
The lattice reduction algorithm
and applications
(LLL and PSLQ)

Simon Plouffe
Centre for Experimental & 
Constructive Mathematics

Simon Fraser University
BC, CANADA



Outline...

1) Continued fractions and the Euclidian Algorithm
2) The 60 degrees algorithm of Gauss
3) Generalized Euclidian algorithm
4) An application to LDE with polynomial coeff.
5) Results
6) Papers and books.



1) Continued fractions and Euclidian algorithm.

They are known since (at least) the invention of the well-tempered scale. Why
?

Find a good rational value of 2ˆ(1/12) =
1.059463094359295... = v

and the fact that v**7 is almost 3/2, means that  log(2)*(7/12) = log(3/2).
The next BEST choice would have been the scale with 53 semi-tones, existed
once but abandonned (˜1920).

Rational approximations and continued fractions are natural in a sense that
for a given x in R, x being irrational, the BEST rational approximation if the
denominator is not bigger than M is given by the continued fraction
development of x. Example if x=1.868132 then



To obtain the numbers :Ê [1,1,6,1,1,2,... we can construct the rectangle but (of
course) we use Euclidian algorithm. 

We divide 1/x, take the quotient, 
then the fractional part of 1/x : –1/x˝.

and then go to the ÇWe divide...È

If x is RATIONAL the algorithm STOPS eventually, if x is irrational it never
stops. Useful for constructing sprockets (engrenages), to play a numerical
game with your pocket calculator, admire some paintings, the Parthenon in
Greece is builded with rectangles of sides 1/1.6180339887...

So, this algorithm can be used to ÔsolveÕÊthe problem of having a good rational

to approximate x. That is : x * b = a. Almost equal since a and b are in Z and
x is irrational.

The problem was solved. No more games. Until Gauss asked (and others before
him). Yes but what if we have x and y at the same time ?

We would then have to ÔsolveÕ x*a + y*b + c = 0
(almost 0, since a,b,c are integers). Gauss (as usual) solved the problem by
taking is favourite figure (the unit circle) and came with his 60Γ algorithm.

2) The 60Γ algorithm of Gauss

First we take 2 vectors in the plane, b1 and b2.
We can suppose that b2 ¿ b1, if not we rename them, ok.



Le réseau est engendré par les vecteurs b1 et b2. On peut générer le même réseau en 

prenant les 2 vecteurs b1' et b2' qui sont des combinaisons linéaires des 2 premiers.

Ici b1'=3*b2+b1 et b2'=4*b2+b1. La question consiste à savoir étant donné un 

réseau quelle est la base minimale.

b1

b2

b1'
b2'

The 2 vectors are generating a LATTICE. 
The essential part of what Gauss found is that the same lattice can be generated by 2
vectors which are linear combinations of the 2 starting vectors. These 2 final vectors CAN
be shorter, meaning the length. Also, they will be more orthogonal, forming an angle of at
least 60 degrees : AH !, here is from what the name come.

b1

b2

b2-b1b2 - 2b1b2 - mb1

So, with the help of the figure we see that we can remove a certain number of times b1 from
b2 and still have a lattice essentially the same. To stop we wait that the orthogonal
projection of b2 over the b1 axe makes an angle of 60Γ at least. 

In fact this is an equivalence class, more than that, this set of representation form a group. 



Here we finally find the vectors lying in the shaded region.More precisely we have the
following...

Take 2 vectors, b1 et b2 linearly independants with b2¿b1.

Repeat until —b2— ffl —b1—
exchange b2 and b1
Replace b2 by b2Õ=b2 - m*b1 with m that satisfies the conditions. 

end.

Simple !, 

Yes for 2 values it goes well. The algorithm is not exactly what we would call the natural
generalization of the EA in 2 dimensions, but it works. 

The problem came when someone asked, Çwhat if we have now, x, y and z?È. Apparently,
Kronecker, Minkowski,and many others tried to ÔgraspÕÊwhat was behind the continued
fractions ---¿ Euclidian algorithm, simultaneous approximations ---¿ proper generalization. 

