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Abstract: The problem of enumerating linear threshold functions of n Boolean vari-
ables is reduced to that of enumerating cells in a central, hyper-octahedrally symmetric
arrangement of hyperplanes in n+1-dimensional Euclidean space. Because of the sym-
metry, enumeration of equivalence classes of cells is sufficient. To this end we extend
Zaslavsky’s theorem on counting cells in a central arrangement of hyperplanes in two
ways. First, the theorem is extended to symmetric arrangements so that the number of
cells is related to a generalised Möbius function defined on a symmetry-adapted poset
of hyperplane intersections (SAPHI). Second, we show how a SAPHI can be unfolded
into a symmetry-adapted face poset whose maximal elements correspond to and fully
characterise equivalence classes of linear threshold functions.
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Category: G2.1

1 Introduction

Consider a threshold gate or a McCulloch-Pitts model neuron shown in figure
1. For a given set of weights, {wi, i = 0, 1, 2, . . . , n} , the device computes a
Boolean function of its inputs. Not all Boolean functions may be computed by
varying the weights; the ones which may are called linear threshold functions.
For a given n, the problem is to enumerate all linear threshold functions of n
Boolean variables.

This problem received a great deal of attention during a twelve-year period
from 1960 to 1972, mostly from electrical engineers. This research was motivated
by the expectation that the use of threshold gates (rather than conventional
logic gates, AND, OR and NOT) in digital circuits would lead to less complex
circuits with fewer elements. However, by 1972 it was clear that the engineering
tolerance required for the construction of reliable circuits was beyond reach and
researchers in this area turned their attention to other problems. Nevertheless,
a substantial body of mathematical results had been accumulated and a number
of authoritative monographs were published during this period [2, 3, 6].

As part of this work, much effort was expended in tabulating linear threshold
functions of up to 8 variables. Some of these results are summarised in table
1. Practical tabulation exploits the hyper-octahedral symmetry inherent in the
1 Based on a contributed talk at the 15th British Colloquium on Theoretical Computer

Science, Keele University, 14-16 April 1999. This is an abridged version of a longer
paper submitted to IEEE Transactions on Neural Networks.
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y = 1 if h ≥ 0; −1 otherwise.

Figure 1: A threshold gate or a McCulloch-Pitts model neuron. The input x0 is clamped
to 1 and other inputs and the output are bipolar ( xi = ±1 for 1 ≤ i ≤ n, and y = ±1).
The device is characterised by real-valued weights {wi, i = 0, 1, 2, . . . , n} and computes
a Boolean function of the inputs.

n LTF (n) CLTF (n) CBF (n)
1 4 1 1
2 14 2 3
3 104 3 7
4 1,882 7 83
5 94,572 21 109,950
6 15,028,134 135 28,613,442,061,634
7 8,378,070,864 2470 *
8 17,561,539,552,946 175,428 *

Table 1: Some results on the enumeration of linear threshold functions [5]. LTF (n)
is the number of linear threshold functions of n Boolean variables and CLTF (n) and
CBF (n) are the number of equivalence classes of linear threshold and Boolean functions
respectively. CBF (n) for n up to 5 had been calculated previously; the sequence has
been extended up to n = 8 recently by Strectch [11]. The last two numbers in this
sequence, CBF (7) and CBF (8) are too large to be included here but can be found in
[10]. For comparison, the total number of Boolean functions of n Boolean variables is

22n

.

problem. 2 One therefore tabulates equivalence classes of linear threshold func-
tions. If an exemplar of a class is given, other functions in the class can be
generated by symmetry operations.

Column 3 in table 1 lists the number of equivalence classes of LTFs and
for comparison, column 4 lists the number of equivalence classes of Boolean
2 It so happens that the symmetry group associated with LTFs of n variables is the

hyper-octahedral group in n + 1 dimensions, denoted here by HO(n + 1). A typical
element of this group permutes the n + 1 coordinate axes and changes the sign of
some of these. The order of the group is 2n+1(n + 1)!. It is the invariance group of
the n + 1-dimensional coordinate frame.



functions with respect to the same group, HO(n + 1). The following upper and
lower bounds on LTF (n) were also established:

LTF (n) ≤ 2
n∑

j=0

(
2n − 1

j

)
≤ 2n2

,

LTF (n) > 2
1
2n(n−1)+16 for n ≥ 8.

