Problem Classification using Program Checking

Christian S. Collberg

Department of Computer Science

University of Arizona
Tucson, AZ
collberg@cs.arizona.edu

Abstract

We describe AAgoVista, a web-based search engine that
assists computer scientists find algorithms and imple-
mentations that solve specific problems. AAgoVista also
allows algorithm designers to advertise their results in
a forum accessible to programmers and theoreticians
alike.

AlgoVista is not keyword based. Rather, users pro-
vide input=>output samples that describe the behavior of
their needed algorithm. This query-by-ezample requires
no knowledge of specialized terminology—the user only
needs an ability to formalize her problem.

AlgoVista’s search mechanism is based on a novel
application of program checking, a technique developed
as an alternative to program verification and testing.

A)goVista operates at http://algovista.com.

1 Background

Frequently, working software developers encounter a
problem with which they are unfamiliar, but which—
they suspect— has probably been previously studied.
Just as frequently, algorithm developers work on prob-
lems that they suspect have practical applications.

Unfortunately, the programmer with a problem in
search of a solution and the theoretician with a solu-
tion in search of an application are unlikely to connect
across the geographical and linguistic chasms that often
separate the two. In many organizations working pro-
grammers do not have easy access to a theoretician, and,
when they do, they often find communication difficult.

In this paper we will describe AlgoVista, a web-
based, interactive, searchable, and extensible database
of problems and algorithms designed to bring together
applied and theoretical computer scientists. Program-
mers can query AAgoVista to look for relevant theoret-
ical results, and theoretical computer scientists can ex-
tend AAlgoVista with problem solutions.

A)goVista relies on a novel application of a program
(or result) checking. Program checking has been de-
veloped by Manuel Blum and others [3-5,10,16,17,19]
as an alternative to program verification and testing.
Program checking extends programs with checkers that
verify the correctness of the results they compute.

Todd A. Proebsting
Microsoft Research
One Microsoft Way
Redmond, WA
toddpro@microsoft.com

1.1 Two Motivating Episodes

To motivate the need for specialized search engines
for computer scientists, we will consider two concrete
episodes from the experience of the authors.

Working on the design of graph-coloring register al-
location algorithms, Todd showed his theoretician col-
league Sampath Kannan the following graphs:

é@ % WA
|

5®

O~
—
T~

_

A

“Do these graphs mean anything to you?” Todd
asked.

“Sure,” Prof.
parallel graphs.”

This was the beginning of a collaboration which re-
sulted in a paper in the Journal of Algorithms [13].

In a similar episode, Christian showed his theoreti-
cian colleague Clark Thomborson the following graph-
transformation:

©

Kannan replied, “they’re series-

=
D

“Do you know what I am doing here?” Christian
asked.

“Sure,” Prof. Thomborson soon replied, “you’re
shrinking the biconnected components of the underlying
(undirected) graph.”

This result became an important part of a joint pa-
per on software watermarking [7].

It’s important to note that, while in both these
episodes the authors (who consider themselves “theory-
challenged”) had a pretty good grasp of the problem
they were working on, they lacked knowledge of the
relevant terminology. Hence, standard keyword-based
search techniques would not have been of much assis-
tance. In these episodes, the theoretical computer sci-
entist provided the crucial problem classification that
allowed the authors to conduct further bibliographical
searches themselves.

1.2 Interacting with A\goVista

AlgoVista is an online database that stores and codi-
fies problems, algorithms, and combinatorial structures
developed within the Computer Science theory commu-
nity. An applied computer scientist will typically inter-
act with AlgoVista by providing input=-output samples.
AMgoVista will then search its database looking for prob-
lems that map input to output. As a concrete example,
consider the following query:

@ ®
f /X@f) =@, @ 6, @.

This query asks:

“Suppose that from the linked structure on
the left of the = I compute the list of nodes
to the right. What function f am I then com-
puting?”

AlgoVista might then respond with:

“This looks like a topological sort of
a directed acyclic graph. You can
read more about topological sorting at
http://hissa.ncsl.nist.gov/ black/

CRCDict/HTML/topologcsort.html. A Java
implementation can be found at http:
//www.math.grin.edu/"rebelsky/Courses/
152/97F/0utlines/outline.49.html”.

AlgoVista is also able to classify some simple com-
binatorial structures. Given the following query

AlgoVista might respond with:

“This looks like a complete bipartite graph.
You can read more about this structure
at http://www.treasure-troves.com/math/
CompleteBipartiteGraph.html.”

1.3 Organization

The remainder of this paper is organized as follows. Sec-
tion 2 introduces program checking and describes how
checklets (program checkers in AlgoVista) are used as
the basic entries in AAgoVista’s database. Section 3
presents the overall architecture of AAgoVista and dis-
cusses relevant security issues. Section 4 describes the
design of the AlgoVista query language and type sys-
tem. Section 5 introduces query transformations that
the system uses to bridge any potential semantic gap
between user queries and checklets. Section 6 describes
how advanced type analysis can speed up searching.
Section 7 evaluates the performance of the search algo-
rithms. Section 8 discusses related work, and Section 9,
finally, summarizes our results.

