
 
 

  
Abstract — The design of a pop-up book or card has 

hitherto been labour intensive with tasks of trials and errors. 
The constructions of collapsible pop-up structures can be 
demanding and inefficient without adequate knowledge of 
their geometric properties. 

This paper examines the properties of creases in 90°°°° pop-up 
structures. A 90°°°° pop-up structure is one that erects fully 
when two adjacent base pages, on which it sits, are opened to a 
right angle. In particular, we define a boundary region for 
creating 90°°°° pop-ups. Similarly, paper folds are able to 
achieve pop-up effects and can be integrated with 90°°°° pop-up 
constructions. The development of these pop-up structures can 
be represented graphically.  

Through this study, a fundamental foundation for pop-up 
topology and geometry is built. This foundation would be vital 
for understanding the applications of pop-up making 
techniques. The mathematical relationships devised would be 
useful for developing computer-enhanced pop-up design. 
 

Index Terms—Computer aided design, geometry, pop-up 
structures, paper folding. 
 

I. INTRODUCTION 
OVABLE pop-ups not only need creative minds but 
also require engineering skills. Required skills 

include the method to accomplish flat foldability of paper 
mechanisms when pages are closed. Specialists who design 
and create such mechanisms are known as paper engineers. 
However, the design in pop-up crafting has so far been 
primary manual and based on traditional crafting methods. 
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Due to the extensive manual process, the method of trials 
and errors was particularly evident in the design stage. 
Trials and errors are common in the sizing of the sketches, 
folding and aligning the paper pieces. A misfit of the pop-
ups on the pages would result in repeated work. As such, 
pop-up making can be labour intensive, time consuming 
and burdened with repetitive tasks, especially for the less 
experienced pop-up enthusiasts.  
 Books had been published to teach novices pop-up 
constructions by following given step-by-step instructions 
with templates and illustrations. However, they were only 
able to make structures from specific designs and are 
unable to understand the techniques behind the 
constructions. Realizing the limitation of previous craft 
books and the need to educate enthusiasts in pop-up 
techniques, which encompass comprehension in geometry, 
paper engineers have published several books [1], [2] in 
recent years on pop-up techniques with explanations of 
simple geometric rules. But the design of pop-up still 
involves heavy manual work and is inefficient.  

With the advent of computational science, many 
computer aided design tools have evolved from traditional 
craftworks to enhance the needs in digital living. Examples 
include architectural drafting and tailoring. Likewise for 
paper crafts, CAD tools for paper models and origami as 
such have been developed in recent years. In pop-up 
designs, paper engineers use a few graphics softwares like 
FreeHand in place of traditional methods of drawing, 
tracing and colouring. But for the engineering work in pop-
up design, a reduction of manual effort is still desirable. 

A CAD design approach could minimize unnecessary 
manual work to save time and cost. Nevertheless, before a 
new approach can be proposed, a thorough study on pop-up 
techniques and their geometries is necessary. Knowledge in 
pop-up techniques and their geometries would be vital for 
the development of a CAD system. The rest of this paper is 
outlined as follows. The next section surveys related fields. 
Section III introduces the types and techniques of pop-ups. 
Section IV further discusses 90° pop-up structures. Section 
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Fig. 1.  A pop-up book and its association with collapsible products,
movable book and toys and other paper crafts. 

V examines boundary conditions of these structures. 
Section VI looks into structures with added pop-up effects 
by paper folding and Section VII explains the inversion of 
the structures. We conclude in Section VIII. 

 

II. RELATED FIELDS 
Pop-up structures, when broadly examined, provide an 

ample study ground in several relevant areas, as shown in 
fig.1. One of these areas is collapsible design, one main 
attribute of pop-up structures. Like pop-ups, crease lines 
are vital embodiments in collapsible paper product and 
packaging. Collapsible design has also been applied to a 
wide range of products, which include foldable 
wheelchairs, retractable poles and inflatable chairs. Hence 
pop-up constructions are not confined to the school of 
handicrafts but it is a field that entails collapsible design 
and development. 

Pop-ups are also often classified as part of movable books 
and toys. Other than pop-ups, movable books contain paper 
mechanisms like sliders, rotating wheels, cams and pull-
tabs. Hence, many of the books are not solely made up of 
pop-ups but a combination of these engineered designs.  

Pop-up techniques have been used in many other types of 
paper crafts. They can be constructed as part of a foldable 
paper sculpture or exist as glued-on pieces on paper 
dollhouses. Though not common, the use of pop-up is also 
noted in paper cutting and origami. Pop-up techniques have 
been integrated into other types of paper crafts. See fig. 2. 