The upper bound follows immediately from Cover’s theorem [1] on the number of
linearly separable partitions of p points in a general position in n+1 dimensional
space. 3 The lower bound is due to Muroga [4]. More recently, Zuev [13] has
improved the lower bound for sufficiently large n:

1
n2

log2 LTF (n) > 1 − 10/log n.

Upper and lower bounds are thus asymptotically tight and we have
1
n2

log2 LTF (n) → 1.

Cover’s upper bound is based on input vectors being disposed in a general
position whereas bipolar input vectors (for n ≥ 3) are not in a general position.
It may therefore be possible to improve the upper bound (for finite n). We will
return to this possibility later. Previous work has also not tried to place any
bounds on CLTF (n) or analyse its asymptotic behaviour. At the end of this
paper, we will return to this question as well.

2 Enumeration in weight space

In this paper, we analyse the enumeration problem in weight space. Given an n+1
dimensional input vector X, what choice of weights would cause the threshold
gate to respond with y = 1? Note that the equation X · W = 0 defines a
hyperplane through the origin in weight space (fig 2). The discriminant h = X·W
is +ve on one side of the hyperplane and −ve on the other. Thus any W in
the positive half or on the hyperplane causes y = 1 whereas any W in the
negative half causes y = −1. The discriminant hyperplane partitions the weight
space into two n + 1-dimensional convex regions (corresponding to h > 0 and
h < 0) and an n-dimensional region (where h = 0). All weights in the +ve
half or on the hyperplane compute the same function of the input; likewise for
all weights in the −ve half. When there are several inputs, they collectively
define a central arrangement of hyperplanes, one hyperplane for each input. 4

The weight space partition contains a number of n +1-dimensional open convex
cells; threshold gates with weights in the same cell respond to all inputs in exactly
the same way and therefore compute the same function of the given inputs. The
problem of enumerating functions of given inputs computable by a threshold
gate is thus reduced to the problem of enumerating n + 1-dimensional cells in a
central arrangement of hyperplanes. 5

3 The points are in a general position if none of the m-dimensional subspaces (m <
n + 1) contains more than m + 1 points.

4 In a central arrangement all hyperplanes pass through a common point.
5 Any function that can be computed by a weight on one or more hyperplanes can

also be computed by weights in one of the open cells.
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Figure 2: Weight-space interpretation of computation by a threshold unit. An input
vector defines a discriminant hyperplane ( h =

∑
i
xi wi = 0) which partitions the

weight space into +ve and −ve halves. Threshold gates with weights in the positive
half or on the hyperplane respond with y = 1 whereas those with weights in the negative
half respond with y = −1.
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Figure 3: A central arrangement of hyperplanes.

There are two aspects to the enumeration of cells in an arrangement of hy-
perplanes. First, one must count the total number of cells, and second, one must
characterise the cells fully so that a weight vector inside the cell may be cal-
culated. In 1975, Zaslavsky [12] derived a combinatorial cell-counting formula
which is discussed in section 2.1. Complete characterisation of cells requires the
construction of a face poset. This is discussed in section 2.2.

2.1 Zaslavsky’s cell-counting formula

We briefly summarise the exposition of Zaslavsky’s original work by Siu, Roy-
chowdhury and Kailath [9]. Interested readers should consult the latter reference
for further details and proofs.

Let A be a central arrangement of p hyperplanes in n + 1-dimensional Euc-
lidean space of weight vectors W. It is assumed that all hyperplanes pass through
the origin and the direction vectors are {X1, X2, . . . , Xp}.



Next consider L, the set comprising the entire weight space W and all inter-
sections of the hyperplanes in A. This set is partially ordered with respect to set
inclusion, i.e. for s, t ∈ L, s ≤ t if s ⊆ t.