2 Program Checking

AlgoVista can be seen as a novel application of program
checking, an idea popularized by Manuel Blum and his
students. The idea behind program checking is simply
this. Suppose we are concerned about the correctness of
a procedure P in a program we are writing. We intend
for P to compute a function f, but we are not convinced
it does so. We have three choices:

1. We can attempt to prove that P = f over the entire
domain of P.

2. We can test that P(z) = f(z), where z is drawn
from a reasonable domain of test data.

3. We can include a result checker C}D with the pro-
gram. For every actual input x given to P, the
result checker checks that P(z) = f(z).

We normally require C}D and P to be independent of
each other; i.e. they should be programmed using very
different algorithms. We also want the checker to be
efficient. To ensure that these conditions are met, it is
generally expected that a result checker C’f’ should be
asymptotically faster than the program P that it checks.
That is, we expect that if P runs in time 7" then C;’
should run in time o(T).

2.1 Checklets: Result Checkers in A\goVista

The AAgoVista database consists of a collection of result
checkers which we call checklets. A checklet typically
takes a user query input=>output as input and either
accepts or rejects. If the checklet accepts a query, it also
returns a description of the problem it checks for.
Figure 1 shows some simple checklets. Figure 1 (b),
is a particularly interesting checklet for topological sort-
ing. Any acyclic graph will typically have more than
one topological order. It is therefore not possible for
the checklet to simply run a topological sorting proce-
dure on the input graph and compare the resulting list
of nodes with the output list given in the query. Rather,
the checklet must, as shown in Figure 1 (b), first check
that every node in the input graph occurs in the output
node list, and then check that if node f comes before

Figure 1: Some simple checklets.

(a) A sorting checklet. Its speed depends on how fast we can compare two multisets for equality. If the elements
are small enough we can use bucket sort in O(n) time. Otherwise, we can use a hashing scheme that runs in time

proportional to the size of the hash table.

checklet sorting (int[] input = int[] output)

for i<-1 to length(output)-1 do
if output[i] > output[i+1] then reject

if length(input) # length(output) then reject

if the multisets input and output do not contain the same elements then reject
accept http://hissa.ncsl.nist.gov/“black/CRCDict/termsArea.html#sort

(b) A topological sorting checklet.

for (f,t) < the edges of inGraph do

checklet topologicalSort (Digraph inGraph = Node[] outNodeList)
if the nodes of inGraph # outNodelList then reject

if indexz of f in outNodeList > indez of t in outNodeList then reject
accept http://hissa.ncsl.nist.gov/"black/CRCDict/HTML/topologcsort.html

node ¢t in the output list then there is no path ¢ ~ f in
the input graph.

AlgoVista currently contains some ninety problem
descriptions, some of which are listed in Table 1.

2.2 Examples

We will next examine two examples of what AAgoVista
can do.

Example 1: Suppose Bob is trying to write a pro-
gram that identifies the locations for a new franchise
service. Given a set of potential locations, he wants the
program to compute the largest subset of those locations
such that no two locations are close enough to compete
with each other. It is trivial for him to compute which
pairs of locations would compete, but he does not know
how to compute the feasible subset. He starts by trying
to come up with an example of how his program should
work:

e If there are three locations a,b,c and a competes
with b and ¢, then the best franchise locations are
b and c.

If Bob is unable to come up with his own algorithm
for this problem he might turn to one of the search-
engines on the web. But, which keywords should he
use? Or, Bob could consult one of the algorithm reposi-
tories on the web, such as http://www.cs.sunysb.edu/
“algorith/, which is organized hierarchically by cate-
gory. But, in which category does this problem fall? Or,
he could enter the example he has come up with into
A)goVista at algovista.com:

[a--b,a--c]==>[c,b]
This query expresses:

“If the input to my program is two relation-
ships, one between a and b and one between

a and c, then the output is the collection
[b,c]l.”

Another way of thinking about this query is that
the input is a graph of three nodes a, b, and c,
and edges a-b and a-c, but it is not necessary for
Bob to know about graphs. AMgoVista returns to
Bob a link directly to http://www.cs.sunysb.edu/
“algorith/files/independent-set.shtml which con-
tains a description of the Maximal Independent Set prob-
lem. From this site there are links to implementations
of this problem.

Example 2: Suppose Bob is writing a simple DNA
sequence pattern matcher. He knows that given two se-
quences {a, a,t, g,9,9,c,t) and {c, a, t, g, g), the matcher
should return the match (a,t,g,g), so he enters the

query
([a,a,t,g,8,8,c,t],[c,a,t,g,8]) ==> [a,t,g,g]

into AAgoVista which (within seconds) re-
turns the link http://evo.apm.tuwien.ac.
at/AlgDesignManual/BO0K/BO0K5/NODE208.
HTM#SECTION03178000000000000000 to a descrip-
tion of the longest common subsequence problem.