For further explanations see (in Maple) :

?kronecker ?minkowski ?lattice

First, we need a proper definition of what we are looking for in terms of Distance and
Angle. The equivalent of the  60Γdoes not work with a sphere in 3 dimensions.

For example, the formulation is :ÊFind a Z-linear relation with k real numbers, We are
searching for the SHORTEST possible vectors BUT at the same time looking at vectors that



are Ônear orthogonalÕ. 

Second, the fact that (for example) x,y,z are irrational then we have to ÔdealÕ with rationals
(in a computer) and be sure when to stop in terms of numerical precision. In other words,
the zero of the machine.

For the EA, the time of execution in term of STEPS is known and easily achieved, the same
with the 60Γalgorithm :Êfeasible by hand.

From that, it waited until 1979. Ferguson and Forcade came with a formulation of the
problem in modern terms. (lots of technical details omitted),

The main idea was that YES we can do it BUT at what cost ?, They proved that (original
paper), it can be done in polynomial time for k entries. Not very effective in terms of the
exponent. (nˆ2 is not too bad but nˆ8 is horrible).

Then in 1982, an idea (recycled) from the original Gauss paper (60 degrees) came from
Europe (Kannan & al.). This is what became known as the Lenstra-Lenstra-Lovasz (LLL)
algorithm or the lattice reduction algorithm. In that context, the xÕs  could be complex or
real.

In 1986, Ferguson-Forcade-Bailey came with a reasonnable polynomial time (interesting
enough for mortal humans). Their idea was ÔessentiallyÕÊgiving the same results as the LLL
algorithm but formulated differently. Apparently the current implementation of FFB is the
most efficient but does not apply so easily to arbitrary xÕs (complex or real), x being Ôtoo bigÕ
or Ôtoo smallÕ.

Here are some difficulties for an implementation : LetÕs say we are looking for a linear
combination of the powers of the same real number x. That is,(for k fixed),

a0 + a1x + a2x2 + a3x3 + ...ak xk = 0

Then if the aÕs are integers (could be rational), it implies that for a ÔsmallÕ zero this would
test if x is algebraic.

Given that zero (not smaller than the smallest number), then the aÕs are limited to 1/Õ0Õ in
size. If x is near 1, then for fixed k, x**k will be smaller than that number.

If we have k constants a, they are even more limited.

IF x is NOT near 1, there is a limit to k.
IF k is BIG then x MUST be small. 



So, the algorithm works IF these conditions are satisfied. These are the usual limitations of
an algorithm that can inverse a matrix with real entries :Ênear singular values.

The same would apply for a formulation in term of a Z-linear combinations of arbitrary k
vectors. They have to be of the same size. 

The LLL-PSLQ algorithms are deterministic. It means that it does not use Ôhigh speed
guessingÕ or Monte-Carlo methods. For example, letÕs take ¯ , e and gamma and try to find a
Z-linear combination, that is :Ê

aπ + bE + cγ + d = 0

So, by using HSG we can find (not too bad)Êrelations but it may take time. WE fix a,b,c,d
being randomly chosen among an interval of integers and we keep the quadruplet ONLY
when it is near 0. Or we could use a brute force method, we construct a table of n*Pi, sort
them, construct a huge table of m*exp(1) and sort them, we look for fuzzy matchs and keep
those (n,m) we then construct another huge table of p*gamma...(sort, fuzzy math them). 

These methods are working for Mickey Mouse examples but the method has limits. exp(Pi)-
Pi =19,999099979...
Or this one :Êg*Catalan -G(7/12)  = -1     ’very’ nearly.

If we think a little about it, any problem that can be linearized is a potential candidate for
LLL.

--¿ powers of a given number x, if we have a relation then we test if x is algebraic.

