Labelled and unlabelled enumeration
of k-gonal 2-trees

Gilbert Labelle, Cédric Lamathe and Pierre Leroux

April 1, 2003

Abstract

In this paper!, we generalize 2-trees by replacing triangles by quadri-
laterals, pentagons or k-sided polygons (k-gons), where k > 3 is given.
This generalization, to k-gonal 2-trees, is natural and is closely related, in
the planar case, to some specializations of the cell-growth problem. Our
goal is the labelled and unlabelled enumeration, of k-gonal 2-trees accord-
ing to the number n of k-gons. We give explicit formulas in the labelled
case, and, in the unlabelled case, recursive and asymptotic formulas. We
also enumerate these structures according to their perimeter.

1 Introduction

The class of bidimensional trees, or in brief 2-trees, is extensively studied in the
literature. For instance, see [7] and [5, 6] and their references; see also [10, 11].
Essentially, a 2-tree is a connected simple graph composed by triangles glued
along their edges in a tree-like fashion, that is, without cycles (of triangles).
In [8], Harary et al. enumerated a variant of the cell-growth problem, namely
plane and planar (in the sense that all faces, except possibly the external face,
are also k-sided polygons, also called outerplanar) 2-trees, in which triangles
have been replaced by quadrilaterals, pentagons or k-sided polygons (k-gons),
where k£ > 3 is fixed. Such 2-trees, built on k-gons, are called k-gonal 2-trees.
This generalization is natural and the purpose of this work is the enumeration
of free k-gonal 2-trees, i.e., seen as simple graphs, without any condition of
planarity. Figure 1, a) and b), and Figure 2 a) show examples of k-gonal 2-
trees, for k = 3,5 and 4, respectively.

Our goal is the labelled and unlabelled enumeraton of k-gonal 2-trees, ac-
cording to the number of k-gons. We give explicit formulas in the labelled case
and recursive and asymptotic formulas in the unlabelled case. This is the full
version of a paper presented at the “Mathematics and computer science“ confer-
ence in Versailles, France, in September 2002 (see [15]). More complete proofs
are given, in particular for the asymptotic formulas, and a section has been
added on the enumeration of k-gonal 2-trees according to their perimeter.
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It was recently brought to our attention that Ton Kloks [10, 11] had enumer-
ated unlabelled biconnected partial 2-trees according to the number of vertices,
in his 1993 thesis. These structures are more general than k-gonal 2-trees since
various size of polygons can occur in the same graph and some polygons may
have missing edges.

a b

Figure 1: k-gonal 2-trees with k =3 and k =5

We say that a k-gonal 2-tree is oriented if its edges are oriented in such a
way that each k-gon forms an oriented cycle; see Figure 2 b). In fact, for any
k-gonal 2-tree s, the orientation of any one of its edges can be extended uniquely
to all of s by first orienting all the polygons to which the edge belongs and then
continuing recursively on all adjacent polygons. The coherence of the extension
is ensured by the arborescent (acyclic) nature of 2-trees.

We denote by @ and @, the species of k-gonal 2-trees and of oriented k-gonal
2-trees. For these species, we use the symbols —, ¢ and ¢ as upper indices to
indicate that the structures are pointed at an edge, at a k-gon, and at a k-gon
having itself a distinguished edge, respectively.

a) b)

Figure 2: A unoriented and oriented 4-gonal 2-tree

Following the approach of Fowler et al. in [5, 6], which corresponds to the
case k = 3, we label the 2-trees at their k-gons and give functional equations



which relate these various pointed species together and eventually lead to their
enumeration. The main difficulty of this extension from triangles to k-gons
comes, as we will see later, from the case where k is an even integer.

The first step is an extension of the dissymmetry theorem for 2-trees to the
k-gonal case. The proof is similar to the case k = 3 and is omitted (see [5, 6]).

Theorem 1. DISSYMMETRY THEOREM FOR k-GONAL 2-TREES. The species
@, and @ of oriented and unoriented k-gonal 2-trees, respectively, satisfy the
following isomorphisms of species:

a, +a’ = G,+ a2, (1)
a~+a° = G+ ac (2)

There is yet another species to introduce, which plays an essential role in
the process. It is the species B = @ of oriented-edge rooted (k-gonal) 2-trees,
that is of 2-trees where an edge is selected and oriented. As mentionned above,
the orientation of the rooted edge can be extended uniquely to an orientation
of the 2-tree so that there is a canonical isomorphism B = @, which can be
used for all enumerative purposes. However, it is often useful not to perform
this extension and to consider that only the rooted edge is oriented, as we will
see.