2.3 Checklet Construction

Much research has gone into the search for efficient re-
sult checkers for many classes of problems. In some
cases, efficient result checkers are easy to construct. For
example, let P(z) return a factor of the composite inte-
ger . This is generally thought to be a computationally
difficult problem. However, checking the correctness of
a result returned by P is trivial; it only requires one
division. On the other hand, let P(z) return a least-
cost traveling salesman tour of the weighted graph z.
Checking that a given tour is actually a minimum-cost
tour is as expensive as finding the tour itself.

Table 1: Partial list of problem and graph descriptions found in AlgoVista.

Eulerian graph

Longest common subsequence
Independent set

Perfect matching

AVL Tree

Complete graph

All pairs shortest path

Single source shortest path
Maximum bipartite matching
Directed Acyclic Graph
Articulation points

Matching
Euler cycle
Connected graph

Bipartite Graph
Clique

Maximal independent set
Proper edge coloring
Biconnected Graph

Single pair shortest path

Maximum consecutive subsequence

Transitive closure

Clique problem

Permutation

Spanning Tree

Undirected Graph

Single destination shortest path
Strongly connected Graph
Combination

Least common multiple
Hamiltonian cycle

In some cases it may be difficult to construct check-
lets which run in an acceptable amount of time. This
is particularly true of NP-hard problems for which it
would seem to be impossible to find polynomial time
result checking algorithms. In these cases we may have
to use spot-checking [10], a recent development in result
checking, to check hard problems probabilistically.

In spite of these problems, checklets are typically
very simple to write, for the following reasons:

1. Checklets do not actually have to compute the re-
sult that the problem they are checking for does,
they only have to check that the output is a valid
result of the input. For example, the sorting check-
let does not have to sort its input, just check that
the output array is sorted.

2. The queries that users will submit to A\goVista are
almost always extremely short. Therefore, check-
lets do not have to worry about being efficient; the
simplest, most straight-forward algorithm will of-
ten be adequate.

3. Checklets can often “cheat.” For example, a sort-
ing checklet should not only check that the output
array is sorted, it should also check that the out-
put array contains the same elements as the input
array. This second step is moderately hard if the
input array contains duplicates. A relaxed checklet
could omit this step, with the result that it would
accept slightly more often than it should. This will
most likely not be a problem since — like all search
engines — we expect AlgoVista to sometimes return
false positives.

Checklets that operate on floating-point numbers
present their own set of problems concerning floating-
point equality. For example, which, if any, of the
queries 2.0 = 1.4142135623", "2.00000 = 1.4140", and
2.0 = 1.0" should a floating-point square root check-
let accept? Checklets can, of course, define their own
equality primitives, but AAgoVista provides a default
heuristic that works well in most situations: floating-
point comparisons are done in the minimum precision
of any floating-point number in the input query.

3 System Overview

A typical user will search AlgoVista by submitting a
query through the AMgoVista web page, where it is
matched against the checklets in the checklet database.
The output from any accepting checklet is transferred
back to the client and presented to the user.

To extend the database with new problem classifi-
cations, a user downloads a checklet template, modifies
and tests it, and uploads the new checklet into the server
where it is added to the checklet database. AAgoVista
is the first search engine on the web to allow arbitrary
users to upload executable code into its database. In [§]
we address a number of related security issues.

The basic AAgoVista search algorithm is very simple:

function search (query)

q < parse(query)

responses <« {}

for every combination of query
transformations 7i(72(---)) do
q’ — 7’1(7'2(q))
for every checklet ¢ in the database do

if ¢ accepts ¢’ with response r then
responses < responses U {r}
return responses

The algorithm is essentially an exhaustive search: a
query is submitted to every checklet in the database,
and the response of every accepting checklet is returned.
In Section 5 we show that a query may also undergo a set
of representation transformations prior to being submit-
ted. These transformations try to compensate for the
fact that user queries and checklets may use different
data representations for the same problem. In Section 6
we explore more sophisticated algorithms that speed up
search times significantly.

4 The Query Language

The primitives of QL, the AAgoVista query language,
include integers, floats, booleans, lists, tuples, atoms,
and links. Links are (directed and undirected) edges
between atoms that are used to build up linked struc-
tures such as graphs and trees. Special syntax was pro-
vided for these structures since we anticipate that many

Figure 2: Example QL queries.

| # | QL query

Query explanation

@ | [a->b,b->c] ==> [a->a,a->b,a->c,b->b,b->c,c->c

Query result: (Transitive closure)

r)
What function maps ;@ to (2) ?
G0

® | [a->b,b->c,c->a]

Query result: (Strongly connected graph)

What kind of graph is this: @{)_‘E: ?