--¿ a combination of real constants. In 1957 , Good noticed that the ratio of the mass of
proton to electron is near 6*Piˆ5, but an experiment conducted by Ferguson and Bailey
found that there are too many to be considered seriously. They also tried with a bunch of
real numbers: Zeros of Riemann Zeta function, the Feigenbaum constant, gamma, Pi,
Zeta(3), Zeta(5), ...
They found nothing with that but later found that the Zwinnterton-Dyer constant is
algebraic of degree 12.
Eddington formulated a complicated theory with the fine structure constant (at the time it
was 137), but later it was found to be 137,03... he came out with another theory. These ideas
were tested also :ÊNothing really interesting exist with 10 digits or less.

--¿ If we have 2 quantities, a and b, we can test if they are algebraically independant. We
list 1,a,b, ab, aˆ2b,aˆ2bˆ2, ... it may (with actual computers) be tested up to degree 8.



--¿ Fermat had a method of factoring using the fact that a number n could be represented
or not by a quadratic form. Today there is a way to use LLL to find very particular
representation of n using elliptic curves. The coefficients of those can be found using LLL.



An application to Linear Differential Equations with
polynomial coefficients

The Problem :

Given A = (a0, a1, a2, ... ak ) ai are in Z.

We want to verify automatically that 

S(z) = anz
n

n ≥ 0
∑

is algebraic.

In other words,

cijk∑ S(z) j zk = 0



Where is this coming from ?

(A long time ago), puzzled by playing the number game on my programmable calculator. I
stumbled on the number Ã51=  7.14142842854285... a nice number with a pattern...
In fact by fooling around it, Ã51/14 is more interesting.
,the number  0.510102030610203...
(combinatorialists) would recognize that we have the sequence 1,1,2,3,6,10,20,30,... This is
the zig-zag Pascal central sequence !.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
...

Yes but less ÔvernacularÕ would be to say that the sequence is in fact generated by an
algebraic generating function. That is the two central columns can be generated by
expanding, Hansel and Gretel here.

1
--------------

1/2         
(1 -  4 z) 

1/2                 
- 1 + 4 z + (1 - 4 z)

1/2 ------------------------
1 - 4 z

So, by putting z=1/100 we have the ÔphenomenaÕÊexplained.



If we think about what we have we can come with this
General Idea

Ly(x) = 0

gfun (sequence to P-recurrence)

Generate first terms

Evaluate at small point

Heat LLL and collect information
(coefficients)

Find algebraic equation with 
a numerical gizmo-trick.

We could certify using 
gfun + comparison.

This would be a semi-algorithm.



Statement of the
semi-algorithm

we have 
Pk(x)y(k)(x)+ Pk −1(x)y (k −1)(x)+ ...+ P1(x)y (1)(x)+ P0 (x)y(x)= 0

or  L y(x) = 0 for short

We want to find an algebraic solution.



One way to solve that problem: gfun

Òshare library of MapleVÓ
ftp to Waterloo.

F. Bergeron, 
S. Plouffe,

B. Salvy,
P. Zimmermann

just type : readshare(gfun,calculus);
with(gfun);

With only one command : listtoalgeq( );

It uses undetermined coefficients method.
Example : Catalan Numbers : 1,2,5,14,42,...



at the terminal prompt...

-- [1,1,2,5,14,42,132,429,...];

-- listtoalgeq(Ò,S(z));

after a few centi-seconds...

2
1 - S(z) + z S(z)

The positive root w.r.t S(z) is,

1/2
1 - (1 - 4 z)

1/2 ----------------
z

So, we expand this into a series and we get the so-called Catalan numbers.
What is the problem with that ?



This approach is limited.

A = (1,1,1,3,16,75,309,1183,...)

J.W. Moon
Journal of 

Combinatorial Theory B,
Vol 21, PP. 74 (1976).

Related to tournaments.

¿ listtoalgeq(Ò,A(z));

then ...   ...   ... ... ... ...

... ... ....

... ...

and so on.



Another solution is 

a method based on  the LLL algorithm.

The problem can be solved in polynomial time.

Essentially the LLL algorithm can do the following thing.
(It can do a lot more also.)