In addition, the development of paper crafts in recent 
years is notable in computational science, which can be 
further divided into three areas, namely computer aided 
design, the use of crafts in science applications and findings 
in paper crafts’ geometries. This development signifies an 
increased level of integration between science and crafts. 

A. CAD tools for Paper Crafts 
There have been a growing number of software tools to 

aid the design of craftwork. Blauvelt, Wrensch and 
Eisenberg [3] have envisioned such development in 
computer-aided design as a strategy for blending crafts and 

computers. For example, Nishioka and Eisenberg have 
developed HyperGami, a software for creating paper 
polyhedral models [4]. Pepakura Designer [5], a tool 
developed in Japan, and Touch 3D [6], a commercial 
program, also generate unfolded paper models.  

In the field of origami, Robert Lang has developed 
TreeMaker [7], which can generate crease patterns for 
origami. Another program, Mathematica [8], is able to 
simulate paper-folding steps. For pop-up designs, Jun 
Mitani created the 3D Card Maker [9], which generates 
crease and cut lines for one-piece pop-up structures. The 
software is capable of creating and animating the double 
slit.  

B. Paper Crafts and Applications 
Paper crafts have alternatively been used in mathematic 

education and physics applications. Particularly in origami, 
such developments have rapidly grown over the past 
decade. For example, mathematician Humiaki Huzita [10] 
has developed a set of origami axioms that describe 
geometric constructions usually done with compasses and 
rulers.  

Origami crease patterns have been explored for foldable 
designs e.g. that of telescopes and safety airbags in vehicles 
[11]. The ability to store in compactness and the method for 
expansion are vital aspects in the design of these 
applications. In the craft of pop-up, it has been used as an 
educational aid to provide visual effects in many children 
books. Diego Uribe has attempted to stimulate interests in 
fractals through pop-up card constructions [12]. Paper 
crafts have also been used as engineering models, e.g. the 
study of the WISE craft [13]. 

C. Geometries of Paper Crafts 
Many of the computer-aided tools are developed from 

intrinsic geometric properties of the crafts. In single flat 
vertex folds, Maekawa [14], [15], [16] determined a basic 
relationship between mountain and valley creases for flat 
foldability. (Refer to Section IV for definitions.) Kawasaki 
[14], [15], [16] asserted that the sum of the alternate angles 
about the vertex fold is 180°. Similarly, Justin [17] yield 
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Fig. 2.  Uses of collapsible pop-ups in other paper crafts. 



 
 

valuable results in the topology of flat folds.  
Based on previous ideas of vertex folds, Gibson and 

Huband [18] further discovered properties of fold-cut 
angles. Hull [16] formulated a method to count possible 
number of combinations of mountain and valley crease 
assignments for flat vertex fold. In paper cutting, Demaine 
[19], [20] devised an approach to obtain a desired shape by 
one straight cut after folding specific crease patterns. 

Previous geometric studies into collapsible pop-ups have 
also led to interesting results. Glassner [21], [22] has 
modeled the movement of pop-ups by examining three 
intersecting spheres. Lee, Tor and Soo [23] animate pop-up 
structures by investigating the angles between planar pop-
up pieces. However, much of the study on pop-ups’ 
properties is in its infancy stage. More remains to be 
unraveled. 
 

III. POP-UP TYPES AND TECHNIQUES 
Pop-up structures come in numerous variations. They can 

be categorized as collapsible and non-collapsible. Pop-ups 
in cards and books are collapsible but the pop-up 
advertisement stands and many paper sculptures are not. 

 Collapsible pop-ups can be further classified by the 
angle of opening two base pages, on which the pop-up 
structure sits, specifically at 90°, 180° and 360°. These are 
the angles at which the pop-ups are fully erected. Some like 
Masahiro Chatani [24] have termed pop-ups with 0°. In 
other words, there is no folding but layers of cut papers 
overlapping on top of one another with some protruding 
portions.  

A simpler alternative is to organize pop-up according to 
number of sheets used: the one-piece type and the multi-

piece type. The one-piece type is found in pop-ups whose 
constructions are entirely made on a single piece of paper. 
Multi-pieces refer to two or more pieces used to make a 
pop-up structure. See fig 3. 

Paul Jackson [2] defined a pop-up as a self-erecting, 
three-dimensional structure, formed by the action of 
opening a crease. These refer to the paper pop-ups found in 
cards and books. In this study, we follow this definition. 
But it is also noted that some collapsible pop-up are not 
self-erected and require manual assistance to raise them. 
Fig. 4 illustrates the classification of pop-up structures. 