In the next section, we characterize the species B = @~ by a combinatorial
functional equation and state some of its properties. The goal is to express the
various pointed species occuring in the dissymmetry theorem in terms of B and
to deduce enumerative results for the species @, and @. The oriented case is
simpler, and carried out first, in Section 3. The unoriented case is analyzed
in Section 4, distinguishing two cases according to the parity of the integer
k. Enumeration of k-gonal 2-trees according to the perimeter is carried out in
Section 5. Finally, asymptotic results are presented in Section 6.

This paper uses the framework of species theory. See Chapter 1 of [3] for an
introduction. The main tool for our purposes is the composition theorem which
can be stated as follows: let the species F' be the (partitionnal) composition of
two species, F' = GG o H. Then, the exponential generating function

F@) =Y fat,
n>0 ’

where f, = |F[n]| is the number of labelled F-structures of order n, and the
tilde generating function

ﬁ(m) = Z fnxn,

n>0

where f, = |F[n]/Sy] is the number of unlabelled F-structures of order n, satisfy
the following equations:

Fa) = GH(@), 3
Fa) = Zo(H@,H@),...), (@

where Zg(x1,xa,...) is the cycle index series of G.



2 The species B of oriented-edge rooted 2-trees

The species B = @~ plays a central role in the study of k-gonal 2-trees. The
following theorem is an extension to a general k of the case k¥ = 3. Note
that formula (5) also makes sense for ¥ = 2 and corresponds to edge-labelled
(ordinary) rooted trees.

Theorem 2. The species B = @~ of oriented-edge rooted k-gonal 2-trees
satisfies the following functional equation (isomorphism):

B=E(XB*), (5)
where E represents the species of sets and X is the species of singleton k-gons.

Proof. We decompose an G -structure as a set of pages, that is, of maximal
subgraphs sharing only one k-gon with the rooted edge. For each page, the
orientation of the rooted edge permits to define a linear order and an orien-
tation on the £ — 1 remaining edges of the polygon having this edge, in some
conventional way, for example in the fashion illustrated in Figure 3 a), for the
odd case, and b), for the even case. These edges being oriented, we can glue on
them some B-structures. We then deduce relation (5). ]

YRS
RSO

a b)

Figure 3: An oriented page for a) k =5,b) k=6

We can easily relate the species B = G to the species of rooted trees denoted
by A, characterized by the functional equation A = X E(A), where X is now
the species of singleton vertices. Indeed from (5), we deduce successively

(k—1)XB*"'=(k-1)XE((k—1)XB*1), (6)
knowing that E™(X) = E(mX), and, by unicity,
(k—1)XB* = A((k - 1)X). (7)

Finally, we obtain the following expression for the species B in terms of the
species of rooted trees.



Proposition 1. The species B = @ of oriented-edge-rooted k-gonal 2-trees
satisfies

B =ty 2t ) 8)

Corollary 1. The numbers a;’, a,’ ,, , and b, = a,” of k-gonal 2-trees

pointed at an oriented edge and having n k-gons, respectively labelled, fixed
by a permutation of cycle type 1712™2 ... and unlabelled, satisfy the following
formulas and recurrence:

a—) _ ((k _ 1)n + l)n—l — mn—l) (9)

n

where m = (k — 1)n + 1 is the number of edges,

4y e = [[A+E =1 dng)™ (14 (k=1) Y dng), (10)
i=1 dli

d|i,d<i
and 1
bn =~ 15;29%3('&' + Dbarbas - -bay_1bnj,  bo =1, (11)
the last sum is running over (k — 1)-tuples of integers a = (a1, @z2,..., Q1)

such that |a| 4+ 1 divides the integer j, where || = a1 + az + -+ - + ag_1.

