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RESUME - ABSTRACT

La théorie des systémes holonomes s’avere étre un outil important pour prouver automa-
tiquement des identités combinatoires. Le produit scalaire de fonctions symétriques
fournit un cadre utile a la formulation de nombreux problemes en combinatoire. Ce
travail utilise conjointement ces deux approches pour décrire des algorithmes de calcul,
sous certaines conditions, du produit scalaire de fonctions symétriques, basés sur les
systemes holonomes.

Ces algorithmes sont valables dans des conditions plus générales que certains travaux
précédents. Nous prouvons la correction et la terminaison de ces algorithmes. Des mod-
ifications mineures de ces algorithmes permettent de calculer certaines généralisations
du produit scalaire, par exemple pour les fonctions symétriques de MacMahon et un ¢-
analogue apparaissant dans ’étude des polynomes de Macdonald. De plus un algorithme
général, paramétré par I'adjonction associée au produit scalaire, est décrit.

Ces algorithmes utilisent les bases de Grobner dans les algebres de Weyl et exploitent
des conditions similaires a celles impliquées dans les algorithmes effectifs d’intégration
pour les fonctions D-finies.

Ce travail est divisé en trois parties : la premiere fournit les bases nécessaires sur les
fonctions symétriques et ’holonomie; la seconde définit et prouve plusieurs algorithmes
de calcul du produit scalaire symétrique et une généralisation; la partie finale fournit
des exemples combinatoires.

MoTs CLES:
Fonctions symétriques; systemes holonomes; énumeration combinatoire; combinatoire
automatique

The theory of holonomic systems has proven a valuable tool for automatic proofs of
combinatorial identities. The scalar product of symmetric functions provides a useful
way to phrase many problems in algebraic combinatorics. This work brings together
these two ideas to describe algorithms for computing the scalar product of two symmetric
series under certain conditions, using some techniques from holonomic systems.

The algorithms here operate under more general conditions than previous work. The
correctness and termination of the algorithms is proven. Small modifications of the
algorithms yield techniques for calculating generalizations of scalar product, for example
from MacMahon symmetric functions and a g-analog arising in the study of Macdonald
polynomials, additionally, a general algorithm, parameterized by the adjoint of the scalar
product, is given.



xviil

The algorithms use Grobner bases in Weyl algebras, and exploit conditions similar to
those involved in effective integration algorithms for D-finite functions.

The work is divided into three parts: the first provides the required background on
symmetric functions and holonomy; The second defines and proves several algorithms
for computing the symmetric scalar product as well as a generalization; the final part
provides some typical combinatorial examples.

KEYWORDS:
Symmetric functions; holonomic systems; enumeration; automatic combinatorics



UNE APPROCHE HOLONOME A LA COMBINATOIRE ALGEBRIQUE

Percy A. MacMahon, il y a plus d’un siecle de cela, fut un des premiers & utiliser un
opérateur différentiel agissant sur les fonctions symétriques dans le cadre de problemes
d’énumération, mais sans pouvoir exploiter toute la puissance de cet outil. Nos travaux
prennent leur source dans cette premiere tentative incompléete et s’appuient sur les
immenses progres qu’ont connus depuis l'utilisation combinatoire des séries formelles
et fonctions symétriques, ainsi que le calcul formel. Plus précisément, les travaux
présentés dans cette these se situent a la confluence du calcul formel et de la combina-
toire algébrique, via I’étude d’algorithmes permettant de calculer, dans un cadre adapté
a une large classe de problemes combinatoire, le produit scalaire de séries symétriques.
Cette approche avait été en partie esquissée dans des travaux de Goulden, Jackson
et Reilly [37] et de Gessel [34], mais dans des cas particuliers et limités. Nos résultats
s’appliquent dans un cadre plus général que les travaux sus-cités et permettent de traiter
une large classe de problemes. Par exemple, la notion de g-parametre s’integre naturelle-
ment dans le cadre que nous avons développé. Nous fournissons dans cette thése un
ensemble d’algorithmes originaux, analysés rigoureusement (en termes de correction et
de terminaison), ainsi que plusieurs exemples non triviaux illustrant leur utilité dans
la résolution de problemes d’énumération. Le code des principaux algorithmes, ainsi
que plusieurs exemples d’utilisations, regroupés dans des feuilles de calcul Maple, sont

disponibles sur la page Web de l'auteur, http://www.lacim.ugam.ca/ mishna.

Le socle sur lequel repose ce travail est le codage et I’étude de familles d’objets combina-
toires a ’aide de séries formelles, comme par exemple la fonction génératrice exponen-
tielle ou la série indicatrice de cycles de Pélya. Ce paradigme, I'un des plus importants
en combinatoire actuellement, permet d’utiliser de nombreux outils issus de I'algebre, de
I’analyse ou du calcul formel pour améliorer notre connaissance des objets combinatoires

ainsi encodés.

Un autre intérét majeur de la représentation de classes d’objets combinatoires par des
séries formelles réside dans la possibilité de disposer d’une représentation finie pour

une classe infinie d’objets, que ce soit par l'intermédiaire d’une forme close explicite
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pour la série ou d’un systeme d’équations définissant celle-ci. Cette propriété ouvre la
porte a l'utilisation de programmes de calcul formel pour la manipulation effective de
ces représentations finies. Ce sont des considérations de cet ordre qui ont permis que
I'ordinateur devienne un outil efficace pour la recherche mathématique, et donc pour la

combinatoire.

De nombreuses familles d’objets combinatoires peuvent étre décrites implicitement par
des équations fonctionnelles algébriques. Plusieurs systemes théoriques, exploitant
justement cette propriété, ont été mis au point au cours des dernieres décennies. Ces
systemes sont en général accompagnés de bibliotheques de calcul formel de manipulation
d’équations fonctionnelles. On peut penser aux structures décomposables [27, 28], aux
systemes ECO de I’école florentine [3], aux grammaires d’objets [23, 26] ou a la théorie

des especes [7, 44].

Il est cependant clair que 'on ne peut se limiter a la manipulation d’équations fonc-
tionnelles : de nombreux problémes combinatoires font en effet intervenir des séries
formelles non algébriques. Dans cette these nous nous intéressons a une classe de fonc-
tions plus générale avec d’intéressantes propriétés de fermeture qui sont compatibles

avec une manipulation algorithmique effective.

Séries formelles D-finies.

Une série formelle en une variable est dite différentiellement finie, ou simplement D-
finie, si elle est solution d’une équation différentielle linéaire a coefficients polynomiaux.
Cette équation différentielle s’avere étre une structure de données efficace pour exprimer
nombre d’informations sur la série solution et il existe de nombreux algorithmes per-
mettant de manipuler de telles équations différentielles. En particulier, la famille des
séries formelles D-finie & une variable est fermée pour la somme, le produit, le produit
de Hadamard et la transformée de Borel. De plus, ces opérations peuvent se réaliser
avec des algorithmes effectifs [75, §6.4]. On dira que ce sont des propriétés de fermeture

effectives.

D’autre part, la suite des coefficients d’une série D-finie satisfait une récurrence linéaire.
Ceci permet donc de calculer efficacement de nombreux termes de cette suite. On
peut aussi noter que la connaissance du fait qu'une série formelle soit D-finite permet

de déduire certaines propriétés sur la nature du comportement asymptotique de ses
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coefficients. Ce comportement peut étre automatiquement calculé a partir de ’équation
différentielle vérifiée par la série. La connaissance d’une équation différentielle satisfaite
par une série D-finie est donc de premiere importance, autant théoriquement qu’en

pratique.

Naturellement, on peut étendre la plupart des remarques et propriétés précédentes au cas
des séries formelles a plusieurs variables. La encore il existe un corpus algorithmique et
logiciel permettant de manipuler ces séries. C’est le cas, par exemple, de la bibliotheque

Maple Mgfun de Chyzak.

Le contexte naturel pour ces généralisations est celui des anneaux d’opérateurs linéaires.
En particulier, les algebres de Ore s’imposent comme cadre pour une telle approche.
On peut, dans ce contexte, étendre la notion de D-finitude a des classes de fonction
caractérisées en termes d’opérateurs de Ore. Ces fonctions sont appelées O-finies, et
encore une fois il existe des bibliotheques Maple permettant de les manipuler. Voir

Ore_Algebra et Holonomy, de Chyzak [17].

Produit scalaire de fonctions symétriques.

Dans un autre ordre d’idée, Gessel [34] a posé les fondations d’une théorie de la D-
finitude pour les fonctions symétriques. Encore une fois, on a ici un ensemble intéressant
de propriétés de fermeture. Son travail a été en partie motivé par ’observation que le
produit scalaire établit un lien direct entre séries formelles symétriques et fonctions

génératrices d’objets combinatoires.

Ainsi Gessel présente un ensemble de conditions qui permettent de déterminer que
certaines séries formelles sont D-finies via un calcul de produit scalaire faisant intervenir
des séries de fonctions symétriques. Cependant, ses calculs ne se font pas de facon
effectives. Le désir de rendre effectifs, et donc automatisables, les calculs en question

est I’'une des motivations de cette these.

Nous décrivons dans ce travail une collection d’algorithmes effectifs permettant de cal-
culer un systéeme d’équations différentielles vérifié par le produit scalaire de fonctions
symétriques. Un de nos algorithmes est apparenté a une technique utilisée dans un cas
particulier par Goulden, Jackson et Reilly pour calculer un produit scalaire. Nous for-

malisons cette méthode a ’aide de bases de Grobner et de systémes holonomes, ce qui
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nous permet d’en déduire un algorithme, HAMMOND, qui termine et dont nous prouvons

la correction.

De plus, nous résolvons le probléme du calcul du produit scalaire sous certaines con-
ditions de finitude. Nous décrivons deux algorithmes pour ce probléme, qui sont tous

deux facilement généralisables a d’autres produits scalaires.

A titre d’examples nous montrons comment généraliser les problemes d’énumération
de graphes k-réguliers, dans le contexte plus large de la théorie des especes. Ces
généralisations mettent évidence des conditions d’uniformité sur certaines familles de
structures, et menent a la preuve de la D-finitude des séries génératrices correspon-
dantes. Il apparait ainsi que la théorie des especes fournit un outil de caractérisation

des structures combinatoires admettant une fonction génératrice D-finie.

Nous montrons aussi comment nos algorithmes peuvent étre facilement modifiés pour
manipuler d’autres fonctions symétriques comme celles de MacMahon, ou des ¢g-variantes

liées aux polyndémes de MacDonald.

Notre approche repose sur l'utilisation de systemes holonomes du fait des relations
profondes entre D-finitude et holonomie. Les systémes holonomes s’averent d’un grand
intérét pour fournir un cadre unifié au sein duquel nous pouvons décrire et analyser
rigoureusement nos algorithmes. Ils sont aussi a la base de notre généralisation aux

q-séries.
Plan du mémoire.

Dans une premiere partie, nous établissons le cadre théorique sur lequel nous nous
appuyons pour mettre au point et analyser nos algorithmes. Nous commencons en
rappelant plusieurs résultats classiques sur les séries différentiellement finies et les fonc-
tions symétriques. Nous poursuivons par une breve présentation du calcul des bases
de Grobner et des systemes holonomes, qui sont au coeur de nos algorithmes. Nous
introduisons en particulier les bases de Grobner pour certaines algebres de Weyl comme
un outil de calcul effectif dans ces algebres. Nous concluons cette premiere partie par

un chapitre sur les algebres de Ore et les g-séries.

La description et 'analyse de nos algorithmes de calcul du produit scalaire de fonctions

symétriques se situe dans la seconde partie de ce mémoire, plus particulierement dans le
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chapitre 5. Le chapitre 6 complete cette description en détaillant comment modifier les
algorithmes du chapitre 5 pour calculer des produits plus généreaux. Cette possibilité
d’adapter notre méthode a de nombreuses généralisations des fonctions symétriques en

est un des points forts.

La troisieme partie est dédiée a l'illustration de notre méthode. Elle ne présente essen-
tiellement que des résultats de nature combinatoire obtenus a 'aide de nos algorithmes.
En fait, cette partie peut étre lue indépendamment des deux premieres par un lecteur

désirant seulement utiliser nos algorithmes. Le principe est ici qu’on établit une corre-

spondance:
systémes d’équation différentielles systéme d’équation différentielles
caractérisant les données du |:| caractérisant la solution du

probleme probleme

Le chapitre 7 contient quelques exemples classiques, comme les graphes réguliers et le
recouvrement d’ensembles, en les placant dans le contexte de la théorie des especes
pour illustrer leur forte similitude ainsi que le vaste potentiel de généralisation. Le
dernier chapitre contient des applications de 1'utilisation d’algebres de Ore, décrites au

chapitre 4, pour plusieurs problemes d’énumération combinatoire.



A Holonomic Systems Approach to Algebraic Combinatorics



INTRODUCTION

Captain Percy A. MacMahon, in his early treatise on combinatory analysis [53], (but see
also [54, 55]) introduced an operator, called the Hammond operator, which proved useful
in the set up of many enumerative problems, such as counting Latin squares and other
integer matrices with restrictions. This operator is essentially a differential operator
acting on symmetric functions. He lacked, however, suitable machinery to manipulate
the differential equations or even to fully illustrate the symmetry of his operator. His

methodology did not catch on.

In the decades that followed, there has been impressive progress made on formal power
series, algebraic combinatorics, symmetric functions, and Grobner bases. Sufficiently

many tools now exist to give his method its due.

This thesis describes a method to effectively calculate a quantity called the scalar product
of symmetric series, under certain conditions, including those relevant to many of the
problems considered by MacMahon. FEarlier work, notably by Jackson, Goulden and
Reilly [36, 37] and Gessel [34] initiated this approach, but limited the scope to calculating
particular scalar products, precisely, the scalar product (f,g) of a symmetric series f
and a particular g, fixed by each respective author. Here we provide a more general
solution, and offer several examples to illustrate the variety of problems that fall into
this category. Included are questions in graph enumeration, set coverings, orthogonal

polynomials, and some variants.

To introduce the topic, we review some of the relevant progress in combinatorics and

computer algebra made since MacMahon’s time.

Analytic representations of combinatorial structures

One of the most important paradigms in discrete math closely identifies a combinatorial
class with an analytic representations or, rather, an encoding. This is a good mathe-
matical strategy; it offers results from analysis, algebra, and symbolic computation as

tools towards the determination of combinatorial results.
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In particular, much emphasis has been placed on formal series representations of classes:
there are straightforward enumerative series such as the exponential generating function
and more complicated series such as the cycle index series of Polya, which encapsulates

detailed structural and inventory information.

The relative complexity of combinatorial families

Confronted with such a formal representation of a class, the mathematician’s inner
analyst is immediately compelled to ask about the nature of the series. Is it rational?
algebraic? Where are the poles? Does it satisfy a differential equation? These questions
are made even more interesting when one can rephrase them in a combinatorial context.
For example, how can one characterize the combinatorial structures whose exponential
generating function are algebraic? The answers can, in a way, quantify the complexity

of the structure.

Consider a simple analogy from computer science language theory. There is a strict chain
of containment for formal languages over a finite alphabet: finite languages are contained
in the set of regular languages which are in turn contained in context free languages.
The formal sum of the words in a language is a formal series in the non commuting
variables of the alphabet. In this case, the sum associated to a finite language is a
polynomial; the series associated to a regular language is rational and finally, the series
associated to a context-free language is algebraic. Not surprisingly, as the combinatorial

object becomes more complex, so does the corresponding analytic class.

Equations and automatic combinatorics

There is another major function served by encoding combinatorial families by equations
and series: the possibility of finite representation. It can be cumbersome to manipu-
late abstract infinite families of combinatorial objects, whereas formal power series can
often be described in compact terms, for example, the geometric series ) X" = ﬁ
Computers have become an increasingly important tool in mathematics and in partic-
ular, in combinatorics. In this case one exploits finite representations of series and sets.
This can take the form of a closed form of a power series, using elementary or special
functions, or of other natural possibilities such as finite equations, either algebraic or

differential, that the function might satisfy.
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Many interesting combinatorial classes can be described with functional equations. Sev-
eral competing combinatorial description systems have arisen in the past few decades
which are based on the ability to translate smoothly between a combinatorial description
and a set of defining equations. These are generally accompanied by a corresponding
computer algebra package to manipulate the functional equations. For example, systems
such as decomposable structures [27, 28], ECO systems [3], object grammars [23, 26], or
species theory [7, 44], each provide natural ways to construct families of combinatorial
objects with systems of equations. By construction, the objects’ generating functions

satisfy certain conditions, and are essentially automatically computed.

It is clear that for many problems of current interest, the class of algebraic functions is
insufficient. This thesis considers a class of functions larger than algebraic, which also
has numerous closure properties which can be calculated and generalized. Differential

equations play an important role in this investigation.

D-finite power series

A power series in one variable is called differentiably finite, or simply D-finite, when
it is the solution of a linear differential equation with polynomial coefficients. This
differential equation is a convenient data structure for expressing information related
to the series and many algorithms can operate directly using the defining differential
equation. In particular, univariate D-finite power series are closed under sum, product,
Hadamard product, and Borel transform, and algorithms computing the corresponding
differential equations are known (see for instance [75, §6.4]). These properties are thus

considered effective closure properties, since they are computable.

Moreover, the coefficient sequence of a univariate D-finite power series satisfies a linear
recurrence, which makes it possible to compute many terms of the sequence efficiently
and to transition between the differential equation of the series and the linear recur-
rence of its coefficients. These closure properties can thus be implemented in computer
algebra systems [56, 70]. Also, the mere knowledge that a series is D-finite gives in-
formation concerning its asymptotic behavior, and much of the asymptotic behaviour
can be computed starting from the defining differential equation. Thus, whether it be
for algorithmic or theoretical reasons, it is often important to know if a given series

is D-finite, and it is useful to compute the corresponding differential equation when
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possible.

Some typical examples of combinatorial objects whose generating function are not D-
finite include: certain families of walks in the plane [12], classes of planar animals [63],

and linear chord diagrams with many crossings [45].

The property of satisfying a differential equation can be generalized to suit many sit-
uations. It can be extended to classes of power series in several variables in such a
way that the class still enjoys many closure properties. Here again, we find that many
key algorithms have been implemented in computer algebra systems, for example in

Chyzak’s Mgfun package [17].

This is even further generalized in the context of linear operators. For example, Ore
operators are a family of linear operators which possess certain properties which make
them suitable for this approach. In particular, we can generalize the notion of D-
finite to include functions which satisfy particular equations of Ore operators. These
functions are called O-finite and they enjoy many of the same closure properties as
D-finite functions [16] and a corresponding implementation in Maple exists, namely

Chyzak’s Ore_Algebra and Holonomy packages [17].

The scalar product of symmetric functions

In another direction, Gessel, in [34], has laid a foundation of a theory of D-finiteness
for symmetric functions, and again we find a significant collection of closure properties.
His motivation for studying symmetric D-finite series is that some operations, notably a
scalar product, yield a direct connection between symmetric power series and generating

functions of combinatorial objects.

Gessel’s work presented conditions under which one could determine whether certain
power series were D-finite, but did not describe any algorithms to make these closure

properties effective. It is here that the original work of this thesis begins.

This work provides a collection of effective algorithms to compute a system of differential
equations satisfied by the scalar product of symmetric functions. One of the algorithms
presented here bears some connection to a technique used by Goulden, Jackson and
Reilly in [37] to compute a restrictive case of the scalar product. Their method is

formalized here with the aid of Grobner bases and holonomic system. Our formalization
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yields an algorithm, HAMMOND which terminates and is provably correct.

In addition, we solve the general problem of computing scalar products of D-finite
functions under a finiteness condition. Two algorithms are given to compute this and
both can easily be modified to handle other kinds of scalar products, provided the

adjoint to multiplication is effective.

The combinatorial examples which Gessel [33, 34], and Goulden, Jackson and Reilly [36,
37] present as fruits of their work can be extended and complemented with the aid of
the algorithms given here. Using k-regular graphs as a running example, we show, in
the context of species theory, how uniformity conditions on certain families of structures
lead to D-finite generating functions. We discover that species theory provides a use-
ful starting point for characterizing combinatorial structures with D-finite generating

functions.

Several applications are generalized with the aid of slight modifications of the main algo-
rithms. These modifications allow us to handle a variation on the notion of symmetric
functions called MacMahon symmetric functions, and a g-analogue using a modified

scalar product of Macdonald.

We have a “holonomic systems approach” because of the deep connections between D-
finite functions and holonomy. Holonomic systems are invaluable to provide a unified
setting in which we can rigorously describe and prove the termination of the algorithms
presented here. Furthermore, it offers a natural setting in which to generalize the work

into a g-analogue.

Detailed plan of the work at hand

This work divides itself naturally into three major parts.

The first part is the development of the theory required. In the first chapter we re-
call many classical facts about D-finiteness and the second chapter treats symmetric
functions. This is followed by a brief presentation of holonomic systems and Grobner
bases, which will be the engine of the algorithms of Part 2. This discussion includes a
definition of Weyl algebras, the context of the calculations, and Grobner bases for these
Weyl algebras, as a tool for computation in these algebras. The first part concludes

with a chapter on Ore algebras and a ¢-series analogue extension of the discussion.



12 A Holonomic Systems Approach to Algebraic Combinatorics

The second part introduces new algorithms for the effective computation of the scalar
product of symmetric series. The fifth chapter concludes with proofs of correctness and
termination. The guarantee of termination is a bi-product of the fact that we work
with holonomic modules. This part concludes with the sixth chapter, which describes
how the algorithm can be modified to compute similar scalar products (that is, bilinear
symmetric forms). This gives algorithms for one of the usual scalar product of functions
(flg) = [ fg, for various g-analogues, and for scalar products of MacMahon symmetric
functions. This adaptability of our methodology to many generalizations of symmetric

functions does much to validate our approach.

It is in the third part that we reap the rewards of the first two parts. The results are
all combinatorial in nature. In fact, the third part can be read in isolation if the reader

is willing to treat the algorithms of Part 2 as a black box:

Systems of differential equations A system of differential equations
characterizing the parameters of |:| characterizing the solution of the
the problem problem

Chapter 7 considers some classic examples, such as regular graphs and set covers, and
places them in the context of species theory to illustrate how this is but one special
instance of an infinity of such. We also consider a generalization of involutions related
to Young tableaux. The final chapter considers some applications of Ore algebras,

described in Chapter 4, to combinatorial enumeration.

Here is a sampling of some specific combinatorial problems that are well suited to an

examination from a holonomic point of view, and are considered in this Part 3.

Problem 1. Automatically determine the number of 4-regular simple graphs of size n

in time linear in n.

Problem 2. Automatically determine a formula for the number of bounded standard

Young tableaux of height 4.

Problem 3. Automatically determine the D -equation satisfied by the generating func-

tion of all plane partitions.

Problem 4. Automatically determine a generating function for symmetric function

characters indexed by hook partitions.
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Problem 5. Describe a unified approach for effective calculation of scalar products of

functions.

We conclude with some questions that arose in the course of this study but remain

unanswered.

Summary of contributions of this thesis

The subject of this thesis sits at the intersection of computer algebra and algebraic com-
binatorics passing through the vehicle of algorithms on symmetric functions. The new
results include a collection of new algorithms, complete with proofs of correctness and
termination. These algorithms have been implemented, and tested in Maple. The code
of the major algorithms, along with several key examples collected in Maple worksheets,

are available on the author’s web page, http://www.lacim.ugam.ca/ mishna.

More generally, we give a uniform approach to a wide variety of combinatorial prob-
lems. Although some of our examples fall under the umbrella of the methods of [36]
and [34], the results we give are more general and can be applied to a more general
set of situations. In particular, g-parameters enter our setup in a more natural way.
Accommodating g-parameters is accomplished in part by using recent work of Chyzak

and Salvy [16] on O-finite ideals for more general operator algebras.

The initial ideas for the central algorithms of Part 2 were first presented at the 14" For-
mal Power Series and Algebraic Combinatorics conference in Melbourne, Australia [14],
and the main proofs together with additional applications, appeared in the full arti-
cle [15].

The author has also considered other aspects of computer algebra and combinatorics
in [57], specifically, an extension of a decomposable structures applied to algorithm
analysis. This work includes routines for the combstruct package, which is part of [17],
and which are incorporated into the Maple library (versions 8 and greater). This work

is not presented in this text.
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Theoretical Foundations
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SUMMARY OF THIS PART

In this part we describe the evolution of the notion of D-finite functions and their con-
nections to combinatorics via symmetric functions. In particular, we determine closure
operations for D-finite functions and describe consequences in the ring of symmetric
functions. The second chapter describes the setting of holonomic functions; here we
encounter the context in which we can describe and prove the algorithms which make
the closure properties effective. The final chapter of this section generalizes some of
the concepts to the wider context of Ore algebras with the aim of determining suitable
g-analogues to the work of the earlier chapters. The background is mostly classical,
although the discussion of g-analogues of symmetric functions in the context of 0-finite
functions is new.
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CHAPTER 1

D-FINITE FUNCTIONS

1.1 D-finite functions

One motivation for encoding combinatorial objects by formal series is to identify combi-
natorial operations with algebraic manipulations. Ideally, this process is automatic, and
delegated to a computer algebra program. However, this is only feasible if the series has
some sort of finite representation; for example, a functional equation that it satisfies.
Here, we consider functions that satisfy a linear differential equation with polynomial

coefficients. Throughout, K is a field of characteristic 0, typically C or C(t).

Definition 1.1 D-finite function. A function f(z) € K[z] is D-finite if it satisfies

an equation of the form
Py(@)fD () + ... + Pi(2) f'(2) + Po() f(z) = 0 (1.1)

where f(")(z) = L f(z) is the n™® derivative of f, d is finite and P;(x) € K[z] for all j.

dx™

This is equivalent to the following condition

Proposition 1.1 (Alternate characterization of D-finiteness). The function f(x)
is D-finite if f(x) and all of its derivatives f(")(x) span a finite dimensional vector

subspace over the rational functions in x.

Ezample. The derivatives of sin(x) are either of the form = sin(x) or =+ cos(z).
Thus, the vector space P, K® sin™ (z) is two dimensional and sin(z) is D-finite.
D-finiteness is shown more simply by the equation sin” (z) +sin(z) = 0, which is of
form Eq. (1.1).