L is in fact a lattice because every pair of elements s, t ∈ L has a unique
greatest lower bound (called meet and denoted s ∧ t) and a unique least upper
bound (called join and denoted s ∨ t). These are defined as follows:

s ∧ t = s ∩ t;
s ∨ t = ∩{u ∈ L : s ∪ t ⊆ u}.

L , being a lattice, has unique minimal and maximal elements (labelled O and
W in the rest of this paper). All chains between any two fixed elements have the
same length and L is therefore a geometric lattice. The rank r(s) of s ∈ L is the
dimension of s.

The zeta function for a pair of variables s, t ∈ L is defined so that

ζs,t = 1 if s ≤ t

= 0 otherwise.

We can write the ζ-function as a matrix and arrange its rows and columns so
that it has upper triangular form. The Möbius function µs,t is defined recursively
as follows:

µt,t = 1;

µs,t = −
∑

s<u≤t

µu,t.

Notice that the Möbius function is integer-valued and it is defined only for pairs
of comparable elements. Its associated matrix also has upper triangular form
and is the inverse of the ζ-matrix.

The following theorem is the key combinatorial result for counting cells in
the partition of weight space by the arrangement A.

Theorem1. Zaslavsky’s Theorem [12]: The number of cells in a central arrange-
ment of hyperplanes in Rn+1 is given by

∑
s∈L |µs,W |.

A simple example comprising a two-dimensional arrangement is shown in
figure 4. More elaborate examples are given in [7].

2.2 Face poset of an arrangement

In order to completely characterise the partition of weight space by an ar-
rangement of hyperplanes, we need to recognise that in addition to the n + 1-
dimensional cells considered in the previous section, there are other open, convex
regions whose dimensions range from 1 to n. We will use the term ‘face’ for all
such regions and for the origin as well which we will regard as a 0-dimensional
face. A partial order of faces is naturally defined and the weight-space partition
is fully characterised by the face poset, hereafter denoted by F ..

Note that each face is characterised by a signature which is a string of n + 1
symbols where each symbol is one of {+,−, 0}; the i-th symbol is determined
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Figure 4: A central arrangement of three lines in two-dimensional Euclidean space and
its associated lattice of line intersections. The labels u1, u2 and u3 refer to the three
lines. The signatures of one cell and one line segment are shown for illustration. The
signature of the origin is (000). The number of cells is the sum of the magnitudes of
the follwing values of the Möbius function: µW,W = 1, µu1 ,W = µu2 ,W = µu3 ,W = −1
and µO,W = 2.

by the value of the i-th discriminant. We will define a partial order of faces
by asserting that for any pair f1 and f2, f1 ≤ f2 if the signature of f1 can be
obtained by replacing some ±s in the signature of f2 by 0s. The resulting face
poset encapsulates the essential topological characteristics of the partititon. In
particular, the cells in an arrangement are the maximal elements of the face
poset.

The face poset for the arrangement in figure 4 is shown in figure 5.

(+ + +) (− + +) (+ + −) (− − +) (+ − −) (− − −)

(0 + +) (+ + 0) (− 0 +) (+ 0−) (− − 0) (0 − −)

(0 0 0)

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
��

�
�
�
�
�
��

��
��

��
��

��
���

��
��

��
��

�

	
	
	
		























��
��

��
��
�

�
�
�
��

Figure 5: The face poset of the arrangement in figure 4.

3 Enumeration of cells in symmetric arrangements

The scheme outlined in the previous section for enumerating linear threshold
functions runs into an immediate difficulty because for n-variable inputs, there



are 2n hyperplanes (in n + 1 dimensions) and the number of elements in the
lattice of hyperplane intersections is of the order O(2n2

). This combinatorial ex-
plosion is ameliorated (but not entirely tamed) by utilising the symmetry of the
arrangement. Instead of considering the set L of hyperplane intersections, we
consider the set Λ of equivalence classes of hyperplane intersections. A partial
order of the elements of Λ is defined with reference to the partial order of the
elements of L; Λ is thus a symmetry-adapted poset of hyperplane intersections.
Likewise, instead of considering the set F of faces, we consider the set Π of equi-
valence classes of faces and define a partial order on elements of Π by referring
to the partial order of the underlying face poset. Π is thus a symmetry-adapted
face poset. Its maximal elements are the equivalence classes of linear threshold
functions.