From a in R ----------¿ P(a) being the a polynomial from which a is a root.

LLL gives us the minimal polynomial in polynomial time. 

(with smallest coeffs.). 

P(a) having coefficients in Q. We know this can be done. 



Some important remarks.

If S(z) is algebraic then 

1) ∃c such that [z n] S(z) ≈ cn
,we suppose c¿1. This  is a necessary condition.

2) If m in N  then S(1/m) is an algebraic number.

3) If 1/m ¡¡ c then S(1/m) can be evaluated with great numerical precision. The smaller is
1/m the better is the precision.

4) The sequence A=(a0, a1, a2, ... ,ak) is P-recurrent or D-finite. We can say that it satisfies

a linear reccurence with polynomial coefficients. It has to be.
[Comtet 64, Stanley 80]
These 2 definitions are equivalent and GFUN can go from one representation to the other.
If we have a algebraic equation--- LDE (or P-recurrence) , it is the converse which is not
solved yet.LDE with polynomial coefficients = P-recurrence. But not coefficients to
coefficients (unfortunately).

5) Once a P-recurrence is found for a given sequence we can calculate as much terms as we
want in almost linear time with respect to n.



LetÕs take back our example, 

A=(1,1,1,3,16,75,309,1183,...) with gfun , we search for a P-recurrence with the method
mentioned earlier. 

By using the command listtorec(); and a few seconds of cpu time.

This same recurrence can be used to calculate many hundreds of terms on the sequence in
linear time. 

The command rectoproc(); can write for us the procedure for doing so.

The command listtoseries(); will simply put this sequence into a huge serie.

The new serie S(z) (with many hundreds terms) can now be evaluated at S(1/m),
S(1/m+1), ...

We then calculate : 

Pmin(S( 1
m + i )) = Pi(x)

If the family of the polynomials Pi(x) is compatible :

Meaning that if the Dr of the xj are stable then the Pi(x) are candidates.

It will be only necessary then to use the ordinary Newton interpolation formula.
(the standard command interp(); of MapleV does that).



So we simply type...

---listtorec(sequence,a(n));

[–a(2) = 1, a(1) =
2                     2

(- 2/3 n - 4/3 n ) a(n) + (- 1 + n + n ) a(n + 1)

2                                2        3
+ (1/2 - 1/3 n - 1/6 n ) a(n + 2) + 1/2 + 1/6 n - 1/6 n  + 1/2 n

˝]

and then we transform that into a automatic procedure...

--- rec:=rectoproc(”,a(n));

rec :=proc(n)
options remember;

if not type(n,nonnegint) then ERROR(‘invalid arguments‘) fi;
(28*procname(n-2)*n-24*procname(n-2)-8*
procname(n-2)*nˆ2+6*procname(n-1)-18*procname(n-1)*n+6*
procname(n-1)*nˆ2-27+41*n-19*nˆ2+3*nˆ3)/(-3-2*n+nˆ2)

end;

This enables us to calculate MANY terms of the sequence (a few hundreds are usually
enough). We then evaluate at a small point the series. For example, with z=1/100 we get,
v f ( 1 ) = 1 . 0 1 0 1 0 3 1 6 7 8 2 1 2 8 2 3 7 1 6 5 5 2 0 5 5 5 6 1 6 0 9 2 8 6 0 0 5 6 2 1 5 9 8 8 8 3 6 9 6 8 9 4 3 3 3 0 5 7 5 2 9 3 3 5 5 5 4 2 5 1 5 0 2 9 4 6 0 0 5 8 9 5 2 3 5 4 7 6 2 1 8
7 7 9 5 0 2 6 5 8 1 9 4 4 5 1 4 4 1 6 3 8 0 7 8 8 7 0 5 7 1 5 0 4 4 3 9 5 0 4 3 7 6 8 7 2 8 9 5 4 7 2 2 7 3 8 5 1 6 1 4 9 8 6 4 9 5 2 3 4 0 1 0 3 8 1 3 1 6 9 5 5 7 8 3 2 2 4 5 1 7 8 5 4 2 7 5 3 1 3
928538072030439238987853080896923313046663 

We recognize the first few terms of the sequence...