20 A Holonomic Systems Approach to Algebraic Combinatorics
1.1.1 Closure properties

Differential equations, and the functions which satisfy them, are well studied objects.
As we shall see, the class of D-finite functions is strictly larger than the set of algebraic
functions (it contains e®, for example), yet possesses closure properties which are useful
from both a combinatorial point of view and from an effective calculation point of view,
making them well worthy of study. Stanley [74, 75, §6.4] popularized the study of D-
finite functions and their closure properties under this view. The notion was further
developed and then generalized to the multivariable case separately by Lipshitz [49] and
Zeilberger [87, 88], where new uses emerged, notably the creative telescoping algorithm
for producing automatic proofs of identities [89]. In general to say that an operation
preserves D-finiteness, implies that given D-finite functions as arguments, the operation
results in another D-finite function. It is even more interesting when this operation is

effective. The following theorem introduces some basic properties.

Theorem 1.2 (Classic D-finite closure properties I).

1. The set D of D-finite functions forms a sub-algebra of K[x].

2. If f(z) € K[z] is D-finite and g(z) € K|[x] is algebraic, then the composition
f(g(x)) is also D-finite.

3. If f(x) is algebraic, then f(x) is D-finite.
Here we only present the proof of Part 1 of Theorem 1.2 to illustrate a typical argument.

Proof. (Stanley). For any f € K[z], denote by Vy the vector space over K(z) spanned
by the derivatives of f: Vy = @, K(z) ® f™(z). For any f,g € D, and a, § € K set
u = af + fg. Since v’ = af’ + ¢, and in general u(™ = o f(™ + Bg(™ then the set of

derivatives of u are contained in Vy + V;. Then, taking dimensions over K[z],
dimV,, < dim (Vy + V) < dim Vy 4+ dim V.

Both dim V; and dim Vj, are finite since f and g are D-finite, giving that dim V/, is finite.
Thus, u is D-finite.

Next, we show that the product of two D-finite functions is D-finite. First, consider

V = K[x] as a vector space over K(x). Suppose that u = fg. Recall that v’ = f'g+ f¢'.
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There is a unique linear transformation ¢ : Vy ®g(,y Vy — V satisfying ¢(f () @ gk)) =
f™ gk The derivatives of u are clearly contained in the image of ¢, and thus if we

compare their respective dimensions
dimV, <dimVy ® V, < (dim V) (dim V) < oo.

Once again we conclude that dim V, is finite, giving the D-finiteness of u. [

The following consequence of Part 2 of Theorem 1.2 warrants explicit mention, as it

represents a common situation in the forthcoming applications.

Corollary 1.3. If p(x) is a polynomial then exp(p(x)) is D-finite with respect to the x

variables.

Frequently one can determine that a function is not D-finite by applying the following

result.

Proposition 1.4. Any D-finite function f € C[z] which is analytic on an open ball in

K has a finite number of singularities in K.

This can be proved by establishing that any singularity of f must be a zero of one of

the coefficient polynomials P, of Eq. (1.1). These zeros are clearly finite in number.

For example, 1/sin(x) is not D-finite. Thus, the composition of D-finite functions is not
always D-finite, as both 1/x and sinz are D-finite. Another noteworthy example of a
function which is not D-finite is exp(exp(x)). It is worthwhile to ask if the algebraicity
requirement in Part (2) of Theorem 1.2 is the most general condition that applies in all

cases. The answer, from the following discussion, is yes.

1.1.2 Composition of functions

There are a number of known results which help describe which compositions of functions

are D-finite.

Harris and Sibuya in [42] (and in a result later generalized by Sperber and by Singer [71,
73]) proved that if both g and 1/¢ are D-finite, then g is of the form Aexp(B), where
A and B are both algebraic.
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We can deduce the D-finiteness of the composition f(g) of any rational f, and any g
of the form g = Aexp(B) as above algebraic. One way to phrase this result is to say
that functions of this form Aexp(B), are contained in the D-finite composition closure

of the rational functions.

This problem can be posed for classes other than the rationals. For example, the
algebraic functions are contained in their own D-finite composition closure since the
composition of two algebraic functions is algebraic, and thus D-finite. It should be
possible to answer questions of the following type using analytic arguments, or the

characterization by holonomy developed in the next chapter.

Problem 6. Given a family of functions F, determine sets of functions g such that
f(g) is D-finite for all members f of the family F.

The following variants of the problem may also be interesting.

Problem 7. Given a D-finite function f determine the set of functions g such that f(g)
is D-finite.

Problem 8. Given a D-finite function g, determine the set of functions g such that
f(g) is D-finite when f is.

There are several other useful closure properties which generalize to the multivariable

case, hence we consider them in further depth in Section 1.3.

1.1.3 Effective closure properties

Note, the proof of Theorem 1.2 offers no direct indication of how to translate the differ-
ential equations satisfied by f(z) and g(z) into one satisfied by (f + ¢g)(z) or fg(x). An
effective closure property refers to a closure property in combination with an explicit
procedure for the computation of the differential equation satisfied by the resulting

function. This topic will be considered in closer detail in Section 3.4.

1.2 P-recursive functions

There are other important properties of D-finite functions. A D-finite function in one

variable has coefficients that satisfy a finite recurrence.
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Definition 1.2 P-recursive function. A functionp: N — Kis said to be P-recursive
if it satisfies a homogeneous linear recurrence with polynomial coefficients in n. In this

case, we also say that the sequence given by (p(n)), is P-recursive.

A series Fi(xz) = > 5op(n)z™ is D-finite if and only if p(n) is P-recursive. One way
to view this correspondence is a map from one sort of finite description (a differential
equation) to another, (a recurrence). Similarly, other connections between notions of
finite description are interesting and useful. More precisely, given two rings, each with
their own proper notion of D-finite, (or, more generally, finite description), we search

for ring homomorphisms which map D-finite elements to other D-finite elements.

In the next section we define what it means to be D-finite in the ring K[z1,...,z,] and
in later sections we consider the ring of symmetric functions. In the final chapter of
this part we present a very generalized notion of D-finite, called J-finite, which includes

both “classical” D-finiteness and P-recursiveness as a special case.

1.3 D-finite functions in multiple variables

D-finite power series in n variables, n > 1 are defined using a natural generalization of

the univariate version, stated in terms of vector spaces.

Definition 1.3 D-finite functions of multiple variables. A formal power series
f €K[zq,...,z,] is D-finite in x4, ..., x, (or with respect to x1,...,x,) when the set of
all partial derivatives, 9T T f/ &Ulf -+~ Ox'n | spans a finite-dimensional vector space
over the field K (z1,...,z,).

Any set of differential equations which illustrates this property is called a D-finite de-

scription of a function.

Many of the properties of univariate power series carry over to this case. The set of
D-finite power series is a K-subalgebra of K[z1,...,z,] for the usual product of series.
Furthermore, algebraic functions are D-finite. The following theorem summarizes the

main closure properties of this family of series.

Theorem 1.5 (Classic D-finite closure properties II).

1. If f is D-finite with respect to x1,...,xy then for any subset {z;,...,x; } of
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those variables, the specialization F' |w¢1=~~~:rik=0 is D-finite with respect to the

remaining variables;

. If f(xy,...,2y) is D-finite, and for each 1 < i < n, g;(y1,...,Ym) is an algebraic

function of y = y1,...,ym, then whenever the substitution f(gi(y),...,gn(y)) is

well-defined as a power series, it is D-finite with respect to y;

. If f(x1,...,x,) is D-finite, then foz" f(x1,...,xy_1,t)dt is a D-finite function with

respect to x1,...,Ty;
. If f and g are D-finite in the variables 1, ..., Tmin, then the Hadamard product!
f x g with respect to the variables x1,...,x, is D-finite in x1, ..., Tmin.

These properties are now classical. The first two are elementary, and can be proved with

basic vector space arguments as in the univariate case. Property (3) is considered in [88].

Property (4) relies on more delicate properties of dimension and is due to Lipshitz [48].

Later sections describe how to make these closure properties effective.

'Recall that if u® = uS?t - - up*, then the Hadamard product of two series is

Z asu® X Z bpu” = Z aabou”.

aENk BENFK aENk
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SYMMETRIC FUNCTIONS

The notation pertaining to symmetric functions herein follows [52]. Here are some of

the basic definitions.

A partition of n, denoted A F n, is a weakly decreasing sequence of positive integers A =
(M,..., Ak), whose sum A\; + --- + A\ is equal to n. Denote the set of all partitions P.
Each \; is a part. The length of a partition, [()), is the number of parts. The conjugate
partition of X is the partition A defined by A\, = card{j : A\; > i}. An alternative
notation for the partition A is A = 1™ ... k™% which means that ¢ occurs m; = m;(\)
times in A, for ¢ = 1,2,...,k. These definitions are best visualized with the aid of a
diagram. The Young diagram of a partition is a subarray where each part corresponds
to a row of blocks. The number of blocks in row ¢ is A;. The conjugate partition is the
partition determined by flipping the diagram of A along the principal diagonal, as in
the following figure, illustrating the partition A\ = (5,4,1,1) of 11 (equivalent to 1245

in the alternate notation), and its conjugate \' = (4,2,2,2,1).

FIGURE 2.1 Young diagrams of a partition and its conjugate

A polynomial f(x1,x9,...,x,) is said to be symmetric if for any permutation of n, o €
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Sh,
f('xlyx% s 7xn) = f(xa'(l)7$0'(2)7 s 7x0(n))'

Denote by A,, the vector space over K of symmetric polynomials in n variables. The
monomial symmetric polynomial, mq, € Ay, is defined for a given o = (ay,...,a) € NF,

k < n, by the sum over all permutations o € S,, of distinct monomials :cg(ll)mg‘é) e x?fk)

The set of monomial polynomials mj where A is a partition form a vector space basis of
A,,. We generalize this basis to an infinite number of variables by defining m \(z1, z2,. . .)
as the formal series,
*
my(x1,x9,...) = Z mﬁi ... x%i;,
neNt)
where the star indicates that the sum is over all I(\)-tuples of positive integers which
yield distinct monomials. Accordingly, we define A as the vector space generated by the
basis of all my, with A a partition of any integer. This is derived more formally in [52]

as an inverse limit of vector spaces.

There are other families of symmetric functions that can be defined with the aid of the

monomial polynomial: the power symmetric functions,
Pn =My =21 +T5 + ...,
the elementary symmetric functions,
€n = M(In) = T1T2 "+ Ty + T2X3 - Tpy1 + -

and the complete homogeneous symmetric functions,

hn = Zm)"

AFn

where the sum is over all partitions of n. We write po = pa, - - - Pa,, and define e, and
hq similarly. Using the usual notion of monomial degree, we can impose a grading on
this vector space, A = @, A¥, where AF is the vector space of homogeneous symmetric

functions of degree k in the symmetric variables z;.

There are several known bases of A¥, described as sets indexed by partitions A of k.

The principal among them are: the monomial (m}), the elementary (ey), the complete
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homogeneous (hy), and the power (py). There is another basis, the Schur basis (s))

which is arguably the most important, and Section 2.0.1 describes it in detail.

Since A is clearly closed under multiplication, it can alternatively be viewed as a poly-
nomial ring generated by p = p1,p2,.... In order to distinguish this point of view from
the previous, we write K[p]. This is isomorphic to A as it is a different point of view
with respect to the same set of functions. Similarly, the h, and e, form ring bases and

these will be referred to as the h and e bases respectively.

Generating series of symmetric functions live in larger rings of symmetric series, such
as K[p] = K[p1,pe,...], and K[t][p] = K[t][p1,p2,...]. For example, in K[t][p], we

have the generating series of complete homogeneous and elementary functions:

H(t) = hnt" = exp (Zm%) :

n>1
Et) = z:entn = exp (Z(—l)mpm%> :
n>1 m

Often we will refer to H(1) as simply H and £(1) as €.

2.0.1 Schur functions

Owing to their link to representations of the symmetric group, Schur functions form the
most interesting basis of the symmetric functions. There are several different ways to
define a Schur function indexed by a partition A. Here, we write them as a determinant

of an I(\) x I(\) matrix of complete homogeneous functions,

s = det ([ isgl i< jagy) ) (2.1)

This is generalizable to skew-schur functions

Sx/p = det(y, - —itj)- (2:2)

Here, h_,, = h‘n|, and hg = 1. For example, s, = h, and s;2 = h% — hy = eo,
(and in general, syn = e,). The Schur functions play an important role in defining
the link between the irreducible representations of the symmetric group and symmetric
functions. In fact, the irreducible representations V) of S,, are indexed by A, partitions
of n, and their characters x(V,) are directly linked to Schur functions via the Frobenius

map. For more details on this interesting link, see [68].
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2.1 Operations on symmetric functions
2.1.1 The Kronecker product of symmetric functions

It is clear that in the ring of symmetric functions that the “usual” polynomial mul-

tiplication serves as a product. The connection coefficients CZ/\ of products of Schur

_ v
S\Sy = E CASus
14

are quite interesting. The CZA are non-negative integers known as the Littlewood-

functions:

Richardson numbers and although they have many combinatorial interpretations, and
algorithms for their computation (see [75, §7.15], for example), none of them are par-

ticularly explicit.

There is a second interesting product, which arises in computing characters of the
symmetric group. We follow Macdonald and call it the Kronecker product of symmetric
functions and denote it by *. It was first described by Redfield as the cap product
of symmetric functions and was rediscovered by Littlewood [50]. This product can be
defined in representation theory terms using induced characters of representations of the
symmetric group, however here we use the following relation to the power symmetric

functions, and extend linearly:
DA * Dy = Oxu2APs (2.3)
where 9y, = 1 if A = ;1 and 0 otherwise and we define the normalization constant
=1"my!- - k™ my!.

(p)

Calculating the connection coefficients " for this product
S8 = D W
o

is also challenging, and quite interesting. There are some combinatorial interpretations
which have yielded results when A, p and p are of a particular form, for example, the
work of Goupil and Schaeffer [38] or Rosas [65].

There is a direct correspondence with irreducible representations,

XV @ V) Z%u
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2.1.2 Scalar product and coefficient extraction

The ring of symmetric series is endowed with a scalar product defined as a symmetric

bilinear form such that the bases (hy) and (m)) are dual to each other:
<TI7,)\, hu> = (5)\“. (2.4)

At times we may emphasize which variables are annihilated by the scalar product by
a subscript. For example, (f(p1,t),9(p1)), is a function of t. MacMahon [53] describes
actions which closely resemble the scalar product, or more accurately the adjunction
relative to it. Section 2.2.2 describes an operator acting on symmetric function which
he uses in much the same way that we use the scalar product. It is Redfield [64] who
first formulates it in this way and makes the important observation that it is symmet-
ric. Subsequently, this product is rediscovered, and initially (incorrectly) attributed to
Hall [40].

The constant z), = 1™!my!... k™+kmy!, plays the role of the square of a norm of py in

the following important formula:

(Pxs Pu) = Oapzn- (2.5)

The Schur basis is an orthonormal symmetric function basis under this scalar product.
In fact, Schur functions can be defined as the result of applying the Gramm-Schmidt
process for orthogonalizing a basis, applied to the monomial basis with the partitions

ordered lexicographically®.

2.1.3 Plethysm

Plethysm is a way to compose symmetric functions. It can be defined on the power sum

ring basis and extended to all of K[p]. It is defined by p,, [pm] = pnm and extended by

(fg)[p] = flhlglh]l, (f+g)[hl=f[r]+g[h] and pnlg]=glpnl (2.6)

To clarify this action, observe that

f(pl)p% Y Y TR ) [ n] = f(p1n7p2n7 -- vy Pkn;y - - ) (27)

Tn such an ordering, 1" < 1”712 < --- < n.
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It can also be defined on the level of A :

pr [f(x1,22,...)] :f(a:lf,xé“,...). (2.8)

For more details see Macdonald [52, p. 77].

2.2 Differential operators for symmetric functions

The subject of differential operators arises naturally in the study of the scalar product

of symmetric functions.

2.2.1 The adjoint of multiplication

The adjoint, L, of multiplication with respect to the symmetric scalar product is an
endomorphism of the ring of symmetric series L: K[p] — K[p] which is defined by the
following relation

<G,FiH> = (FG, H)

for all F, G, H € K[p]. We can describe this action on the power, complete homogeneous
and Schur bases in a natural way. These are derived in [52, §I 5.], and we summarize

them here.

Schur functions satisfy the relation (s, s,s,) = <3>\/u7 s,,> thus,
stsA = S\/u- (2.9)

The action on orthonormal bases (hy) and (m)) can be determined similarly. Create a
new partition y = AU v by ordering the parts A1,..., A, V1, .., V) into a partition
. Then we have h*mu = 0 unless u = A U v for some partition v. One implication of
this, is that h#mu = 0 unless p has at least one part equal to n. If so, then h#mu =m,
where v is the p with exactly one n part removed. It is this removal action that led

MacMahon to call hy- the obliterating operator [53, §26].

The adjoint of multiplication by a power symmetric function is easiest to describe in
terms of a differential operator: p# = na%n. As the p,, form a ring basis of K[p] over K,
this gives a way to describe the adjoint of multiplication by any symmetric function. If
F € K[p] is given as F(p1,p2,...), then F* is the differential operator F(%, 2%, ce)s

a linear differential operator with coefficients in K.
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2.2.2 Hammond operators

Although we will largely focus on the power differential operators, historically some
attention has been paid to the complete homogeneous and elementary differential op-

9t century [41].

erators. Hammond introduced a family of such operators in the 1
MacMahon made extensive use of them as well [53]. The Hammond operator H, was
originally defined in a way that is equivalent in modern notation to h;-. MacMahon
describes how to associate differentiation with a combinatorial notion of obliteration
and applies it to symmetric functions to count matrices with positive integer entries

and limitation on the row and column sums. We describe these ideas in Part 3.

2.2.3 The Heisenberg Lie algebra

It is an interesting aside to note other formalisms in which these operators have been
studied. Define the family of operators ,, : K[p] — K[p] for n € Z as follows: when n is
positive, 7, is multiplication by p,; when n is negative, 7, = pﬁm; and g is the identity.
The algebra is formed by the linear span of these elements and has the following bracket

operator:

[7Tm7 7Tn] = n7705m+n,0'

Jing [43] considers various classes of classical symmetric operators from the viewpoint

of vertex operators.

2.3 D-finite symmetric series

Gessel defines D-finiteness for series in an infinite number of variables by generalizing
property Theorem 1.5(1). A series F' € K[x1,x9,...] is said to be D-finite with respect
to the x; if the specialization of all but a finite choice S of variables to 0 is D-finite
for any choice of S. In this case, all of the properties in Theorem 1.5, except (2), hold
in the infinite multivariate case. Proposition 2.1 gives an analogue for (2), a result for

algebraic substitution in the infinite case.
This definition is tailored to symmetric series K[p] by considering the power sum basis.

Definition 2.1 D-finite symmetric series. A symmetric series in K[t][p] is said

to be D-finite when it is D-finite with respect to p1,po,... and the ¢ variables.
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S generating series

{(n)}n H = exp(3, Pn/n)
()} £ = exp($,(—1)"*py/n)
all partitions S =Hler + e2]

A all parts even  SE(—1)

X all parts even SH(—1)

TABLE 2.1 Generating series for ), ¢ sy for different families of partitions.

Example. Two simple examples of D-finite series are

H = exp (an/n> and E =exp (Z(—l)"J”lpn/n) )

n

In each case a specialization of all but a finite number of p, to 0 results in a
function of the form exp(polynomial), which is clearly D-finite. These and other

other examples from Section 2.6 are given in Table 2.1.

Other definitions of D-finite are possible, in particular with respect to other bases. The
power sum basis is a useful choice since we have a natural differentiation connected to the
scalar product and furthermore, as an application one can connect to the standard D-
finite definition via the scalar product, as we shall see in Theorem 2.7. A different choice

of basis leads to a different set of D-finite functions, as the next example illustrates.

Example.  The series y = exp(}_,, hn) is clearly D-finite with respect to the h
basis, just as > h, = exp(}_pi/k) is D-finite with respect to the power sum
basis. However, if we re-write each h, in the power sum basis, we see that y =
exp(exp(p;/k)) and, as exp(exp(pi1)) is not D-finite considering the example on

page 21, neither is y D-finite with respect to the power sum basis.

2.4 Closure properties of D-finite symmetric series

Many symmetric function operators are closed under D-finiteness. In this section we
explore plethysm, the Kronecker product, and the scalar product. The usual product

of polynomials is also D-finite.
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2.4.1 Algebraic substitution

The change of basis map from the h basis to the power sum basis in the earlier discussion
illustrates that when an infinite number of variables are involved, some care must be
taken in the study of D-finiteness with respect to substitution. Here is a more restrictive

version of Theorem 1.5(2) suitable for the case of an infinite number of variables.

Proposition 2.1 (D-finite algebraic substitution). Let x and y respectively denote
the (possibly infinite) sets of variables x = x1,x2,... and y = y1,¥a2,. ... Suppose f(x)
is a D-finite function with respect to the x variables. Suppose, z; = g;(y) for a finite
number of © and furthermore:

1. FEach g; is an algebraic function of y;
2. For each k there exists an N such that g; is not a function of y for ¢ > Ny;

3. The substitution F(g1,g2,...) is defined as a power series;

Then f(g1,92,...) is a D-finite function of y.

Proof. Fixn € Nand let r,, be the specialization y; = 0 for i > n. If N = maxi<;<,{N;},
then r,(f(g1,92,---)) = ruf(g1,---gn). As a function in a finite number of variables
F(y1,...,yn) is D-finite, and the substitution y; = g;(t1,...,tn,0,...) is finite and
algebraic. The result follows by an application of Theorem 1.5(2). O

An example of a ring morphism which satisfies these three properties, commonly de-
noted w, sends h; — e; and preserves D-finiteness since w(py) = sgn(A)py with sgn(\) =
(—1)"~*™ . Since this morphism is equivalent to the algebraic substitution, p, —
(—=1)""1p,, in which each p; is used exactly once, it is D-finite preserving. Notably,
it has the following effect on the Schur functions: w(sy) = sy, where X" is the conjugate

partition to A.

Plethysm is also clearly a composition that satisfies these conditions. In fact, many of
the most interesting symmetric series can be written as a plethysm of two symmetric
series. Gessel gives the following result for preservation of D-finiteness under plethysm
in a simple case, essentially restating Corollary 1.3. However, we give the proof to
illustrate a typical argument to show an operation preserves D-finiteness. It is followed

by the argument for the more general case, using Theorem 2.1.
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Proposition 2.2 (Plethysm and D-finiteness I; Gessel). If g is a polynomial in
the p;’s, then H [g] and & [g] are D-finite.

Proof. Define R,, : K[p] — K[p1...,pn] as the ring homomorphism which maps p,, to
0 for m > n. To establish that H [g] is D-finite we show that for any n, R, (H[g]) is
D-finite in the variables p1,po, ..., pp.

Remark, that if g = g(p1,...,pN),

Ri(H[g) = Ra|exp|d 5l
E>1
_ 9(Pk, -, PkN)
= R, |exp Z—k
E>1

= exp <Z R, (g(pk7~wpkN)/k)> ;
=1

which is D-finite by Proposition 1.5. The D-finiteness of £ [g] is proven similarly. O

Theorem 2.3 (Plethysm and D-finiteness II). Let f be any D-finite symmetric
series and g any symmetric series which is algebraic. Then the plethysm f[g] is a D-finite

symmetric series.

Proof. The plethysm f[g] is algebraic substitution p,, = p, [g] in f. The hypotheses of
Proposition 2.1 applies. Each of these substitutions is an algebraic function and, as the
plethysm will always be defined as a power series, we can conclude that f[g] is D-finite.
O

2.5 Symmetric function specializations

As we have seen, a symmetric function can be viewed to be either an element of A
or K[p]. In either case, the variables are independent and we can therefore consider
homomorphisms to other rings, defined by the action on either the symmetric variables
T1,T9,..., or the ring basis p. Let R be a commutative K-algebra with identity. A

specialization of A is a ring homomorphism ¢ : A — R. Similarly, a specialization of the
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power sum basis is a homomorphism from K[p] to R, or K[p] to R. We are interested

in homomorphisms that are D-finite preserving. The notation here is from [75, §7.8].

By Theorem 1.5(1), we have that the exponential specialization
ex : K[p] — K[¢]

which sends p; to ¢t and p, to 0 when n > 1, maps a D-finite symmetric series to a
D-finite univariate power series, and is thus D-finite preserving. This action, and a
generalization of it, will be treated in finer detail in the context of the scalar product of

symmetric functions, in the next section.

A second simple example is the reduction specialization, v, : A — A,, defined by spe-

cializing variables to zero:

ro(f(x1,220,...)) = f(z1,...,2,,0,0,...).

This is often implied by the notation f(zi,...,x,). Note, we have that each of the

following sets,
{’f’n(m)\)}, {rn(e)\)}v {rn(p)\’)}v and {Tn(h)\)}a

where A ranges over partitions of length less than n form K-bases of A,,. Under this
specialization the set {r,(px)} is not a basis for A,, and thus we cannot take it for
granted that this map automatically preserves D-finiteness in the smaller ring. In fact,
r1 does not preserve D-finiteness. If we write it as a specialization of the p; variables, we

see that it maps p,, to 27, and hence the D-finite symmetric function ), px is mapped

(gn) - () T

n

which is not a D-finite function in x1 since it possesses an infinite number of singularities,
contrary to the characterization in Proposition 1.4. However, if we consider the subset of
A which is also D-finite with respect to the z; variables, then r, is a D-finite preserving

homomorphism by the definition of D-finiteness.

2.5.1 Some ¢-specializations

A particularly interesting case, the g-specializations, occurs when R = K(q)[t]. Here, ¢
is a formal parameter, assumed not to be root of 1. These are investigated in further

detail in Section 4.4.
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First we introduce some basic notation. Define the g-factorial and g-binomial respec-

tively as

B(@On—k

(@n=0=-q)(1=¢*)--(1—¢") <> S ). 2 (2.10)
k), (a0
More generally, we have the ¢-Pochhammer function with respect to a variable a
(gla)n = (1 —a)(1 —ag)--- (1 —ag"™"),
with (q|q)n = (q)n. Finally, define a second g-analogue of the factorial,
nlg=01+q)1+q+¢>) - A+qg+...+¢"").
There is a natural g-analogue of the exponential specialization. Define
exq : A — K(g)[t]

as the symmetric function specialization which sends x,, to tg" (1 —gq), for 1 < i. This
is called the g-analogue of the exponential specialization in [75, §7.8]. Its effect on the
power basis is follows:

(1-q")

The ring morphism ex, is expressed in the other symmetric bases as the following:

exq (pn) = exq (2] + a5 +...) =

exq (hp) =t"/nl; and exq(ey) = q(g)t"/n!q. (2.11)
This is called a g-analogue of ex because

lini exq (F(t)) = ex(F)(t).

q—)

Later, we determine how this specialization fits into the discussion of D-finite preserving
operations, although we first need a notion of D-finite in the ring K(q)[t]. We address

this question in Chapter 4 after having developed suitable machinery.