Techniques with slitting are mainly for 90° one-piece 
type. These include the single slit and double slits. 
Variations can be achieved by altering the length and shape 
of the slit lines. Under the multi-piece type, pop-ups 
include Floating Layers, the Horizontal V and Boxes. 
Tabbing and gluing are usually needed to construct such 
pop-ups. In particular, this paper examines 90° one-piece 
pop-up structures, of which some examples are shown in 
fig. 5. 

 

IV. 90° POP-UP STRUCTURES 
Before we examine further into 90° pop-up structures, let 

us define some commonly used terms in this study. 

A. Mountain and Valley Creases 
A crease is a fold line between two movable planar 

pieces. It can be a mountain crease or valley crease 
depending on the side of the planar pieces facing up. If the 
angle θ between the two up-facing sides is less than 180°, 
the crease between them is a valley crease. On the other 
hand, if the angle is more than 180°, the crease is a 
mountain crease. See fig. 6. Though the crease exists at 

(a) (b) 
 

Fig. 5.  (a) A pop-up made from a single slit. (b) A pop-up 
constructed from double slits. 

  
(a)                 (b)       

Fig. 3.  (a) A 90° one-piece pop-up structure. (b) A 180° multi-piece 
pop-up structure. 

Fig. 4.  Classification of pop-up structures 

(a) (b) 
 
Fig. 6.  (a) A mountain crease. (b) A valley crease 



 
 

180°, it does not have a mountain or valley crease 
assignment. The crease between the two base pages is 
known as the gutter crease [2]. For this paper, the gutter 
crease is taken to be a valley crease for all cases in the 
following cases, unless otherwise stated. 

B. Pop-up Levels 
A pop-up level is a layer of pop-up pieces built over the 

gutter crease or existing creases on other pop-up layers. A 
pop-up structure can be made up of different number of 
pop-up levels. For example, the structure in fig. 3a is made 
up of two-level. More than one level can be built upon the 
same crease. 

C. Faces 
A face refers to a planar piece or section of a pop-up 

structure. Curved faces are not considered in the 
investigation of 90° pop-up structures in this paper. 

D. Crease Initiations 
The process of developing a pop-up level over a crease is 

termed as a crease initiation. There are two types of crease 
initiations, for a pop-up level can be developed over a 
mountain crease or a valley crease. A level developed over 
a mountain crease is known as the mountain crease 
initiation. That over a valley crease is known as the valley 
crease initiation. Fig. 7 further explains crease initiations. 

E. Basic Mathematical Relationships 
Creases can be related to the pop-up levels and faces (or 

planar pieces) in mathematical forms.  The mathematical 
relationships are devised from integer sequences [25] 
observed in 90° pop-up structures. 
1) Crease-Level Relation:  

If N is the number of creases on a pop-up structure and n 
is the number of pop-up levels, then  
 

N = 3n +1, n ∈ Z +.      (1) 
 
2) Crease-Face Relation: 

 If F is the number of planar faces on the pop-up 
structure and n is the number of pop-up levels, then 
 

F = 2n + 2 , n ∈ Z +.        (2) 
 

For example, (1) is obtained by examining the number of 

creases added for each additional pop-up levels. For 90° 
pop-up structures, three creases are added on a new pop-up 
level. Hence, an integer sequence   N = 1,4,7,10,K{ }  is 
formed. N =1 refers to the  gutter crease before any pop-up 
is constructed ( n = 0). Combining (1) and (2) yields 
another relationship between the number of faces, F, and 
the number of creases, N. 
 

F = 2
3

N + 2( ), F ∈ Z + , N ≥ 1     (3) 

 
(3) is used to derive the boundary constraints in the next 
section. 

V. BOUNDARY CONDITIONS FOR 90° POP-UP STRUCTURES 
With different combination of folds and number of pop-

up levels, a 90° pop-up structure can take up many 
interesting forms. However, there are instances when the 
constructions do not enable the structures to collapse flat 
between the base pages. From this problem, a question 
arises: What are the mathematical constraints that 
determine the flat foldabilty of a pop-up structure? 