Proof. Formulas (9) and (10) are obtained by specializing with p = (k — 1)~}
the following formulas, given by Fowler et al. in [5, 6],

Az)\"* no1Z"
<%> = plp+n)" (12)

n>0 ’

A =
(257)
A 1 i1 1
Z 1nip12n2n,! .. H(1+;Zdnd) (1+ ; Z ,dnd)' (13)
ni,na,... i=1 dli d|i,d<i

Formula (9) can also be established by a Priifer-like bijection. To obtain the
recurrence (11), it suffices to take the logarithmic derivative of the equation

_ i Bk—1( i
Ble) =exp [ T EE ) ) (14)
i>1 !
where B(z) = > >0 bn™, which follows from relation (5), using (4). [ |



It is interesting to note that the sequences {b,}nen, for k = 2,3,4,5, are
listed in the encyclopedia of integer sequences [18] and the equation (5), in the
encyclopedia of combinatorial structures [9]. Also remark that, for each n > 1,
by, is a polynomial in & of degree n — 1. This follows from (10) and the following
explicit formula for b,

—

_ an1,n27---
bn - Z 1”1711!2”277,2!..., (15)

ni+2nz+--=n
which is a consequence of Burnside’s lemma. The asymptotic behavior of the

numbers b,, as n — 00, is studied, in particular as a function of &, in Section 7.
Remark 1. Equation (8) can also be used to compute the molecular expansion

of the species B from the molecular expansion of A, using the binomial theorem.
See [1] for more details.

3 Oriented case

We begin by determining relations for the pointed species appearing in the
dissymmetry theorem. These relations are quite direct and the proof is left to
the reader.

Proposition 2. The species @, @2, and @, are characterized by the following
isomorphisms:
a(;:Ba a’oo:XCk(B): aongBk7 (16)
where B = @~ and C} represents the species of oriented cycles of length k.
The dissymmetry theorem permits us to express the ordinary generating
series @, (z) of unlabelled oriented k-gonal 2-trees in terms of the corresponding
series for the rooted species:

~ ~ ~o
Uo(x) = @, (x) + G, (z) = Ay (7). (17)
By Proposition 2, we can then express (,(z) as function of B(z) = /CVI,H(:U)

Proposition 3. The ordinary generating series @, (x) of unlabelled oriented
k-gonal 2-trees is given by

Q,(z) = B(z) + % S é(d)B7 (a) - %mﬁk(:ﬂ). (18)
d|k

d>1

Corollary 2. The numbers a,, and a,, of oriented k-gonal 2-trees labelled
and unlabelled, over n k-gons, respectively, are given by

aon = ((k—1n+ N2 =m" 2 n>2 (19)
Gom = bn—k—bk) +k2¢ ; (20)
e



where ) e
bgj) = [;Ul]BJ (CU) = Z bi1 bi2 v bij’
i1+"'+ij:i

denotes the coefficient of z in the series BJ (z), with b} = 0 if r is non-integral
or negative.

Proof. For the labelled case, it suffices to remark that a,” = ma,,. In the
unlabelled case, equation (20) is directly obtained from (18). |

4 Unoriented case

In the unoriented case, the number a,, of k-gonal 2-trees labelled over n polygons
satisfies 2a,, = a,,,+1, since the only k-gonal 2-tree left fixed by a reversal of the
orientation, for a given number of polygons, is the one in which every polygon
share one common edge. We get

Proposition 4. The number a,, of labelled k-gonal 2-trees on n k-gons is given
by

an == (M" 7 +1), n>2, (21)

1
2
where m = (k — 1)n + 1.

For the unlabelled enumeration of k-gonal 2-trees (unoriented), we have to
consider quotient species of the form F'/Z,, where F is any species of “oriented”
structures and Z, = {1,7}, is the group where the action of 7 is to reverse the
orientation of the structure. A structure of such a species then consists in an
orbit {s,7 - s} of F-structures under the action of Z.

For instance, the different pointed species of unoriented k-gonal 2-trees 4,
a° and A%, can be expressed as quotient species of the corresponding species
of oriented k-gonal 2-trees:

a—>

0 _ay XCk(B) as XBF

R © — a = .
Zy’ Lo Zy Ly Lo

For the ordinary generating series (unlabelled structures) associated to such
quotient species, we use the following formula, which is quite obvious,

(F/2:)(z) = 3 (F(@) + F, (2), (23)

where F,(z) = > >0 |Fixg (7)[z" is the ordinary generating series of unla-
belled F-structures left fixed by the action of 7, that is, by orientation reversal.
However, the computation of the series F;(z) is quite complicated and it is
better to treat separately two cases according to the parity of k.