Now we describe a second g-specialization. The principal specialization is defined as

a A specialization by ps,(z;) = ¢! if i < n and 0 otherwise. Defined as a K[p]
1_qk(n+l)

g Under this map, we have

ps, (hg) = <n+ k— 1> and  ps,(ex) = " 1D/2 <n>
k g k),

specialization, it maps p; to
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If we let n — oo, we have a limiting value, ps. Under this map,

ps(pe) = 1/(1 —¢*), ps(h) =1/(q)x and ps(ex) = ¢**V/2/(q)s.

These are all obtained by simple combinatorial reasoning (see [75, §7.8]). We note that
for FF € A™,

exq (F) = (1 —q)"t" ps(F).

To conclude this discussion, we define a specialization of a specialization, ps.,
psh(F) = lim ps, (F).

For F € A, this is also denoted F'(1™). If we treat n as a variable, the action of this

maps pi(r1,72,...) =2 +a5+ ...+ 2k + .. to

ps,(pk(1,1,...,1,0,...))=14+14+...+41404+0...=n
N—_————
n times
for all k. If we view n as a variable, this will be a function in n. This may not
be D-finite preserving even in cases when the resulting series in n makes sense, for
example, exp(>_, p¥ /k!) is a D-finite symmetric function, whereas the image under this

specialization, exp(exp(n)) is not.
2.5.2 A refined notion of D-finite symmetric series

Each of the above specializations has a simple description in terms of the z; (or symmet-
ric) variables, that is when viewed as a function in A. Clearly many of the specializations
of x are D-finite preserving with respect to the x variables. This suggests the following

problem.

Problem 9. Characterize D-finite symmetric series which, when viewed as elements of
A, are D-finite with respect to the symmetric variables, x1,x2, .. ..

In simple cases, we have some positive results.

Proposition 2.4. The symmetric series £ and ‘H are D-finite with respect to the x;

variables.
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Proof. Consider

1
- Hl—ﬂfz"

=1
which is a finite product, and hence D-finite. [

This proof generalizes to prove an analogue of Proposition 2.2.

Proposition 2.5. The plethysm H[g] of H = ), h, with a polynomial in the p;, g,

such that g(0) = 0, is D-finite as a function of the x; variables.

Proof. The idea, as in the previous example, is to simplify the arguments of the expo-
nential to a logarithm which then simplifies the expression to a finite product of rational

functions, which is clearly D-finite.
Write g in the monomial basis as the finite sum ), cxmy. Recall that
Pk 9] = Zcxm)\(ajlf,xg, R
A
and that r,(m)) = 0 when [()\) > n.

Using this, we expand H [g]:

rn (Hlg]) = exp(
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which is a finite product of rational functions, and is consequently D-finite. The D-

finiteness & [g] is shown similarly. O

2.5.3 The Kronecker and scalar products

The specialization ex from the last section is a specific case of a larger closure result.

Theorem 1.5(4) has the following very important consequence.

Proposition 2.6 (Kronecker product and D-finiteness; Gessel). Let f and g be
D-finite symmetric series in K[p]. Then the Kronecker product f * g is D-finite.

Proof. Supposethat f =), capy, and g = ), axpy for ¢y, ay € K. Then the Kronecker

product can be written as a Hadamard product:

frg= (Z CAPA X Za,\p,\> X > Zapa-
A B

Note that

N 00
= i i - Iz
Z ZAPx ]\}l_r}loo H A(npr) with A(x) Z nlx
AeP n=1 n=0

is clearly D-finite when all but a finite number of the p,, are set to 0. A double application

of the closure of D-finiteness under Hadamard product implies that f % g is D-finite. 0

The following result is a direct consequence of this.

Theorem 2.7 (The scalar product and D-finiteness; Gessel). Let f and g in A,
be D-finite symmetric series, and suppose that g involves only finitely many of the p;’s.
Then (f,g) is D-finite with respect to the t; variables provided it is well defined as a

power series.

Proof. By Theorem 2.6, f % ¢ is D-finite. In the case when ¢ contains only a finite
number of p;, say pi,...,pn, the algebraic substitution p; = 1,1 < ¢ < n is finite, and
thus by Theorem 2.1, if f x g|pi:1 = (f,g) is well defined as a power series then it is
D-finite. [
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For any finite set of integers S, this theorem gives the D-finiteness of the scalar product
< 1, (1 1t es hn)_1>, which can also be described in terms of coefficient extraction

as in the next corollary.

Corollary 2.8 (Gessel). Let f be a D-finite symmetric function and let S be a finite
set of integers. Define S,, € Z as follows: Sy, is the sum over all n-tuples (s1,...,$,) € 8"
of the coefficient x'x5? - - x3» in f. Then s(t) = Y Spt™ is D-finite.

One of the principal contributions of this work is a collection of algorithms, presented
in Part 2, which makes Theorem 2.7 effective. We remark that the condition of using
only a finite number of p; variables can not be omitted, since given a sequence ¢, which

is not P-recursive, we can construct

<Z pncn/n7 antn> = Z cntn7

which is not D-finite, yet it is the scalar product of two D-finite symmetric series.

On the other hand, it is also not a necessary condition, since

1

(HHO) = 7=

is D-finite and H uses an infinite number of p;.

There are other scalar products for symmetric functions that are particularly relevant
to the development of important symmetric functions, such as Macdonald polynomials.

They are treated in Chapter 6.

2.6 A collection of D-finite symmetric series

For future reference we describe a collection of symmetric series. Gessel [34] defines
ek = Do’ ohnhnir; This is D-finite as it is the Hadamard product of two D-finite
symmetric series, namely » °  h,t" and » hpt" %, evaluated at t = 1. This can

be used to establish the D-finiteness of ) sy p, since s, , = h% — hn—1hpy1.

Next, we also use some classic results in symmetric series to deduce that ), p s\
and )y sy, (for fixed p) are D-finite. Since ) \cpsy = Her +ea] and )7y 55/, =
hler +ea] >, Sy/u, the D-finiteness follows from the earlier discussion on plethysm.

These last two examples, under the restriction that the sums are limited to partitions
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with at most k parts are also D-finite, but this requires a more detailed argument using

a determinantal formula.

2.7 Generalizing symmetric functions

Generalizing symmetric functions to accommodate multiple variable sets presents sev-
eral options. The most straightforward of which uses disjoint variable sets, (in the
simplest case say x = x1,9,... and y = y1,¥s2,...), and functions independently sym-
metric in the zs and the y.s. In this case, a symmetric function can be written in the

form

Z A (T)PA(Y),
A

where A and p are partitions and py(x) = pa(z1,22,...) and p,(y) = pu(y1,¥2,...). A
function is D-finite if it is D-finite with respect to the p,(z) and the p,(y). This case
introduces new variables but still largely resembles the case of the (infinite) multivari-
ate. However Gessel gives some interesting applications to permutations with longest
increasing subsequence of a fixed, given length in [34, §7]. For example, he uses that

the scalar product can be defined in this case by the relation

(f(@,9),9(x,9)),, = (f(@),9(=)), (f¥):9(y)),

On the other hand, one can consider a slightly modified definition and solve a larger

collection of interesting problems, including Latin rectangles.

2.7.1 MacMahon symmetric functions

A second generalization considers functions of the following flavor:
L(z,y) = [ [(1 +ziy)), (2.12)
i#j
where the product is over all pairs of distinct positive integers. MacMahon introduces
in [53] a family of functions possessing the key property of this nearly symmetric exam-
ple. Here we give the definition for just two sets of variables for the sake of simplifying

notation, but the general definition is straightforward.

Definition 2.2 MacMahon symmetric function. A function

f(x1,$2,... §y17927~-) € K[[.’E,y]]
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is a MacMahon symmetric function if the coefficient of x{'x5? - yf1y§2 -+ is equal to

the coefficient of xf‘llmff e yglyZQ .

-+ for any finite set of distinct integers {iy,2,...}.
MacMahon used these functions and a suitably generalized notion of Hammond oper-
ators (defined here in Section 2.2.2) to determine some enumerative formulas for Latin
rectangles and other related combinatorial objects. Unfortunately, his presentation
lacked a requisite elegance (due in part to the youth of linear algebra at the time) for
this method to become popular. Fortunately Gessel recognized [33] how this could be
reformulated and fit into a theory of D-finiteness of MacMahon symmetric functions. A
different direction is taken by Doubilet [25], and subsequently Rosas [65] with combina-
torial interpretations of the functions, and some of their operators. In particular, Rosas
shows in [66] that they are the generating functions for the orbits of sets of functions
indexed by partitions under the diagonal action of the Young subgroup of a symmetric
group. This gives a description of the change of bases matrix between the different
bases. She describes in [67] the action of the principal specialization on several of the

bases.

Remarkably, the algorithms developed in Part 2 for the usual symmetric functions will
also work for these functions with only a slight modification. Using these algorithmic
results we can revisit some of the original examples of MacMahon as part of our unified

approach to scalar products and symmetric functions.

There is a rather complete parallel theory developed for MacMahon symmetric func-
tions. Indeed they generalize well in a natural way to a class of non-commutative
symmetric functions. However, here we discuss only the basic notions and properties.

Complete definitions and developments are provided in [66].

Define a bipartite number (a,b) as a pair from N2\ {(0,0)}.

Definition 2.3 Bipartite partition. A bipartite partition of (a,b) € N2\ {(0,0)} is a
set of bipartite numbers 7 = {(a;, b;)} whose pointwise sum is (a,b). That is, >, a; = a

and ) bj = b. These are generally written as the unordered list (a1,b1)(az,b2) .

For example, {(1,1)(1,0)(1,0)} is a bipartite partition of (3,1). This can also be written

{(1,1)(1,0)(1,0)} F (3,1).

Bipartite numbers and partitions generalize in the obvious way to k—ary partitions of



Chapter II. Symmetric functions 43

integer vectors of length k (k-ary numbers).

We can define analogues to most of the common bases using these partitions. The
monomial MacMahon symmetric function associated to a bipartite partition 7 is the

sum over all distinct monomials of the form:

a1 b1 _as bo
Lo Yir Lig Yiy

For example, m33)1,1) = Ei#j a:%yf’xjyj and m(1)1,1) = Zigj z;y;ir;y;. The power

symmetric functions are defined on bipartite numbers as

Zm yz M(a,b)s

and extended to a bipartite partition 7 = {(a;, b;)} multiplicatively:
pTI' = Hp(a“bz)
i

We define e, the elementary Macmahon functions and h,, the complete homogeneous

MacMahon functions using the following products:

1+ Z e(mb)satb = H(l + 28 + yit)
a,beN2 i
so that e(q,p) = M (1 0ye(0,1)p and
L+ > hgps't —H;
1 —x;5 —y;t
a,beN2

These bases are also extend multiplicatively to bipartite partitions. Further, for any
of these four types, we can describe a basis for the vector space of all MacMahon
symmetric functions with total x-degree a and total y-degree b by indexing over all

bipartite partitions of (a,b). This is the vector space of bi-homogeneous degree (a,b).

2.7.2 The scalar product

The scalar product is defined in a manner analogous to the usual symmetric functions.

The formulas appear to be almost identical to Eq. (2.4) and Eq. (2.5):

(hymy) = O p-
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MacMahon proves symmetry of this operation. Using this, one can likewise deduce that

<p7r7p,u> = 67r,,uz7r, (213)
where .
a;!b;! May,b; (T
=TT @ (25 1)

(aivbj)
Here 7 is the bipartite partition {(a;,b;)}, and mq, ,)(7) is the multiplicity of (a;, ;)
in 7.
Remark that when 7 F (a,0), (that is, b; = 0 for all j) this reduces to the usual

symmetric function scalar product and z;.

Definition 2.4 D-finite MacMahon symmetric function. A MacMahon sym-

metric function is D-finite if it is D-finite with respect to the p(q).

For example, one can show that L(x,y) of Eq. (2.12) is also equal to

o0

(-1y!
L(z,y) = exp Z 5 (PGOPO.I) — PGg))
j=1
An analogue to Theorem 2.7 is also true.
Theorem 2.9 (MacMahon scalar product and D-finiteness). If f = > fzpr and
g = > gDy are two D-finite MacMahon symmetric functions such that g uses only a

finite number of p,, then (f,g) is D-finite.

Proof. This can be proved in a fashion analogous to the usual symmetric functions.

First remark that

a!b! > "
XW: ZpPr = H A <mp(a,b)> s where A(l’) = nz:%n':lj .

(a,b)eEN?

By Theorem 1.5(4), we have that the Hadamard product

(Z frpr X Z%m) XY Zapr,

is D-finite, and so is the specialization p(,; = 1. Together this implies that the scalar

product of D-finite MacMahon symmetric functions is D-finite. O
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In Part 2. we make this effective, and in Part 3 we give some combinatorial applications

of this theory, notably the enumeration of Latin rectangles.

There are several ring morphisms from MacMahon symmetric functions that should
preserve D-finiteness, such as specializations to one set of variables, as well as other

diagonal-like operators.
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CHAPTER 111

AN INTRODUCTION TO HOLONOMY

3.1 Algebraic properties of differential operators

Once it is known that an operation preserves D-finiteness, it is very natural to ask how

to determine the differential system satisfied by the resulting function.

The algebra in which our manipulations occur is generated by two types of elements:
One is the differential operator 0., which is differentiating a function with respect to
x; the second is x, a multiplication operator which is multiplication on the left by
x. Each time we wish to indicate an operator we use -. That is, z - f(x) = zf(z) and
O f(z) = %. Under this view, a differential equation, say f”(z)+z2f'(x)+ f(x) = 0,
corresponds to the polynomial operator 92 + 220, + 1 - f(x) = 0. Thus, any differential

expression is viewed as a non-commuting expression in d, and x.

In fact, the essential aspects of the differential operator approach are reduced to defin-
ing a suitable commutation relation between multiplying by = and differentiating with
respect to . We can then work within the algebra of such differential operator expres-
sions, and manipulate differential equations. This algebra is known as the Weyl algebra,

and is detailed in Section 3.2.

If a function f(x) satisfies a linear differential equation with polynomial coefficients,
it will satisfy many differential equations of this form (for example, differentiating the
differential equations yields new differential equations of higher order). In fact, the
set of these differential equations form a left ideal in the Weyl algebra. The theory
of holonomy links properties of these ideals of operators with the property of being

D-finite. This gives us an alternate characterization of D-finite.
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The study of holonomic systems was initiated by Bernstein [8] in order to answer a
question of Gel’fand about whether a certain function of a complex variable could be
extended to a meromorphic function defined in the whole complex plane. The study
of these systems has since branched into several different directions. For a complete
picture of developments related to the algebraic study of differential equations, consult
the introduction of [20]. Here, we limit our discussion to aspects of holonomic systems

pertaining to effective computation of D-finite closure properties.

Galligo made a key contribution to this topic in [29] with the assertion that a non-
commutative version of Buchberger’s algorithm applied to the Weyl algebra yields
Grobner bases of left ideals. This result is an important element of Takayama’s work
on the effective integration of holonomic functions [80]. Zeilberger illustrated how this
effective integration can be utilized to find differential equations satisfied by certain
special functions, and how to verify certain families of identities automatically, using
computer algebra [88]. These studies were also propelled by a renaissance of interest
in hypergeometric functions, which began around the time of Apéry’s proof of the irra-
tionality of ((3) [82]. The problem of integration of a holonomic function is of interest
for the purpose of this thesis since it shares many algorithmic properties with the com-
putation of the scalar product of symmetric functions, the central problem of this work.
The algorithms we describe here therefore bear resemblance to some known algorithms

for integration.

Indeed, the 1990s marked a very active period for the development of computer algebra
tools for the treatment of holonomic systems. A small selection of available packages
for the major computer algebra systems includes: packages for general manipulation
of holonomic systems such as KAN [79], gfun and Holonomy [16, 70] for Maple, and
D-module for Macaulay II [47]; packages treating the hypergeometric case for summation
and integration such as the Ekhad packages [86] for Maple, and the work of the RISC

group for a Mathematica version [61].

One parallel development is a treatment for a general class of linear operators, called

the Ore operators. We consider this in the next chapter.

A useful tool for computation is Grobner bases, modified to suit a non-commutative
setting. We provide a small summary of some vocabulary and basic results in the final

section of this chapter.
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The goal of this brief introduction to holonomic systems is to provide sufficient back-
ground to ensure that the motivation, and correctness of the algorithms introduced in

the next part is clear.

3.2 The Weyl algebra of differential operators

As we have already outlined, differential equations can be efficiently manipulated in
a suitable algebra. We call the algebra generated by differential operators, and mul-
tiplication by variables, the Weyl algebra. The book of Coutinho [20] is an excellent
introduction to this topic, and the theorems referenced in this chapter indexed with the

letter C refer to theorems from this book. (Ex. Thm. C.2.1)

Definition 3.1 The Weyl Algebra A,,. The Weyl algebra A,, of dimension n is the

associative K-algebra
An = K<$17 s 7$n)8$17 s 78Zna [arz)xj] = 5i,j) 1< Z?] < n>,

where the bracket [a,b] denotes ab—ba and d; ; is the Kronecker notation. This algebra
can be identified with the algebra of linear differential operators with coefficients that are
polynomial in z = x1,...,z,. Related to this is A, (z), the algebra of linear differential

operators with coefficients in K(x).

The algebra A,, has a natural action on the ring of formal power series K[x1,...,z,]:
0
ai'f:a;i’ T f=wxif. (3.1)

If there exists a polynomial P € A,, such that f € K[xy,...,z,] satisfies the differential
equation P- f =0, then QP - f=Q-(P-f) =Q -0 =0 for any Q € A,.In fact, if
there is a system of P, € A,, 1 < i < k that satisfy P; - f = 0, then f also satisfies
(Zle Q:P;) - f = 0. Consequently, the set of elements of A,, which annihilate f in this
manner form a left ideal. This ideal is denoted by Zy and is called the annihilating ideal
of f. Note that this is not a two sided ideal, and in fact A,, contains only trivial two
sided ideals (Thm. C.3.1).

Annihilating ideals of D-finite functions warrant a special label.

Definition 3.2 D-finite ideal. A left ideal Z of A, is D-finite if A,,/Z is finite

dimensional over K(x).
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The name comes from the following observation. When 7 is the annihilating ideal of a
function f, then the quotient 4,,/Z is isomorphic to the A,,-module A,, f. This module
is generated by partial derivatives of f, and thus is finite dimensional if and only if f is
D-finite. This bears repeating. An annihilating ideal Z¢ is a D-finite ideal if and only if

f is D-finite function.

A very important feature of this algebra is that each element can be written uniquely

as a polynomial in non-commuting variables:

F = Z Cap ZL'aa'B,
(o, 8)EN2"

where 2% = " 2%, and 0° = 315 L...9P" This form is obtained by repeated
application of the relation

8¢:L’i = xz& + 1.

The fact that there is such a standard form is extremely useful. Essentially, it implies
that there is a natural vector space isomorphism between the Weyl algebra and the poly-
nomial algebra K[x1, ..., 2, y1,. . . Yn], specifically the map sending 2%9° to z%y®. This
form greatly simplifies manipulation within the algebra and renders the computations

amenable to computer algebra treatment.

3.2.1 Gradations and filtrations

Another important feature of A,,-modules is the existence of a natural algebra filtration
and an associated grading. The definition of holonomy presented here is phrased in

terms of gradations, as are many of the related algorithms.

Definition 3.3 graded ring. A K-algebra R is graded if there are K-vector subspaces
G;,i € N such that

Gi . Gj - Gi+j and R = @Gl
€N

Each G; is called a homogeneous component, of degree .

Ezample.  The ring of polynomials Kz1,...,z,], graded with degree function
deg(z®) = |a| = a1 + ...+ ap. In this ring, a homogeneous component G; is the

vector space generated by monomials of degree 7.
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The Weyl algebra resembles the polynomial ring, however it does not admit a grading
under the usual polynomial degree. The element 0121 appears to be homogeneous of
degree 2, yet it is also equal to £107 4+ 1, which is not homogeneous. Instead, we consider

a filtration of this ring.

Definition 3.4 filtered algebra. Let R be a K-algebra. A family F = (V) of
increasing K-vector spaces K=Vy C V4 C .- C R is a filtration of R if
V;-V;CViy; and R=|JV.
i>0

An algebra admitting such a filtration is a filtered algebra.

One example of a filtration of A,, the Bernstein filtration, (By), filters according to
the maximal degree of an element in standard form. This filtration has the useful
feature that each By, is a vector space of finite dimension, with basis ®0°, satisfying

laf + 8] < k.

Given a filtration F for a ring R, we construct an associated graded ring, gr R, called
the graded algebra of R associated with the filtration F,
g’ R =P (Vi/Vi1). (3.2)

1>0

The multiplication in this algebra can be defined using the canonical projection of
vector spaces, o : Vi — Vi /Vi_1 where oi(a) is non-zero only when a ¢ Vj_1. Thus,
the multiplication is given by o,,(a)o,(b) = opim(ab) for opn(a)o € gr'R. Tt is
straightforward to verify that this multiplication is compatible with the algebra and the

obvious filtration.

Surprisingly, the graded algebra of A, associated with the Bernstein filtration is iso-

morphic to the polynomial ring over K in 2n variables (Theorem C.3.1).

Next, we provide analogous definitions for modules of filtered rings. Suppose R is a
K-algebra furnished with either a gradation (G;) or a filtration (V;), and that M is a
left R-module.

A module gradation of M is a family (I';) of vector subspaces of M such that

GZF] QFH]- and @PZ:M
>0
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A filtration of M is an increasing family of subspaces (®;) of M satisfying

fZ(I)] §<I>Z+] and U(I)] =M.
1>0

As in the case of an algebra, to each module admitting a filtration, we associate a graded

module.

Definition 3.5 associated graded module. Suppose R is a K-algebra with a fil-
tration F, and M a filtered left R-module with filtration ®. The gr? R-left module
gr®M,
gr®M = P (@i41/®i) .
n

is the associated graded module to M.

Again we use projections to complete the definition, and here one is used to define the
module action. Define u to be the canonical projection p; : ® — @, /®Pj_;. Then, using
the same projection o, as defined earlier, we define the action oy (a)-p;(u) = pirr(a-u),

and extend linearly. This defines a module action on gr®M.

A filtration of a module is said to be good if ®,, is a finite dimensional vector space for

all n.

It might be desirable to index a filtration by a totally ordered monoid different from that
of the integers. We could, for example, refine a polynomial algebra filtration by degree,
into a filtration of degree sequence of the leading monomial. The above definitions can

be suitably modified to handle this more general situation.

3.2.2 Hilbert polynomial

Here, our examples use only good filtrations. In this case, there is an interesting poly-

nomial associated to the filtration.

Theorem 3.1 (The Hilbert polynomial; Hilbert). Suppose M is a finitely gen-
erated left K[uy,...,u,]-module with grading I' = (T';). Then there exists rational

numbers ¢, . . . ,cq for d < r with c¢q # 0 such that

HM(TI) = ZdlmKPZ = %nd+...+60

i<n

for sufficiently large n. The polynomial H y;(n)is called the Hilbert polynomial of M.
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The degree of this polynomial is an important invariant of the module called the Hilbert
dimension of the module. The leading coefficient ¢y is equally important, it is the

multiplicity of the module.

A useful result for our purposes is the case of the associated graded module of a good

filtration ® of a A,-module M. The Hilbert polynomial is equal to

HM(TL) = dimg ®,, = dimg Bn/ (M N Bn) . (3.3)

3.3 Holonomic modules

Bernstein’s inequality states that the Hilbert dimension of a non-trivial A,-module is
greater than or equal to n [9, Thm. 1.3]. The finitely generated modules with this
dimension exactly form a special class. First we give some basic definitions, and then

we consider the intuition behind the definitions.

Definition 3.6 holonomic module. A finitely generated left A,,-module is holonomic

if it is either trivial, or if it has Hilbert dimension n.

Example. Perhaps the simplest example of a non-trivial holonomic 44-module is
M = Klzy,...,2z4), under the usual action. Filtered by total degree into (M),
which is equivalent to M,, = (M N B,,) where (B,,) is the Bernstein filtration of Ag,
we have by Eq. (3.3) that

Hu(n) = dimg (Bn/ (M N By)) = dimg (By/M,)
dimg B, N K[[al, R 8d]]

d
= <n + ) =n?+ lower order terms.
n

Thus, the Hilbert dimension is d, and the module is holonomic.

We shall say an ideal is a holonomic ideal if, when viewed as a A,-module, it is a

holonomic module.

If f € K[x] is contained in a holonomic module, then it is a holonomic function. This
definition is motivated by the fact that f is holonomic when its annihilating ideal, 7,
is a holonomic ideal. That is, A,f ~ A, /Z; is a holonomic A,-module. Thus, f is

holonomic when A,,/Z¢ is a holonomic module.
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Ezample. In the univariate case, a function f(z) is holonomic if
dimg B,, - f(z) = dimx D) (K ® a:jf(k)) — O(n).
J+k<n
Consider the function sin(x). Observe that

@ K ® 2 sin® (z) = (K[2]),, sin(z) & (K[z])n cos(z)
j+k<n

with (K[z])x the set of polynomials of degree at most k. The dimension of this

space over K is 2n, which is of order n, and thus sin(z) is holonomic.

More generally, the intuition is as follows. The Bernstein filtration (Bj) of Ay is com-

d+2n) _

posed of a sequence of finite dimensional vector spaces each of dimension ( o

O(n??), which corresponds to Hilbert dimension 2d. For any Ag-module M, generated
by yi € K[z1,...,z4] such that M = @, Agy;, we have that M is a holonomic module
if, for n large, the space @, B,y; has dimension O(n?).

3.3.1 D-finite functions are holonomic

Holonomic systems are of interest to us because D-finite functions are also holonomic.

Recall that f € K[z] is D-finite if and only if its annihilating ideal is D-finite.

Proposition 3.2 (Holonomy and D-finiteness; Bernstein, Takayama). A func-

tion f is holonomic if and only if it is D-finite.

The converse direction is the more difficult [81], however, the general idea of this should
be clear from the above discussion. This is the characterization of D-finite functions
that allow us to determine numerous effective closure properties. To develop this topic

in depth, we first develop a second theoretical tool, Grobner bases for the Weyl algebra.

Very often we are interested in A, (z) ~ K(z) ® A,. Holonomy is not impeded by this

extension.

