THE NUMBER OF M-SEQUENCES AND f-VECTORS
SVANTE LINUSSON

ABsTRACT. We give a recursive formula for the number of M-sequences
(a.k.a. f-vectors for multicomplexes or O-sequences) given the number of
variables and a maximum degree. In particular, it is shown that the num-
ber of M-sequences for at most 2 variables are powers of two and for at
most 3 variables are Bell numbers. We give an asymptotic estimate of the
number of M-sequences when the number of variables is fixed. This leads
to a new lower bound for the number of polytopes with few vertices. We
also prove a similar recursive formula for the number of f-vectors for sim-
plicial complexes. Keeping the maximum degree fixed we get the number
of M-sequences and the number of f-vectors for simplicial complexes as
polynomials in the number of variables and it is shown that these numbers
are asymptotically equal.

1. INTRODUCTION

A multicomplex is a collection M of finite multisets satisfying A C B €
M = A e M. It is often convenient to think of the underlying ground set
as variables and of the sets in M as monomials. Then a multicomplex is a
collection of monomials closed under division. Given a multicomplex M, let
m; = [{A € M :deg A =i}|. The sequence m = (mg, my, my,...) is called
the M-sequence of M. The purpose of this paper is to study the number
of M-sequences given upper bounds on the number of variables and on the
degree for the monomials.

M-sequences play an important role in different mathematical theories.
Theorem 1.1 below is a summary of how the enumeration of M-sequences
can be interpreted. It is a consequence of deep theorems (such as Macaulay’s
theorem, the g-theorem etc.) by Billera, Lee, Macaulay, McMullen and Stan-
ley. We refer to Ziegler [Z, Chapter 8] and Stanley [S1] for an account of the
underlying definitions and theorems. In this paper we will use (ii) to do the
counting.

Theorem 1.1. Fiz n,p > 0. Then the following are equal.
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(i) The number of M-sequences with my < p and m; =0 for all j > n, not
counting (0,0,0,...).

(ii) The number of non-empty compressed multicomplezes on at most p vari-
ables and with no monomial of degree higher than n.

(iii) The number of f-vectors of n—1 dimensional shellable (or Cohen-Macaulay)
sitmplicial complexes on at most n + p vertices.

(iv) The number of f-vectors of simplicial 2n-polytopes (2n+1-polytopes) with
at most p+2n+1 (p+ 2n+ 2) vertices.

(v) The number of Hilbert functions for standard graded k-algebras R =
Ry+ Ry + -+ Ry, withd <n and dim R, < p. O

Let MP?(n) — 1 denote the common number in Theorem 1.1.

Our basic result on the number of M-sequences, from which the other results
will follow, is the recursion in Theorem 2.1. Corollary 2.3 shows that when
fixing p and expressing M?(n) in terms of n, we get the sequence of functions:

linear, powers of 2, Bell numbers, . . .,

for p = 1,2 and 3 respectively. Using Theorem 1.1 we can deduce that the
number of f-vectors for a simplicial d-polytope with at most d + 3 vertices is
214/21+1 1 and with at most d+ 4 vertices is B(|d/2] +2) — 1, where B(n) is
the Bell-number. It would be very interesting if someone could give a direct
proof of this, avoiding the g-theorem.

We estimate the asymptotic growth of M?(n) for fixed p > 4, which gives a
lower bound d?—2=°(1)4/2 for the number of simplicial d-polytopes with d+p+1
vertices, Corollary 2.6.

In Section 3 we give a recursion for the number of f-vectors for simplicial
complexes. In Corollary 3.4 we prove the perhaps somewhat surprising result
that the number of f-vectors for simplicial complexes and the number of M-
sequences for multicomplexes have asymptotically equal growth for each fixed
n (maximal cardinality). From this we deduce, Corollary 3.5, that for a fixed
dimension n — 1 and a large number of vertices p, almost every f-vector for
simplicial complexes is also an f-vector for a shellable simplicial complex.

2. THE NUMBER OF M-SEQUENCES

2.1. Basic recursion. After Theorem 1.1 we defined MP?(n) to be one more
than the number of M-sequences for non-empty multicomplexes. We think
of this extra one as coming from the sequence (0,0,0,0,...) for the empty
multicomplex. This sequence does not have a proper non-empty counterpart
when counting f-vectors of simplicial polytopes, shellable simplicial complexes
etc. in Theorem 1.1, but is included to obtain the nicest looking recursions.
Hence, we will have MP?(0) = 2 for all p > 0. We also define MP(—1) := 1 for
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all p > 0. On the other boundary we have M°(n) = 2, for all n > 0, again
counting both (0,0,0,...) and (1,0,0,...).