4.1 Case k£ odd

We can notice, observing Figures 3 a) and b), that in every k-gon containing
the pointed (but not oriented) edge of an G~ -structure, it is possible to orient
the k — 1 other edges in a “going away (from the root edge) direction” as in
Figure 3 a), when k is odd, but there remains an ambiguous edge if k is even.
This phenomenon permits us to introduce skeleton species, when k is odd, in
analogy with the approach of Fowler et al. in [5, 6], where k = 3. They are the
two-sort quotient species Q(X,Y), S(X,Y) and U(X,Y), where X represents
the species of k-gons and Y the species of oriented edges, defined by Figures 4
a), b) and c), where k = 5. In analogy with the case k = 3, we get the following

a b 8}
Figure 4: Skeleton species a) Q(X,Y), b) S(X,Y) and ¢) U(X,Y)

propositions.

Proposition 5. The skeleton species ), S and U admit the following expres-
sions in terms of quotients species

QX,Y) = B(XY?)/Zs, (24)
S(X,Y) = Cw(BE(XY?))/Zy, (25)
UX,Y) = (B(XY*)*/7Z,. (26)

Proposition 6. For k£ odd, k£ > 3, we have the following expressions for the
pointed species of k-gonal 2-trees, where B = @7:

- =Q(X,B7), a°=X-S(X,BT), a*=X-U(X,B=). (27)

In order to obtain enumeration formulas, we have first to compute the cycle
index series of the species @), S and U.

Proposition 7. The cycle index series of the species Q(X,Y), S(X,Y) and
U(X,Y) are given by

1

Zg = 3 <ZE(XY2) + Q>, (28)
1 [

Zs = 3 ZowB(xy2) T a4 (P20 Zpxy?) ® ), (29)
1 Bl

Zy = 3 Zpxy2)r +4- (20 Zpxyz)) 2 ), (30)



2
where ¢ = h o (z1y2 + p2 o (z1£5%)), p2 represents the power sum function

of degree two, h the homogeneous symmetric function and o, the plethystic
substitution.

Proof. Formula (28) and the method used can be found in [5, 6]. It is a matter
of counting colored unlabelled F'(X,Y)-structures left fixed by 7. In the case of
S, we have to leave fixed a colored Cy(E(XY?))-structure. For this, the basis
cycle of length k must possess (at least) one symmetry axis passing through the
middle of one of its sides. We can see that when such a structure has several
axis of symmetry, the choice of the axis is arbitrary. On both sides of the axis,
each colored E(XY?)-structure must have its mirror image; this contributes for
a term of (pg o ZE(XW))%. Next, the attached structure on the distinguished
edge must be globally left fixed; this gives the factor ¢q. The reasoning is very
similar for the species U u

Combining the dissymmetry theorem, equations (28), (29), (30) and the substi-
tution rules of unlabelled enumeration, we obtain the ordinary generating series
of the species of k-gonal 2-trees.

Proposition 8. Let k > 3 be an odd integer. The ordinary generating series
a(x) of unlabelled k-gonal 2-trees is given by

a(z) = 1 (Elo(:v) +exp ( Z %(szék%l (z2)) + ¥ B 1 (%) B (:c‘“))) .

(31)

Corollary 3. For k > 3, odd, the number @,, of unlabelled k-gonal 2-trees over
n k-gons, satisfy the following recurrence

- 1 — _ 1_ 1. -
Ay = %]’ 1 <;lwl> (anfj - §ao,nfj) + §a0,n: ap = 1, (32)
= J

where, for all n > 1,
wn =263 400D —pE), (33)
and bl(-j ) is defined in Corollary 2.

4.2 Case k even

The case k even is much more delicate. In order to express the ordinary gener-
ating functions of the three species @, @° and @2, we apply relation (23) to
formulas (22). For the species @, we have

a (z) = =(a (2) + @, (2)), (34)



where ZL?(:U) = D0 |Fixg~ (7)|z" is the ordinary generating series of unla-
belled oriented-edge-rooted 2-trees which are left fixed by reversing the orienta-
tion. Let Ag denotes the subspecies of @~ consisting of @ -structures s which
are isomorphic to their image 7-s under the orientation reversing map. We have
to compute (g(z) = Zl: (z). For this, let us introduce some auxiliary species.
The first one, denoted Grs, is the class of Qs-structures for which every page
attached to the rooted edge is vertically symmetric without crossed symmetries
(see below); we say totally symmetric. We can characterize this species by the