The enumeration problem thus reduces to the construction of the symmetry-
adapted poset of hyperplane intersections. Once this is known, it can be unfolded
to yield the symmetry-adapted face poset, and thereby equivalence classes of
linear threshold functions. The schematiccs of this computation are shown in
figure 6.

L F

Λ Π

�

�� �

Figure 6: Use of symmetry in the enumeration of linear threshold functions. Instead of
constructing L and unfolding it into F , it is computationally easier to construct Λ and
unfold it into Π .

3.1 Extension of Zaslavsky’s formula to symmetric arrangements

We first define a partial order on the elements of Λ as follows: for α, β ∈ Λ, if
there is a corresponding pair of elements s, t ∈ L such that s ∈ α, t ∈ β and
s ≤ t then α ≤ β; otherwise α and β are not comparable.

We next define a generalised zeta function ζ
α,β

on Λ. For each pair of com-
parable classes α ≤ β, it is the number of elements in α with which a typical
element t ∈ β can be compared; thus

ζ
α,β

=
∑
s∈α

ζs,t

where t is any fixed element in β. Note that ζ
α,α

= 1 for all α and ζ
α,β

= 0
when α and β can not be compared. 6

6 Another complementary generalised zeta function may be defined by

ζα,β =
∑
t∈β

ζs,t



A generalised Möbius functions is defined recursively as follows:

µ
α,α

= 1,

µ
α,β

= −
∑

α<γ≤β

ζ
α,γ

µ
γ,β

, (1)

whereby all elements of µ are easily computed.
From this and the previous recursion for the Möbius function on L, it follows

that
µ

α,β
=

∑
s∈α

µs,t

(t is any fixed element of β). Thus the computation of the Möbius function on L
is simplified considerably by computing the closely related generalised Möbius
function on the symmetry-adapted poset of hyperplane intersections because
the latter has far fewer elements than the former. Zaslavsky’s theorem is now
restated as follows:

Theorem2. Zaslavsky’s Theorem Restated: The number of cells in a central,
symmetric arrangement of hyperplanes in Rn+1 is given by

∑
α∈Λ |µ

α,W
|.

We have calculated the SAPHI Λ3, Λ4 and Λ5 corresponding to 3, 4, and
5 variable LTFs and computed the corresponding generalised zeta and Möbius
functions. The results for 3 variable LTFs are given in figure 7 and table 2. Other
results may be found in [7].

3.2 Unfolding Λ into Π

Having constructed the symmety-adapted poset of hyperplane intersections, the
next task is to unfold it into a symmetry-adapted face poset. To this end, we need
to devise a signature for equivalence classes of faces. Dertouzos [2] has shown
that the vector sum of direction vectors weighted by their class label (y = ±1),

C =
∑

i

yi Xi,

is distinct for distinct linear threshold functions and may therefore be used to
characterise them. 7 Thus equivalence classes of linear threshold functions may
be labelled by the characteristic vector of an exemplar. Dertouzos has used the
canonical form where all elements of C are non-negative and non-increasing (
cj ≤ ci if j > i) and we will keep to his convention. The number of linear
threshold functions in class C is the number of distinct vectors that are generated
from C by permuting its elements and changing the sign of some of them.

An extended characteristic vector defined below can be used to characterise
equivalence classes of all faces – not just cells – in the arrangement. Consider a

where s is any fixed element in α. It is useful for checking the calculations reported
in this paper.

7 The characteristic vector contains enough information to permit calculation of
weights which are sufficiently deep in the interior of the cell so as to allow robust
computation of the associated LTF.
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Figure 7: The symmetry-adapted poset of hyperplane intersections, Λ3, for LTFs of
3 variables. W is the 4-dimensional weight space; each of the other elements is an
equivalence class of hyperplane intersections. The generic label for each element is αr,i

where r is the rank and i distinguishes elements of same rank. Note that although this
poset happens to be a geometric lattice, it is not so for LTFs of more than 3 variables.

face f whose affine extension is some r-dimensional intersection of hyperplanes,
say s ∈ L and let W ∈ f be some weight vector. Ostensibly, W ·X = 0 if s ⊆ X
and non-zero otherwise. The chracteristic vector for f is defined as

C =
∑

{Xi|W·Xi �=0}
sign(W · Xi) Xi.