Theorem 3.3 (Holonomy and K(z); Bernstein, Kashiwara). Suppose 7 is a left
Ap-ideal. Then A,,/Z is a holonomic module if and only if K(x) ®Z is a D-finite ideal of
K(x) ® A,. Otherwise stated, any ideal J C A, (z) is D-finite if and only if the module
An/T N A is D-finite.
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3.3.2 Some closure properties

We now list some basic properties of holonomic modules that will be useful in the next

part. These results are found in [20, 10, Ch. V], for example.

Submodules and quotients of holonomic modules are holonomic. The Weyl algebra is
Noetherian, that is every decreasing chain of ideals is finite. Holonomic A,,-modules are

cyclic, that is, generated by a single element.

In general, twisting a left R-module M by an R-automorphism o results in a new R-
module M?. The underlying space is the same, but we define a different action for
elements of R. Suppose that the action of r € R on m € M is given by r - m. For any
automorphism o of R, the twisted module of M by o, M?, is equal to M as a group,
however, the action of 7 on m in M is defined as o(r) - m. We will denote this twisted
action in the following way:

reem:=o(r) -m. (3.4)
Sometimes, for notational convenience, we use a twisting action to denote a right module

action. Thus, we may denote the right action m . r with r -, m.

W

r - m = m.r. Throughout we denote a right action by “.”, (as in z.a, for a acting on x

to the right).

One particular classic twist action closely resembles the scalar product adjoint.

Definition 3.7 Fourier transform of a module. The A,-automorphism F defined
by
.7'—(33‘2) = 8Z and .7'-(8@) = —Z;

for 1 < i < n is the called Fourier transform of an A,-module.

The name comes from the fact that it sends linear differential operators with complex

coefficients to polynomials.

This automorphism preserves the Bernstein filtration. In fact, for any finitely generated
left A,,-module M, M and M7 have the same multiplicity and Hilbert dimension. This

implies the following useful result.

Proposition 3.4 (Fourier transform of holonomic modules). Holonomic A,-

modules are closed under Fourier transform. That is, if M is a holonomic module, so
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is M7 .

In general, any twisting that preserves the Bernstein filtration will also preserve holon-
omy by Eq. (3.3).

3.3.3 Products of modules

In order to consider the tensor product of Weyl algebras, we must, for clarity’s sake,
develop notation to handle multiple variable sets. Denote by A, the Weyl algebra
over indeterminates * = x1,...x, and by A, the Weyl algebra over indeterminates
Y =191,...,Ym. The Weyl algebra over the union of these variable sets shall be denoted
Ay y-

Now, suppose M is an A;-module and that N is a A,-module. Recall that the tensor
product of M and N, is a K-vector space, linearly generated by the set of m ® n where
m ranges over all generators of M, and n ranges over all generators of N, and where

scalar multiplication satisfies k(a ® b) = (ka) ® b = a ® (kb).

We define an A, , action on M ® N as follows. First, we write A, , as the external

product A, ® A,. Next, for all (p,q) € A, ® Ay and (u,v) € M @ N define

(p7Q) : (U,’U) = (p'u7Q'v)7
and extend bilinearly.

One deduces the following from simple properties of dimension of tensor products.

Proposition 3.5. Let M be a holonomic A, module and N and holonomic A, module.

Then M ® N is a holonomic A, ,-module.

3.4 Effective properties using Grobner bases

Grobner bases serve here as the primary tool for making several closure properties of
holonomic functions effective. This section is a short detour to recall many of the basic
definitions and classic results for commutative algebras as presented in the excellent
reference [21], as well as the extension of this theory to non-commutative cases. The
reader already familiar with basic facts about Grobner bases could easily skip to the

final section of this chapter.
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3.4.1 Canonical bases for ideals

In order to manipulate ideals, it is convenient to be able to describe a canonical basis.
Also, given a set of generators for an ideal in a polynomial algebra K]z], it is of interest
to be able to determine if a polynomial p(z) is contained in this ideal. Both of these
problems can be solved using Grébner bases. The basic idea is to “reduce” elements with
respect to an ordering. Basis generators can be reduced to give a “least” or canonical
basis. This solves the first problem. If a given element, when “reduced” by the basis
element, reduces to 0, then one can deduce that it is a member of the ideal. This
reduction can be done with an algorithm known as Buchberger’s algorithm and we give

some of the fundamental elements in it.

The idea of reduction of a polynomial is rooted in the Euclidean algorithm for integers,
which generalizes in a straightforward manner to reduction modulo principal ideals:
Given two polynomials p(z),q(z) € Klz], p(x) is reduced modulo q(z) (and also the
ideal generated by ¢(z)) to its remainder (of smaller total degree) r(x) of the polyno-
mial division p(z)/q(xz). That is, an element written p(x) = ¢q(z)t(x) + r(x), where
deg(r(z)) < deg(p(z)), reduces to r(z). This shall be denoted p(z) @), r(x). This r(z)

is called the normal form of p(x).

In the more general setting of Noetherian rings, where ideals are generated by a finite

number of elements, a similar set-up exists, but requires some work to establish.

First, recall the notion of a monomial ordering. All of the multivariate monomial or-
derings reduce to “degree” in the univariate case. A monomial order is a total ordering,

=, of monomials that satisfies two properties:

e if ¢ < b then sa =< ab for any s in the ring;

e and, for any monomial a we have 1 < a.

Two useful monomial orderings are the lexicographical ordering, briefly, Lex , and total

degree, denoted Deglex. Assuming an ordering z1 = xo =< ... of the variables, Lex
compares two monomials z* = 2" 25? ... z7* and P = a:f ! x§2 e xlﬂ ! with the rule that

z® < 2P if and only if a; = §; for ¢ from 1 to some n—1, and «,, > 3,,. Total degree first
compares the total degree of the monomials and then breaks ties with lexicographical

ordering. In the applications we consider we shall use a third ordering, the elimination
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ordering, <gim. Here the variables are divided into two sets, those to be eliminated,
r = x1,...,T,, and the remaining variables, say ¥ = ¥1,...,Ym. In this ordering,
%% <glim xo‘/yﬁl it 2% =peglex :130‘/, with the tie @« = o' broken by the comparison

y'B jDegLeX yﬁl'

To illustrate these orderings, here are the smallest terms of {z,y, z}*, ordered alpha-

betically, according to the different term orderings:

Lex 1<z<a2=<23. .. ... jijy-<:r2yj...ijj...j:Uyzjx2yz
DeglLex 1jxjyjzjx2jxijzjy2j...
Elim(z) 1=<z=<y=<2?<zy=<y’=<...=<2

IA
e
Q
A

Tz Y

The leading monomial of a polynomial is the monomial which is greatest with respect
to a particular monomial ordering. The function which produces the leading monomial

of a polynomial p is lm(p). If v <y < z, then

2

Impex (2 + 2% + 2%y?) = 2% Impegrex(z® + 2% + 2%y?) = 2%y%.

If we use the elimination ordering, with elimination set , then Im(z3 + 22 + 22y?) = 23.

The reduction algorithm uses the same basic idea as the univariate case: we apply a
division algorithm to determine a remainder which is smaller with respect to the chosen

monomial ordering, and proceed recursively with reducing this remainder.

3.4.2 Grobner bases
The observation which motivates the next definition states that if p(z) can be reduced
by q(x), then it must be that one of its terms is a multiple of the leading term of ¢(x).

Definition 3.8 (commutative) Grébner basis. For an ideal 7 of the commutative
ring K[z1,x2,...,2,] and any monomial ordering < of x = z1,...,x,, a Grébner basis
is a subset G of 7 with the property that the ideal generated by the set of leading

monomials of G is equal to the ideal generated by the leading monomials of Z. Concisely,

(Im(p)|p € G) = (Im(q)|q € Z).
The interest in such a generating set of an ideal comes from the following key properties:

e Every non-empty ideal possesses a finite Grobner basis;
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e Every Grobner basis also generates the complete ideal.

What we previously referred to as Buchberger’s algorithm takes as input a generating
set of an ideal and does a finite set of comparisons and reductions to construct Grobner
basis of this ideal. The reduction step compares leading terms of polynomials and
reduces them using a syzygy, that is, a well-chosen combination of the two elements
whose leading term is smaller than the initial two elements with respect to the monomial

ordering. For more details, the reader is referred to [21].

The non-commutative setting

Thus far we have limited our view to the commutative case. In order to treat Weyl
algebras we require a natural extension of this theory. The work of Mora on the cases
of free monoids is a thorough investigation. Galligo [29] considered the Weyl algebra
case, and Chyzak unified these two approaches to suit the context of Ore algebras
of linear operators. In order to prevent too great a diversion in this direction, we
restrict our discussion to a reassurance to the reader that we have suitable analogues
of all of the elements required from the commutative case, notably, Grobner bases and
Buchberger’s algorithm. This is by no means a trivial assertion, and the interested

reader is encouraged to consult the development and proofs in [13, 60].

As remarked upon in the discussion of the commutative case, an important property
of an algebra is the existence of some version of the division algorithm, which allows
one to compute normal forms. In many cases this is accomplished with Buchberger’s
algorithm using monomial orderings. Essentially, one first constructs a Grobner basis
(canonical with respect to the monomial ordering) and then “reduces” the polynomial

using this Grobner basis.

There are certain filtration properties of the Weyl algebra which make this particular
non-commutative version feasible. The existence of a normal form for elements in this
algebra, the proximity of this normal form to the (commutative) polynomial algebra
and the compatibility between the monomial ordering and the algebra operations are

all essential ingredients.

The following example provides some insight into what these computations resemble.

It also illustrates a step that forms a part of the algorithms.
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Ezample. The symmetric series given by G(t,p1,p2) = exp(t/2(p? + p2)) satisfies
three differential equations which can be determined by differentiating the function

in turn by ¢, p1, and pa:

oG
E(t,pl,pz) — (P1/2 = p2/2)G(t,p1,p2) = 0
oG
8—pl(taplap2) - (tp%)G(taplva) =0
oG
8—m(taplap2) - (_t/Q)G(tvplva) =0.

Thus, the annihilating ideal I¢ C A, p, contains
{p_% — 20; + pa, tp1 — Op,, 20p, +t}.

In fact, this is a Grobner basis with respect to the LexDeg(t < p1 < p2 < 0, <
Op, < Op,) monomial ordering. We can reduce a polynomial from Ay p, p, with
respect to this ordering.

Consider the polynomial ¢tp10,, —t. To reduce this modulo this ideal we remark
that the leading term is a multiple of the leading term of one of the elements of the
basis, namely tp; — 09p,. Thus, we can reduce the leading monomial by taking the

well chosen multiple of this element (to make a syzygy, in fact):

am (ﬂ_apl) 2
tp10p, —t ————— —02 .

Remark, 0y, (tp1 — Op, ) = t0p,p1 — 02 = tp19p, —t — 82, by the commutation rule
of p1 and 0p,. The leading term of the reduced polynomial is not a multiple of a
leading term of any element of the basis, thus, it is completely reduced. Since it is

not 0, we conclude that it is not in the ideal.

3.4.3 Effective Integration

We are now sufficiently equipped to return to the discussion of effective, holonomy
preserving operations. We immediately focus our energy on integration, since it most
closely resembles the symmetric function scalar product, and algorithms for its effective

calculation are known.

Here we follow [20, Ch. 10] to give an indication of how to use Theorem 3.6 to make

integration effective for D-finite functions.

Suppose we are given a D-finite function f(z,y) € Rz, y] satisfying

lim m“yb(‘)fc(‘);f < f(z,y) =0, (3.5)
y—Foo
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for all a,b,c,d € N. More precisely, say we have a D-finite description of f(z,y), that
is, the differential system it satisfies. We can use holonomic systems to determine a

differential equation satisfied by F(x) = ffooo f(x,y) dy in the following way.

Further, suppose we have some way to compute a non-trivial D € A,, which decomposes

into a sum of two (non-trivial) operators,
D=S5+0,T,
with S € Ir and T € A, . In this case,
D f(x,y) = (S+0,T)- f(x,y) =0+ 0,T f(z,y). (3.6)

Thus, integrating the leftmost and rightmost sides of Eq. (3.6), and applying the fun-

damental theorem of calculus, we have
| pesewdy= [ o, @ pay=1r- 5% =0,

by Eq. (3.5). Now, since D € A, is not a function of y nor 9,, it commutes, as an

operation, with integration by y:
o0 [o¢]
| ps@ydy=0- [ fayydy=D-Fa)=0.
— 00 —00
This gives us D - F(x) = 0, that is, a non-trivial differential equation satisfied by F'(x).
Such an element D lives in the vector space
(I 4 0y Asy) N Az (3.7)

This is a left ideal plus a right ideal intersected with a particular sub-algebra. The
fact that this intersection is non-trivial follows from Theorem 3.6 (in the next section)

combined with some closure properties of holonomic modules.

Takayama [80] has developed an algorithm to find elements precisely like D, thus making
integration effective. Iterating over k, he generates bases of (BxN1If) and (BrN0yAz ).
The sum of these contains a non-trivial holonomic module, we use an elimination order-
ing to determine a Grobner basis of a non-trivial (sub)ideal contained in the intersection

given by Eq. (3.7). Success is guaranteed by Theorem 3.6.

1By is the Bernstein filtration defined on page 51.
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In Part 2, when we consider an effective scalar product, the problem will be of a similar
nature. Remark that the key step involved eliminating variables in a sum of two ideals,
one a left ideal and the other a right. Essentially, this elimination succeeds because of

a holonomic module which is contained in the sum, to which we apply Theorem 3.6.

3.5 Holonomy and elimination

The holonomy is used in effective integration because it guarantees that the submodule
formed by the intersection of a holonomic module and reduced variable set was non-
trivial. This was important in the above integration to find the element D which
contained only x and 0,. The formal statement of this property of holonomic modules

is as follows.

Theorem 3.6 (Holonomy and elimination; Bernstein). Let x = z1,...,x,, and
suppose that Z is a left ideal of A,, such that A, /Z is a holonomic A,-module. Then
the subalgebra S of A,, generated by any of the r + 1 of the 2n elements taken from the

generators of A,, has a non-trivial intersection with Z. In particular, this is true for
S = {.rr, 81, 82, PN ,87«},

implying that it is possible to simultaneously eliminate all polynomials from T which

contain x1,xs9,...x,_1, and still have a non-trivial ideal remaining.

Proof. Define S, =5 N B, a filtration of S, contained in the Bernstein filtration. The
sequence of dimensions of S,, over K is of asymptotic order O(r + 1) since S is generated

by r 4+ 1 elements.

At the same time, the module A, /7 is filtered by, say, I,, = B, /(B, NZ). The sequence

of dimensions of I, = O(r) by virtue of the holonomicity of Z.

Both of these filtrations exist as a sequences of subspaces (B,,), that is I, US,, C B,,.
Suppose I,, and S,, are disjoint for all n. Then, dimg I,, US,, = O(2r + 1), which, for n
large enough is too large, since it is contained in B,,, which has dimension O(2r). Thus,
there must be a non-trivial intersection of I,, U S, C B, eventually, giving a S and Z.
O



CHAPTER IV

NON-COMMUTATIVE ALGEBRAS OF LINEAR OPERATORS

Just as Weyl algebras provide suitable algebraic machinery to manipulate differential
equations, it is possible to define a similar algebraic structure for other families of
linear operators. The property of Weyl algebras, owing to Galligo [29], which enables
effective closure properties of D-finite ideals is the existence of Grobner bases. This
is also true in the more general setting of Ore algebras, which are introduced in this
chapter. Chyzak and Salvy, in [16], define O-finite functions, and generalize many
of the important results of the previous chapters to the context of linear operators
of Ore type. This makes it possible to enfold, in a common theoretical framework,
effective computations such as summation, multiplication, certain specializations and
integration. Their work capitalizes on the fact that division algorithms are available
in skew polynomial rings, thus making it possible to generalize Buchberger’s algorithm.
One important contribution of Chyzak’s thesis is an effective implementation in Maple
of these closure properties, in [17]. The setting is very general, and the system is well

suited to mixed problem types.

The connection to our investigation of symmetric functions and D-finiteness stems from
the suitability of Ore algebras for computation of g-specializations of symmetric func-
tions. In particular, this set up is well-suited to describe effective maps from the ring
of symmetric functions to K(g)[¢] which yield O-finite functions. These are examined in

the final section of this chapter.
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4.1 Ore algebras

The commutation rule central to the definition of Weyl algebras comes from Leibnitz’

rule for differentiating a product:

(f(@)g(x))" = f'(2)g(x) + f(2)g'(x).

This is specific instance of a Skew polynomial ring, a ring generated by operators denoted

0 and x which act on some other ring of functions, for example, K[z] or Kin].

Definition 4.1 Skew polynomial ring. A skew polynomial ring A[0; 0, 4], is defined
for any integral domain A; where 0 as an A-endomorphism satisfying a relation of the
type

0 f = 3(f) +a(f)o:

with o any A-endomorphism, and J a linear function satisfying

6-(fg)=(o-F)(6-9)+(-f)g

for all f and g. In this case ¢ is said to be a o-derivation.

In the differential case “9” is differentiation and “x” is multiplication by z acting on
differentiable functions. Thus, we set o(z) = x and 6 = %. A second example sets “0”

to the shift operator S, which sends f(n) to f(n+ 1), and “z” is multiplication by n,

and these operator act on integer functions. In this case, o(f) =0 and 6 = S,,.

In these cases, it is sufficient to describe o and ¢ of the above equation to determine how
the two operations interact. In the cases where o and § are constants, the operations
are called Ore operators. In the case when A is a field we call it an Ore algebra. 1t is
also possible to describe Ore algebras of several operators. This general case shall be
denoted

O, = K[01; 01,01][02; 02, 02] - - - [On; On, O] (4.1)

When the context is clear, we may also denote this by K[01, ..., 0,]. Table 4.1 describes

some Ore operators.

The key properties of skew polynomial rings of interest here include the fact that this al-
gebra permits division algorithms, and that we have the necessary machinery to describe

an analogue of Buchberger’s algorithm.
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Operator (@- f)(z) (x- f)(z) (0 f9)(x)
Differentiation, % f(z) xf(x) f(@)(0-g)(x) + (0 f)(x)g(x)
Shift, S, flz+1) zf(x) flz+1)(9-g)(x)
Difference, A fle+1)— f(z) rf(x) flz+1)(0-g)(x) + (0 f)(z)g(x)
¢-Dilatation, Hy., f(qz) xf(x) f(qx)(0 - g)(x)
g-Differentiation, D, % zf(x) flaz)(0 - g)(x) + (9 - f)(x)g(x)
¢-shift, S,., flz+1) q"f(x) [z +1)(0-g)(x)

TABLE 4.1 Ore operators and their Leibnitz rules

4.2 A generalization of D-finite: O-finite

One strong motivation for studying D-finite functions is that, from a computer algebra
perspective, they can be represented by a finite amount of information well suited for
algebraic manipulation. This allows automatic verification of identities of a certain
nature. Algebraically speaking, their annihilating ideals are defined by a finite number

of relations. We generalize this aspect of a D-finite ideal to Ore algebras as follows.

Definition 4.2 0-finite ideal. Let O be a an Ore algebra over a field K. A left ideal

7 of O is O-finite if O/ is a finite dimensional vector space over K.

The functions (or series, or sequences) upon which these operators act, which are anni-
hilated by a O-finite idea are called O-finite. Thus, to be O-finite with respect to the
Ore algebra K(x)[05;1, 0;] of operators acting on K[x] corresponds the usual notion of
D-finiteness and, likewise P-recursiveness is equivalent to O-finiteness with respect to

K[n][Sy;0,S,], acting on the ring of sequences.

In the case of the Weyl algebra there is a direct correspondence between D-finite func-
tions and holonomic functions. It is therefore natural to ask if a similar quality holds

for J-finite functions, but to date, no such general quality is known.

4.3 Closure properties of 0-finite functions

Remarkably, in the rather general setting of Ore algebras it is possible to describe
(effective) closure properties. Thus, many of important characteristics of the Weyl

algebra case remain true. The next theorem summarizes the major closure properties
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of the set of O-finite ideals.

Theorem 4.1 (Closure properties of O-finite functions; Chyzak and Salvy).
Suppose f and g are 0-finite functions with respect to Q,,. Then

1. The function f + g is a O-finite functions with respect to Qy;
2. The function fg is a O-finite functions with respect to Q,,;
3. Given any P € Q,, f satisfies an equation Z?:o (aiPi) - F = 0 with k£ <
dim O/ ann f.
There is also a result for specializations:

Proposition 4.2 (Specializations of 0-finite functions; Chyzak and Salvy).
Let x = x1,...,2p and y = y1,...,Ym. If f(x,y) is O-finite with respect to

K($a y) [095 Oz, 5m] [831? Oy, 5y]7
then for any a € K™, the specialization f(x,a) is O-finite with respect to

K(2)[0y; 04, 0g)-

4.3.1 Effective closure properties

The characterization of 0-finite ideals by rectangular systems is useful for identification

purposes. However, in general they can be computationally intensive to determine.

Definition 4.3 rectangular system. A system of polynomials
B(ml,...,xn,8l,...,8n), 1<i<n

of an Ore algebra is said to be rectangular when each 0; is involved in exactly one of its

elements. That is, we can rearrange the indices to write

Pi(ﬂj‘l,...,:L'n,al,ag,...,an) :Qi(ml,...,xn,&-),l §z§n

For example, the following differential system of As, {0?z2 + 3,03 + 20,05 — 1}, is

rectangular. The following result is a straightforward consequence of linear dependence.

Proposition 4.3. An ideal of an Ore algebra is O-finite if and only if it contains a

rectangular system.
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4.3.2 Summation

One of the most useful closure properties of holonomic functions is closure under in-
tegration. This property generalizes in Ore algebras as the “anti-derivatives” of Ore

operators.

Consider the Ore algebra O = K(z;)[0y; 04, d,], of operators acting upon an algebra F of
functions. We assume the existence of an indefinite operator 9! and a definite operator
071, for some boundary. For example, in the differential case 0 = %, 0~ corresponds
to integration (modulo some analytic conditions) and in the shift case 9 = S, — 1,
we have that 971 = Zﬁ; Further, we assume that they commute with the J; of
O whenever j # i and that they satisfy 97'0 = d0~! = 1 in the indefinite case and
0710 = 90~! = 0 in the definite case. This latter requirement is frequently a constraint

on the functions from F.

Effective versions of the anti-derivative can be determined using a modified strategy to
that presented for integration in Section 3.4.3. In particular, we determine an annihi-
lating ideal contained in the sum of a left ideal and a right ideal. The success of our

approach relies in part on the following result, which generalizes Theorem 3.6.

Theorem 4.4 (Ore Algebras and Elimination; Chyzak). Given Ore algebra O,
suppose that J is a left ideal of O and consider the subalgebra S generated by a family

{a:l-l,...,aciu,(?jl,...,ajv}

of w4+ v indeterminates taken from the set of generators of Q. Then, if the dimension d
of ©/J is such that d > u + v, then the intersection S N J is non-trivial. That is, it is

possible to simultaneously eliminate at least r + s —d — 1 indeterminates of the ideal J.

One application of this theory here concerns the effective summation of J-finite func-

tions, as we shall see in the following section.

4.4 Some O-finite preserving g-specializations

The g-specializations of symmetric functions ex, and ps introduced in Section 2.5.1
describe generating functions of many combinatorial objects, for example plane parti-

tions [75, §7]. Now, g-series appear as refinements of general results, and D ,-equations
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Generating series g-Differential equation satisfied

exq (H) =3, (g;n D,—-1

ex, (£) =3, &-q®) D,—H

exq (H[px)) Dq — a1 (1- Q)kil

exg (32, hin) 2qD,* + (—2%¢® + 2%q + 1) Dy + 23q(qg — 1)? — x(q + 1)?

TABLE 4.2 Symmetric series under ex,

are refinements of differential equations, in the sense that D, becomes a derivation as ¢

tends to 1:

) d (..
liy (D, Flasa) = 4 1im F(aia)).

Here, we use Ore algebras to determine D -equations of g-specializations of symmetric

functions.

4.4.1 Two Ore algebras of interest

Two Ore operators of particular interest to this discussion are the g-differentiation (D)

and g¢-dilation (Hy):

F(z;9) — F(gz;9)
(1-q)z

We note that D, - ex, (H) = H and H, - ex, (£) = L. Thus, if we define corresponding

Dq - F(x;q) = and  Hg- F(x;q9) = F(qz;q). (4.2)

Ore algebras Op and Qg generated by these operations over K, we have already found

a O-finite element for each. This suggests the following problem.

Problem 10. Characterize the elements of K[p] whose image under ex, are O-finite

with respect to either Op or Op.

A partial answer can be obtained by applying the effective summation described in the
previous section to families of symmetric polynomials, and a flavour of the corresponding
results appear in Table 4.2. These were calculated automatically with the aid of the

Holonomy package of Chyzak [17].

We obtain a second family of examples using some basic plethysms. The following

lemma is inspired by the g-exponential formula that Gessel describes in [30].

'Recall H = Yohnand E=3 en
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Lemma 4.5. The following D -equation is valid for any k:

(Dg—2"1(1 = @)*1) - exy(HIpi]) = 0 (4.3)
Proof. By definition, Hlpx] = >, pz% and thus, when we apply ex,
1
exq (H[pk]) = Z mlm(l - Q)kn Z T 7
= = [LQA —q")
1
kn kn
= Z (1 —q) -
= (@*)n

From which we deduce

l‘kn_l(l _ qkn—l)

(qk)n—l

21— ) exg (Hp]) = )
n>1

Now,

a}”k_l(l _ q)nk—l(l _ an)

>0 (qk)n
_ l‘nk_l(l _ q)nk—l
n>0 (qk)n—l

The n = 0 term in the bottom sum vanishes since when n = 0, ¢"* — 1 = 0, and thus

these two series are equal. [

In general the problem of determining D4 -equations of specialization of H[p}] for n > 1

is much harder.

This is certainly an interesting direction to explore. Indeed, one can also ask the same
question about other specializations, and about other Ore algebras and arrive at the

following definition and subsequent general question.

Definition 4.4 0-finite preserving q-specialization. Let O be an Ore algebra
generated by Ore operators that act on K(g)[z]. A homomorphism ¢ : K[p] — K(q)[]
is a O0-finite preserving q-specialization for Q if for any D-finite symmetric series F' €
K[p], ¢(F)(z;q) is a O-finite function of O.

Problem 11. Determine a suitable Ore algebra O of operators acting on K(q)[t] and
a homomorphism ¢ : K[p] — K(q)[z] that is O-finite preserving.
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4.5 Application: Enumeration of plane partitions

To close this section, we describe a combinatorial application of this collection of tech-

niques towards the enumeration of plane partitions.