Nmane

Figure 5: A structure of the species Qrg
following functional equation (see Figure 5)
ars = E(X - X2 < B2 > -ars) = E(Prs), (35)

where X2 < F > represents the species of ordered pairs of isomorphic F-
structures and Prg is the species of totally symmetric pages. Translating this
equation in terms of generating series, we get

s (a) = exp | 3 3t B (¥ s ) | (36)

i>1

Proposition 9. The numbers 3,, = |ZI/TS [n]| of unlabelled Grg-structures on n
polygons satisfy the recurrence

i=1 N dli

where N s
Tp = PTS,n = Z b(T)BJ (38)

itj=n—1

i even

(DS

10



Proof. It suffices to take the logarithmic derivative of (36), that is
xi(%“) () =x- Z O (ah)zi (39)
Qrs () i>1

where Q(z) = an:c” =2B'T (%) Qs (). Next, extracting the coefficient of
n>1
x™ in both sides of

o(lrs) (x) = (Y 9 (a')2") Qs (x) (40)
i>1
leads to (37) using (35) since Q(z) = Prs(z). [ |

Let us now introduce two other species, namely Par, and Py, of pairs of alter-
nated pages and of mized pages. A pair of alternated pages is, by definition, an
unordered pair of oriented pages (@ -structures having only one page) of the
form {s,7 - s} with s and 7 - s non-isomorphic. Figure 6 a) shows a structure
belonging to this species. A mized page is a symmetric page having at least one
alternated symmetry. Such a structure is drawn in Figure 6 b). We can then
express each of these two species in terms of the other, as follows:

Par, = (I>2<XB,C71_(PTS +PM) >, (4]‘)
Py = X -X2<BT > (as— Grs), (42)
where ®5 < F > represents the species of pairs of F-structures of the form

{s,7 - s} and E, is the species of non empty sets. At the level of ordinary
generating series, we get

~ 1, 5~ ‘ ~ ‘ ~

Pap(z) = 5(;UZB’“*l(:UZ)—PTS(:UZ)—PM(:UZ)), (43)

Puw) = (XX2<B'* > Grs-Ei(Par+Py) (@) (44)

~ e ~ 1 ~ . ~ .
= $B¥($2)CLTS($) exp <Z ~(Par(z*) + PM(:U’))> —1](45)
i>1 t
~k— P ~ ~
= 2B'7 (2%)(Gs(z) - Qrs(@)) (46)
Let le(a:) denote the ordinary generating series of unlabelled symmetric
Q" -structures. We have (see Figure 7)

Qs(x) = E(Prs+ PaL+ Pu)™(x), (47)
i>1

We then deduce a recurrence for the numbers a,, = d@s,, of symmetric k-
gonal 2-trees rooted at an edge left fixed by orientation reversing, Par,, and

11



13M7n of alternated and mixed pages, respectively, on n k-gons:

n

S > (Zdwd> Uiy o9 =1, (49)

n

=1 N dli
. n—1 (@) "
Py = Z b; * "apn—1—i — Prs,n, (50)
=0 2
- 1 B - -
Parn = 3 (b(f%zl) — Prs ny2 — PM,n/z) , (51)

where
wr = Prs i + Pav,k + Pk,

and ﬁTsm = m, is given by (38).

NV

a b

Figure 6: A pair of alternated pages and a mixed page

7 dh e

Figure 7: Decomposition of an @ -structure fixed under 7

Proposition 10. If k is an even integer, then the number of edge rooted (un-
oriented) k-gonal 2-trees over n k-gons is given by
1

(52)

12



Let us now turn to the species @2 of k-gonal 2-trees rooted at an edge-
pointed k-gon.

Proposition 11. We have

(@@ +a,w). (53)

where

~ ~k—2

a; (v) = zls(x)B =" ().

Proof. An unlabelled 7-symmetric @, -structure possesses an axis of symmetry
which is, in fact, the mediatrix of the distinguished edge of the rooted polygon,
and also the mediatrix of the edge facing the rooted one, see Figure 8. The two
structures s and t glued on these two edges are thus symmetric, which leads
to the term (Qg(x))?. Then, on each side of the axis, are found two B*F-
structures a and (, which by symmetry satisfy § = 7 - a, contributing to the
factor B T (2?). [ ]

Figure 8: A 7-symmetric unlabelled @5-structures

Corollary 4. We have the following expression for the number @, of unlabelled

a-structures,
1 . k=2
i=s(an s T o), 5

where al(-2) = [:U’]EL%(:U) m|

We proceed in a similar way for the species @°, of k-gon rooted k-gonal
2-trees. Once again, we use relation (23), giving

a0 = 3 (@@ + 8, ). (55)