We just have to use (then) ALGDEP of Pari-GP. 
WE are in Maple and to exit from it and to pass from Pari-GP back to Maple we use (Unix
piping of files).Maple is loosy at formating numbers but in the process we use scripts to
format the numbers properly.



WE can now collect our polynomials from ALGDEP of Pari-GP.

2
922556408004 x  - 9041033588479200 x + 9131435376040000

2
980100000000 x  - 9799999702020000 x + 9897020403050401

2  
1040604010000 x  - 10614139675759200 x + 10718190400203216

2
1104189046416 x  - 11486856353906376 x + 11598369273824917

2
1170979365924 x  - 12421725705345216 x + 12541154909460736

2
1241102946304 x  - 13422503799519360 x + 13550326173504225

2
1314691560000 x  - 14493133991044800 x + 14629850124065296

2
1391880848400 x  - 15637754317171560 x + 15783889435204501

2
1472810396836 x  - 16860705112257696 x + 17016810038701632

2
1557623810304 x  - 18166536843458976 x + 18333188987567041

2
1646468789904 x  - 19560018171877920 x + 19737822545544400

2
1739497210000 x  - 21046144243456200 x + 21235734506893941

There is a pattern visible there...We collect the coefficients of EACH degree and interpolate
using interp(); of Maple.



--- interp(POLYNOMS(i),t,100);

2       3       4       5      6                      2
(1 - 9 z + 32 z  - 57 z  + 54 z  - 24 z  + 4 z  - t + 10 t z - 42 t z

3          4          5         6        7    2  2      2  3
+ 98 t z  - 137 t z  + 112 t z  - 48 t z  + 8 t z  + t  z  - 8 t  z

2  4       2  5       2  6       2  7      2  8    /  8
+ 26 t  z  - 44 t  z  + 41 t  z  - 20 t  z  + 4 t  z )  /  z

This is an algebraic equation. We used 100 since we had the interpolation point 1/100. Now
we have to solve this eqaution to get the CLOSED algebraic generating function. We could
stop there and say Çwe have a solutionÈ. But un this case, it is of degree 2, with respect to t.

We just have then to solve with respect to t, take the positive solution and VOILË.

2       3        4        5       6      7
- 1/2 (- 1 + 10 z - 42 z  + 98 z  - 137 z  + 112 z  - 48 z  + 8 z
___________________________________________________________________

2          2        4
(z  (2 z - 1)  (z - 1) )

4        8 1/2   
(- (- 1 + 4 z) (2 z - 1)  (z - 1) )   )       

________________________________________   
2          2        4    

(z  (2 z - 1)  (z - 1) )   

This is (by expanding into a series) now easy to verify that IT IS indeed the solution. It
constitutes a Ôcomputer-proofÕ of it. Since we can construct the differential equation--¿ P-
recurrence. If it is the same then difference is 0. We can also
verify many terms of the sequence being the same. 

Of course, that method was used extensively over ALL sequences in the EIS at the time. We
found about 25 original generating functions not found by other methods (Brute Force
method).



1, 2, 9, 54, 378, 2916, 24057, 208494, 1876446, 17399772, 165297834, 1602117468, 15792300756, 157923007560,
1598970451545, 16365932856990
R�f. : CJM 15 254 63; 33 1039 81. JCT 3 121 67.

3 1/2
- 1 + 18 z + (- (12 z - 1) )
_______________________________

2
54 z

1, 3, 12, 56, 288, 1584, 9152, 54912, 339456
R�f. : CJM 15 269 63.

1/2                    3/2
3 (1 - 8 z)    + 8 z - 3 (1 - 8 z)
______________________________________

1/2 3
4 (1 + (1 - 8 z)   )  z

1, 0, 4, 6, 24, 66, 214, 676, 2209, 7296, 24460, 82926, 284068, 981882, 3421318, 12007554, 42416488, 150718770,
538421590, 1932856590, 6969847484
R�f. : CJM 15 265 63.