A plane partition is a two dimensional subarray of positive integers such that they
are (weakly) decreasing horizontally from left to right, and from top to bottom. For

example,

= o O
— W

Remark that the shape of a plane partition is a partition, in this case (4,3,1). The
weight of the plane partition is the sum of the elements in the subarray, in this case
28. Define the generating series Py (q) defined as the sum over all plane partitions p of
shape A,

Pilg) = 3 "),

The fact that relates plane partitions to the discussion here, is the surprising result that

Py(q) = ps sa.

Thus, using the summation technique for Ore algebras, we can determine the D, equa-

tions satisfied by generating series of plane partitions.
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Algorithms
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SUMMARY OF THIS PART

The goal of this part is to provide effective algorithms closure properties described in the
previous part. The inputs and outputs of the algorithms should be understandable to
those who have bypassed the description of holonomy in the previous part, however, the
description of the algorithms and certainly the proof that they offer what they promise
requires holonomy. Applications of these algorithms are provided in the next part.

The algorithms are defined on the following pages:

Algorithm Name What it computes Location

SCALAR_DE (f(p),g(p,t)) Page 80
HAMMOND (f(p), >, hit™) Page 85
SCALAR_DE2 (f(p,t),g9(p,t)) Page 89

ITENSOR_DE f(p) *g(p) Page 109
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CHAPTER V

AN EFFECTIVE SCALAR PRODUCT

This chapter focuses on calculating the scalar product of symmetric functions, intro-
duced in Section 2.1.2. We first briefly recall some classic techniques for computation
and then introduce our solution using holonomic systems. This results in three different

algorithms, which are presented and then analysed.

5.1 Existing techniques for computing the scalar product

Scalar product calculations arise in several applications. It is thus useful to have an
efficient, or at least effective, way to compute them. Many algorithms to compute
scalar products rely on rewriting all functions considered in some orthogonal basis (see
Eq. (1.2.4) and Eq. (1.2.5). This is the usual method to compute the scalar prod-
uct of symmetric functions in the main symmetric function computer algebra packages
ACE [83], SCHUR [85], SF [77], and Symmetrica [46]. The major drawback of this tech-
nique is that the computations can become intensive for symmetric functions of degree

as low as 10, and are unsuited to computations with series.

However, many generating series of symmetric functions have a nice closed form (see
Table 2.1, for example), it is thus reasonable to try to determine scalar products in
terms of generating series. This is much more efficient, when it is possible, and it allows
computations of scalar products of higher degree. In particular, if the generating func-
tion is D-finite, the coefficients are P-recursive. Thus they are computable in a number

of arithmetic operations linear in n in terms of simple polynomial algebra computations.

This is precisely the approach presented for a special case by Goulden and Jackson

in in [36, 37]. They outline, via two well-chosen examples, a method for computing
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<f, o hAt)‘> and (f,> ", hint"). They call the former the Hammond series of f, a nod

to the indirect use of Hammond operators.

Gessel, in [34] contributes techniques to compute scalar products of the form

<f,Zh’fh§”tm> and <f,Zh?h?tm>

for fixed n. The explicit formulas he gives require that f be expressed as a formal sum
in the power sum basis of symmetric series. He indicates that other cases would be

rather cumbersome to pursue in this manner.

Here we consider the general automatic computation of (f, g), for D-finite g provided
f satisfies a natural condition. More accurately, we give an algorithm to compute
a differential equation satisfied by (f,g). In that sense, the algorithms presented in
this chapter are similar to effective integration of holonomic functions. We also prove

correctness and termination of the algorithms.

5.2 Calculating (f,g) by holonomic systems

In this section we introduce a basic algorithm to compute the differential equation satis-
fied by the scalar product of two D-finite symmetric series (under some hypotheses), one
of which depends on the extra variables (typically denoted using t) that “survive” the
scalar product computation. Hence, we get a result which is a series in these variables.
When the number of additional variables is 1, the output is a single differential equa-
tion for which existing computer algebra algorithms might find a closed-form solution.
In most cases however, no such solution exists and we are content with a differential
equation from which useful information can be extracted. Once the ideas are clear on
how to proceed, we describe a succinct formulation of the Hammond series algorithm.
The third algorithm generalizes the first, and allows the ¢ variables to appear in both

symmetric series.

The basic tool in use here is non-commutative Grébner bases in extensions of Weyl
algebras. We work primary with two Weyl algebras A, ;(t), the algebra of differential

operators polynomial in p but possibly rational in ¢; and A;(t), the restriction of A; to
K(t).
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For the algorithm, we work in an extension
Ap(t) = K(t) @k Apit

of the Weyl algebra in which the coefficients of the differential operators are still poly-
nomial in p but rational in ¢. Suppose f and g are D-finite symmetric series from K[t][p]
as per the hypotheses of Theorem 2.7. In particular, they both satisfy systems of linear
differential equations with coefficients polynomials from K(¢)[p]. We can write these
equations as elements of A, ;(t) acting on f and g. The set Z, = anny_, () f (resp. Z,)
of all operators of Ay (t) annihilating f (resp. g) is then a left ideal of A, .(t). Given
as input Grobner bases for Zy and Z,, our algorithm outputs non-zero elements of the

annihilating left ideal ann 4, (f, 9)-

Ezxample. Suppose

f(p1,p2) = exp((pf —p2)/2 —p3/4) and  g(p1,p2,t) = exp(t(p] +p2)/2).
Differentiating f with respect to p; yields a differential equation

%;;pz) —p1f(p1,p2) = 0.

Differentiating f and g with respect to all variables in this manner gives generators

for their annihilating A, ¢-ideals:
Ty = (p2+20p, +1,p1 —0p,) and ZI,= <p% +p2 —20:,20p, — t,0,, — tp1> .
These ideals are used by the algorithms to compute the following element of Z ¢ ,y:

2(1 — )9, — t2.

To calculate such a result, elements of 7; and Z, are combined with the aid of the
adjunction map L. Recall this is defined for an operator P € A,; by (P- f,g9) =
< f, Pt 'g>. Observe that the adjunction map is an involution as well as an algebra

anti-automorphism. For any A,-ideal Z, define
It ={m*t:melI}.

Note that, although adjunction extends to A,(t) by setting til = t;, no adjoint for the 0,

can be defined in any consistent way.
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We now proceed to outline the algorithm for the simple case. From this point on we elect
to have f € K[p], i.e., f independent of the variables ¢. The condition on f that it does
not involve ¢ implies that 0y, - f = 0 for ¢ from 1 to k. We can use this fact to simplify

our calculations. In this case, we will take J; = anny, f. Note that Jy = IJ% NA,.

This allows us to determine the action of combinations of P € J fl.At(t) and Q € I,.
For example, given S € A,, T € Ay,

(£,(PrS+TQ)-g) = (S"P-f.9) +(£.TQ-g) = 0.

Furthermore, if we can find a combination such that P+S +TQ = R € A, and is
non-zero, we have 0 = (f,R-g) = R- (f, g).

Thus, we conduct our search for an element of ann 4, (f, g) by determining a non-zero
element of (J flAt(t) +Z,) N A;. We shall prove in Section 5.6.1 that such an element
exists. Basically, the goal of our algorithms is to compute sufficiently many non-zero
elements of (J fLAt(t)+Ig)ﬂAt so as to generate a D-finite description of the scalar prod-
uct. We now give an example of what this set up looks like, followed by a formalization

of the ideas.

Example. We continue the above example to illustrate how to find such a com-
bination. We remark that the generators we determined for Z; and Z, are in fact
Grobner bases with respect to the DegRevLex ordering, where monomials are first
compared by degree, with ties broken by reverse lexicographical ordering. The
variables are ordered ¢ < 0y < p1 < pa < Op, < Op,.

To generate an element of 7 f‘At (t) +Z4 we begin with a monomial, say p10p, ,
and reduce it modulo the two ideals. In order to create the desired syzygy once
we apply adjunction, however, we must apply L to the monomial and the order of
the variables before reducing with respect to J¢. This has no effect on this partic-
ular monomial, however we reverse the ordering of the p; and 9,,. The reduction
resembles:

J, Z 7
P19p, 5 6131 P10y, = tp? = —tpa + 20;.

By this reduction we have that p18,, — 97 € Jy and p19p, + tpy — 2t0; € Z,. We

use adjunction to combine them in the following way:

0

(0,9) + (£,0) = {(p18p, — 32) - f.9) + (f, P10y, +t1?) - g)
<f’ ((plapl - 8;271)L +p18p1 - th + 2t6t) . g>
= (f. (=p +tp2 — 2t0;) - g) -
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We have thus generated, —p?+tps—2td;, an element of J J}At (t)+Z4. By considering
other monomials we can generate other elements of this set. We describe below how

we can take linear combinations of such elements over K(¢) to find an element in A;.

Remark the similarity to the integration situation. Here Z, is a left A, .(t) ideal,
jfLAt(t) is right A, ;-ideal and objects of the form p + ¢, p € jfLAt(t) and ¢ € I,
does not form an ideal. We generate elements of J fLAt(t) and Z,, and reduce them in

this vector space.

The structure of the sum J fLAt(t) + Z, that we use is that of a vector space over K(t).
The idea is to use K (t)-linear algebra with the vector space structure to eliminate both
the the J,,’s and the p;’s. Roughly speaking, we perform Gaussian elimination to remove

the monomials involving the p;’s and the 0,’s.

The main loop of the algorithm considers monomials of increasing degree with respect
to any monomial ordering on p, 0y, 0;, though we typically choose DegRevLex(t < 0; =
p = 0p). We reduce each monomial a with respect to (the Grobner bases for) J fL.At(t)
and Z,. Note that the chosen monomial ordering is the same for both Z, and J flAt(t).
As a variant calculation, the remainder of the reduction of a monomial a with respect
to jfLAt(t) can be viewed as the adjoint of the remainder of the reduction of o
with respect to Zy. However, to reflect the fact that adjunction modifies the variables,
when reducing with respect to Zy we need to use a different order, specifically, the
ordering < | defined by 6y <, s if and only if Bf = ﬂj. Notice, here this order is

simply DegRevLex (9, < p).

We now state the algorithm more formally as Algorithm 1, followed by an example in
the next section. After this example, we describe the modifications necessary to handle
specific cases more efficiently, and how to treat the general case. The proofs that these

algorithms work and terminate are delayed to Section 5.6.

Notice, if m = 1, as will be the case in our examples, there is only one variable ¢, and

the dimension condition in 3(d) is simplified to
(d) If B contains an element P # 0 from A;, break and return P.

The remainder of the reduction with respect to the Grobner basis G, is a multivariate
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ALGORITHM: SCALAR_DE
INPUT:  Symmetric functions f € K[p] and g € K[t][p], both D-finite

in p,t, respectively given by a system of linear differential op-
erators of Ap and Ap4(t).

OutpruT: A system of differential equations satisfied by (f,g), which de-
scribes it as D-finite.

1. Determine a Grobner basis G, for the left ideal ann g, , () g with re-
spect to any monomial ordering <, as well as a Grobner basis Gy
for the right ideal anng, f L with respect to the monomial ordering
induced by < on Ay;

2. B:={};
3. Iterate through each monomial « in p, d,,d; in the increasing order
given by =;
(a) Write o = By with 8 € A, and v € K[0y];
(

ag = a — (ared< Gy);

)

b) ay = (8- (Bred<Gs1))7;
)
)

Introduce ay and a4 as two new elements into B and reduce so

as to eliminate p, Op;

(e) Compute the dimension of the ideal generated by B N A.(t). If
this dimension is 0, break and output B N A (¢).

Algorithm 1 A basic algorithm for an effective scalar product
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analogue of the remainder of the division. It is such that for any a, ag = a — (ared G)

belongs to the ideal generated by G. A similar statement holds for G.

For this description we have assumed that Grébner bases can be computed for both
left and right ideals. If they can only be computed on one side, say for left ideals, then
the operators oy can be obtained as follows: first, determine the monomial ordering < |
induced by adjunction on A, viewed as a left structure from the ordering < on A,, viewed
as a right structure; then, replace the Grébner basis G #1 with the Grobner basis G for
the left ideal anny, f with respect to < ; ay is then computed as a — (™t red< QJ%)

This way we get QfL = (gf)L.

The introduction into the basis B performs a Gaussian reduction of « with respect to
the elements already in B and returns the new value of B. In practice, B can be handled
(not inefficiently) by a computation of Grobner basis over a module with respect to a

monomial order that eliminates the p;’s and Jp,’s.

Finally, some classical technique can be applied at Step 3(b) to avoid the repetition of

reduction for the same (3.

5.3 Enumerating k-regular graphs

The enumeration of regular graphs is a basic, interesting question of graph theory which
has been considered in several investigations [19, 62, 37, 34]. Nonetheless, it is an
instructive example of our approach and appears as the simplest case of a whole family
of examples. We treat the general case in Chapter 7. The set of all simple graphs
labelled with integers from N\ {0} can be encoded in the product:

G(z) = Z H TiTj = H(l + zx5), (5.1)

GEG (i,))EE(G) i<j

as each edge (i,7) € E(G) is either in the graph or not. We can similarly encode graphs
with multiple edges (multigraphs) by

1
M =1l o=y

1<j

Clearly both of these are symmetric functions, and in fact, G = £ [e2] and M = H [e2].

Section 7.1 will discuss how to determine these equivalences. Both are easily rewritten
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in terms of the p;’s:

G =exp <Z(—1)"(pi —p2n)/2n) and M = exp <Z (P — p2n) /2n) (5.2)

n n

In any given term, the degree of x;, gives the valency of node k. So, for example, the co-
efficient g, = [x1...2,]G gives the number of 1-regular graphs, or perfect matchings on

gf) = [«

the complete graph on n vertices, and in general the coefficient g 7 ... zk]G, also

given as [myn|G, gives the number of k-regular graphs on n vertices. By virtue of (2.4),
coefficient extraction amounts to a scalar product, and the generating function G (t) of

k-regular graphs is given by
t?”L
._ § : (k)  _

where

Hy(t) =) hknn—n! => (hfl—f)n = exp(hyt).

Now, as hy = Y\ Pr/2x (where the sum is over all partitions X of k), the exponential
generating function Hy(t) is also exp(t Y.y, Pr/2x), an exponential in a finite number
of p;’'s. By Theorem 1.5(3), this is D-finite. Further, as a result of scalar product
property (2.5), we can rewrite Eq. (5.3) as

2 2
Gr(t) = <exp Z (_1)n/212)_:l + % + Z 12)_:1 , €xp (tzz—i‘>> (5.4)

n even, n<k n odd, n<k AFE

and now by Theorem 2.7 this generating function G(t) is D-finite.

The generating function for 2-regular graphs, according to Eq. (5.4), is given by

Ga(t) = (exp((p} — p2)/2 — p3/4), exp(t(p] + p2)/2)) -

As we saw in our previous example, Algorithm 1 calculates that Go(t) satisfies the

differential equation
2(1 — t)Gh(t) — t2Ga(t) = 0,

which is easily solved to find Ga(t) = e‘it(tﬂ)/\/l —t.

Table A.1 summarizes the results by the same algorithm for k£ = 2,3,4. These match
with the results in [37].
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5.3.1 Efficient enumeration of k-regular graphs

An efficient procedure for the enumeration of k-regular graphs derives immediately
from the differential equations for the generating series of k-regular graphs collected in

Table A.1. Indeed, one simply needs to convert the differential equation for G(t) into

a recurrence relation for its coefficients ng} and to determine sufficiently many starting
values g([)k}, ggk}, ..., from which unrolling the recurrence enables one to compute ggﬂ for

any n efficiently.

Implementations are available to help with this approach. For example, the Maple pack-
age gfun by Salvy and Zimmerman [70] contains commands dedicated to the conversion
step and the iterative calculations based on a linear recurrence. Computations in the
case k = 4 result in a recurrence relation of order 15 already published by Read and
Wormald [62] and can be found as a formula accompanying sequence number A005815
in Sloane’s encyclopedia of integer sequences [72]. From this recurrence relation and
initial terms, it is then a matter of seconds to compute the exact integer values for

hundreds of terms in the sequence.

It should be stressed that this method proves much more efficient than the direct com-
putation of the scalar product based on a term wise expansion and application of for-
mula (2.5). For example, Stembridge’s implementation in the package SF for symmetric
function manipulation in Maple [77] already requires several minutes to compute the g,[f‘ }
for n up to 15, and becomes unsuitable to handle the symmetric functions that would
be necessary to obtain ggg. Far from showing any weakness of SF’s general approach,
this illustrates the computational progress provided by our techniques in the specific

setting of differentiably finite series.

5.4 Hammond series

In the example above it turned out that, apart from monomials of degree 1, we needed
only to examine the monomials p? and p; Op, to reach the solution. In general, depending
on the monomial order, the algorithm might well consider many monomials before it
adds the ones that eliminate the p;’s and J,,’s. The problem becomes far more serious
as the number of monomials increases. It turns out that, in some cases when the scalar

product is of the type < H (k) (t)>, it is possible to modify the approach and eliminate
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the p;’s and the Jp,’s in a manner using the Hammond series' of Goulden, Jackson and
Reilly in [37]. Here we offer a concise description of their approach and give an explicit

algorithm for their technique.

For f € K[p1,p2,...], the Hammond series of f, is defined as
H(f)(t, - tn) = <f, > hAtA/m(A)!> :
A

where the sum is over all partitions A\ and if A\ = 1™ ... k™ then t* = - “t;fnk

and m(A)! = milmo!- - - myg!.

Observe that the generating function for k-regular graphs is

where the t occurs in position k. This is true for any generating function which takes
the form <f,H(k) (t)), for some f.

The H-series theorem from [37] is useful here. It states that H(0,, - f) and H(p, f) can be
expressed as polynomials in the 9y, H(f)’s. In terms of Grébner bases, this corresponds
to introducing the additional variables t1, ..., (instead of ¢ = t; alone) and working
with the generating series Hy(¢1,...,t;) of the hxz)fl over partitions whose largest part
is k, instead of the univariate H*)(t). The H-series theorem therefore implies that for
an appropriate monomial order, there is a Grobner basis of the set Iy, of all operators

of Ay annihilating H},, with elements of the form

pi—R;(t7dt), 8pi —Qi(t7dt), 1= 1,...,k. (55)

The modified algorithm is shown in Algorithm 2.

After Step (3), all the p;’s and 0,,’s have been eliminated and R contains a set of gener-
ators of a D-finite A;(t)-ideal annihilating (f, Hy). Then, in order to obtain differential
equations satisfied by the specialization at t; = --- = t;_; = 0, Step (4) proceeds in
order by eliminating differentiation with respect to ¢; and then setting ¢; = 0 in the

remaining operators.

Lalso referred to as the Gamma series or the H-series.
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ALGORITHM: HAMMOND
INPUT:  An integer k, and f € K[p1,...,pn].

OutpruT: A differential equation satisfied by H(f)(0,...,0,t) where t is
in position k

1. Compute Gy, a Grobner basis for the left ideal J; annihilating f in A,;
2. Compute Gy, , a Grobner basis of the form (5.5);

3. For each U € Gy, compute ry € A; as the reduction of U by G,

for an order which eliminates p, d,. Let Ry be the set of ry’s;

4. for ¢ from 1 to k — 1 eliminate Jp, from R;_; and set ¢; = 0 in the

resulting polynomials; call R; the new set;

5. Return Ry_1.

Algorithm 2 An algorithm to compute the Hammond series of a symmetric series

Note that the Grobner basis of Step (2) can be precomputed for the required k’s (al-
though most of the time is actually spent in Step (4)).

In order to compute the elimination in Step (4), one should not compute a Grébner basis
for an elimination order, since this would in particular perform the unnecessary com-
putation of a Grobner basis of the eliminated ideal. Instead, one can modify the main
loop in the Grobner basis computation so that it stops as soon as sufficient elimination
has been performed or revert to skew elimination by the non-commutative version of

the division algorithm as described in [16].

This calculation is comparatively rapid since the size of the basis is greatly reduced.
Further, it reduces as it progresses, on account of setting variables to 0. We can compute
the case of 4-regular graphs in a second, in place of a couple of minutes using the general
algorithm. The 5-regular expression requires significantly more computation time, and

the memory limitations on our machines prevented us from being able to compute it.

As a variant calculation for Step (3), one could compute ry; by simply replacing each

monomial of U of the form p{" ... p%”@ﬁf ...9P" with the product

QP ... QM pon ... P,
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5.4.1 Proof of Termination and Correctness

Termination of HAMMOND is obvious. On the other hand, the full proof of correctness
requires a technical result proved in Section 5.6. Essentially, we need the result to show
that Hy(t — 1,...,tg) is D-finite, from which we can deduce correctness. The following
corollary articulates a property of D-finite functions in the simple language of symmetric
functions and D-finite descriptions, and is a direct consequence of Proposition 5.6 that

will be proved independently.

Corollary 5.1. Let f € K][p1,...,pn] and g € Klt1,...,tk|[p1,-..,pn] be D-finite
symmetric series with corresponding D-finite descriptions Jy C Ay, and I, C A, (p,t).
Under these conditions, the vector space <JfLAt(t) +Ig) N A¢(t) is non-trivial and

contains a D-finite description of (f,g).

Proposition 5.2. Algorithm 2 terminates and is correct.

Proof. First, we remark that for fixed k,

k
Hk(tl, e ,tk) = exp Z hjtj
j=1

is a D-finite symmetric series by Theorem 1.5 since each h; is a finite combination of
P1y -5 pj. Thus, f = H(f)(t1,...,ts) = (Hi(t1,...,tg), f) is a D-finite function of
t1, ..., tg, by Theorem 2.7.

We proceed by proving the following invariant of the main loop: the set R;_1 generates
a D-finite description of H(f)(0,...,0,%;,tit1,...,tx). This establishes the result since
it implies that Rj_1 contains a D-finite description of H(f)(0,...,0,tx), in this case, a

single differential equation. This is precisely what the algorithm claims to determine.

To prove the base case of this invariant, note that Ry contains the generators of
(JflAt(t) —i—IHk) N A¢(t). We appeal to Corollary 5.1, to conclude that Ry contains a
D-finite description of H(f)(t1,...,tk).

The general case is proven with the known result [16] that given a D-finite description
of a function f(z1,z2,...,2,), one can compute the D-finite description of the spe-
cialization f(z1,...,2,—1,0). This can be done, for example, by first eliminating 9, ,
removing factors of z,, in the remaining polynomials, and finally, setting x,, = 0 in the

equations. This is precisely the process outlined in Algorithm 2. [
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5.5 The general situation of the scalar product of symmetric functions

So far, we have limited the scope of the algorithms to pairs of D-finite symmetric
functions where only one of the two functions contains the variables ¢q, ..., tx. While
this is sufficient in many applications, it is possible to modify SCALAR DE in order to
accommodate the t;’s in both functions and thus make the full power of Theorem 2.7
effective. While no additional ideas are to be used, the description of the algorithm is

more technical.

SCALAR_DE manipulates monomials o and reduces them modulo the ideals 7 and Z,

in order to determine equations of the form

<f, (o — (ared< jfLAt(t))) -g> =0 and (f, (a—(ared<Zy))-g)=0, (5.6)

where, by hypothesis, on the left, a does not involve any of the 0;,’s. What makes
the situation of SCALAR_DE and the left-hand identity in (5.6) simple is the assumption
that f does not depend on ¢, making the action of A4; on (f,g) act on the right-hand
argument only. The difficulty in generalizing lies in that, in general, the action of 0y,
on f may be non-trivial and must be considered in the differentiation rule for scalar

products,

which itself stems from the differentiation rule for usual products on the level of coeffi-

clents.

The idea is to manipulate operators in three sets of 0¢,’s: one which acts on the full scalar
product (f,g), and one for each of its components, acting directly on the component.
To facilitate the description of this situation, we denote the former by dy,, the one acting
on the left component by 9;,, and the one acting on the right component 0,,. Using this

notation, we wish to view Eq. (5.7) as

Oy, = 0y, + Or,. (5.8)

We thus modify SCALAR_DE by enlarging the family of monomials over which we iterate,
and use Eq. (5.8) to eliminate the 0;,’s before beginning Gaussian elimination. Here, we
iterate over monomials a@lﬁ 97 of the free commutative monoid {p,d,, d;, 0, }* with a €

{p,9p}* to examine the following generalizations of Eq. (5.6):

<(al8f - (aiaf red Gr)) - F, 0] 'g> =0 (5.9)
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and
<8tﬁ - f, (@8] — (ad] red Qg))-g> =0,
or, in operator notation,

(a8 — (atd] red Gy))A) - (f,g) =0 and ) (ad) — (ad) red G,))- (f,g) = 0.

Making use of Eq. (5.8) and applying adjunction to the first equation in Eq. (5.9), we get
a linear combination of terms of the form 85 - (f,a - g) with coefficients in K[t], where
f € NF and o € Ap+(t). The algorithm proceeds as before by performing Gaussian
elimination over K(¢) to eliminate p,dp, and 0,. In our implementation, the monomial

order = is DegRevLex(p < 0, < 0; < 0,). The algorithm is summarized in Algorithm 3.

5.6 Termination and Correctness

The common goal of the algorithms present thus far, is to find a system of differential
equations satisfied by (f, g), a task equivalent to finding a non-zero element in A; which
annihilates (f,g). In this section we present the proofs of correctness for Algorithms 1
and 3. This is the principal results of Theorem 5.3. Although Algorithm 1 is a spe-
cialization of Algorithm 3, parts of the proof would become artificially more involved if

restricted to the simple case. We thus treat both algorithms simultaneously.

5.6.1 Sketch of the proof

The discussion at the beginning of Section 5 has illustrated how to manipulate the

annihilators of f and g to determine a combination
PLS+TQe A with PeTI;,QeZy S e At),T € Apy(t),

which annihilates (f, g). Not all of the elements in ann 4, (f, g) are of this form, however,
as the following simple example illustrates. If f = p;—py and g = p1+p2/2, then (f, g) =
1 —1=0 and thus 1 € anngy, (f,g), but 1 can not be written as a combination of the
form PS4 TQ for these f and ¢g. Nonetheless, we show that the annihilating elements
that can be written this way form a non-trivial subideal of ann 4, (f, g), generated by

the algorithms we describe.

The adjunction properties of scalar products are naturally accommodated by tensor

products. Specifically, the proof below centers around a certain A;-module S whose
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ALGORITHM: SCALAR-DE2
InpuT:  f € K[¢][p] and g € K[t][p], both D-finite in p,t.