Given two monomials ¢" ... z;” and 25" .. .xff’ we say that z{* ... z,” comes
before x?l .. .xzp in reverse lexicographic orderifa, = b,, a,_1 =b,_1,..., 041 =
bir1, but a; < b;. A multicomplex M is said to be compressed if B €
M, deg(A) = deg(B) and A comes before B in reverse lexicographic order
implies that A € M.

X \ X \
xlc\ xl\ Xl%i xl%i

o} o1l o1 o1l 1 1
(0,0,0) (1,00 (1,1,0 (111) (1,20 (121
2 2 2 2 2
X1 XXy X1 XXy Xy X1 X1 XXy
Sy Ry g g pn Wy e
1 1 1 1 1
(122 (12,3 (130 131 (13,2
Xi XXp Xg Xi XXz Xg XX3 Xi XX Xg XXg X X3 Xi X1Xp X: XXg X X3 Xg
\\ \ \ \ / O
XEQ /O X XEQ > Xs j%%ii X XEQ ;/q X
1 1 1 1

(1,33 (1,3.4) (1,35) (1,3,6)

FiGURE 1. All the M-sequences and the corresponding com-
pressed complexes when p = 3 and n = 2.

We also need to have a notation for the number of M-sequences corre-
sponding to multicomplexes that for a fixed number of variables have all the
monomials up to a fixed degree k. Forn > k > —1, p > 1 define

LP(n, k) :=the number of M-sequences with at most p variables and degree at
most n that has maximal value for m; when ¢ < k but not for my4, i.e.,
m; = (p+§_1) for i <k and my, < (]1:1]19)
The boundary conditions are LP(n,n) = LP(n,—1) = 1 forall p > 1,n >
)

—1. For consistency we define L°(n,n) := L°(n,—1) := 1 and L°(n,k) := 0
for k£ # —1,n. It follows from these definitions that

M) = 37 10 ), )
k=—1
for all n,p > 0.

The numbers LP(n, k) also have interesting interpretations along the lines
of Theorem 1.1. In polytope theory for example we get from the bijection



4 SVANTE LINUSSON

between (i) and (iv) of Theorem 1.1 that LP(n, k) is the number of f-vectors
for simplicial 2n-(or 2n + 1)-polytopes with p + 2n + 1 (p + 2n + 2) vertices
that are k-neighborly, i.e., they have all possible r-sets as faces for » < k, but
not k£ + l-neighborly.

The basic theorem from which the other results will follow is the following.

Theorem 2.1. The number of M-sequences satisfies the following recursions
for all p,n > 1,k > 0:

MP(n) =1+ Z LP=Y(n, i) MP (i — 1) (2)
and
LP(n, k) = ZLP—I(n, )LP(i— 1,k —1). (3)

PROOF The theorem is, once discovered, easy to prove. From Theorem 1.1
we have that when counting M-sequences we can count compressed multi-
complexes instead. See Figure 1. Let M be a compressed multicomplex on
the p variables z1,...,z, of degree at most n that is totally filled exactly to
level k. Partition the multisets in M into two disjoint parts depending on
whether the multiset contains x, or not, i.e., My :={A € M :z, ¢ A} and
My :={AeM:z, € A}. See Figure 2.

Fi1GURE 2. The partition of a compressed multicomplex M as in
the proof of Theorem 2.1.

Note that M, is a compressed multicomplex on at most p — 1 variables and
that dividing every monomial in M, by x,, we get a compressed multicomplex
on at most p variables. Let 7, 1 > k, be the largest level in M, that is totally
filled. Then there are LP~'(n,4) possibilities for M; and LF(i — 1,k — 1)
possibilities for M, and all these possibilities occur for some M. Summing
over ¢ we get recursion (3). Recursion (2) follows from (1) and (3). O
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[pP\n[-1]0[1] 2] 3] 4] 5] 6 | 7]
o 1]2]2] 2] 2] 2 2 2 2
T 1(2[3] 4] 5] 6 7 8 9
2| 1[2[4] 8] 16] 32| 64 128 256
3| 1]2|5]15| 52| 203 87| 4140 21147
I 1[2[6]26|162| 1144| 10742 | 122772| 1673856
5| 1[2|7|42[392] 5345102050 | 2632429 | 89026966
6| 1|2 |8]64 90420926 | 753994 | 40412530 | 3099627142

TABLE 1. Table of MP?(n), the number of M-sequences with
my < pand m; =0 for ¢ > n.

