real part is expected to coincide with the hyper-
bolic volume (Conjecture 2.3).

In the following, for several hyperbolic knots and links
we give a list of numerical data c1(K), . . . , c4(K), poten-
tial VK(x), and a saddle point x0 of the potential. We
will see that

c1(K) = (iVK(x0)
)

= Vol(S3 \ K), (4–7)

c2(K) =
3
2
, (4–8)

c3(K) < 0, (4–9)

which supports Equation (4–1) (Conjecture 4.1) for K
a prime knot. Note that Equation (3–21) proves this
conjecture for K = Trs(m, p).

Figure-Eight Knot 41.

〈41〉N =
N−1∑
a=0

∣∣(ω)a

∣∣2. (4–10)
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FIGURE 2. Figure-eight knot.

• Numerical result (Figure 2):

Vol(S3 \ 41) = 2D(eπi/3) = 2.029883212819307...

c1 = 2.029883193056962 ± 7.77 × 10−9

c2 = 1.50002685 ± 2.42 × 10−6

c3 = −1.7269321 ± 0.000095

c4 = 3.575981 ± 0.0027.

• Potential and saddle point:

V41(x) = Li2(x) − Li2(x−1), (4–11)

x0 = exp(−π i/3).

Note that asymptotic behavior of this ω-series is
proved rigorously (see, e.g., [Murakami 00]).

52 Knot.

〈52〉N =
∑

0≤a≤b≤N−1

(
(ω)b

)2
(ω) ∗

a

ω−(b+1)a. (4–12)

• Numerical result (Figure 3):

Vol(S3 \ 52) = 2.828122088330783...

c1 = 2.8281219744 ± 1.5571 × 10−8

c2 = 1.5000269858 ± 2.01 × 10−6

c3 = −2.648116951 ± 0.0000732

c4 = 4.22788 ± 0.00169.

100 150 200 300 500 700 1000 15002000

2.9

2.95

3

3.05

3.1

3.15

3.2

N

v(N)

FIGURE 3. Knot 52.

• Potential and saddle point:

V52(x, y) = 2Li2(y) + Li2(x−1) + log x log y − π2

2
,

(4–13)(
x0

y0

)
=
(

0.122561 + 0.744862 i
0.337641 − 0.56228 i

)
.

61 Knot.

〈61〉N =
N−1∑

a,b,c=0
a+b≤c

∣∣(ω)c

∣∣2
(ω)a (ω) ∗

b

ω(c−a−b)(c−a+1). (4–14)

• Numerical result (Figure 4):

Vol(S3 \ 61) = 3.16396322888...

c1 = 3.1639628602 ± 3.04 × 10−8

c2 = 1.5000356 ± 1.88 × 10−6

c3 = −4.0343627 ± 0.0000611

c4 = 3.971777 ± 0.000970.
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FIGURE 4. Knot 61.

• Potential and saddle point:

V61(x, y, z) = Li2(z) − Li2(z−1) − Li2(x) + Li2(y−1)

− log
(

z

x y

)
log(z/x) + 2π i log(x/z),

(4–15)
x0

y0

z0


 =


 0.17385 + 1.06907 i

0.322042 + 0.15778 i
0.278726 − 0.48342 i


 .

62 Knot.

〈62〉N =
N−1∑

a,b,c=0
a≤b

0≤a+c≤N−1

ω−a(b+c+1)

(
(ω)b∣∣(ω)a

∣∣
)2

(ω)a+c

(ω)b−a
.

(4–16)

• Numerical result (Figure 5):

Vol(S3 \ 62) = 4.40083251...

c1 = 4.400828513 ± 2.97 × 10−7

c2 = 1.500213389 ± 9.83 × 10−6

c3 = −4.685095 ± 0.00028

c4 = 6.02178 ± 0.00266.

50 100 150 200 250 300

4.6

4.7

4.8

4.9

5.1

5.2

N

v(N)

FIGURE 5. Knot 62.

• Potential and saddle point:

V62(x, y, z) = 2Li2(y) + Li2(x z) − Li2(x) + Li2(x−1)

− Li2(y/x) + log(x) log(y z) − π2

3
,

(4–17)
x0

y0

z0


 =


0.09043267 + 1.60288 i

−0.232705 − 1.09381 i
−0.964913 − 0.621896 i


 .

63 Knot.

〈63〉N =
N−1∑

a,b,c=0
a+b+c≤N−1

∣∣∣∣ (ω)a+b+c

(ω)b (ω)c

∣∣∣∣
2

(ω) ∗
a+b (ω)a+c ω(a+1)(b−c).

(4–18)

• Numerical result (Figure 6):

Vol(S3 \ 63) = 5.69302109...

c1 = 5.69289987 ± 0.0000124

c2 = 1.50411 ± 0.00026

c3 = −5.6162 ± 0.0066

c4 = 10.315 ± 0.0397.
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FIGURE 6. 63 Knot.

• Potential and saddle point:

V63(x, y, z) = Li2(xyz) − Li2((xyz)−1) − Li2(y)

+ Li2(y−1) − Li2(z) + Li2(z−1)

− Li2((xy)−1) + Li2(xz) − log(x) log(y/z),
(4–19)

x0

y0

z0


 =


0.204323 − 0.978904 i

1.60838 + 0.558752 i
0.554788 + 0.19273 i


 .

Whitehead Link 52
1.

〈52
1〉N =

N−1∑
a,b,c=0

b≤a
a+c≤N−1

(ω) ∗
a+c (ω)a

(ω)b (ω) ∗
c

ωc(a−b), (4–20)

• Numerical result (Figure 7):

Vol(S3 \ 52
1) = 3.66386237...

c1 = 3.663960 ± 0.000113

c2 = 1.49978 ± 0.00190

c3 = −3.2729 ± 0.0461

c4 = 6.1846 ± 0.2549.

25 50 75 100 125 150

4.2

4.4

4.6

4.8

5

N

v(N)

FIGURE 7. Whitehead link.

• Potential and saddle point:

V52
1
(x, y, z) = −Li2((x z)−1) + Li2(x) − Li2(y)

+ Li2(z−1) − log(z) log(x/y),
(4–21)

x0

y0

z0


 =


 −i

i
1
2

(
1 + i

)

 .

Borromean Rings 63
2.

〈63
2〉N =

∑
a,b,c,d=0

a≤b≤a+c≤N−1
b+d≤N−1

∣∣∣∣ (ω)a+c (ω)b+d

(ω)d (ω)a+c−b

∣∣∣∣
2

× 1
(ω)a (ω) ∗

b−a

ω(b+1)(c−d+a−b). (4–22)

• Numerical result (Figure 8):

Vol(S3 \ 63
2) = 7.32772475...

c1 = 7.3276812 ± 4.1 × 10−6

c2 = 1.50176 ± 0.00011

c3 = −8.76447 ± 0.00296

c4 = 11.116 ± 0.025.
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FIGURE 8. Borromean rings.

• Potential and saddle point:

V63
2
(x, y, z, w) = Li2(z) − Li2(z−1) + Li2(y w)

− Li2(
1

y w
) − Li2(w) + Li2(w−1)

− Li2(z/y) + Li2(y/z) − Li2(x)

+ Li2(x/y) − log y log(
z

y w
),

(4–23)


x0

y0

z0

w0


 =




0
−i

1 − i
1+i
2


 .

Remark 4.2. There may exist q-series identities which
arise from Kashaev’s invariant for hyperbolic knots and
links.
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