OutpruT: A system of differential equations satisfied by (f,g), which de-
scribes it as D-finite.
1. Determine a Grobner basis G, for the left ideal ann g, , () g with re-
spect to any monomial ordering =<, as well as a Grobner basis/ G 1

for the right ideal anng4, g+ with respect to the same ordering;
2. B:={};
3. Iterate through each monomial « in p, 8y, d;, 0, with respect to any

ordering which, after setting 9, = 0,0, = 1 or 0, = 0,0, = 1,

respectively, induces the ordering =;

(a) ap = alg,=0,,0,=1;

(b) ay:=a;— (ayred<Gsr);

(¢) ar:=als,=s,0,=1;

(d) ag := o — (ayred< Gy);

(e) Introduce aylo,—p,—a, X @lp=g,—5=1 and ag X alp=p,=a,=1

into B and reduce so as to eliminate p, 0, Or;

(f) Compute the dimension of the ideal generated by B N A (t). If
this dimension is 0, break and output B N A.(¢).

Algorithm 3 A general algorithm for the scalar product of symmetric functions

89
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elements are tensors, twisted by an action resembling the scalar product adjunction.

For example,

(i_lpi : u) v = (uapz) KUV=u® (81%' 'v)v

which corresponds to the equivalence ((i~'p;) - f,g) = (f,0; - g). (See also Eq. (5.10-
5.13) below.) On the other hand, the 9;, and 0,, that are involved in the description of
Algorithm 3 really are the operators 0y, ® 1 and 1 ® 0y, respectively, acting on .S, where

1’s denote identity maps.

The module S can be expressed in terms of the ideal ann,(f+ ® g), itself contained
in ann 4, (f,g). The former ideal is non-trivial and in fact, is sufficient to describe the
scalar product as holonomic, a property which implies D-finiteness. We demonstrate
that the algorithms calculate a Grébner basis for ann 4, () ( f+ ®g), in other words a

O-finite description of the scalar product (f, g).

The main result is summarized by the following theorem.

Theorem 5.3 (Termination of Algorithms 1 and 3). Suppose f and g are sym-
metric series subject to the conditions of Algorithm 1 (resp. Algorithm 3). Then, Algo-
rithm 1 (resp. Algorithm 3) determines, in finite time, a Grobner basis for a non-zero

O-finite ideal contained in ann 4, ) (f, g)-

The discussion so far has not relied on the explicit description of the scalar product.
Rather, remark that Algorithms 1 and 3 are essentially parameterized by the adjunction
property of the scalar product of symmetric functions, and can easily be redefined and
adapted to other adjunctions. It suits our needs for the proof to consider adjoints for
the usual scalar product of functions, (f|g) := [ f(z)g(z)dz. (To avoid confusion, we

notationally distinguish (f|g) from (f,g).)

Indeed, guided by existing results concerning the preservation of holonomy under oper-
ations involving the usual scalar product, we link the symmetric case to the usual one
with a map from one adjunction to the other. This reduction also demonstrates how
algorithms analogous to Algorithms 1 and 3 for other scalar products could be shown

to terminate with the correct output. (See Section 6.)

To raise this comparison to the level of intuition, we could identify (f,g) with the



Chapter V. An effective scalar product 91

integral

/n L(q— flq1,2q2,...,nq,))(p) G(p) dp1 . .. dpn,

where £ is the modified Laplace transform L(f)(p) = [gn f(q)e~Prart+pnan) dg and

which satisfies
L(q— qif (@) () = —(Op; 0 LY(f) (D).

Notice, for example:

(i'pi-f.g) = /n L(q+ qif(qrs---ng)) () g(p) dp1 - . . dpn (5.10)
- /n(apl © »C)(f)(p) (8%‘ '9)(p) dp1 . ..dpn

= [ £l £ n0.0) ) @ 9)0)dpi . dp

:<f7api'g>‘

Formally, we must work on the level of abstract modules, however. This avoids situations

where the integral is not convergent or the Laplace transform is not defined as a function.

To prove Theorem 5.3, we show Corollary 5.7 below which states that ann 4, ( e g) is
a non-zero subideal of ann 4, (f, g) such that A;/ann 4, (f* ® g) is a holonomic module.
This is done in multiple stages. First, in Section 5.6.2, we define S, the algebraic
structure in which our calculations take place, and prove that it is holonomic by reducing
the problem to the usual scalar product analogue, where similar results are known. This
analogue is detailed in Section 5.6.3. Next, in Section 5.6.4 we express S as a quotient.
Corollary 5.7 follows from this discussion. Finally, to conclude that the algorithm
terminates, we relate S directly to the algorithm and prove in Section 5.6.5 that all of
the generators are determined in finite time. Together, these results prove Theorem 5.3

and thus the correctness and termination of Algorithms 1 and 3.

5.6.2 The scalar product of symmetric functions

We now formally define the A;-module S. Begin with U = A, - f and V = A, - g,
two holonomic A, ;-modules. We shall denote by U L the module of adjoints of U: as
K-vector spaces, U = UL, and a right A, [t]-action is defined on Ultbyu-P=P u
for any w € U+ and P € A, ¢, where the last operation is taken for the left structure
of U. Set S as the tensor product U+ ® Al V> which makes it a K[t]-module. This has
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the desirable effect of encoding the scalar product adjunction relations: for all u € U

and all v eV,

(Op, - u)@v=(udp)®v=(u-i 'p)@v=u® (i 'pv), (5.11)
(pi-u)@v=(u-pi) @v = (1id),) ®v = u® (id), - v), (5.12)
ti-(u@v)=(tiu)@v=(u-t;)@v=u® (t; -v). (5.13)

To endow S with a A;-module structure, let 0;, act on a pure tensor u ® v by
Oy - (u®v) = (0 - u) @v+u® (0 - v), (5.14)

and extend to S by K-linearity. In other words, 0y, = 0, + 0,, after defining 0;, = 0, ® 1
and 0,, = 1 ® 0;,, where 1’s are identity maps.

Armed with this definition and Theorem 5.4 (formally stated and proven independently
in Section 5.6.3), we prove that S is holonomic. Theorem 5.4 is an analogous result for
the usual scalar product, its corresponding adjunction, and the corresponding adjoint
module M* of a module M. It states that for holonomic M and N, M* ® 4,y N is
a holonomic A;-module under the same action (5.14) under J;,. We appeal to this

theorem with an appropriate choice for M and N.

To determine the relationship between the two scalar products and make our choice for
M and N, we compare both adjunction operations. In the symmetric case, adjunction
is defined as the anti-automorphism 1 which maps p; to i0,, and 9, to i~ 1p;, for all
1, and the usual scalar product adjunction is defined as the anti-automorphism x which
maps Jp, to —0,,, and leaves the p; variables unchanged. One way to connect both

adjunctions is to factor | into the composition of three algebra morphisms:
1. The automorphism 7 mapping (p;,d;) to (ip;,i~0;). This corresponds to the
dilation which maps a function f to p — f(p1,2p2,...,npy);

2. The Fourier transform automorphism F mapping (p;, d;) to (—0;,p;) introduced
in Section 3.3.2. Informally speaking, this corresponds to mapping a function f

to its Laplace transform L£(f);

3. The anti-automorphism ~ mapping (p;, ;) to (p;, —0;).
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The important property to note is that each of these three maps preserves holonomy
since they preserve total degree, hence are filtration-preserving bijections. A direct
calculation on p; and 9; verifies that 1= %o F o 7, so that the composite L also is a
holonomy-preserving linear bijection. Thus, we appeal to Theorem 5.4 with M = U7°"

and N =V, which are both holonomic. One concludes that
S=U+t ® A, [t] V= (U}—OT)* @ A, t] V=M @ A, t] N (5.15)

is a holonomic A;-module. After we have deduced the quotient structure of S in Sec-
tion 5.6.4, this information is used to prove that ann4, (f* ® g) is non-trivial and that
the quotient module A;/ ann4,(f* ® g) is holonomic, a fact we use to show that the

algorithms terminate.

5.6.3 Preservation of holonomy under the usual scalar product

In the previous section, we reduced the proof of the holonomy of S = U+ ® A,V to
an analogous result in terms of the usual scalar product, to be proven in this section:

the holonomy of T'= M™* ® 4,1 N for holonomic modules M and N.

The following notion will be used in the proof: the integral of a A, ;-module P is defined

/P:/P@m”@m:P/Q:%mm.

It is the image of composed maps: the Fourier transform F, the inverse image m, under

as

the projection 7 from K" to K" defined by w(p,t) = t, and the inverse Fourier
transform. Specifically we have,
/P:f*mfwy

These maps preserve holonomy (see [10, Th. 3.3.4] or [20, Th. 18.2.2 and Sec. 20.3]), so
that the integral of a holonomic A, ;-module is a holonomic As-module. (See also [10,
Th. 3.1.8].)

The module T fits naturally in between an existing holonomy-preserving surjection
from the A;-module [ M ®@kip,y N to the space (M|N). Factoring this map to pass
through T'= M™* ® 4,1 N yields:

6 ¥
[ M G N o M @4 N > (1), (5.16)
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where 1) maps m®mn to (m|n), and ¢ is a natural A;-linear surjection that we are about
to define in the course of the next theorem, as well as the integral module to the left
of it. After proving that the first module in (5.16) is holonomic, the surjectivity of ¢
implies the holonomy of T'.

Theorem 5.4 (Holonomy of M*® 4 (1 N). Suppose that M and N are two holonomic
Ap-modules, and define T' as M* @ 4,1 N. Then, T is a holonomic A;-module under
the action of 0y, given by

O -(m®n) = (0 -m)@n+m® (0 - n).

Proof. We first focus our attention on [ M ®@K(p, NV in (5.16). Consider the A, ;-module
P:= M ®gppq N, with action of 9y, defined by

api (m@n)= (8172‘ 'm)®n+m®(8pi'n)7
and action of J;, defined similarly.

We can also write this as the inverse image ¢* (M ®k N), where ¢ is the map from
K™t to K tm)+(+m) which sends (p,t) to (p,t,p,t). The advantage of the second
presentation is that the holonomy of P is obtained from the holonomic closure under
inverse image under embeddings (see [10, Th. 3.2.3] or [20, Sec. 15.3 and Ex. 15.4.5])
and the holonomic closure under tensor product over K by Cor. C.13.4.2. Therefore,

J P is holonomic.

Next we define a A;-linear surjection to T'. Define a map from M x N to T which sends
(m,n) to m @ n. This map is K[p, t]-balanced, K|p, t]-bilinear, and surjective. By the
universality of the tensor product, this induces a surjective map ¢ : M ®gpq N — T.

Consider the action of J,, on the tensor m ® n,

¢ (0p, - (m@n)) =((Op, - m) @n+m (dp, - n))
= (8171 'm)®n+m®(api n)
=m® (=0, -n) +m® (0, -n) =0.
That is, >, 0p, - P C ker¢, and thus ¢ also induces a well-defined surjective map
from [ P to T. Any good filtration of [ P will induce a good filtration for T (see [10,

Prop. 1.11] or [20, Lemma 7.5.1]). Thus, T is finitely generated with dimension bounded
by that of [ P. Therefore, T is holonomic. O
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5.6.4 The quotient structure of S

The next task is to express the S = U+ @ A, V. This requires modules over, and
ideals of A, ; rather than A, .(t). We therefore complete our notation and introduce
the annihilators Iy = anny,, f and I; = anny,, g, which to be used in place of 7y =
anng, ¢4 f and Z, = anny, (1) g, respectively. Note that Iy = Ty N Ay and Iy =
K(t) ®xgy Iy, and similarly for g. Last, although adjunction has not been defined for 0,
we use the notation A;t to denote A, ; endowed with both structures of .4;-module on

the left and Ap[t]-module on the right.
Proposition 5.5. The A;-module S = A, - f+ ®4,[q Ap,t - g is isomorphic to

(Aps @, Ap )/ TF ®ayig Ay + A @ a1 Lg)-

Proof. The Ai-module S is also a module over A;t ®A ., Apt, generated by ffog

plt]

Consider the two exact sequences of respectively right and left A, [t]-modules

0 — Iy 5 Ut ,

A

_>0
p,t — 0

0o — I, & :

where a(P) = f+.P, 3(Q) = Q - g, and p and o are inclusions. (Here, f = f+, but we
write f+ when viewed as an element of UL, f when viewed as in U.) We combine them

to make a third exact sequence:

ker(a ® 6) - ;_,t ®.Ap[t] Ap,t ﬂ S — 0,

(5.17)
P®Q — (ffP)®(Q-9)

where, by [11, I1.59, Proposition 6],
ker(a ® f) =im(p @ 14,,) +im(l 41, @ 0) = IF @ a1 Aps + A @ a1 Ly
as K[t]-modules. We conclude that as K[t]-modules, then, as A;-modules,
S~ (A @, Ape)/ ker(a @ B) = (Ayy @ a1 Ap ) /I @0 Aps + Ans @1 Lg)-

O
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To be more explicit, note that this isomorphism maps the class of 1 ® 1 in the quotient

to f+ ® g € S. Remark also that, as A4;-modules,

ker(a @ 8) = {P®Q € Ay, @ Ay : (a® B)(P ® Q) = 0}
={PRQeA, @A, (ff P)®(Q g)=0}
={POQeA,®A,: (PQ) (ffog) =0}
= a4, ®9)

)

so that we also have
annALt®Ap[t]APt(f ®g) =ker(a® ) = If @A, Apt T .Apt ®.4,[1 Lg- (5.18)

Proposition 5.6. The As;-module S’ = A; - (f*+ ® g) is a submodule of S, isomorphic

to

Ay ) ((TF @0 Apy + Ay @4, 1g) NAY,

where A} ~ A, is the smallest K-subalgebra of AJ; ® 4 1y Ap: generated by Kt], 1 @
Oy +0, ®1,...,1® 0 + 0, ®1. In the simplified situation when I; = Oy Ap; + A Jy

for Jy = ann gy, f, S’ is isomorphic to
Ay / ((AtJ;' + Ig) N .At)
We first prove this proposition, and then in the next section we discuss how to connect

the above description of S’ directly to the algorithm and how to apply it to show that

the algorithms terminate.

Proof. The annihilator of f+ ® g in A} - (f+ ® g) is
1 _ 1 !
anny, (f~ ®g) = annA;tez)Ap[t]Ap’t(f ®g) N Ay

In view of the action of A; on S’ through the isomorphism between A; and A}, we thus

have that S’ is isomorphic to

Ao/ ann g (£ © g) = Aj am gy (@ g) = Ay (amngs o0 (2@ 9)01AY).

Owing to (5.18), this proves the general quotient expression for S’ in the proposition

statement.
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Now, to prove the formula in the simpler case, observe that when Iy = 0, Ay + AiJy,
IfL DA Apt = atAzit DA Apt + AtJfL DA, Ap.t
= O Ar Oy Apt + At Ok A
while A, @ Al Lg = At ®xpy Iy, whence the relation
ker(a ® ) = OpAr @Ky Apt + At @k («‘ltJfL +1I).
Since A;t @A, Apt = At @Kpy) Ap,t, we have

S =~ (At @gpy Ap,t)/ ker(a @ B)
~ (K[t] @k Ap.t)/ (K[t] @iy (A7 + 1))
~ Api/(AJf + Ip).
Following these isomorphisms, A; can be identified as the copy of A; included in A, ; in

the last quotient above. Therefore, the submodule S’ of S is isomorphic to the quotient

announced in the proposition statement. [

Corollary 5.7. The ideal ann 4, (f* ® g) is:

1. Isomorphic to (IfL @, Apt T .Alf,t @ 4,11 Ig) N A} as a Ai-module;

2. A non-trivial ideal contained in ann 4, (f,g) and such that A;/anny, (f*+ ® g) ~

S’ is holonomic.

Proof. From (5.18),

L L
ann g, (f~ ® g) = (annA;—’t@Ap[t]Ap’t(f ® 9)) nA

= (I @yl Aps + A @ a0 Iy) 1A (5.19)

and we have shown (1) in the corollary statement. The A;-module S’ ~ A;/ ann 4, (f* ®
g) is a holonomic A;-module, as a submodule of the holonomic module S. Now as A; is
not holonomic, thus ann 4, (f*®g) must be non-trivial by a simple dimension argument.
Finally, we recall that this non-trivial ideal is contained in ann 4, (f, g), since there is a
surjection from S’ to A¢/anny, (f,g) given by ¥ : (u ® v) — (u,v). This proves (2) in

the corollary statement. [J
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5.6.5 Termination

We now link the modules S and S’ to the algorithms and prove their termination.
The termination of Algorithm 3 is more technical to prove than that of Algorithm 1
since 0y, can act separately on f and g. Thus, for ease of presentation, we consider

Algorithms 1 and 3 in turn, to show that they eventually generate a Grobner basis

for ann g, ) (f* © ).
Termination of SCALAR_DE

The basic idea of Algorithm 1 is to compute filtrations of Zy and 7, incrementally and
to recombine them at each step. The algorithm terminates when condition (3e) in the
algorithm description is satisfied. We show that the algorithm will satisfy this condition
by eventually producing a Grébner basis for ann 4, ) (f L ® g). This subideal describes
f+ ®gand (f,g) as D-finite.

Proof. (Theorem 5.3, Algorithm 1) Algorithm 1 places a constraint on f that allows us
to take advantage of the simpler As-structure of U = A, ;- f: when each 0y, - f is 0, we
have U = K[t]®x (A,- f) and I = 0p.Ap 1+ A Jp. Taking the intersection with Aj is then
far more transparent: from the previous section, we obtain the following simplification
of Eq. (5.19):

anng, (fL ® g) = (J;At n Ig) N A, (5.20)

Consider the monoid of monomials generated by p,0d,,0;, ordered by the monomial
order < specified by the algorithm, and denote by V, the filtration <o K(t)3. After
Step (3d) in the main loop of Algorithm 1, with « as loop index, B generates

Lo = (J7 Au(t) N Va) + (Zg N Va).

By our choice of the elimination term order, B N A4(t) consists in generators of the

intersection L, N A¢(t).

Next we show that for each 3, (JflAt(t) +Z4) NV is in L, for some a. Since Vg is
finite-dimensional, so must be the intersection under consideration. Let us introduce a

basis by, ..., bq of it; each b; can be written in the form u; + v; for f; € IJ% (: JflAt(t))



Chapter V. An effective scalar product 99

and g; € Z,, so that the intersection

d
(JrAut) +Zg) NV = @K(t)(fi + i)

i=1
is a subset of
d

d
YK fi+ Y K(t)gi C (At)JF NVa) + (TgNVa) = La
i=1 =1

provided @ = max{max; deg f;, max; deg g; }.

Assume that Algorithm 1 fails to terminate on some input f and g. Since ann 4, ;) (f i®
g) is finitely generated by noetherianity of .A;(t), we can choose a finite set of generators
for it, and set 3 to their maximal leading monomial. Consequently, the chosen generators

are in
ann g, ) (f~ ® g) N Vg = (A(t)J7 + Ig) N A(t) N V.

By the reasoning above, the latter is a subspace of L., for some . When the loop index
reaches a, ann 4, ) (f 1 ® g) is a subideal of the ideal generated in A:(t) by B N As(t).
Since, by Corollary 5.7, A;/ ann 4, (f+ ®g) is a holonomic module, aIlIlAt(t)(fl ®g) is of
dimension 0, and condition (3e) is satisfied. The algorithm terminates, a contradiction

to our assumption. [

A limitation of the algorithm is that we cannot predict in advance how many monomials
must be tested, and hence cannot estimate the running time. Also note that the proof
has used the fact that Algorithm 1 loops over « in the same order < as the one used

for reductions.

Termination of SCALAR_DE2

The termination of Algorithm 3 can be proved similarly, but we must use greater care

when treating the 0.

Proof. (Theorem 5.3, Algorithm 3) Since there is no adjoint action for dy;, we consider
occurrences of J, in the left argument of the scalar product differently from those on
the right side. This is modelled in S by tensoring over A,[t], where J; is absent and
thus, 0;, ® 1 differs from 1 ® 0;,. Both still obey the same commutation law with ¢;
as Oy, Denote the former by 0;, and the latter by 0,,.
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Having distinguished these two cases, we rewrite several of the important elements from

the previous proof using this new notation. For example,

AJ_ ®Ap[t] Ap,t = K<p7t7ap)8l7 87“7 [8p17p]] = [8[1,%] = [8T1)t]] = 572,]')

[pis ps) = [pisty) = [tis t5] = (01,05 = [0r:,ps) = [0ps 1] = 0),

and its subalgebra Aj is generated by K[t|, 9, + 0y, ..., O), + Or,. We can also rewrite
IJJ; R, Aps + Ay @4y Iy in the form If;!at:alK[@T] + K[@l]lgbt:ar. Recall from

the algorithm description that the ordering of the monomials in p, d,,0;, 0, chosen at
Step (3) is subject to constraints that relate it with the ordering < of monomials in

D, Op, Oy; it is thus again denoted by <.

Algorithm 3 actually computes with coefficients that are rational functions in ¢, and
so with elements of 7 JH B,= BZK[&"] + K[DI]Z,| g,—p,- After the algorithm has introduced
(variants of) ay and a4 at Step (3e) with loop index «, the set B contains generators

of the vector space obtained after setting 0; = 0y — 9, in

(zfﬂ at:alK[aT]) AUy + (K[@l]zg\ 8t:&«) AU,

where U, denotes the filtration P4, K(t)8 for o, 3 ranging over the monomials in the

variables p, 9y, 0, 0;. We use this fact to conclude termination.

Let Vé be the image of the Vg of the previous section, under the same transformation
which takes A¢(t) to Aj(t), that is,

Vi= P Kt)p*dy (0 +0)°.
prL0; <6
For each 3, there is 8’ such that Vé C Ug. By noetherianity of A.(t), we have that
ann 4, ) (f L ®g) is finitely generated. Choose a finite set of generators and set 3 to their
maximal leading monomial. The generators are thus contained in ann 4, ;) (f Ltog)n Vs,
which is isomorphic to annA;(t)(fl ® g) N Vg, itself a subset of z’;mnA;(t)(fl ®g) NUg
for some 3'. By (5.19) the latter is also X NUga for

X = IJJ”_ ® .4, () Apt(t) + Ap ()™ @A, (t) Lg-

The intersection X NUg is finite-dimensional, since Uy is so; suppose it has for basis

bi,...,by, with each b; of the form b; = f;®r;+1;Rg;, where f; € I]H&:al, gi € Igbt:a ,
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ri € K[0,], and [; € K[9;]. Then,

d
XNV PRE)(firi + Ligi)-

i=1
Set o/ = max{max; deg f;r;, max; degl;g;}, where here deg extracts the leading mono-
mial. This implies that the generators of the intersection X' Ny are contained in the
space

1L
(T 15,0, KI0/]) MU + (KIDIT, |5, ) O e

By our earlier loop invariant, the same generators, after setting 9; = 9, — 0., are con-
tained in the space spanned by B when the loop index is set to o’. Thus, it suffices
to run the algorithm until & = o/ and the generators of anny,(f+ ® g) will be con-
tained in B. At this point the termination conditions are satisfied, and the algorithm

terminates. [
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CHAPTER VI

RELATED ALGORITHMS

6.1 Computing other scalar products

The work in the previous chapter used the fact that the usual scalar product of functions,
(flg) = [ fg, preserves D-finiteness. Further, the proof indirectly described an effective
algorithm for its calculation; an algorithm more direct than simply the composition of
effective algorithms for integration and the product. In fact, we remarked at the time
that the algorithms given are easily modified to accommodate other scalar products,

provided that the adjoint to multiplication satisfies a particular (natural) property.

We now state explicitly the generalization of Algorithm 1 (and by extension, Algo-

rithm 3), to other scalar products. First, we give the preservation of D-finiteness.

Theorem 6.1 (General D-finite scalar products). Suppose © = z1,z9,..., y =
Y, Y2, .- and
¢ : Kz, y] x K[z, y] — K[y]

is a symmetric, bilinear form with a degree preserving K(xz,y)-automorphism # as

multiplication adjunction.

1. If f € K[z, y] and g € K[z,y] are D-finite with respect to the x and y variables,
one of which requires only a finite number of the x;’s, then ¢(f, g) is D-finite with

respect to the y variables.

2. Furthermore, a D-finite description of ¢(f, g) is contained in ((I;)# + I;) N A,,.

Proof. Begin, as before, setting U = A, , - f and V = A, - g, and denote by U# the
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adjoint module of U. Set S as the tensor product U# ® Ay Vs a K[t]-module which

encodes this scalar product.

Now, any filtration preserving K(z,y)-automorphism can be rearranged into an action
that twists the module U#, into a module M*, with M holonomic. By Theorem 5.4,
we have that S = M* ® 4,1 N is holonomic.

Both of the results now follow from Corollary 5.7. [

Thus, we modify Algorithm 1 (or 3) by essentially doing a text substitution of L by #.
The modified version of Algorithm 1, GEN_SCALAR_DE, follows.

6.1.1 Macdonald polynomials

Macdonald polynomials are a generalization of Schur functions, which incorporate two
additional variable parameters, generally denoted ¢ and ¢t. These functions generalize
the orthogonality property of Schur functions with respect to a modified scalar prod-
uct. This approach can also be used to define Hall polynomials, a slightly simpler
generalization which can in fact be obtained from Macdonald polynomials. The book
of Macdonald [52] provides a thorough description of Macdonald and Hall polynomi-
als, although [51] specifically develops the analogy between Schur, Hall and Macdonald

polynomials using modified scalar products.

The scalar products in each of these three cases preserve D-finiteness, as they satisfy

the conditions of Theorem 6.1, as we shall see.

The first, which can be used to define Hall polynomials, is a symmetric, bilinear map,

()1 - KIpl = K(®)[p];

defined by the relation

m,, (k)
ormdi =L (125) o (6.1)

Denote the value of (py,pa); by zx(t). In this case, the adjoint % to multiplication is

straightforward to compute,

n ., 1—in .
== O = Pn (PnOp)" = Opupi- (6.2)

*

b
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ALGORITHM: GEN_SCALAR_DE
INPUT:  Symmetric functions f € K[p] and g € K[¢][p], both D-finite

in p,t, respectively given by a system of linear differential op-

erators of Ap and Ap4(t).

The adjoint function # of a symmetric, bilinear function

¢ : K[t][p]K[t][p] — K[t] such that # is degree preserving.
OutpruT: A system of differential equations satisfied by ¢(f,g), which

describes it as D-finite.

1. Determine a Grobner basis G, for the left ideal ann 4, , (1) G with re-
spect to any monomial ordering <, as well as a Grobner basis Gy#
for the right ideal ann 4, f# with respect to the monomial ordering
induced by < on Ay;

2. B:={}
3. Iterate through each monomial « in p,d,,d; in the increasing order
given by =;
(a) Write o = By with 8 € A, and v € K[9y];
(b) af = (B~ (Bred< Gs+))vi
(¢) ag:=a— (ared<G,);
(d) Introduce ay and a4 as two new elements into B and reduce so

as to eliminate p, Op;

(e) Compute the dimension of the ideal generated by B N A.(t). If
this dimension is 0, break and output B N A (¢).