3/2                2      3      4       5 
(1 + z) ((- 4 z + 1)    - 1 + 6 z - 6 z  - 4 z  - 6 z ) + 4 z
______________________________________________________________

5        3          
2 ( 2 z  (z + 2)  (1 + z))

1, 3, 10, 33, 111, 379, 1312, 4596, 16266, 58082, 209010, 757259, 2760123, 10114131, 37239072, 137698584,
511140558, 1904038986, 7115422212,  26668376994
R�f. : IC 16 351 70.

2                              2 2 1/2
1 - 3 z - z  - (- (- 1 + 4 z) (- 1 + z + z ) )

___________________________________________________
4    5

2 (2 z  + z )

1, 4, 15, 54, 193, 690, 2476, 8928, 32358, 117866, 431381, 1585842, 5853849, 21690378, 80650536, 300845232,
1125555054, 4222603968, 15881652606
R�f. : IC 16 351 70.

2      3                    2           2 1/2
1 - 4 z + z  + 2 z  - (- (- 1 + 4 z) (z  + 2 z - 1) )

________________________________________________________
5    6

2 (2 z  + z )

1, 14, 120, 825, 5005, 28028, 148512, 755820, 3730650, 17978180, 84987760, 395482815
R�f. : CAY 13 95. AEQ 18 385 78.

2        3         4         5         6
1/2 (1 - 21 z + 180 z  - 800 z  + 1920 z  - 2304 z  + 1024 z
_____________________________________________________________

5          5      
(z  (4 z - 1) )     



4       3       2            2          5 1/2
- (- (10 z  - 50 z  + 40 z  - 11 z + 1)  (4 z - 1) )   )

_    _________________________________________________________       
5          5      

(z  (4 z - 1) )     

1, 1, 1, 3, 16, 75, 309, 1183, 4360, 15783, 56750, 203929, 734722, 2658071, 9662093, 35292151, 129513736,
477376575, 1766738922, 6563071865, 24464169890
R�f. : JCT B21 75 76.

2       3        4        5       6      7
- 1/2 (- 1 + 10 z - 42 z  + 98 z  - 137 z  + 112 z  - 48 z  + 8 z
___________________________________________________________________

2          2        4
(z  (2 z - 1)  (z - 1) )

4        8 1/2   
(- (- 1 + 4 z) (2 z - 1)  (z - 1) )   )       

+   ________________________________________  
2          2        4   

(z  (2 z - 1)  (z - 1) )   

1, 3, 9, 25, 69, 189, 518, 1422, 3915, 10813, 29964, 83304, 232323, 649845, 1822824, 5126520, 14453451, 40843521,
115668105, 328233969, 933206967, 2657946907, 7583013474
R�f. : JCT A23 293 77.

3          2                       2 1/2
1 - 3 z + 2 z  - (- (3 z  + 2 z - 1) (- 1 + 2 z) )

________________________________________________________
6

2 z



1, 4, 14, 44, 133, 392, 1140, 3288, 9438, 27016, 77220, 220584, 630084, 1800384, 5147328, 14727168, 42171849,
120870324, 346757334, 995742748, 2862099185
R�f. : JCT A23 293 77.

2      3    4                      2              2    3 2 1/2
1 - 4 z + 2 z  + 4 z  - z  - (- (- 1 + 2 z + 3 z ) (1 - 3 z + z  + z ) )
----------------------------------------------------------------------------

8
z

1, 5, 20, 70, 230, 726, 2235, 6765, 20240, 60060, 177177, 520455, 1524120, 4453320, 12991230, 37854954,
110218905, 320751445, 933149470, 2714401580, 7895719634
R�f. : JCT A23 293 77.