13



Proposition 12. Let EL:T(:U) be the generating series of unlabelled @/ -structures
left fixed by orientation reversing. Then, we have

G, (z) = 505(0) BT () + 5B% (@), (56)
Proof. Notice first that to be left fixed by orientation reversing, an @, -structure

must admit at least one axis of symmetry, which can be of two kinds:
1. an axis passing through the middle of two opposite edges, or
2. an axis passing through two opposite vertices,

of the pointed polygon. The enumeration is carried out by first orienting the axis
of symmetry. The first term of (56) then corresponds to a symmetry of the first
kind, and the second term to a symmetry of the second kind. The structures
having both symmetries are precisely those which are counted one half time in
both of these terms. This is established for a general k£ by considering the largest
power of 2, 2™, such that k/2™ is odd. We illustrate the proof in the following
lines with k£ = 12; the reader will easily convince himself of the validity of this
argument for any k.

a) b)
Figure 9: ZL;T—structures with an edge-edge symmetry

For k = 12, a general unlabelled 7-symmetric polygon-rooted oriented k-
gonal 2-tree with an oriented edge—edge axis will be of the form illustrated in
Figure 9 a), where s; and s, represent unlabelled @g-structures, a, b, ¢, d and
e are general unlabelled B-structures and 7z represents the opposite of the B-
structures x, obtained by reversing their orientation. Most of these structures
are enumerated exactly by %xag(x)§5 (2?). Indeed, the factor xag(x)g‘r’ (2?)
is obtained in the same way as for (G5 ,-structures and the division by two is
justified in the following cases:

1. s1 # s2 (two orientations of the axis),

14



Figure 10: Zl;T—structures with edge—edge and vertex—vertex symmetries

2. 51 =82 =, (a,b,¢) # (d,e, 7 - ¢) (two orientations),

3. 51 =sy=s, (a,b,¢) = (d,e,7-¢),so that c=7-¢ =1t € Qg, and either
i) s #torii) s =tand (a,b) # (7-b,7-a) (two choices for the symmetry
axis, see Figure 9 b)),

tb

a) b)
Figure 11: Zl:,T—structure with a vertex—vertex symmetry axis

However, the structures with s =t and b = 7 - a (see Figure 10) will occur only
once and are counted only one half time in the formula. But, notice that these
structures also admit a vertex—vertex symmetry axis and, as it will turn out,
are also counted one half time in the second term of (56).

Similarly, an unlabelled @,  -structure with an oriented vertex—vertex sym-
metry axis will be of the form illustrated in Figure 11 a), where a, b, ..., f are
arbitrary unlabelled B-structures. Most of these terms are enumerated exactly
by 1zB(z?), the division by two being justified in the following cases:

15



1. (a,b,c) # (d,e, f) (two orientations of the symmetry axis),

2. (a,b,c) = (d,e, f) and (a,b,c) # (7 -¢,7-b,7-a) (two choices for the
symmetry axis, see Figure 11 b)),

_ However, the structures with (a,b,¢) = (d;e, f),c=7-aandb=71-b=s€

Qs appear only once and are counted one half time here. But they also have an

edge-edge symmetry axis and were also counted one half time in the first term
of (56) (exchange a and 7 - a in Figure 10). [ |

The dissymmetry theorem yields, for k£ > 4 even,

0r) = 3 ulw) + 5 Bs(e) + 587, () = 382, (2), (57)

So, we have the following result.

Proposition 13. Let k be an even integer, k > 4. Then,the generating series
a(x) of unlabelled k-gonal 2-trees is given by

W) = 5 8,(r) + 5 0s(a) + S (BE) - B@B'T @), (39
where @,(z) is given by (18) and Gs(z) by (48). i

Corollary 5. If £ > 4, is an even integer, then the number of unlabelled k-gonal
2-trees over n k-gons is given by

Ic—Z)

2

—

~ 1_ 1 1 (& 1 .
Ap = 5Qon + S0 + Zb("z%)l 1 Z agz) b

5 5 » , (59)
i+j=n—1

ol

with _ ‘
B =B (2), ol =[] ().