Algorithm 4 An algorithm for effective general scalar products
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Remark that x is a degree preserving bijection. Theorem 6.1 implies that a function

(F(p,z),G(p)), is D-finite with respect to = over K(t).

Ezample.  The function (H(x), Hl[es]), satisfies a differential equation in z with
coefficients from K(¢). This differential equation can be computed by Algorithm 4.

One interest of this map, apart from defining Hall polynomials, is that it yields a familiar

g-specialization:

(= ap 0= 0Pp2 ). S ke | =g (1)

A second generalized scalar product is used to compute the Mcdonald symmetric func-

tions. It is defined on the p) basis by

<p)\7p,u> (Q7t)7
with

ke ma(k)
aet) =]] (%) m, (k).

The adjoint to multiplication by p) is determined in a similar fashion:

. _nl—4q") N 1t x
Dyn = Wapn’ 0y, = mpm (Pn0p,)" = Op, - (6.3)

Again, this adjunction satisfies the conditions of Theorem 6.1.

Some coeflicient extraction problems can be set up using the complete and monomial

symmetric functions. In the latter case, we have that

(1—g*
(ma )y, =0 [ | 1—t>‘
xex ¢

6.2 MacMahon symmetric functions

The scalar product defined for the MacMahon symmetric functions in Section 2.7 is
another natural candidate for this approach. Let A = {(a;,b;)™}, and p = {(¢;,d;)™ }.

Then the scalar product satisfies

az-!bz-! i
<p)\7p,u 5>\u H m;! <m> )

(azv i
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where m; is the number of occurrences of (a;,b;) in A.

The adjoint of multiplication by p(4p), is given by

i N CLZ'b]'
p(a,b) - <(a7, 4 b] - 1)| ap(a,b)’

This satisfies the conditions given by Theorem 6.1, and thus we can describe an effective
algorithm to compute this. We use this algorithm in Part 3 to enumerate k x n-Latin

rectangles amongst other applications.

6.3 Computing the Kronecker product

Recall we earlier defined the Kronecker product of symmetric functions by the action

on py given by
pa*pu = (PA(@Y), pu (), » (6.4)

and then extended linearly. Proposition 2.6 stated that under some conditions, the
Kronecker product of two D-finite symmetric functions is again D-finite. As we saw
in Section 2.1.1, this product arises in many different domains such as physics and
representation theory. In this section we show how to modify SCALAR_DE to give an

algorithm to compute the Kronecker product of D-finite functions.

6.3.1 Existing techniques

Since this problem is of interest in a variety of different contexts, it is not surprising

that different techniques have been developed to treat this problem.

Historically, the quantity of interest has been the coefficient of s, in sy * s, where A, i1
and v are all partitions of n. This gives the multiplicity of a character of the represen-
tation. Stein and Zemach [76] note (in 1993) that computing this for n = 16 (denoted
by them to be S(16)) took over 16 hours in 1954, whereas they are able to compute
S5(20) in just under a minute on a Cray supercomputer using their SYMPACK routines.

They muse that “perhaps the next 35 years will see an equivalent improvement”.

To compute these values using computer algebra systems, the packages which compute
the scalar product of symmetric functions, mentioned in the last chapter, also contain

procedures to calculate the tensor product of symmetric functions. For example the
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Maple package of Stembridge dedicated to symmetric function computations, SF [77],
computes, the Kronecker product of two symmetric functions of small degree. His
algorithm expands the symmetric function into the power sum basis and then applies

(2.3) to a pairwise comparison of terms.

6.3.2 A slight modification of SCALAR_DE

The definition given for the Kronecker product in Eq. (2.3) suggests that an algorithm
to compute the scalar product may be modified to compute the Kronecker product.
Indeed this is the case. The basic idea is to “tag” instances of p; with a shadow variable
t; in one of the symmetric functions. We compute the scalar product with SCALAR DE,
and the resulting function of ¢; undergoes the substitution ¢; = p; to return it to a

symmetric function.
That is, we write Eq. (2.3) as py *xp, = <p>\t)‘,p“> ‘t,'_}p,, and in general we have

f(p1,- o) xg(p1, - on) = (f(p1(2Y), .-, Pu(2Y)), 9(P1 (), - - -, pu())) -

6.3.3 Solving problems using ITENSOR_DE

Many interesting problems which use this operation require an infinite number of p,,, and
are thus at first glance seemingly unsuitable for direct application of our algorithms.
However, applying our algorithms for several truncations of a combinatorial problem
can serve as a means to generate information upon which reasonable conjectures can be
formulated. For example, Eq. (6.6) below was initially conjectured after a clear pattern
emerged from a sequence of appeals to Algorithm 5. For each of these, we render
the problem applicable by setting most p,’s to 0. In some cases, notably symmetric
series arising from plethysms, there is sufficient symmetry and structure which can
be exploited to verify these guesses by applying one of Algorithm 4 to well chosen
subproblems. That is, in certain cases, such as the example that follows, the Kronecker
product of two functions each with an infinite number of p,, variables can be reduced

to a finite number of symbolic calculations.

For example, if two symmetric series F' and G can be expressed respectively in the form

F(pl,pQ,. . ) = H fn(pn) and G(pl,pQ, .- ) = H gn(pn)a

n>1 n>1
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ALGORITHM: ITENSOR_DE
INPUT:  Symmetric functions f € K[p] and g € K[t][p], both D-finite

in p,t, respectively given by a system of linear differential op-

erators of A, and Ap4(t).
OutpuT: A system of differential equations satisfied by f * g, which de-

scribes it as D-finite.
1. Call G the system defining G and set G’ = {t10;, — p19p,, - - -, tnO, —
pnapn }’

(a) For each element in G, replace p; with t;p;, 8, with ¢; *9,, and
add to G’;
(b) For each element in G, replace p; with t;p;, 9, with p; ';,, clear

denominators, and add to G’;

2. Follow the steps of Algorithm 1 on the input system for F' and the
modified system G’ for G;

3. In the output of Algorithm 1 make the substitution ¢; = p; and 0, =

0Op, and return this value.

Algorithm 5 An algorithm for an effective Kronecker product
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for functions f,, gn, then one can easily deduce that
FxG= H Jn(Pn) * gn(pn)- (6.5)
n>1
Remark that series which arise as plethyms of the form h[u] or e[u], where u can be
written as a sum ) u,(pn), for some functions wu,, are precisely of this form. For
example, we can use this fact to compute the Kronecker product of the sum of all Schur
functions

2

b; P2i—1
F :E =h 1/992 — 1/92p5] = i
(p1,p2,---) - S\ [p1+ /pl /pg] exp< i —22,4—22,_1),

and itself. Due to the patterns present, we can reduce the calculation of the entire
product to two symbolic calculations. More precisely, in order to determine a system of
differential equations satisfied by G = F' * F' we consider only the even and odd cases,

and set

f2n = exp(p%n/éln) and f2n—1 = eXp((p%n—1/2 + p2n—1)/(2n - 1))

All of the functions g2, = fon * fo, are obtained from a single computation by our
Algorithm 4, adapted to handle a formal parameter. This modification is of the same
nature of that described in Section 9.1. Here we introduce the scalar product given
by the adjunction formula p® = nd for a formal parameter n from the field K. Thus
computing exp(p?/4n) * exp(p?/4n) with this variant algorithm results in a first-order

operator in p and 0, which, once interpreted back in terms of p,, becomes:

8 n n
(1- P%M + Pngn(pn) = 0, for even n.

" Opn
A second calculation for go,_1 = fon_1 * fon_1 results in:
Ogn(p
n(l+p,)(1 — pn)2% — (1 + (n+ Dp, — npi) gn(pn) =0, for odd n.
n
These linear equations are satisfied respectively by the functions
—-1/2 Dan—1 2 —-1/2
oon = (1 = #2n) g o (i) (7o)

Applying Eq. (6.5) above, we get the following result.

Proposition 6.2. The Kronecker product of the sum of the Schur functions with itself
is
—-1/2

(Z)\: s>\> * (Z)\: 3)\> = exp Z = 1};?;__1 p— H (1 —pi) . (6.6)

n>1 n>1
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Combinatorial applications
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SUMMARY OF THIS PART

This part illustrates some combinatorial problems that can be formulated as a scalar
product computation. The express aim is to automatise the solutions of these problems.
Included among these are: a generalization of regular graph enumeration using the the-
ory of species; A generalization of involutions related to Young tableaux with repeated
entries; MacMahon symmetric functions are used to determine enumerative results on
k x n-Latin squares.



114



CHAPTER VII

COEFFICIENT EXTRACTION AND GENERATING FUNCTIONS

One interesting combinatorial motivation for studying scalar products of symmetric
functions is the large number of enumeration problems that can be expressed as such
scalar product computations. As we mentioned earlier, a typical example is the differen-
tial equation satisfied by the generating function for k-regular graphs, seen in Chapter 5.
It is but one of the simplest of a family of combinatorial problems described in this chap-
ter using species theory. Some of the examples in this section have appeared previously
in various sources: see for example [33, 34, 36, §4.3], and [75, Ch. 7]; They illustrate
how algorithms of Part 2 allow us to determine the solutions automatically, in a unified

manner. Thus, classical results are obtained as output from our algorithms.

These examples are all special instances of a notion of D-finiteness for species of struc-
tures that still has to be rigourously investigated. This notion of D-finiteness is clear
in the instances we consider, but a general framework! requires technical development
which would distract us from our current purpose. In each example the essential ar-
guments for D-finiteness are clear and to make this obvious we exhibit explicit linear

differential equations satisfied by the species under consideration.

The first set of examples illustrates a systematic process for enumerating structures
which can be described as sets of objects, these objects being subject to certain regular-
ity constraints. As we shall see, these structures are encoded by symmetric series, and
generating functions for some regular sub-families are extracted using scalar product

computation. Section 5.3 illustrates how labelled graphs can be encoded using mono-

Linvolving the notion of virtual polynomial species, i.e. with finite support
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mials. A scalar product computation

Zgnt”/n! = <exp (Z(—l)”(pgb —an)/2n> , exXp (hkt)> , (7.1)

n

determines the generating series for k-regular graphs. (That is, g, is the number of

labelled k-regular graphs on n vertices.)

We explain in the next section how to set up such problems as a scalar product calcu-

lation.

7.1 Theory of species

Species theory (in the sense of [7, 44]) offers a formalism for defining and manipulat-
ing combinatorial structures which provides natural connections between combinatorial
operations on structures, such as union and product; and analytic operations on corre-
sponding encoding series, like addition and multiplication. An important connection to
our work here is that the series we consider are D-finite symmetric series, and many of
the natural combinatorial actions preserve D-finiteness on the level of these series. In
this section we only outline a notion of D-finiteness for species. Strict conditions are
not presented in view of the need for the lengthy development of theoretical tools that

would be disproportionately time consuming compared to our needs.

A description of a species of structures F contains two ingredients. The first describes
how to produce, for any given set U, a finite set F[U]. Intuitively, F[U] is the set of
structures of species F constructed using elements from U. The second ingredient for
a species describes how structures in F[U] can be naturally translated into structures
in F[V], along any explicit bijection from U to V. The strict sense of “naturally” is
made precise in [7]. Practically speaking, a species could be specified using any of the
traditional languages of set theory, algorithms, diagrams, or any other means that makes

F[U] clear given U.

Basic examples of species include: the species of sets E[U] = {U}; the species charac-

teristic of sets of cardinality k are defined as
Ex[U] =U, if |U| = k and {} otherwise;

the species G[U] of graphs with vertex set U; and the species of permutations, P[U] = Sy.
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Now, we have not explicitly given the translation rule along bijections since it is clear

in these examples. This is really only necessary when it is not obvious.

7.1.1 The cycle index series

Associated to each species is a cycle index series, (in the sense of Pélya). This series
makes automatic many notions linked to Pélya theory. In particular the enumeration

of structures up to isomorphism.

Define p,, as the power sum symmetric function. To each species F we associate a

symmetric series Zg(p1,p2,...), which is defined as follows.

Definition 7.1 cycle index series. For any species F define its cycle index series

Zr as the series in C[p1,po,...]:

ms2

Lyt
Ze(p1,pa,--) == Y Y fix FP\]% (7.2)
n AFn

where the value of fix F[A] is the number of structures of F which remain fixed under
some labelling permutation of type? )\, and my, gives the number of parts of A equal

to k.

For example, fix E[A\] = 1, (since any permutation of the elements of U does not change
U). Thus,

pmlpmg . .pmk
Zelpupaoo) =) ) —— = e <an/n> |
n

n An

The cycle index series embodies the essence of Polya Theory, and the enumeration
of configurations up to isomorphism. It appears as a set version of the Frobenius
characteristic of the character of a representation of the symmetric group. It turns
out that this gives us a natural way to determine generating series for combinatorial
families, such as in Eq. (7.1), of structures that satisfy regularity conditions. We develop

this further in Section 7.1.4.

2A permutation of type (1™!,2™2,...) has m; fixed points, mz cycles of length 2, etc.
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7.1.2 Combinatorial operations

There are several combinatorial analogues to the usual operations on series, and we shall
see that these operations translate well into operations on cycle index. For example, for
any set U, the sum of two species, F1 4+ F2 can be defined as the disjoint union of F;[U]

and Fo[U]. Correspondingly,

ZF1+F2 (p17p27 .. ) == ZF1 (p17p27 .. ) + ZF2 (p17p27 .. ) (73)

Here all sums stand for disjoint union. The product of two species is defined as
(Fi-Fo)[U]:= > Fi[V] x Fo[W].
V4+Ww=U

Correspondingly,

ZF1~F2 (p17p27 .. ) == ZF1 (p17p27 .. ‘)ZFQ(pl7p27 .. ')7 (74)

the usual product in C[pi,p2,...].

Another useful operation is substitution. The substitution of two species F10F5, denoted
(F1 o F9)[U] is formally defined as
(FioF2)[U]:= Z Fi[m] x H Fa[6],

mePart[U] Bem
where Part[U] stands for the set of partitions of U. Elements of 7 are the blocks of the
partition. Now, instead of unravelling the above definition, we explain with the aid of
an example. The substitution (E o Ey) [U] is equal to set of partitions of U into blocks
of size 2. A typical element of E o E5[{1,2,3,4}] would be {{1,2},{3,4}}. Another is
E o C, sets of cycles, which is equivalent to permutations. The effect on the cycle index

series is best described using symmetric function plethysm p,[g] as defined on page 29

Zr, oF, (P1,D2, P35 - - -) = ZF, [ ZF,] = ZF, (D1 [ ZF,) , 02 [ ZF,) 5 - - ). (7.5)

There are other kinds of combinatorial operations, and the reader is pointed towards [7]

for details.

7.1.3 D-finite species

We would like to be able to obtain many examples of D-finite symmetric series from

combinatorial considerations. The notion outlined here, and the subsequent discussion,
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rely on some terminology from species which we shall not define, we only use it to
illustrate that there are subtleties surrounding the exact details of the definition. A
polynomial species with finite support essentially has a finite cycle index. The derivative

of a species F, is itself a species denoted F’ is formulated as
FU] = FIU + {+}],

where “x” is an element added to U. For example, for k > 2, E} [U] = E;_;[U]. All the
usual analytic properties of the derivative apply in the realm of species. This allows for

a formal, combinatorial notion of a differential equation.

Echoing the definition of D-finite function in one variable we could simply say that a
species F is D-finite if it satisfies a linear differential equation with coefficients polynomial
species, but we need to consider these coefficients to be “virtual” species in the sense
of [7].

To avoid this, we can also define them as follows.

Definition 7.2 D-finite species. A species F is said to be D-finite if and only if it

satisfies an equation of the form
S,F™ 4 4 SoF =R, F™ 4 4+ RoF (7.6)

for some polynomial species (in the usual sense®) S;, and Ry, for 0 < k < n. We assume

a condition of non-triviality, Sy # Ry, .

Now, one might think that this takes care of the notion of D-finiteness for species, but
there is still the problem of describing explicit closure properties in this setup. Let us
just say that this can be done, and instead let us exhibit the relevant equation of the

form Eq. (7.6) for our examples.

Example. The species of lists is defined
L[U] = {(a17a27 .. '7an) ta; € U,TL S N}

The species X is the more common notation for E;. Lists satisfy the differential

equation L’ = XL’ + L, thus lists are a D-finite species.

3Species which can be written as polynomials of molecular species.
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Ezample. The species of sets E satisfies E/ = E, thus E is a D-finite species. Fur-

thermore, the species G = E o E; satisfies
G =(E'oEy)-E),=X-G,

by applying the chain rule. Thus, G is D-finite. In fact, any substitution of a
polynomial species F into E is D-finite since (EoF)’ = F'- (EoF), and derivatives of
polynomial species are again polynomial species. This is the case for some of our

examples here.

Ideally, the following should hold (but it remains to prove them).

1. If F and G are D-finite species, then so are F + G, and F - G, F/;

2. If G is a polynomial species, (in particular, its cycle index series is a polynomial),

then F o G is a D-finite species;

3. If F satisfies an “algebraic equation” of species, including for instance, equations
of the form F = XP(X,F) for polynomial species P, then F is a D-finite species.

(This is the case for many families of trees, for example).

Proving these results should be essentially similar to the function case, however, particu-
lar attention is required when subtraction intervenes. Essentially, we separate equations
into positive and negative parts and manipulate the equations in such a way as to avoid
division. These delicate details should pose no problem, however they are not treated

in this discussion.

One observation that is useful, is that the set of all D-finite species F such that Zf is
a D-finite symmetric series is closed under the above properties and has some useful
applications. One sub-family of this set is treated next. Ideally, we would like to be able
to characterize all species which have D-finite generating functions as D-finite species.

To do this propertly we have to invoke generalizations of derivatives of species.

We now focus our attention on the case of S = E o F for polynomial F. Certainly for
all species of this form we have that the cycle index series Zs(p1,p2,...) is a D-finite
symmetric series since it is the plethysm of H with a polynomial. This property yields
some interesting applications when other results on D-finite function are reinterpreted

in this context.
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The exponential generating series of a species F is the sum F(t) = ) |F[n]|t"/n!,
where |F[n]| is the number of structures of type F on a set of size n. The ordinary
generating function, F(t), is the sum F(t) = >, Orb(F[n])t", where Orb(F[n]) is the
number structures of F on a set of size n distinct up to relabelling. Also recall the
notation [x"]f(x) refers to the coefficient of [x™] in the expansion of f(z). This definition

extends likewise to monomials.

This next proposition illustrates how the combinatorial property of D-finiteness can
yield a number of D-finite series. This is useful since in many cases it is easier, or

preferable, to prove D-finiteness on the combinatorial level.

Proposition 7.1. Suppose F is a D-finite species such that Zg is a D-finite symmetric

series and let p, = o7 + x5 + .. ..

1. The exponential generating function F(t) is D-finite with respect to t.

2. If the cycle index Zg(p1,p2,...) is D-finite with respect to the x; variables, then

the ordinary generating function E(t) is D-finite with respect to t.

3. For fixed k, the series Y., ([z} - -+ a¥]ZF) t" is D-finite with respect to t.

Proof. The first two parts are proven using two basic results about cycle index series:

F(t) = ZF(pl)p27"')|pn:61nt and F(t) = ZF(p17p2)"')|pn:t” .

Recall from the discussion on specializations in Section 2.5 that the first preserves D-
finiteness for any n, while a sufficient condition on the second specialization requires
that Zg(p1, pe, . ..) be D-finite with respect to the x;-variables, (when viewed as a series
in Clzy,z2,...]).

The third item of the proposition is proved by remarking that >, ([z}--- 2] ZF) t" =
(Zg,exp(thy)), which is D-finite by Proposition 2.7. 0

7.1.4 Defining combinatorial families

We offer now a brief combinatorial interpretation of the specialization Zg(p1,po,...).
To illustrate the idea, we consider the impact on Ex. The general theory is developed as
multi-sort species in [2], or as symmetric species by Bergeron [5, 6], and more generally

in Pélya theory, see for example, [22].
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2 .

{1, }.13.4}, (5.6}, {7.8}} RN
], []

: O
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FIGURE 7.1 A correspondence between a coloured set partition and a graph

Note that
Ze,(pr,p2,-- ) = Y A/ = hu,
A
the complete homogeneous symmetric function and consequently Zg(p1,po,...,) = H.

The combinatorial interpretation, as prescribed by Pélya Theory, is that this cycle
index series considers all distinct (non-isomorphic) colourings of the elements, which
we explain with the aid of E. In general, Zg counts isomorphism classes of coloured
F-structures. The species Ey over the set {a,b} is the set with one element {{a,b}}.
All possible “colourings” of this set, say by positive integers, gives S = {{i,j} : i < j}.
Observe that colouring a by ¢, and b by j, is considered “isomorphic to” colouring a by
j and b by i. We encode each {4, j} in S by the monomial ¢;t;. This includes the case
when i = j, which we encode by t?. Note, if p, = t}+t2+. .., we have Zg, (p1,p2,...) =

ho = Zig ; tit; which is precisely the sum over all coloured configurations of S.

Using the fact that E o Eo corresponds to the set of pairs, one deduces from the general
notion of cycle index series that Zg.g, counts the isomorphism class of sets of pairs
(edges) of elements with colours (vertices). This correspondence is illustrated in Fig-
ure 7.1. These isomorphism classes can be bijectively encoded as multigraphs on the

set of colours.

For many applications, like regular graphs, we would like to count colourings without
repetition. There is a notion of series, comparable to the cycle index, which takes into
account this kind of restriction: the asymmetry index series, denoted I'g, of a species F
as introduced by Labelle [7]. The series I behaves analytically in much the same way as
the cycle index series, notably, substitution (in almost all cases) is reflected by plethysm,

etc. This compatibility of I' with operations allows one to reduce computations of said
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I" to basic species such as given in the table in Appendix C.

In a fashion similar to the cycle index series, I'r arises through the enumeration of

colourings of asymmetric F-structures. In this case,
g, =e; and I'e=¢.

Taking the same species E o E5 as above, and using the asymmetry index series with a
similar argument, we get that I'gcg, = E[ea] encodes simple graphs without loops on

the set of colours precisely as is determined by Eq. (5.4).

This gives us a way to have direct access to monomial encodings of combinatorial objects,
as symmetric functions expressed in common bases, like the power sum basis. In fact,
one can show that graphs with loops are encoded by £[hs], and graphs with multiple
edges, but no loops are given by H|[es]. Appendix C presents some series in the power
sum basis that can be composed to determine the encodings of different combinatorial

structure. In the next section we consider sets of sets.

7.1.5 Set Covers

Using this framework we can examine other species of structures built up from smaller
objects. These species will be “D-finite” and both Zg and I'r will give rise to interesting

combinatorial objects. To begin we treat sets of finite sets.

Definition 7.3 k-cover of a set. A collection of sets B = {B1,..., By} covers [n] =
{1,2,...,n} if U%, B; = [n]. A cover is restrictive if all of the B; are distinct. Here?,

a k-cover of [n] is a cover in which any given element of [n] occurs in exactly k subsets.

One can deduce with combinatorial reasoning that the number of distinct covers for a

% kzn::o(_l)k <Z> 92"k,

set of n elements is

Devitt and Jackson [24] give a generating function for the number of k-covers of [n] by r
subsets, a notion introduced in [18]. Further, they prove that the number of arithmetic

operations required to actually calculate the number of k-covers of an n set by their

4Some sources use the term k-cover to refer to the covers with exactly k subsets.
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method is bounded by en*logn. Results for fixed k, specifically k = 2,3 were treated
in [18] and [4] respectively.

We can derive direct enumeration results in a similar manner using HAMMOND.

A j-set is a set of cardinality j. Remark that a k-regular graph on n vertices is a
restrictive k-cover of [n] into 2-sets. In general, calculating the generating function for

restrictive k-covers of [n] into j-sets can be expressed as

<FEoEj(plap27“‘)?Zthn> = <5[ej],2h2t">.

n

To determine k-covers with mixed-cardinality sets, say both ¢ and j, we calculate
<FEO(E'L+E]')(p17p27 .. ')7 Zn thn> = <(€[6Z + 6]'], Zn hztn>

This yields the following simple consequence of Theorem 7.1.

Corollary 7.2. Let S be a finite set of integers. For fixed n, the generating function

for k-covers of sets by sets with cardinality an integer from S is D-finite.

For example, we express the problem of counting distinct restrictive 2-covers of a set of
cardinality n by sets of cardinality less than 5 as a scalar product. Denote the generating

function of such set covers, by S(¢). We have,

S(t) = <5[e1 +eatested, Y hgt”> . (7.7)

n

This problem is perfectly suited to HAMMOND. We can determine this differential equa-

tion, and the initial terms of the counting sequence:

1,0,1,8,80,1037,17200, 350682, 8544641, 243758420, 8010360039.

Cycle covers

We modify this notion slightly to consider another related problem, well suited to this
paradigm. Define a restrictive cycle cover as a covering of [n| by distinct cycles. Again,
it is k-regular if every element occurs in exactly k cycles. A 3-regular cycle cover of
[5], for example, is {(135)(2453)(14)(1254)(23)}. Notice that this is distinct from the
cover {(153)(2534)(14)(1542)(23)}.
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Remark, when k£ = 1 the total number of 1-regular cycle covers is simply the number of
permutations. In the case of a restrictive cycle cover, this limits the size of each cycle
in the permutation. For example, the number of permutations in which each cycle is of

length less than 3 is

<FE0(C1+C2+C3)(p1,p1, . ')a Z h?tn> = <5[p1 + p%/2 +p%/3]> exp(plt)> :
n
This is counted by the sequence

1,1,2,6,18,66,276,1212, 5916, 31068, 171576, 1014696.

7.1.6 Parameterized solutions

Capitalizing on the symbolic nature of the algorithms, we can add additional formal
variables to determine solutions of parameterized problems, or, rather, problems with

“weighted” parameters.