® | ([3,71,05,1,6]1) ==> [5,1,6,3,7]

Query result: (List append)

What function maps the lists [3,7] and [5,1,6] to
the list [5,1,6,3,7]17

@ | [a->c,a->d,b->c,d->c,d->b] ==> [a,d,b,c]
Query result: (Topological sort)

List of edges representation. Node set is implied.

tfo,o0,1,11,[0,0,1,01,[0,0,0,01,[0,1,1,01] ==>
[1,4,2,3]
Query result: (Topological sort)

Adjacency matrix representation.

® | [a->[c,d],b->[c],c->[1,d->[c,b]] ==
[a,d,b,c]
Query result: (Topological sort)

List of neighbors representation. Node set is implied.

AMgoVista users will be wanting to classify graph struc-
tures and problems on graphs.

The following grammar shows the concrete syntax of
the query language:

S — int | float | bool |
S ==>" 5|
atom[/"S]|
atom *->"['/’S] atom |

/°8
atom *--"["/’S] atom |
TIS{,'SY]|
(St 8y
bool — ‘true’ | ‘false’
atom — ‘a’...'z’
int — 07...°9°{'0"...°9"}
float — int ~. int

S ==> ST maps inputs to outputs, "(S , S)7 rep-
resents a pair of elements, and "[S { ,S } 17 repre-
sents a list of elements. Atoms, Tatom [/S [, are
one-letter identifiers that are used to represent nodes
of linked structures such as graphs and trees. They
can carry optional node data. Links between nodes
can be directed Tatom -> [/S] atom!, or undirected
Tatom -- [/S | atom', and can also carry edge data.

Figure 2 gives some example queries. In the query
in Figure 2 @D, a directed graph is mapped to a directed
graph. The query in Figure 2 @) asks AlgoVista to clas-
sify a particular graph, which turns out to be a strongly
connected directed graph.

Figure 2), finally, shows a query that maps a pair
of vectors to a vector:

r([3,71,[5,1,6])==>[5,1,6,3,7]".

A)goVista returns the result (List append) since
append([5,1,6]1,[3,71)=[5,1,6,3,7]. To arrive at
this result AAgoVista first swapped the input pair us-
ing a query transformation. We discuss this further in
Section 5.

5 Query Transformations

Early on in the design of AAgoVista we realized that
there is often a representational gap between a user’s
query and the checklet that is designed to match this
query. For example, there are any number of reason-
able ways for a user to express a topological sorting
query, including representing the input graph as a list of
edges, an adjacency matric, or a list of neighbors. These
queries are shown in Figure 2 @-®. The corresponding
topological sorting checklet, on the other hand, might
expect the input graph only in a matrix form.

AlgoVista provides a set of query transformations
that will automatically mutate queries between com-
mon representations. For example, given the topologi-
cal sorting query in Figure 2 @, A)lgoVista would au-
tomatically produce the queries in Figure 2 @-@®), all
of which would be matched against the checklets in the
checklet database. Figure 3 lists some of the transfor-
mations currently in use by the search engine. See [8]
for a complete listing.

Transformation Int2Float in Figure 3 promotes a
integer to a float. Transformation FlipPair swaps the
elements of a pair. List2VectorB and many other trans-
formations are concerned with transforming between
different representations of various linked structures.

Consider a user who wants to submit a query con-

Figure 3: Query transformations. () represents Null. Greek letters are type variables. Examples are in the format

stgnature: query.

Description: Convert an integer to a float.
Ezample: Int:3=Float:3.0

Int2Float:Int=Float

Description: Convert 0/1 to false/true.
Condition: The integer must be 0 or 1.
Ezample: Int:0=Bool:false

Int2Bool:Int=>Bool

Description: Swap the elements in a pair.

FlipPair:Pair(a,3) =Pair(f3,a)

Ezample: Pair(Int,Float):(1,2.3)=Pair(Float,Int):(2.3,1)

Description: Convert a vector to a pair.

Vector2Pair:Vector (o) =Pair (a,qa)

Condition: The vector must contain exactly 2 elements.
Ezample: Vector (Int) : [1,2]=Pair(Int,Int):(1,2)

Vector2VectorPair:Vector (o) =Pair (Vector () ,Vector (3))
Description: Convert a vector of edges to a pair of vectors of nodes and edges.
Ezample: Vector (DEdge ())) : [a->b, c->d] =Pair (Vector (}) ,Vector (#)) : ([a,b,c,d], [a->b,c->d])

Description: Convert a linked list to a vector.

List2VectorB:List ((,) =>Vector ()

Ezample: List(P,Int): ([a,b,c,d], [a->/1 b,b->/2 c,c->/3 d])=Vector(Int):[1,2,3]

taining the list of integers "[6,1]7. There are several
ways to represent this list, and our user decides on a
linked-list representation with edge-weights:

5 1
@D—b—O
In our query language this would be expressed as

Ma->/5b,b->/1c].

However, a particular checklet might expect the list of
integers to be given in a vector representation:

5,11

Figure 4 shows how AMgoVista’s transformation en-
gine would mutate the original linked representation
to the vector representation (using the transformation
List2VectorB), a form which would be acceptable to
the checklet.