2      3      4    5    
- 1/2 (- 1 + 5 z - 5 z  - 5 z  + 5 z  + z 

___________________________________________    +   
10

z

2         2   2           2 1/2 
(- (z + 1) (3 z - 1) (z  + z - 1)  (z  - 3 z + 1) )   )

_________________________________________________________
10

z

1, 6, 27, 104, 369, 1242, 4037, 12804, 39897, 122694, 373581, 1128816, 3390582, 10136556, 30192102, 89662216,
265640691, 785509362, 2319218869, 6839057544
R�f. : JCT A23 293 77.

2      3       4      6
1/2 (1 - 6 z + 9 z  + 4 z  - 12 z  + 2 z  

____________________________________________    -
12

z   

2          2     2           2 1/2    
(- (z + 1) (3 z - 1) (z - 1)  (2 z - 1)  (2 z  + 2 z - 1) )   ) 
_______________________________________________________________ 

12
z



1, 2, 6, 16, 45, 126, 357, 1016, 2907, 8350, 24068, 69576, 201643, 585690, 1704510, 4969152, 14508939, 42422022,
124191258, 363985680, 1067892399, 3136046298, 9217554129
R�f. : Comtet Louis, Advanced Combinatorics, p. 78.

1/2          1/2
z + (z + 1)    (1 - 3 z)    - 1
________________________________

2        1/2          1/2   
2 (z  (z + 1)    (1 - 3 z)   )

1, 3, 9, 26, 75, 216, 623, 1800, 5211, 15115, 43923
R�f. : AAM 9 340 88.

2                       2 1/2   
1 - 3 z - (- (3 z  + 2 z - 1) (- 1 + 2 z) )

_________________________________________________  
4    3     

2 (3 z  - z )



Bibliography
[AS1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards,
Washington DC, 1964; Dover, NY, 1965.
[BaKa] A. Bachem, R. Kannann, Lattices and the basis reduction algorithm, Carnegie Mellon University,
rapport interne. 1984.
[BP] F. Bergeron, S. Plouffe, Computing the generating function of a serie given its first terms, Rapport de
recherche #164, Universit� du Qu�bec � Montr�al, octobre 1991. Prepublication, Journal of Experimental
Mathematics 1992.
[Cohen] Henri Cohen, A Course in Computational Algebraic Number Theory, Springer Verlag, Grad. Text in
Mathematics, #138.
[Comtet74] Comtet, L, Advanced Combinatorics, Reidel 1974.
[Comtet64] Comtet, L,  Calcul pratique des coefficients de Taylor dÕune fonction alg�brique. LÕenseignement
Math�matique 10 (1964), 267-270.
[gfun] B. Salvy, P. Zimmermann, Gfun: A Maple Package for the manipulation of Generating and holonomic
functions in One Variable. Rapport Technique, INRIA, Novembre 1992.
[GKP] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA,
1990.
[Kannan] Kannan R., Algorithmic Theory of Numbers, Annual Review of Computer Science, vol. 2, (1987), pp.
231-267.
[LLL] Kannan, Lenstra, Lovasz, 16Th ACM Symposium  on the Theory of Computation, (1984).
[M5] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, S.M. Watt, MAPLE V Library
Reference Manual, Springer Verlag, (1991), Waterloo Maple Publishing.
[Pari] C. Batut, D. Bernardi, H. Cohen, M. Olivier, UserÕs guide to PARI-GP, Version 1.36, Universit� Bordeaux
I, document interne, 8 D�cembre 1991.
[Plo] S. Plouffe,  Approximations de s�ries g�n�ratrices et quelques conjectures, M�moire de Ma�trise, Universit� du
Qu�bec � Montr�al, Ao�t 1992.
[Plouffe,Sloane] The Encyclopedia of Integer Sequences, Academic Press, San Diego, 1995.
[Sl] N.J.A. Sloane, A Handbook of Integer Sequences, Academic Press, New York, 1973.
[Sta80] R. Stanley, Differentiably finite power series, European Journal of Combinatorics, vol. 1,(1980), p.175-
188.
[Tutte] W. T. Tutte, A Census of planar maps, Canadian Journal of Mathematics, Vol. 15, (1963) page 249-
271.