Corollary 2.2. As special cases we get,
LP(n,0) =M?""(n) — 1

-1

and Lp(n,n—l):<p+n )
n

Proor Follows directly from Theorem 2.1. Both formulas are also easily

understandable directly from the definition of L?(n, k). O

2.2. Keeping p fixed. Recall that the Stirling number of the second kind
S(n, k) is the number of ways to partition {1,2,...,n} into k blocks, and that
the Bell number B(n) = >",_, S(n, k) is the number of all possible partitions.

Corollary 2.3. Forn > k > —1, the number of M-sequences with at most
1,2 and 3 variables are

M*(n) =n+2, L'(n,k) =1
2 _on+l 2 _(n+1
M= (n) =2""", L(n,k)—<k+1>
M3 (n) =B(n + 2), L*(n,k) = S(n+2,k+2),

where B(n) are the Bell numbers and S(n, k) are the Stirling numbers of the
second kind.

PRrOOF Easy consequence of Theorem 2.1. O
REMARK The result M?(n) = 2"*! has been previously calculated by Bjorner
[B1]. O]

We will now proceed to study the asymptotics of M?(n) when p is fixed.
Lemma 2.4. For any r,p,n > 0, we have

nr(pf]')

I/p(n—|—7"7 n) > W
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PrRooOF If there are + monomials of degree k£ in a compressed multicomplex
M, then we can always have at least anywhere between 0 and ¢ monomials
of degree k+ 1 in M. Hence L”(n + r,n) is bounded below by the number of
weakly decreasing sequences of non-negative integers of length r starting with
an integer smaller than (;fp), which is

| ((fo) - 1+7“>_

The lemma follows. O

Theorem 2.5. For any p > 3 and € > 0 we have that for all sufficiently large

n

log MP
log MY(n) 5
nlogn

PROOF Fix an integer r > 2p/e. Select one term of recursion (2) and apply
Lemma 2.4 to get

M?(n)
MP(n —r—1)
for any n. Applying this recursively we obtain,
LTiIJ (
MP(n) > ]
i=1

[+

(n — T)T(p72)

(p—2)lrr! 7

>LP Hn,n—r1) >

n— (r+1)i+1)r®=2
(p—2)I"r!

S H (= +1i+1)-(n—(r+1)i—r+1))e-2r/0+D) S
T (p—2)!rr! -
(n — r)1(p=2)(1-1/(r+1))
>
- (p — 2)Inpl(n/7)
The statement is now true for any n > (pr)" and the theorem follows. O

Theorem 2.5 is close to best possible. Mireille Bousquet-Mélou [BM] has
proved that for any p > 2 we have M?(n) < 2" (n + 1)1P~2,

2.3. Polytopes with few vertices. Let ¢;(d + p + 1,d) be the number of
different combinatorial types of simplicial d-polytopes on d + p + 1 labeled
vertices. Over the years, a lot of attention has been given to the problem of
estimating ¢s(m, d), see [A][G, pp. 288-290]. Even the asymptotic behavior
was a big open question, until Goodman and Pollack [GP] obtained the upper
bound c,(m, d) < m¥ @)™ The lower bound (’"T’d)de < ¢4(m, d) is due to
Alon [A], who also improved the upper bound and generalized to arbitrary
polytopes.
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The problem of estimating ¢,(d + p + 1, d) for fixed p was posed at the end
of [A], where the inequality

cs(d+p+1,d) < (d+p+ 1P D+,

was given for any fixed p. From Theorem 1.1 we know that ¢;(2n +p+1) >
MP(n) — M?~(n), so Theorem 2.5 above implies the following corollary.

Corollary 2.6. For a fixed p > 3, we have
dP=2eW2 < e (d+p+1,d), d— .
O

For p = 3 a better bound was obtained by Shemer [Sh] who shows that the
number of simplicial polytopes in dimension d = 2m on d + 4 vertices that
have maximal f-vector, is at least (d/e)¥2. I find it remarkable that the two
bounds that undercount seriously in two different ways get estimates that are
so close to each other. Even though the number of f-vectors for simplicial
polytopes intuitively should be a poor estimate for ¢;(d+p+ 1, d), I have not
found any better bounds in the literature than Corollary 2.6 for p > 4.