As show in Figure 4, further transformations will
mutate the original query into pairs of integers,
booleans, and reals. The basic AAgoVista search algo-
rithm in Section 2 would hand off all twelve mutated
queries to all the checklets in the checklet database.

6 Query Optimization

In Section 3 we described a straight-forward algorithm
that employs exhaustive search to submit every possible
mutation of a query to every checklet in the checklet
database. Obviously, with dozens of transformations
and maybe hundreds of checklets this procedure will be
prohibitively expensive.

In this section we will examine a more sophisticated
search algorithm that explores the fact that queries,

checklets, and transformations are all typed. The type
system corresponds almost one-to-one to the concrete
syntax given in Section 4. The following type assig-
ments map concrete syntax into types:

Tint] = Int

T[float] = Float

T[true] = Bool

Tlfalse] = Bool

T[S1 *==>" 5] = Map(T[S1], T[S:])

TS, 857 = Pair(T[S1], T[S:])

TULUIS {7,831 = if T[S1] = T[S:]
then Vector(7[S1])
else L

Tlatom/S] = Node(7[S])

Tlatom *->"/S atom]| = DEdge(T[S])

Tlatom *--"/S atom]| = UEdge(T[S])

For example, the query "([1,2],[3,4]1)==>[4,6]" has
the type

"Map (Pair (Vector(Int) ,Vector(Int)),Vector(Int))"’

and the query "([a/3,b/2,c/1], [a->b,a->c])" has the
type

"Pair(Vector (Node(Int)),Vector (DEdge (Null)))™.

To see how type-analysis can help us speed up the
search, consider a situation where we have two checklets
FloatExp: Map(Pair(Float,Int),Float)
FloatAdd: Map(Pair(Float,Float),Float)
where FloatExp checks for real expomnentiation and
FloatAdd checks for real addition, and two transforma-

tions
Int2Float: Int=>Float

FlipPair: Pair(a,f)=Pair(f8,a)

Figure 4: Query transformation example.

[a->/5b,b->/1c]

List2VectorB

[5,1]

l Vector2Pair
FlipPair

» (true,5)

Int2Bool Int2Bool
(5,true) - (5,1) >
IntzFb/ Y:zmoat IntzFloy WFloat
(5.0,1) (1,5.0) (1.0,5) (1,5.0)
IntZFlA‘ A)Float IntZFJA 'Atm‘“loat
(5.0,1.0) (1.0,5.0)

where Int2Float promotes an integer to a real and
FlipPair commutes a pair.

Suppose the input query is (2.0,2)==>4.0". This
input has a signature of Map (Pair(Float,Int),Float),
and therefore can be tested immediately against
the FloatExp checklet. Similarly, by applying the
Int2Float transformation, the query can be trans-
formed into 7(2.0,2.0)==>4.0", which matches the sig-
nature of FloatAdd, and therefore can be submitted to
that checklet.

It is trivial to determine that the query "true==>11
(which has the type Map(Bool,Int)) cannot match any
of our (current) checklets, regardless of which transfor-
mations are applied. Still; the algorithm in Section 2
would apply all possible combinations of transforma-
tions to "true==>1" and submit any generated query
mutation to every checklet in the database.

We will next show how precomputing viable trans-
formations can speed up searching by eliminating any
such useless transformations.

6.1 Fast Checking by Precomputation

Whenever a new checklet is added to the database,
A)goVista generates a new search procedure Sy ¢ au-
tomatically. This procedure is hardcoded to handle ex-
actly the set of transformations 7 which are available in
the transformation database, and the set of checklets C
which are currently available in the checklet database.
S7,c is constructed such that given an input query g
whose type is T[q], S7,¢ will apply exactly those com-
binations of transformations to ¢ that will result in vi-
able mutated queries. A query is viable if it is correctly
typed for checking by at least one checklet.

In other words, AAgoVista’s optimized search proce-
dure S7,¢ will never perform a useless transformation,
one that could not possibly lead to a mutated query
correctly typed for some checklet.

In order to apply transformations and to test
checklets efficiently, AlgoVista determines the signa-
ture of an input query upon its arrival. Given the
query’s signature, AlgoVista knows exactly which, if
any, checklets to test, and which, if any, transfor-
mations to apply. Furthermore, AAgoVista knows
the exact signature of each newly-generated query
because it knows the input query signature and
how the transformation will transform the signature.
(For example, AMgoVista knows that applying the
FlipPair transform to Map(Pair(Float,Int),Float)
will yield Map(Pair(Int,Float),Float).) This obser-
vation yields a very simple, but highly optimized archi-
tecture for AlgoVista to apply transformations and test
checklets based on signatures, in which there is one func-
tion per signature responsible for all the operations that
affect queries of that signature. Each function has three
parts: verifying the originality of the query, testing all
matching checklets, and generating isomorphic queries
by applying transformations. All generated queries are
simply handed off to the function that handles their sig-
nature.