5 Enumeration according to the perimeter

In this section, we are interested in the enumeration of k-gonal 2-trees according
to the perimeter. The perimeter of a k-gonal 2-tree is the number of external
edges (edges of degree at most one). In particular, if the structure s is the single
edge, the perimeter is 1. In order to keep track of the perimeter, we introduce
a weight function w over k-gonal 2-tree, defined by:

w: G — Q[t]

s — w(s) =P, (60)

where p(s) denotes the perimeter of the structure s € @. For example, the
2-tree of Figure 1 a) has perimeter 28.

16



5.1 A weighted version of the species B

Our first task is to determine the functional equation satisfied by the species
By, of k-gonal 2-trees pointed at an oriented edge and weighted by the perime-
ter counter ¢, with the precision that the rooted edge does not contribute to
the perimeter of a B-structure except in the case of a single edge, which has
perimeter 1. We have

Proposition 14. The weighted species B,, is characterized by the following
functional equation
By(X) =t + EL (XBy (X)), (61)

where E is the species of non-empty sets.
Proof. The (unweighted) species B satisfies
B=EXB"*Y=1+E.(XB* (X)),

where the term 1 corresponds to the single edge. By taking into account the
perimeter weight w and the fact that a single edge has weight ¢, we obtain (61).
|

Note that (61) is also valid for & = 2. The species B,, then represents
weighted edge-labelled (ordinary) rooted trees where the variables ¢ acts as a
leaf counter.

We write the generating series associated to the weighted species B, as
follows:

Bul@) = Blot) = Yant'to = Yarwt ()

i3 R0
By(x) = Blw,t) = Y beta™ = ) ba(t)a", (63)
n>0 n>0

e>1

where aZe and by ¢ are the numbers of labelled and unlabelled k-gonal 2-trees
rooted at an oriented edge having n k-gons and perimeter ¢. From equation
(61), we can deduce explicit formulas for a;’(¢) and a;’, and recursive formulas
for b,(t) and b, . Notice that, because of the nature of the structures, the
integer £ is bounded: (k —2)n+1< (< (k- 1)n.

Proposition 15. The polynomial a,’(t), giving the labelled weighted enumer-
ation of B,-structures over n k-gons is given by ay’(t) =t and, for n > 1,

m—1
— _ n_' _1\i;n m £
WO = LY % v (,7,) ¢ (64)
1 & m! N i



where m = (k — 1)n + 1 is the number of edges and S(n, j) denotes the Stirling
numbers of the second kind, giving the number of partitions of an n-set in j
blocks.

Proof. From (61), we have B(z,t) = t + exp(zB* 1(z,t)) — 1. So, we get
eB* Y (x,t) = x(t + exp(eB* (z,t)) — 1)k L.

Putting B(x,t) = xB*~!(z,t), we obtain that the series B(z,t) satisfies the
functional equation B(z,t) = zR(B(,t)), where R(y) = (t + exp(y) — 1)k~L.

Moreover, 1
Blz,t) = (@) o (66)

The composite form of Lagrange inversion applied to equation (66) gives (64).
To obtain now (65), we apply the same method but we use the following well-

known relation ( i
e’ —1)7 N
S s,
n>j
see [4] page 63. [
We obtain now, in a straightforward way, expressions for a,’,. Formula (65) can
also be given a Priifer-type bijective proof.

Corollary 6. The number a,’, of labelled B, -structures over n k-gons and
having perimeter £, for (k —2)n+1 < ¢ < (k — 1)n (a weight t), is given by

e = Y e ([ (67)

it+j=m—{
— 1!
= %S(n,m —0), (68)
where m = (k — 1)n 4+ 1 is the number of edges. |
We notice that, when ¥ = 3, £ = n 4+ 1 is the minimal perimeter and

a,’,+1 = nlen, where ¢, is the famous Catalan number, since, in this case,
the By-structures obtained are outerplanar, see Labelle et al. [14]. These
structures are the basic ones in the computation of the molecular expansion
(a classification according to symmetries) of the species of outerplanar k-gonal

= nlCy,pn, where C, = l(”Ef__ll)) is the

2-trees. For general k, az(k_2) -

n+1
generalized Catalan numbers. See [16].