2.4. Keeping n fixed. Next we study MP(n) and LP(n, k) in terms of p while
keeping n and k fixed. Surprisingly enough they turn out to be polynomials.

Theorem 2.7. LP(n, k) is a polynomial in p of degree (";1) - (k;rl) and

MP(n) is a polynomial in p of degree (";Ll), for each fized pair n,k > 0.

Proor We will prove the theorem by double induction over n and n — k
using recursion (3). The statement is trivially true for n = 0 and for n = k
since LP(n,n) = 1. Now, write (3) as
LP(n, k) — L Mn, k) = > LP"M(n,4)LP(i — 1,k — 1),
i=k+1

By induction we see that LP(n, k) — LP~!(n, k) is a polynomial of degree

e [(2)- ()10 O -
1)-(3)

Hence we get that LP(n,k) is a polynomial of degree (”;1) - k;d . From
Corollary 2.2 it follows that M?(n) is a polynomial of degree ("1). O
REMARK A weaker formulation of the polynomial growth of MP?(n) appears
without proof in [B3]. O

Next, we calculate the leading coefficients, which we will need in Section 3.
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Proposition 2.8. Forn > 1, the leading coefficient in MP(n) is

s (C) =6

]

(n i 1) | | @)

PROOF Let ¢(n,k) be the leading coefficient of LP(n,k). We will show
it etn ) = T2 (047 0970003 = (47)) 1 oy e don
ble induction of the proof above. We get that (("') — (*1"))c(n,k) =
c(n,k+1)e(k, k — 1). From the induction assumptions we have

[T ((ngl)ii(igl)il) I [T (("31)7Z-(i;1)71)

((ng—l) - (k—2|_2))! k! ((”42-1) _ (k42-1) _ 1)!.

The formula for ¢(n, k) follows. The result for MP?(n) is easily extracted from

c(nyk+1)e(k,k—1) =

Corollary 2.2. O
REMARK Similarly for fixed p > 2,r > 0, LP(n,n — r) is a polynomial in n
of degree r(p — 1), with leading coefficient 1/(p — 1)!"r!. O

3. THE NUMBER OF f—VECTORS FOR SIMPLICIAL COMPLEXES

A simplicial compler is a collection F of finite sets satisfying B € F, A C
B = A e F. A setin F is called a stmplexr or a face. A set in F of
cardinality one is called a vertex. A face that is not contained in any other
face is called a facet. Given a simplicial complex F, we define f; := [{A € F :
|A| = i}|. Note that f;’s are indexed by cardinality and not by dimension.

In this section we will study the number of f-vectors for simplicial complexes
given upper bounds p > 0 on the number of vertices and n > 0 on the
cardinality for the simplices. We may assume that n < p without loss of
generality. Let

F?(n) :=the number of f-vectors of simplicial complexes with f; < pand f; =0
for all 7 > n.

We include both (0,0, ...), the f-vector of the empty simplicial complex, and
(1,0,0,...), the f-vector for the simplicial complex containing only the empty
set, when computing F?(n). Hence we get FP(—1) =1, FP(0) = 2forallp > 0
and F°(n) = 2 for all n > 0.

Part (ii) in the theorem below is what we need to carry out the same
counting argument as for M-sequences.

Theorem 3.1. (Clements-Lindstrém [C][CL]) Fiz 0 < n < p. Then the
following are equal to FP(n).
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(i) The number of f-vectors for simplicial complexes on at most p vertices
and with no set of cardinality higher than n.
(ii) The number of compressed simplicial complexes on at most p vertices and
with no set of cardinality higher than n.
(iii) The number of facet-vectors for simplicial complexes on at most p vertices
and with no set of cardinality higher than n. O

For the definition of “compressed” see Section 2. The facet-vector of F is
the sequence v = (vg, v1, s, ...), where v; := |{A € F: A a facet, |A| =i}|.
As in Section 2 we need a refinement to state the recursion. Let

EP(n, k) :=the number of f-vectors for simplicial complexes with f; < p and
fj = 0 for all j > n and with maximal value for f; when j < £ but not

for fk—|—17 i.e., f1 = (f) for ¢ S k but fk—l—l < (k—llj—l)

From the definition we have for every pair p > 0,n > —1, that EP(n,—1) = 1,
EP(n,n) =1 and EP(n,k) = 0 for k > n, and the simplicial equivalent of (1)