For the given checklets and transformations
above, the function that handles the signature
Map (Pair (Float,Int) ,Float) would look like this:

set FI_F_AlreadySeen;

function FI_F(query Q) {
if @) in FI_F_AlreadySeen then return;
insert) into FI_F_AlreadySeen;

Check if the FloatExp-query accepts @;
Apply Int2Float (whose signature is
Map(Int,Float)) to @, yielding Q' (whose
signature is Map(Pair (Float,Float) ,Float));

Call FF_F(Q");

Figure 5: A query signature graph. The two transformations Int2Float and FlipPair are represented by | — F and
(o, B) — (B, @), respectively. Shaded nodes represent viable signatures, those that have associated checklets.

(a,8) = (8,2)

The set FI_F_AlreadySeen prevents the same query mu-
tation from being produced more than once, as in this
example:

(1,2)==>3 "RLAT (o 1)==>3
FlipDair (1 9)==>3
thalr (2 , 1) ==>3
=

The only non-trivial aspect of the gener-
ated function is knowing which transforma-
tions can be applied to a given signature, and
where. For instance, given the query signature,
Map (Pair (Pair(Int,Float) ,Pair(Float,Int))), it is
possible to apply the FlipPair transformation at any
of the three Pairs in the query—even the nested ones.

In addition to the signature-specific functions, it is
also necessary to generate a large decision tree that de-
termines the signature of the original query before that
query is dispatched to the appropriate function.

6.2 The Query Signature Graph

Figure 5 is a graphical representation of the functions
that would be generated for the checklets and transfor-
mations in our running example. The nodes depict the
signature-bound functions and the edges show transfor-
mations from one signature to another. The shaded
nodes are those nodes that have associated checklets.
To construct this query signature graph we start
with those signatures accepted by checklets—they are
trivially acceptable. Then, for all of those signatures,

we apply the inverted transformations wherever pos-
sible. IL.e., at each step of this process we determine
those signatures that are one transformation away from
the given acceptable signature. By repeatedly apply-
ing these inverted transformations, all acceptable query
transformations can be discovered and the graph can be
constructed.

There is, however, one unfortunate complication to
this architecture. Consider the following example:

[a->b,b->c]
Vector2VectorPair ([a,b , C] , [a—>b ,b—>C])
([a,b,cl, ([a,b,c], [a->b,b->c]))

([a,b,c], ([a,b,c], ([a,b,c],

Vector2VectorPair

Vector2VectorPair

[a->b,b->c])))

=

In this particular example, the query "[a->b,b->c]’
(representing a linked list (a,b,c)) is transformed
into "([a,b,c], [a->b,b->c])". This is the stan-
dard AMgoVista representation of a linked structure,
a pair of a node-list and an edge-list. However, the
Vector2VectorPair transformation can be re-applied to
the edge-list in the transformed query, ad infinitum.

As it turns out, with any sufficiently rich set of trans-
formations, it is always possible to generate an infinite
number of signatures.

To avoid this problem, and to bound the number of
signatures, we put a limit on the number of transforma-
tions that will be applied to any query. Typical values
for this limit is four to six. This would seem to limit the

usefulness of AlgoVista, but in practice this is not so.
First of all, the exhaustive search algorithm in Section 2
is still available to those users who are willing to trade
a somewhat longer response-time for a more complete
response. Secondly, very deep chains of transformations
will often mutate a query beyond recognition, resulting
in spurious query results that have little meaning to the
user.

With our current database of 95 checklets, with 28
unique signatures, and 23 transformations, AlgoVista
can accept queries with 9828 different signatures.

The generation of the decision tree and all of the
signature-specific functions is done automatically by a
small Icon program [12].

7 Evaluation

Table 2 shows the search times for some typical queries.
The times were collected by running each query four
times and averaging the wall clock times of the last three
runs. The reason for discarding the first measurement is
that Java start-up times are quite significant and unpre-
dictable. Furthermore, in web applications such as this
one, programs are typically pre-loaded into (a large) pri-
mary memory and queries are fielded without any disk
accesses.

The five columns of Table 2 show the query, the av-
erage wall clock times for the query using the exhaus-
tive and the precomputed search, and the average wall
clock times for generating all mutated queries using the
exhaustive and the precomputed algorithms. In other
words, the last two columns do not include the execution
times of the checklets, just the time it takes to generate
the transformed queries that would be submitted to the
checklets.

Looking at Table 2 it is clear, as would be expected,
that in most cases the precomputed search algorithm
is superior to the exhaustive algorithm. However, it
should be stressed that the comparison is inherently un-
fair. The exhaustive algorithm, although slower, will
sometimes report results that the precomputed algo-
rithm will overlook. The reason is that the precomputed
algorithm limits the number of transformations that can
be applied to a query, while the exhaustive one does not.