In early 1980s, Maekawa has shown that to achieve flat 
foldability in a vertex fold, the difference between the 
numbers of mountain and valley creases is always 2. This 
has since been known as the Maekawa’s Theorem [11], 
[15]. At the same time, Justin [15, 17] has also contributed 
similar findings in flat vertex folds. Likewise, the creases 
on a pop-up structure affect its ability to collapse flat. Note 
that there can be other causes to the problem of pop-up 
structure’s inability to collapse flat, like the material used 
for pop-up constructions and interferences with other paper 
pieces on the pages. But in this paper, we examine, in 
particular, the properties of the creases on a pop-up 
structure that determine its flat foldability. 

A. Successive Crease Initiations 
As we take the gutter crease as a valley crease, the first 

pop-up level would always be developed over a valley 
crease. But for subsequent levels, they can be constructed 
over a combination of mountain and valley creases. Thus, 
we look specifically into two boundary cases where the 
successive pop-up levels are developed solely from a type 
of crease initiation, i.e. solely mountain crease initiations 
and solely valley crease initiations.  

Let us denote M and V as the number of mountain and 
valley creases respectively. Given that the type of crease 
initiations for subsequent level is the same and the 
increment in the number of creases is constant (as described 
earlier on the crease-level relation), F, M and V would form 
linear relationships in both cases. After derivation, for 
successive mountain crease initiations, the relationship is 
 

F = 2
5

3V + M( ).       (4) 

 
Fig. 7.  The first pop-up level is a valley crease initiation and the
second level is a mountain crease initiation. 

Second level 

First level



 
 

 
For successive valley crease initiations, the relationship 
becomes 
 

F = 2V − 2M .        (5) 
 
(4) and (5) describe the two boundary cases. 

B. Crease Constraints 
Now refer to (3). It gives the general relationship between 
the number of faces and the number of creases. Since the 
total number of creases, N, is the sum of mountain and 
valley creases, N = M +V . Then 
 

F = 2
3

M +V + 2( ).       (6) 

 
When (4) is substituted into (6), a new expression on 
mountain and valley creases would be formed.  
 

M = 2V − 5, V ≥ 3       (7) 
 
(7) represents the relationship between mountain and valley 
creases for the boundary case of successive mountain 
crease initiaitions. It forms the first mathematical constraint 
for creases on 90° pop-up structures. Similarly, the second 
mathematical constraint is obtained by looking into the 
boundary case of successive valley initiations. Combining 
(5) and (6) results in 
 

V = 2M +1, M ≥ 0.      (8) 
 

The third and last mathematical constraint for creases is 
observed from the first pop-up level. Four planar faces 
form the first level of any 90° pop-up structures. Hence, the 
minimum number of faces to form a 90° pop-up structure is 
4. From (6), an inequality can be formed as follows. 

 

2
3

M +V + 2( )≥ 4  

 
       M +V ≥ 4         (9) 

 
Therefore, to form a 90° pop-up structure, there must be at 
least four creases. M +V = 4 is the third mathematical 
constraint on creases. 

C. Graph of Mountain and Valley Creases 
The three crease constraints forms a semi-infinite region 

on a mountain-valley crease graph. See fig 8. In short, we 
term it as a MV graph. The region is a boundary area where 
the construction of collapsible 90° pop-up structures is 
feasible. Hence, it also represents a region where flat 
foldability of 90° pop-up structures is attainable. We are, 
thus, able to predict the number combination of mountain 
and valley creases required for a 90° pop-up construction 
and verify if a structure with a fixed number of mountain 
and valley creases is flat foldable. However, only specific 
integer coordinates in the boundary region represent the 
number of mountain and valley creases feasible for flat 
foldability. To locate these coordinates, we need to 
examine two other types of lines on the MV graph. They 
are the level lines and crease initiation lines. 
1) Level Lines 

Level lines represent the pop-up levels. The lines are 
represented by M +V = N  and N is determined from (1). 
The third crease constraint M +V = 4 is the level line for 
the first level. Possible integer coordinates are located on 
the level lines, as shown in fig. 9a. To determine the exact 
positions of the coordinates on the level lines, we need to 
examine the crease initiation lines. 
2) Crease Initiation Lines 

These lines represent how a pop-up level is developed. 
The representations of the crease initiation lines are shown 
in fig 9b. As there are two types of crease initiations, the 
lines for mountain crease initiations and valley crease 
initiations have different properties. They differ in their 
slopes (or gradients). We term the slopes of the lines as MV 
slopes. For a mountain crease initiation, there is an 
increment of two mountain creases and one valley crease. 
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Fig. 8.  Boundary region for 90° pop-up structures. Coordinates (0,1)
represents the gutter crease and (1,3) represents the first pop-up level.