It is easy to show that this vector is distinct for distinct faces in s and may be
used to characterise them. Moreover, if two faces in s are related by a symmetry
transformation, then so are their characteristic vectors. Thus, equivalence classes
of faces may be labelled by canonical-form characteristic vectors.

The unfolding of Λn into Πn is carried out step-by-step proceeding from low-
rank elements to high-rank elements using what one might call the “climbing-
frame algorithm”. Construction of Πn, particularly computation of the char-
acteristic vectors of its maximal elements completes the task of enumerating
n-variable LTFs.

Figure 8 shows Π3, the symmetry-adapted face poset for 3-variable linear
threshold functions. Further examples and details of the climbing-frame al-
gorithm are given in [7].

4 Conclusions

We have extended Zaslavsky’s work [12] on counting the number of cells in a
partition of Euclidean space by a central arrangement of hyperplanes to sym-
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α,W

O 1 1 1 1 1 1 1 23
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α2,2 0 0 0 0 1 4 16 16

WT
1 = (1001)

WT
2 = (1010)

WT
3 = (1111)

��
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�

α3,1 0 0 0 0 0 1 8 -8

W 0 0 0 0 0 0 1 1

104

Table 2: Generalised zeta and Möbius functions for the the symmetry-adapted poset
of hyperplane intersections of figure 7. The direction vectors of hyperplanes whose
intersection gives an exemplar of equivalence class αr,i are shown in column 2. (It is
assumed that x0 = 1 in all cases.) A set of r weight vectors which span the intersection
is given in column 1. The main body of the table contains the ζ function. The Möbius

function µ
α,W

is listed in the last column; Its last entry is
∑

α
|µ

α,W
|, the number of

linear threshold functions of three variables.

metric arrangements. We have also shown how such arrangements may be used
to enumerate equivalence classes of n-variable linear threshold functions. Two of
the most promising directions for future work are outlined below.

First, Zaslavsky’s formula extends Cover’s theorem in the sense that it al-
lows calculation of the number of linearly separable partitions of p points in n
dimensions even when the points are not in a general position. We are hopeful
that it can be reorganised as a sequence of decreasingly significant corrections to
Cover’s result, where each correction accounts for the fact that points in some
class of subsets of the p points are not in a general position. 8 When the complete
latice of hyperplane intersections is known, one can calculate all corrections and
thereby compute the precise number of linearly separable partitions. When the
lattice is partially constructed, one can calculate only some of the corrections
8 Something very similar was done way back in 1888 by Roberts [8] for an arrangement

of lines in the plane.
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Figure 8: Symmetry-adapted face poset, Π3, for LTFs of 3 variables. Each element is
identified by a characteristic vector. There are three equivalence classes of 3-variable
LTFs corresponding to the three maximal elements of Π3.

and obtain an upper bound on the number of partitions which is an improve-
ment on the upper bound from Cover’s formula. The final observation in this
regard is that a given Lm is embedded in all lattices Ln where n > m; to have
constructed a particular Lm is to have partially constructed all Ln with n > m.
Thus, by embedding L5 in ‘higher-order’ lattices, we may be able to improve the
current upper bound on LTF (n) for n > 5.

Second, it follows from the ‘climbing-frame’ algorithm that CLTF (n) ≤ 2n×
Chn, where Chn is the number of chains from O to W in Λn. Next, we observe
that Ln may be re-interpreted as a sub-lattice of the lattice of subgroups of
HO(n + 1) and likewise, Λn may be re-interpreted as a subset of the poset of
equivalence classes of subgroups of HO(n + 1). This connection may allow us
to place an upper bound on Chn. However, it is probably unlikely that the
resulting upper bound on CLTF (n) will be am improvement on CBF (n) which
is a simple natural upper bound.
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