We expect that as the system grows with more check-
lets and query transformations, the performance of the
precomputed search algorithm will greatly exceed that
of the exhaustive algorithm. The reason is that the ex-
ecution time of the exhaustive algorithm for a query @
is

O(#mutations(Q)) X #checklets)

while the execution time of the precomputed search al-
gorithm is

O(#viable mutations(Q)),
where we expect

#viable mutations(()) < #mutations(Q).

8 Related Work

A number of web sites, for example the CRC Dictio-
nary [2] and the Encyclopedia of Mathematics [20], al-
ready provide encyclopedic information on algorithms,
data structures, and mathematical results. Like all en-
cyclopedias, however, they are of no use to someone
unfamiliar with the terminology of the field they are
investigating.

More relevant to the present research is Sloane’s On-
Line Encyclopedia of Integer Sequences [18]. This search
service allows users to look up number sequences with-
out knowing their name. For example, if a user entered
the sequence 1,2, 3,5,8,13,21, 34", the server would re-
spond with “Fibonacci numbers.” It is interesting to
note that, although many of the entries in the database
include a program or formula to generate the sequences,
these programs do not seem to be used in searching
the database. Similar search services are Plouffe’s In-
verter [15] where one can look up real numbers and the
Encyclopedia of Combinatorial Structures [14].

Inductive Logic Programming (ILP) [1] is a branch
of Machine Learning. One application of ILP has been
the automatic synthesis of programs from examples
and counter-examples. For example, given a language
of list-manipulation primitives (car, cdr, coms, and
null) and a set of examples

append ([1,[1,[]1).
append ([11,[2],[1,2]1).
append([1,2],[3,4],[1,2,3,4]).
an ILP system might synthesize the following Prolog-
program for the append predicate:

append(A, B, B) :- null(A).

append(A,B,C) :- car(A, X), cdr(A, Y),
append(Y, B, C1),
cons(X, C1, C).

Obviously, this application of ILP is far more
ambitious than AMgoVista. =~ While both ILP and
AlgoVista produce programs from input=output
examples, ILP synthesizes them while AAgoVista just
retrieves them from its database. The ILP approach
is, of course, very attractive (we would all like to have
our programs written for us!), but has proven not
to be particularly useful in practice. For example,
in order to synthesize Quicksort from an input of
sorting examples, a typical ILP system would first
have to be taught Partition from a set of examples
that split an array in two halves around a pivot element:

partition(3,[1,[1,[1).

partition(5, [6],[]1,[6]).
partition(7,[6],[6],[]1).
partition(5,[6,3,7,9,11,[3,11,[6,7,91).

AlgoVista is essentially a reverse definition dictio-
nary for Computer Science terminology. Rather than
looking up a term to find its definition (as one would
in a normal dictionary), a reverse definition dictionary
allows you to look up the term given its definition or
an example. The DUDEN [6] series of pictorial dic-

Table 2: Timing measurements. Times are in seconds. Anomalous measurements are due to rounding errors and
inadequate timer resolution. The measurements were collected on a lightly loaded Sun Ultra 10 workstation with a
333 MHz UltraSPARC-IIi CPU and 256 MB of main memory, running AAgoVista on Sun JDK 1.2.1.

Query

1,3]==>2"

"(1,2)==>3"

"([a,b,c,d], [a->b,b->c,c->d,d->a])"
"([a,b,c,d], [a->b,b->c,c->d])==>[a,b,c,d]’
"Ma->b,b->c,c->d]==>[a,b,c,d]’
Ma->b,b->c]==>[a,b]’

"([a,b,c,d], [a->/2b,b->/2c,c->/3d]) ==>3"
"[a->/1b,b->/2c,c->/3d]==>6"
([1,2,3],[4,5,61)==>[1,2,3,4,5,6]"
r6,5,4,3,2,11==>[1,2,3,4,5,6]"

Search Mutations

Exhaustive | Precomputed | Exhaustive | Precomputed
0.41 0.37 0.12 0.39
0.41 0.44 0.12 0.46
0.79 0.32 0.17 0.31
2.2 0.55 0.83 0.54
0.16 0.44 0.04 0.37
0.69 0.39 0.13 0.42
2.1 0.45 0.78 0.49
0.17 0.47 0.04 0.36
0.41 0.45 0.09 0.42
0.05 0.34 0.01 0.34

tionaries is one example: to find out what that strange
stringed musical instrument with a hand-crank and keys
is called, you scan the musical instruments pages until
you find the matching picture of the hurdy-gurdy. An-
other example is The Describer’s Dictionary [11] where
one can look up "mixture of gypsum or limestone with sand
and water and sometimes hair used primarily for walls and
ceilings' to find that this concoction is called plaster.

9 Summary

AlgoVista provides a unique resource to computer sci-
entists to enable them to discover descriptions and im-
plementations of algorithms without knowing theoret-
ical nomenclature. AMgoVista is a web-based search
engine that accepts input=-output pairs as input and
finds algorithms that match that behavior. This Query-
By-Example mechanism relieves users of the burden
of knowing terminology outside their domain of ex-
pertise. AMgoVista is extensible—algorithm designers
may upload their algorithms into AAgoVista’s database
in the form of checklets that recognize acceptable in-
put/output behavior.