Abbreviations of references

[AAM] Advances in Applied Mathematics
[CAY] A. Cayley, Collected Mathematical Papers, Vols. 1--13, Cambridge Univ. Press, London, 1889--1897.
[CJM] Canadian Journal of Mathematics
[JCT] Journal of Combinatorial Theory.
[IC] Information and Control.
[AEQ] Aequationes Mathematicae.
[C1] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, Holland, 1974.



In a mail from Gilbert Labelle (UQAM) 1993.

Cher Simon(acker),

En rapport avec le calcul de la fraction limite du nombre de noeuds d’un quadtre
e
aleatoire ayant 2, 3 ou 4 enfants, j’ai besoin d’une meilleure comprehension de 
la
constante suivante :

C = int( ln(t)*ln(1-t)/(1+t),  t = 0 .. 1 )
= 0.24307035167006157756270472396758221716815796300633230408140831530120777467206658987650326814

En fait, j’ai pu montrer que la constante  C  est de la forme

C = A + B - Piˆ2*ln(2)/6    ou  A  et  B  sont  donnees par

A = sum( H(1, k)/k**2/2**k,  k = 1 .. infinity )
= 0.63196619783816790666244823201527531815667137165817275551526056796541176920941569629429336479
evalue par moi : .6319661978381679066624482320152753181566713716581727555152605680

B = sum( H(2, k)/k/2**k,  k = 1 .. infinity )
= 0.75128556447474642837483635094465624422811643271281180112016972208864887861644568136653492101

et ou  les  H(i, k)  sont les nombres harmoniques generalises definis par

H(i, k) =  sum( 1/j**i,  j = 1 .. k ).

Incidemment, la constante  Piˆ2*ln(2)/6  a comme valeur

1.1401814106428527574745798589923493452166298413646522525540219747528528731537947877843250176

Pourrais-tu passer ces nombres A LA MOULINETTE et m’en dire des nouvelles
au plus tot ...

Merci d’avance,

Gamma Lambada ( Hula Hop, Twist, Rock n’Roll et tout le tralala ... )
-- 
Gilbert Labelle             tel : (514) 987-6168
LACIM - Dept. math. et info. fax : (514) 987-8477
Universite du Quebec a Montreal                 gilbert@lacim.uqam.ca
C.P. 8888, Succ. ”A”
Montreal (Quebec)
CANADA H3C 3P8

I tried those constants with Pari-GP.
-------------------------------------------------------
3.141592653589793238462643383279502884197169399375105820974944592
9.869604401089358618834490999876151135313699407240790626413349374



31.00627668029982017547631506710139520222528856588510769414453809
.5772156649015328606065120900824024310421593359399235988057672349
.6931471805599453094172321214581765680755001343602552541206800095
1.098612288668109691395245236922525704647490557822749451734694334
1.414213562373095048801688724209698078569671875376948073176679738
1.732050807568877293527446341505872366942805253810380628055806979
6.841088463857116544847479153954096071299779048187913515324131847
1.202056903159594285399738161511449990764986292340498881792271555
2.678938534707747633655692940974677644128689377957301100950428327
1.354117939426400416945288028154513785519327266056793698394022468
.2430703516700615775627047239675822171681579630063323040814083
lindep([%1,%2,%3,%4,%5,%6,%7,%8,%9,%10,%11,%12,%13]

2
13/8 Zeta(3) - 1/12 Pi  ln(2)

¿ evalf(”);

1.383251762312914335037284582959931562384787804370984556635430290

Allo Gilbert et Louise , bonne nouvelle, j’ai trouve ( ou plutot Pari-Gp-LLL)
a trouve l’expression pour les 3 constantes a,b,c !!!

a = Zeta(3)-Pi**2log(2)/12
b=Zeta(3)*5/8

et donc c = 13/8 * Zeta(3) + Pi**2*log(2)/4

These results where later explained.