 

No of mountain crease M 
0 

N
o 

of
 v

al
le

y 
cr

ea
se

 V
  

No of mountain crease M 
0 

N
o 

of
 v

al
le

y 
cr

ea
se

 V
 

 
(a)          (b) 

Fig. 9.  (a) Parallel level lines M +V = N . (b) Dotted lines are lines of 
mountain crease initiations and dashed lines are those of valley crease 
initiations. Dots on line intersections are possible crease combinations 
to create 90° pop-up structures. 



 
 

Hence the MV slope is 1
2

. For a valley crease initiation, 

there is an increment of one mountain crease and two valley 
creases. The MV slope is thus 2. The crease initiation lines 
cut across the level lines and the points of intersection are 
the positions of the required coordinates, and so the 
combination of mountain and valley creases, to achieve flat 
foldability of 90° pop-up structures. 

VI. ADDED POP-UP EFFECTS BY PAPER FOLDING 
So far, we have examined creases on basic 90° pop-up 

structures. After a basic pop-up structure has been 
developed, it is possible to further fold the planar pieces to 
create additional pop-up effects. However, there is a 
specific technique to fold the planar pieces, for other 
folding methods would hinder the structure from erecting 
properly. The feasible method is by changing the mountain-
valley assignment of an existing crease on the pop-up 
structure and creating two new creases at the same time. In 
origami idiom, this folding method is known as reverse 
folding. Reverse folding on pop-up structures can produce 
flat vertex folds or pleats. A flat vertex fold has crease lines 
that meet at a vertex whereas those of pleats do not. Fig. 10 
illustrates some examples of these pop-up structures.  

Paper folds added to pop-up structures are not governed 
by mathematical relationships of 90° pop-up structures 
discussed in previous sections. But since the resulting pop-
up structure is flat foldable, can its crease properties be 
satisfied within the boundary region? This means that in 
order to be within the boundary region, the lines 
representing the flat vertex fold or pleats on the pop-up 
structures on the MV graph must have MV slopes between 

1
2

 and 2.  

By observation, for the first fold, a flat vertex fold would 
result in an increment of two mountain creases and one 
valley crease if it were developed from a mountain crease 
on the pop-up structure. The MV slope for this case is thus 
1
2

. If the first fold is developed from a valley crease, then 

the MV slope is 2. For successive fold levels, the MV slope 
is 1 regardless of the type of creases on the pop-up 
structure, mountain or valley, which the flat vertex fold is 
developed from. (Crease lines of successive levels meet at 
the same vertex.) 

Similarly, adding a reverse-folded pleat to a pop-up 
structure would result in a MV slope of 1, regardless of the 
type of creases, which it is developed from. Hence, the 
corresponding graph of 90° pop-up structures with added 
flat vertex folds and pleats would not diverge out of the 
boundary region. Table I summarizes the type of folds and 
their MV slopes. Fig. 11 illustrates a MV graph 
corresponding to the pop-up structure in Fig. 10b. 
However, note that other folding methods can also result in 

a MV slope between 1
2

 and 2 but do not enable a pop-up 

structure to erect properly or collapse flat. 
 

VII. INVERTED 90° POP-UP STRUCTURES 
The gutter crease has been taken to be a valley crease for 

the above explanations. To represent a mountain gutter 
crease or inverted 90° pop-up structures, including those 
with added folding, they can be represented on a MV graph 
as a reflection along the line MV = . The inversion can 
also be represented by a matrix transformation T as follows. 
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VIII. CONCLUSION 
One significant finding in this paper is the identification 

of a boundary region where 90° pop-up constructions are 

TABLE I 
MV SLOPES FOR ADDED FOLDS TO 90° POP-UP STRUCTURES 

Type of 
folds Fold level Developed from MV 

slope 
Mountain crease 1/2 First fold 
Valley crease 2 

Flat vertex 
fold 

Successive folds Any crease 1 
Pleats All folds Any crease 1 

   
(a)           (b) 

 
Fig. 10.  (a) A single slit pop-up structure with a vertex fold. (b) A 
double slit pop-up structure with pleats. 
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Fig. 11. A graph representation of a 90° pop-up structure. 
Coordinate pair (1,3) represent a pop-up level and (3,5) represents
the full structure after pleats are added onto the pop-up level. 



 
 

feasible. A 90° pop-up structure that is flat foldable 
satisfies the boundary conditions. But the reverse is not 
true. That is, a graph constructed within the boundary 
region does not necessary produce a flat-foldable 90° pop-
up structure. For future research, further investigation 
would look into the flat foldability of other types of pop-up 
structures as well as their geometric properties.  
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