A)goVista is operational at http://AlgoVista.com.

The current implementation of AAgoVista provides
several different search modes. Users can choose to
search comprensively or quickly, using the exhaustive
or precomputed search algorithms, respectively. Fur-
thermore, searching can be done by value (the default
search mode as described in this paper), by signature,
or by keyword. Signature searching provides faster but
less precise results by only matching the types of queries
and checklets. Finally, AAgoVista also provides signa-
ture searching of the Java APIs.

It should be obvious that AAgoVista is not able to
solve all programmers’ problems all of the time. A pro-
grammer who is unable to abstract away from details of
the problem at hand, formalizing it into one or two crisp
examples will not be helped by AlgoVista. He will also

not be helped by any other search tool or Computer Sci-
ence text-book. Furthermore, a programmer who is not
able to come up with these simple input=output sam-
ples for his problem also will not be able to generate
test data for his finished program.

Acknowledgments: Will Evans pointed out the
relationship between checklets and program checking.
Dengfeng Gao implemented most of the checklets in the
current database. Sean Davey implemented the Java
API signature search algorithm. We thank them all.

References

[1] Francesco Bergadano and Daniele Gunetti. Induc-
tive Logic Programming — From Machine Learning
to Software Engineering. MIT Press, 1995. ISBN
0-262-02393-8.

[2] Paul E. Black. Algorithms, data structures, and
problems — terms and definitions for the CRC dic-
tionary of computer science, engineering and tech-
nology. http://hissa.ncsl.nist.gov/"black/
CRCDict.

[3] Manuel Blum. Program checking. In Somenath
Biswas and Kesav V. Nori, editors, Proceedings of
Foundations of Software Technology and Theoreti-
cal Computer Science, volume 560 of LNCS, pages
1-9, Berlin, Germany, December 1991. Springer.

[4] Manuel Blum. Program result checking: A new
approach to making programs more reliable. In
Svante Carlsson Andrzej Lingas, Rolf G. Karls-
son, editor, Automata, Languages and Program-
ming, 20th International Collogquium, volume 700
of Lecture Notes in Computer Science, pages 1-14,
Lund, Sweden, 5-9 July 1993. Springer-Verlag.

[5]

[6]

7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Manuel Blum and Sampath Kannan. Designing
programs that check their work. Journal of the
ACM, 42(1):269-291, January 1995.

Michael Clark and Bernadette Mohan. The
Ozford—-DUDEN Pictorial English Dictionary. Ox-
ford University Press, 1995. ISBN 0-19-861311-3.

Christian Collberg and Clark Thomborson.
Software watermarking: Models and dynamic
embeddings. In Principles of Programming
Languages 1999, POPL’99, San Antonio, TX,
January 1999. http://www.cs.auckland.ac.nz/
“collberg/Research/Publications/CollbergTh
omborson99a/index.html.

Christian S. Collberg and Todd A. Proebsting.
AlgoVista — A search engine for computer scien-
tists. Technical Report 2000-01, 2000.

Jack W. Davidson and Christopher W. Fraser.
Automatic generation of peephole optimizations.
In Proceedings of the SIGPLAN '8/ Symposium
on Compiler Construction, pages 111-116. ACM,
ACM, 1984.

Funda Ergiin, Sampath Kannan, S. Ravi Kumar,
Ronitt Rubinfeld, and Mahesh Vishwanathan.
Spot-checkers. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing (STOC-
98), pages 259-268, New York, May 23-26 1998.
ACM Press.

David Grambs. The Describer’s Dictionary. W. W.
Norton & Company, 1995. ISBN 0-393-31265-8.

Ralph E. Griswold and Madge T. Griswold. The
Icon Programming Language. Prentice Hall, Engle-
wood Cliffs, NJ, 2 edition, 1990.

Sampath Kannan and Todd A. Proebsting. Regis-
ter allocation in structured programs. Journal of
Algorithms, 29(2):223-237, November 1998.

Stéphanie Petit. Encyclopedia of combi-
natorial structures. http://algo.inria.fr/
encyclopedia.

Simon Plouffe. Plouffe’s inverter. http://wuw.
lacim.uqam.ca/pi.

Ronitt Rubinfeld. Batch checking with applications
to linear functions. INFORMATION PROCESS-
ING LETTERS, 42(2):77-80, May 1992.

Ronitt Rubinfeld. Designing checkers for programs
that run in parallel. ALGORITHMICA, 15(4):287—
301, April 1996.

Neil J. A. Sloane. Sloane’s on-line encyclopedia
of integer sequences. http://www.research.att.
com/"njas/sequences/index.html.

Hal Wasserman and Manuel Blum. Software relia-
bility via run-time result-checking. Journal of the
ACM, 44(6):826-849, November 1997.

[20] Eric Weisstein. Encyclopedia of mathematics.
http://www.treasure-troves.com/math.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