FP(n) = ZEp(n,k), for all p > n > 0. (5)
k=—1

Theorem 3.2. For 0 <k, 1 <n < p we have the recursions

14+ > EP Y (n, i) FPi(i—1) | ifn<p
P — =0 ’ J
F(n)_{1+Fp(p—1) ,ifn=p (©)
and

Sor EP Y )EP N i—1,k—1) , ifk<n<p

Ep(nak) = Ep(p_lak) ’ ka<7l:p
1 ,ifk=mn=np. (7)
PROOF Similar to proof of Theorem 2.1. O

As the careful reader has noticed Theorems 2.1 and 3.2 are very similar.
The difference does not effect the proofs of Theorem 2.7 and Proposition 2.8.

Theorem 3.3. EP(n, k) is a polynomial in p of degree (") —(*1') and FP(n)
15 a polynomaial in p of degree (";1), for each fired n, k > 0. Moreover, EP(n, k)
and FP(n) has the same leading coefficients as LP(n, k) and MP(n), respec-

tively.
PROOF Identical to the proofs for LP(n, k) and MP(n). O

Corollary 3.4. Fizn > 0. When p is large enough, almost every M -sequence
15 also an f-vectors for a simplicial complex. More precisely

MP(n)
p—oo FP(n)

=1, for each n > 0.
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PROOF Immediate from Theorem 3.3. O

Finally we will use that by Theorem 1.1 (iii), the number of f-vectors of
n — 1-dimensional shellable simplicial complexes on at most p vertices is equal
to MP~"(n) — 1.

Corollary 3.5. Fiz n > 0. When the number of vertices increases, almost
every f-vector for an n— 1-dimensional simplicial complex is also an f-vector
for an n — 1-dimensional shellable simplicial complex.

The same is true when replacing shellable by Cohen-Macaulay, partitionable,
pure or other weaker conditions on simplicial complexes.

PrROOF We have the following chain of inequalities:
MP™(n) < FP(n) — FP(n— 1) < FP(n) < MP(n).

The result follows, since for a fixed n, all four are polynomials in p of degree
(";rl) by Theorem 2.7 and Theorem 3.3. n

Note that in Corollary 3.5 “shellable” complexes are pure. If we use “shellable”
in the generalized nonpure sense of [B2], then every f-vector of a simplicial
complex is the f-vector of some shellable complex.

4. REMARKS AND OPEN PROBLEMS

Remark 1: The total number of possible f-vectors of a simplicial complex
with at most p vertices, i.e. FP?(p), gives rise to an interesting sequence. It
starts 2, 3,5, 10,26, 96,553, 5461, 100709, .... This sequence has been calcu-
lated as the number of facet-vectors for simplicial complexes on p vertices by
Knuth using a more complicated recursion that will appear in [K]|. We found
the references to [C] and [K] in [SP].

Remark 2: Using the recursions it is not difficult to define bijections from the
M-sequences on two or three variables to subsets and partitions, respectively.
It is a fun exercise to define “iterated partitions” as suggested by the recursion
to obtain another combinatorial object enumerated by MP?(n), see [L].
Remark 3: It would be nice to understand the sequence M*(n) better. Let

oo gt

H,(z) = anflMp(n)m. I have not found a closed formula for this
generating function, but it satisfies the following functional equation

Hix) = ¢ + ¢ / ¢ Hy(e" — 1)da.

Remark 4: Assume we are given an integer p > 0 and ny,no,...,n, €
{1,2,...} U {oo}. A set of monomials, z{*...z," satisfying 0 < a; < n; for
1 =1,...,p, which is closed under division will be called a Clements-Lindstrom
complex of type ny,...,n,. When n; = oo for all ¢ we have multicomplexes
on p variables and when n; = 1 for all i we have simplicial complexes on p
vertices. Omne can ask the generalized question of the number of f-vectors of
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a Clements-Lindstrom complex of type ng,...,n, and formulate a common
generalization of Theorem 2.1 and Theorem 6. For details, see [L].
Problem: Give a direct proof of the fact that the number of possible f-
vectors of simplicial d-polytopes with at most d+4 vertices is the Bell number
B(ld/2] +2) - 1.

Acknowledgment I thank Anders Bjorner for suggesting the problem and
for helpful comments on a previous version of this manuscript. I also thank
Mireille Bousquet-Mélou for stimulating discussions on the asymptotic part
and Bernd Sturmfels for the reference to [Sh].
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