For example, we can use parameters to describe objects which are, in some sense,
between two objects. For example, E[es] encodes simple graphs whereas E[hs] encodes
graphs with loops. The series E[ahs + (1 — a)es] uses a variable a, which when between
0 and 1 gives a continuous interpolation from the series encoding simple graphs to the
index series encoding graphs allowing loops. We can use the scalar product algorithm
to determine the differential equation satisfied by two-regular graphs with this extra
parameter governing the “simplicity” of the graph. That is, when the parameter is set
to 1 we have count graphs with loops. When it is set to 0 we have the counting sequence
for graphs without loops. For other values, in particular for values between 0 and 1,
this can be viewed as a random variable, though an explicit combinatorial description

is less clear.
The function G4(t) = (€ [aha + (1 — a)ea], Y h4t™) satisfies the differential equation

d
(=2a —t* +2at) Gq (t) + (-2t +2) 5 Ca (t)=0
(determined by SCALAR_DE or HAMMOND), has solution
~1/4t+a—1/2)t
t—1

The initial terms in the counting sequence are

el

Ga(t) =

La,a®,14+a® 4a+a*+3,10a%> + 15a + a® + 12.
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111 1,23
212 33|14
414 5
519

FIGURE 7.2 A 3-uniform Young tableau

7.2 Generalized involutions and regular tableaux

Another family of combinatorial objects whose generating function can be resolved with
this method is a certain class of Young tableaux, namely k-uniform Young tableaux.
A Young tableaur is a Young diagram with the entries of the array filled with positive
integers. A standard Young tableaux of shape A F n satisfies the condition that the
integers from 1 to n fill the boxes in a manner which is strictly increasing from top to

bottom and weakly increasing along the rows from left to right.

Standard Young tableaux are in direct correspondence with many different combinato-
rial objects. For example, Stanley [75] has studied the link between standard tableaux
and paths in Young’s lattice, the lattice of partitions ordered by inclusion of diagrams.
This link was then generalized to tableaux with repeated entries (see [35]). Gessel re-
marks that such paths have arisen in the work of Sundaram and the combinatorics of

representations of symplectic groups [78].

The weight of a tableau is p = (p1,...,ux) where pp is the number of 1’s, ps is the
number of 2’s, etc. in the tableau entries. Here we consider Young tableaux where each
entry appears k times that is, tableaux with weight = (k, k,--- , k), which are column
strictly increasing and row weakly increasing. Such a tableau will be referred to here as
k-uniform. Figure 7.2 illustrates a 3-uniform tableau. Two observations from [52] are
essential. First, [z ---2}*]sy is the number of (column strictly increasing, row weakly

increasing) tableaux with weight p. Secondly,
Zs)\ = H[e1 + ez] = exp (pr/Qz + Z pl/z> )
A i i odd
which is D-finite.

Define ygk) to be the number of k-uniform tableaux of size kn, and let Y, be the gener-
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ating series of these numbers:

Vil = Y

The previous two observations imply

k k
30 = (o (oot 3 i) S
=1 i odd n
This problem is well suited to our methods since again we treat an exponential of a

polynomial in the p;’s.

Calculating the equations for k£ = 1,2,3,4 is rapid with either Algorithm 1 or Algo-
rithm 2. The case & = 5 exhausted the memory on the machine after two weeks of
enthusiastic calculation. The resulting differential equations are listed in Table A.3.
For k = 1,2 these results accord with known results, for example, [39, 75], and are
the entries A000085 and A000985 respectively in the Sloane encyclopedia of integer se-
quences [72]. The first few values of yq(f) are summarized in Appendix B. For k = 3,4

these appear to be new.

7.3 Orthogonal polynomials

Next we consider some problems that are not of “regular structure”-format. Orthogonal
polynomials can be described as solutions of differential equations, making them ideal

candidates for manipulation in the context of holonomy.

The associated Laguerre polynomials, Lq(f) (x) satisfy a differential equation, and many
recurrence properties, see Andrews [1] as a reference. When these polynomials are

evaluated for certain choices of x the value L&k) (z) has a combinatorial description.

A sequence of integers from 1 to n is said to have increasing support if it contains
1,2,...,n as a (not necessarily consecutive) subsequence. Thus, 1213 has increasing
support while 1312 does not. Goulden and Jackson [36] observed that the number Iy (n)
of sequences aj,as,as, ... with increasing support whose elements form the multiset

{ai,a,as,...} = {1MH122 e+l At 1Y can be expressed as a scalar product,

In(n) = <hA, (1 —p1)~ " Vexp <Z(—1)’fk(£7’fpl)k) > : (7.8)

k
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Gessel deduces from the expression (7.8) that I\(n) = n!L%k)(l) when A = 1%, That is,
he counts the number of sequences with increasing support of the multi-set

(2, kK% (k+1),...,n}.
It is possible to describe the generating function of L,(lk)(l) using generating functions

of this expression.

Proposition 7.3. The generating function of the associated Laguerre polynomials eval-
uated at 1, L(s,t) ==, L%k)(l)skt" is D-finite in the s and t variables.

Proof. The generating series can be expressed as a scalar product:

Lls,t) = <Z h?s”/n!’;tn(l —pl)—(”“) exp <Z(—1)kﬁ)>

n k

= ( exp(p15),exp P ! .
1—-p1/1—-p1—t

Remark that both input functions are clearly D-finite and involve only py, thus by
Theorem 2.7, the function £(s,t) is D-finite with respect to ¢ and s. O

This calculation is an ideal candidate for SCALAR_DE2. We can also calculate results for
other sequences as well. Consider A = 172°. The generating function for this is given
by:

Iiras(n) = <exp (t(h1 + ha)), (1 — p1)~ ™V exp (1—_17]1)1 + o0 ]—)2p1)2>> . (79

This is also D-finite, however, more computationally complex.

We can take a different approach to determine some other interesting facts. We calculate
the diagonal of £(s,t) which is also D-finite. This calculation can profit from an explicit

description of L%n). Set

n

um::LgL:§:l<n%z>@wy.

i
=07’

The coefficient of the diagonal ), [(n)s"t", be determined using the summation meth-
ods described in the Ore Algebra chapter. We determine automatically a recurrence

satisfied by the [(n) is

nl(n+2) + (—n® = ™?* = 9n — 2)l(n + 1) + 2(2n + 1)(n + 1)31(n) = 0
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The initial terms of the sequence are:

1,1,5,47,641, 11389, 248749, 6439075.

7.4 Applications of MacMahon symmetric functions

This section details some combinatorial problems that can be expressed as a scalar
product of two MacMahon symmetric functions, as described in Section 2.7. These
examples all use D-finite MacMahon symmetric functions, and hence the algorithms of

the previous part apply.

7.4.1 Latin rectangles

Latin squares, and their cousin, Latin rectangles, are classic combinatorial objects, orig-
inally introduced by Euler. MacMahon symmetric functions can be used to formulate
generating functions of Latin rectangles, and to determine enumerative and asymptotic

results.

Definition 7.4 Latin rectangle. A k x n Latin rectangle is a k x n array of integers
such that each row is a permutation of [n] but no element appears twice in the same

column.

For example, a 2 x n Latin rectangle is a derangement. Gessel sets up different combi-
natorial models of Latin rectangles in [31, 32, 33]. Here, we present the 2 X n case to

illustrate the general argument.

One can show that the number of 2 x n Latin rectangles, r2(n), is equal to

n

TQ(TL) = [:L'l)"' y Lns Y1, 7yn] sz%
i#]

In general [31] we have that k x n are counted by < ?1k)’ e?lk)>. We have that 6?1,1) =
n

. x;y; | and extracting x1,- -+, Tn, Y1, - , Yn is thus equivalent to the scalar prod-

it Tilj d extracti is th ivalent to the scal d

uct <h?1 1) e?l 1)>. Gessel [33] illustrates how to develop an asymptotic expression for

ro(n) as n goes towards infinity using the largest terms in the development of the power.
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However, this problem is also well suited to a holonomic systems approach using gen-
erating series. We convert the expressions to the power bases, with the aid of the
conversion formulas from the appendices of [25]. More specifically, using u(0, ), the
Mbobius functions for generalization of Young’s lattice to bipartite partitions we convert

h(ixy and e(xy to the power basis with the following formulas:

hy = Z |u(@, a)| Do and er = Z (0, 0)p,- (7.10)

<A o<m

The generating series of 2 x n Latin squares is the generating series

Ro(t) =) rn(n)t"

= <Z (P01 +Pan)" "> (Paoo) — P(u))”>

n n

1 1
- <1 — (oo +ran) 1= (a0 +Pa) t> '

This calculation is well suited for Algorithm 4 modified for the scalar product of MacMa-

hon symmetric functions.

7.4.2 Equivalence classes of words

A second example using MacMahon symmetric functions, which is amenable to these
techniques is the determination of equivalence classes of words that satisfy some com-
mutation relations. Let m be monoid freely generated by aq,as,...,an, bi,bo,..., b,
subject to the commutation relation a;b; = b;a;. Classic theory of Cartier-Foata implies
that the number of equivalence classes of words in the monoid with «; occurrences of

a; and §; occurrences of b; is equal to the coefficient:
V(1 -2 =2 — . =Ty — Y1 — Y2 — o — Y T TIYL T - T)

Since 1 —x1—xo—...—Tpn—y1—Y2— .. —YntT1y1+. .. TnYn = 1 —=Dp0,1) —P1,0) TP1,1)

this is equivalent to determining the scalar product

<h7r7 (1- P(0,1) — P(1,0) +p(1,1))_1> .
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Thus, for families of 7 we can determine generating functions of these words. Consider

for example the sequence of bi-partitions (my), = ((1,1)"),. In this case we have

S0 Myt /! = exp (paoy0,1) +Pa,n)-
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CONCLUSION

Many enumerative problems of combinatorics can be phrased as a scalar product calcu-
lation. The main contribution of this thesis is the presentation of a general framework
from which we can derive a collection of new algorithms which compute a differen-
tial system of equations satisfied by scalar products. Conceptually these algorithms
take their inspiration from effective integration of D-finite functions, and they rely on

properties of holonomic systems for their proof of correctness and termination.

Equally important is the revelation that a number of diverse problems and families
of problems have solutions which reduce to a scalar product calculation, all amenable
to the same algorithm, and an automatic solution. Our algorithms can be tailored to
different kinds of symmetric functions, such as the MacMahon symmetric function or
various g-parameterized problems. Thus, we can include amongst our examples several

classical problems dating to MacMahon, such as latin rectangle enumeration.

We thus contribute to the growing body of automatic combinatorics, which lies at
the confluence of combinatorics and symbolic algebra, and whose purpose is to yield
automatic results, for example in enumeration, asymptotics, or identity proving. Here
we offer techniques to automatically calculate, directly from a combinatorial description,

differential operators for sub-families of objects subject to certain regularity constraints.

All of the algorithms described are implemented in Maple and are available for public
distribution. They manipulate differential equations using Grobner basis calculations

in a Weyl Algebra setting.

Several directions for future work have become apparent in the course of this study.

Future applications

Several enumeration problems, untreated here, fall into our general setup:
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Systems of differential equations A system of differential equations
characterizing the parameters of |:| characterizing the solution of the
the problem problem

These span a large spectrum from the study of series arising in the enumeration of

bounded height tableaux, to examples coming from the study of free Lie algebras.

Future research

The algorithms presented here determine generators for a D-finite sub-ideal of the an-
nihilators of a series in some operator ring. A solution determining generators for the
whole annihilating ideal would have wide ranging implications including the problem
of effective integration and determination of solution spaces of certain differential equa-

tions. The general problem is stated as follows.

For some left Ay i-ideal T and some right Ay, — ideal J determine the
generators of (Z + J) N Ag.

An approach consisting of a different filtration using the weighted bases of [69] seems

promising.

The asymptotic analysis of differential equations is yet another interesting direction to
follow. In particular, a followup project could consist of meshing existing asymptotic

tools with the output of our algorithms here.

Our work on O-finite preserving g-specializations represents just a glimpse of a poten-
tially rich study. It should be possible to characterize symmetric series which yield

O-finite g-series for certain specializations.

Finally, we outline a potential definition of D-finite species which could be a useful
starting point for characterizing combinatorial structures with D-finite generating series.
In particular an analysis of combinatorial equations defining tree-like structures is in
order. Such a study could also be useful for treating some longstanding open problems,
such as the D-finiteness of generating functions of k-regular graphs with a specified
set of forbidden subgraphs. Wormald [84] determined that the generating function of
3-regular graphs without triangles is D-finite. Gessel notes [34] that determining the



135

D-finiteness of generating functions for permutations with forbidden subsequences is a

difficult problem.
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APPENDIX A

DIFFERENTIAL EQUATIONS

The data in the section are presented in the following format. The differential equation
satisfied by the exponential generating series f(t) = >_ f; ntn—n, of an object parameterized
by k is

Gof(t) + @rf'(t) + o2 f"(t) = 0.

Po —t?
E=2| ¢ —2t +2
G2 0
b0 t3(2t2 4 t* — 2)2
k=3| ¢ —3(t10 + 6t + 3t5 — 6t* — 2612 + 8)
b2 —9t3(2t2 + 4 — 2)
bo —t4(t5 + 2t* + 2t2 + 8t — 4)2
k=4 | ¢ —4t3 +4¢12 — 1610 — 10t — 365 — 220t7 — 3480
—48t5 4 200t* — 336t3 — 240t> + 416t — 96)
b2 162(t — 1)2(t5 + 2t* + 2¢2 + 8t — 4)(t + 2)?

TABLE A.1 Differential equations: k-regular (simple) graphs
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k=11 ¢o t
o1 -1
k=21 ¢ (2 —2t)
o1 (—2t+2)

k=3|¢o (t"—2t7 4+ 44 +161° — 241)
g1 (=310 —315 —61® — 54¢% 4 24)
o (9¢7 —18¢3)

TABLE A.2 Differential equations: k-regular multi-graphs

Po —(t—-1)
k=11 ¢ 1
05 0
Po t2(t — 2)
k=2| ¢ —2(t — 1)?
05 0
o (119 — 689 — 48 4 1147 — 1566 4 8¢5 — 23 + 122 — 24t — 24)
k=3 | ¢ —3t(t10 — 28 4 2t5 — 615 + 8t* + 23 + 8t2 + 16t — 8)
b2 W3 (12 — 2+t + 1)
bo 4(t)
k=4| ¢ —4v(1)
b2 16t2(t — 2)(t + 1)28(¢)
b3 —64t4(t — 2)%(t + 1)*a(t)

TABLE A.3 Differential equations: Tableaux of weight k", k = 1..4

(note: a(t), B(t),v(t),d(t) are given in the next table)
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4 — 13 — 5¢12 — 7l 4 6410 4 3549 4 39¢7 — 5010 — 162t° — 92t4

+228¢3 4 42412 + 248t + 48

129 — 3¢28 — 1627 + 24426 + 147¢2° + 1424 — T70t*® — 666122 + 1416t
+3567t20 — 916t — 16598t + 17766t17 + 406786 — 1025565 — 53272¢14
+3906561'3 + 364080t'2 — 707936t — 1406336410 — 5525449

+1397664t8 + 202086417 + 17625615 — 916864t° + 304896t* 4 1283328¢>
+877056t2 + 253440t + 27648

128 — 27 — 14426 — 20125 + 111424 4 27823 — 196122 — 1216t — 1384¢%° 4 2765t
+3170t'® — 3400t'7 + 12140t + 15588t1° — 70280t — 10894613 + 12179612
+34905611 + 116992¢10 — 48170417 — 706320t% + 3040t7 + 581184t + 158688t°
—297408t* — 173952t + 22272t + 35712t + 6912

2621 — 3¢20 — 1710 — 2418 4 74417 4 105¢16 — 108¢15 — 172414 — 252413 4 432412
—667t1 + 1500t1° 4 733617 — 3772t% — 23056t7 — 205846 + 15504¢° + 38160t*
+179043 — 4512t% — 5568t — 1152

TABLE A.4 Polynomials related to the differential equation satisfied by Yy ()
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The sequences here were all generated using the differential equations in the previous

appendix. The EIS number accompanying the sequences refers to its entry in the Sloane

APPENDIX B

COUNTING SEQUENCES

encyclopedia of integer sequences [72].

k EIS

2 A001205

3 A002829
4 A005815

k EIS

2 A002137

TABLE B.1 Counting sequence: k-regular graphs

1, 0, 0, 1, 3, 12, 70, 465, 3507, 30016, 286884, 3026655, 34944085,
438263364, 5933502822, 86248951243, 1339751921865, 22148051088480,
388246725873208, 7193423109763089

1,0,0,0, 1,0, 70, 19355, 0, 11188082, 0, 11555272575, 0

1, 0, 0, 0, 0, 1, 15, 465, 19355, 1024380, 66462606, 5188453830,
480413921130, 52113376310985, 6551246596501035

TABLE B.2 Counting sequence: k-regular multi-graphs

1,0,1,0,3,0, 15, 0, 105, 0, 945, 0, 10395, 0, 135135, 0

1,0, 1, 1, 6, 22, 130, 822, 6202, 52552, 499194, 5238370, 60222844,
752587764, 10157945044, 147267180508

1,0, 1, 0, 10, 0, 760, 0, 190050, 0, 103050570, 0, 102359800620, 0
168076482974400,

1, 0, 1, 1, 15, 158, 3355, 93708, 3535448, 170816680,
10307577384 759439940230, 67095584693434, 7001532238614324,
851997581131397870, 119582892039683711842
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TABLE B.3 Counting sequence: k-covers by sets of cardinality one and two

k  EIS

1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568504,
2390480, 10349536

1, 0, 1, 4, 18, 112, 820, 6912, 66178, 708256, 8372754, 108306280,
1521077404, 23041655136, 374385141832, 6493515450688

1, 0, 0, 1, 10, 112, 1760, 35150, 848932, 24243520, 805036704,
3 30649435140, 1322299270600, 64008728200384, 3447361661136640,

205070807479444088
1, 0, O, 0, 1, 26, 820, 35150, 1944530, 133948836,

4 11234051976, 1127512146540, 133475706272700, 18406586045919060,
2925154024273348296, 530686776655470875076

1

TABLE B.4 Counting sequence: Tableaux of weight k"

EIS

A000085 |1, 1,2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, 140152, 568504 |

A000985 [1, 1, 3, 11, 56, 348, 2578, 22054, 213798, 2313638, 27627434 |
[1,1, 4, 23, 214, 2698, 44288, 902962, 22262244 |
[1,1,5, 42, 641, 14751, 478711, 20758650, 1158207312 |

=W N =




AprPENDIX C

SOME COUNTING SERIES OF SMALL SPECIES

Object  Series Value Object Series Value

2-sets Ig, ea = p3/2 — pa/2 2-multisets  Zg, he = p3/2 + pa/2
3-sets g, es 3-multisets Zg, hs

4-sets N €4 4-multisets Zg, hy

k-sets INS ek k-multisets  Zg, hy,

3-cycles Zc, p3/3 +p3/3 triples Zxs  p}

4-cycles Zc, p/A+p3/12 + py/12 | 4-arrays Zxs  pi

5-cycles  Zc, p3/5 + p5/30 5-arrays Zxs s

k-cycles Zc, Y eder O(d)pG/E! k-arrays Zxx  pF

TABLE C.1 Cycle index series of small species
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APPENDIX D

THE ScalarProduct MAPLE PACKAGE

D.1 Introduction and help pages

This chapter is a quick guide to the Maple package which provides the functions de-
scribed in this thesis. It is available at http://www.labri.fr/ mishna.

Requirements

This package relies on a few other packages. The basic functionality does not require

SF of Stembridge, however, it is useful for describing functions. The Ore Algebra and

Groebner packages are required, however. Groebner is part of Maple in versions 7 and

higher. Both are part of the algolib library. Download the code and save it, for exam-

ple as SP.mpl. To use the file The file can then be read into your Maple session, for

Maple versions 7 and higher. To access the commands, execute the following commands.
> read ("SP.mpl"):

From here, you can either execute

> with(ScalarProduct):

and have access to all of the functions; Or access them individually, for example,

> ScalarProduct [itensor_de] (exp(pn/n), exp(pn/n), £);

scalar_de - Determines a differential equation satisfied by the scalar product of two
symmetric functions

Calling Sequence

scalar_de(F, G, vlist, fname, adj, adj_consts)
scalar_de(Fsys, Gsys, vlist, fname, adj, adj_conts)

Parameters

F, G - D-finite symmetric functions
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F'sys, Gsys- D-finite descriptions of functions

vlist - a list of variables that survive the scalar product. The end result is a
function in these variables,

fname - a name to be used for the output system. If this is set to "TRUE’, the
function returns its result in operator notation.

adj - (optional) adjunction to the scalar product. The default is the symmetric
adjoint which sends p,, to nd%n. Any named constants it contains must be passed
in adj_consts.

Description

e scalar determines a system of differential equations satisfied by (F,G), the scalar
product (of symmetric functions) of F' and G.

e Symbolic scalar products can be calculated by using the variables pn where n is
any symbol.

e For the time being, only G can be a function of the vlist variables. A version of
the algorithm in the case where both are functions of the vlist variables is known,
and is in the implementation phase.

Examples

# the calculation for the 2-regular graph generating series
>scalar_de(exp(-1/2%p2+1/2*p1~2-1/4xp2~2) ,exp ((p2/2+p1~2)*t), [t] ,£(t));

d

£1(0) + (2t~ 2) 5 £ (1)

hammond - Determines a differential equation satisfied by the scalar product of a
Junction and Y (hjt")

Calling Sequence

hammond (F, kmax, fname)

Parameters
F- A D-finite function using a finite number of p,, variables
kmax - the largest n that F' contains

fname - a name and variable for the output function.
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Description

e hammond computes the differential equation satisfied by the Hammond Series or
Gamma series of F'. [36, 37]. This is equivalent to the scalar product (F, ) hjt").

e This procedure uses special properties of (3, h}t") to offer a potentially more
efficient algorithm.

Examples

# A second way to calculate the differential equation satisfied by the
# generating series of 2-regular graphs

#

>hammond (exp (-1/2*p2+1/2xp172-1/4%p2~2), 2, f(t));

d

[EF(2) + (2t = 2) 2 £ (1)

itensor_de - Determines a differential equation satisfied by the Kronecker product of
two symmetric functions

Calling Sequence

itensor_de(F, G, fname, adj, adj_const)
itensor_de(F, Gsys, fname, adj, adj_const)

Parameters

F, G - D-finite symmetric functions
Gsys - D-finite descriptions of the function G

fname - a name to be used for the output system. If this is set to "TRUE’, the
function returns its result in operator notation.

adj - (optional) adjunction to the scalar product. The default is the symmetric

adjoint which sends p,, to npin.

adj_const - (optional) named constants which appear in adj.

Description

e This function determines a differential equation satisfied by the Kronecker prod-
uct of symmetric functions. This product has many monikers, including the cup
product, the internal product and the tensor product of symmetric functions.
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This product arises in the study of the tensor product of characters of represen-
tations of the symmetric group.

The result can be output as a differential operator if an optional TRUE flag is
added at the end of the input. The advantage of this is that the output can then
be directly used as input to ITENSOR_DE or SCALAR_DE.

For the time being, F must be given as a function, not as a system. This should
be corrected in a future version.

Examples

> itensor_de(exp(pn/n),exp(pn/n), f);dsolve([lop(%),£(0)=1], £(pn));

[ (pn) — nd%nﬂpn)]

f(pn) = exp(pn/n)

Auxiliary functions

D.2

define_system(F, vars, fon) returns the D-finite description of F, a function
of the variables vars, that is a system of differential equations that it satisfies,
which contains sufficient information to prove that the input function is D-finite.
The output is expressed as a function using fon.

truncate(f, k) sets p, =0in f for n > k.

diffeq_to_op(sys, f) converts a differential system (a set or list) for the func-
tion f to operator notation.

seriesH(f, k) (requires SF) the symmetric function plethysm of the series H =
> hnt™ and f, (H[f]), truncated at k. (as in truncate above)

seriesE(f, k) (requires SF) the symmetric function plethysm of the series E =
> ent™ and f, (E[f]), truncated at k.

hammond_series (k) the series 3 h[A|t truncated at k.

Sample Session

Here we illstrate some of the problems that were encountered in the earlier sections and
how their solution can be determined using an implementaion of the algorithms. First
we read in the code.
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read("maple/lib/src/SF.mpl"):
read("maple/1ib/src/SP.mpl");
with(ScalarProduct):

Graph enumeration

Given a differential equation, we can either try to solve it, or do a series expansion on
the initial term. We can use tools in gfun to develop the first few terms of different
counting sequences.

detoseq:= proc(de, f, N)
local P;
P:=gfun[rectoproc] (
gfun[diffeqtorec] ({op(de), op(0,£)(0)=1}, £, a(n)),
a(n));
seq(P(i)*i!, i=0..N);
end:

> graph:=n->seriesE(e2, n):
> graph(3); # some examples

exp (—1/2p2 + 1/2p1? — 1/4p2? + 1/6p3?)

>graph3:=hammond (graph(3), 3, £(t));

(—t'1 — 413 —4° + 8£°) (1)
d
+ (18t% — 18t* + 310 — 78¢* + 24 + 9t6)Ef(t)
d2
+ (—18t3 + 187 + 9t7)ﬁf(t)

>detoseq(graph3,f(t), 15);
1,0,0,0,1,0,70,0,19355,0,11180820, 0, 11555272575, 0, 19506631814670, 0

The following example corresponds to the problem in Section 7.1.6.

>sgraph:= n->seriesE(alpha*e2 + (1-alpha)*h2, n):
>sgraph3:=hammond (sgraph(3),3, f(t), {alphal});
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(60t°a* —12t7a? +20t"a — 8t°a — 8t7a” — 24ta® — 24t — 20t° — T2t%a
+ 417 4+ 521 — 24130 + 48ta — t'! — 16t°a — 16t°a* + 40t3a®) f (1)
+ (1883 + 9t + 18¢%) C;‘l—;;f(t) +
(—54¢* +36t%* — 12¢% — 18t + 24 + 3¢'0—
24t%a + 24180 — 1515 — 6t8)%f ()
>detoseq(sgraph3, f(t), 5);

1,0,1 —2a+a%,0,300% —160® — 240+ 8+ 3a*,0

Kronecker product

This next example illustrates how to calculate > sy * > sy. See the discussion in
Section 6.3.3. First we calculate the even entries.
>itensor_de(exp(pn~2/2/n) ,exp(pn-2/2/n), £);

= () + (1= ) o f (o)

>dsolve([Lop(%), £(0)=1], f(pn));
1
von —1y/pn +1

f(pn) =

The odd elements are calculated:
>itensor_de(exp(pn~2/2/n+pn/n),exp(pn~2/2/n+pn/n), £);

d
[(1 + pnn — pn’n + pn) f(pn)+ (—pn3n + pnn+pnn — n) d]Tnf (pn)]
>simplify(dsolve(lop(%),£(0)=1], £(pn)),exp);
1 1
von+14pn—1

___pn_
ie” nn-1)

Together these give Proposition 6.2.
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