As in the unweighted case, we cannot obtain an explicit formula for the

number b, ¢ as well as for the polynomial b,(t). However, we give recursive
formulas.
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Proposition 16. The polynomials b,,(t), n > 1, satisfy the following recurrence

bo(t) = t,
(69)

1 e o
(0 = (S a e S (S anen ) o),

dn i=1 \ d|i
where the summations are taken over integers ¢,d > 1, and where
b I(t) = [« BF (a,t) = > bi, (£)biy (8) .. by, (). (70)
i1+ig+-+ig_1=n

Proof. We obtain recurrence (69) by taking the derivative (with respect to )
of the following expression

~ 1 .~ o
B — —ank=1¢_.i 4i _
(x,t) =t +exp ZixB (x*,t") 1,
i>1
obtained from (61) by passing to the ordinary generating series for unlabelled
enumeration. ]
We obtain the next proposition quite directly from the previous one.

Corollary 7. The number b, ; of unlabelled B,-structures over n k-gons and
having perimeter ¢ satisfies the following recurrence

1 1

boe=01e,  bne=wnet Yo > e bug (71)
ST s
where d; ; is the Kronecker symbol and
— Iy (k—1)
wne= Y S0 (72)
d|(n,¢)

a

As for the unweighted case, we can express the pointed weighted species of
k-gonal 2-trees as function of the species B,,. We begin with the oriented case,
which is simpler, and use it to obtain the unoriented case.

5.2 Oriented case

Let us denote by @y = ()™, @, = (Qw)°, G = (Gw)% and @, = (Qow) ™,
a3 = (Qow)® Giw = (Uow)% where w is defined by (60). Note in partic-
ular that @, , # By. The dissymetry theorem remains valid in this weighted
context, for both the oriented and unoriented cases:

Ayt @5y = Qo+ G, (73)
a,+a;, = Q,+ ag. (74)
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As in the unweighted case, we have to express these species in terms of the
weighted species B,,. Enumeration formulas will then follow. The following
proposition is quite obvious and the proof is omitted.

Proposition 17. The weighted species @, ,,, Qg ,, and Qg . are characterized

by 0w
a; ., B, +(t—1)XBE 1, (75)
a;, = XCi(Bu), (76)
a;, = XBj. (77)
We then deduce easily the associated generating series of these species
a, (z,t) = B(z,t) + (t — 1)zB* " (z,1) (78)
and
a, (z,t) = ﬁ(az t) + ( 1)zB* ! (z,t), (79)
a(z,t) = = Z B(d) B (z7, %), (80)
d|k
O, (x,t) = a(B"(z,t) + (t —1)B" ' (z,1)), (81)
from which we deduce
0y, (1) = nlf2"] a5 (2,) = a;” (8) + (¢ = Dna, V@), (82)
and, using the dissymmetry theorem,
Qo (z,t) = Z¢ Bi(z%t%) —xB*(z,t) + (t— 1)zB* (z,t). (83)
d\k
We then get:
Proposition 18. We have, for n > 2,
aonlt) = 28, (5)
Uon(t) = [2"]Go(x,t) (85)
= b))+ 1 ol + (6= 5" (1), (86)

d|k
d>1

where m = (k — 1)n + 1 is the number of edges and b\ (t) is defined by (70).

Corollary 8. The numbers a,(n,f) and @,(n,f) of labelled and unlabelled
oriented k-gonal 2-trees , over n k-gons and having perimeter ¢ are given by

Lo 1 ~ (k1) (k-1)
ao(nag) = an (n f) = m( n,l + nan 1.0— na:_17( )7 (87)
k _ _
do(n,t) = bn, b(k 1,¢ + 1. Z o(d L é 'Ezkfll,;fl o b;kql,;z- (88)
d\ (k,¢)
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5.3 Unoriented case

Asin the unweighted case, unoriented species of k-gonal 2-trees can be expressed
as quotient species of the oriented ones, as follows, where notations are obvious,

a_ _ a;,w o ag,w a<_> _ ag,w

= as = = 89
w ZZ ? w Z2 w Z2 ( )

It is very easy to obtain the number a,, ¢ of labelled k-gonal 2-trees over n k-gons
and having a perimeter of lenght /,

a(n,z):{ Hao(n,0+1), i £= (k= 1Dn,

Fao(n, L), otherwise. (90)
since the only labelled k-gonal 2-trees fixed by orientation reversal for a given
perimeter and number of polygons, is the one in which each k-gon share a
common edge, which has (k — 1)n external edges (illustrated by Figure 12).
So, the polynomial a,(t), giving the weighted enumeration of labelled k-gonal
2-trees, is given by

1
an(t) =Y anet’ = 5 (Gon(t) + tk=Dny, (91)
C
d n=4
b weight =t 8
a

Figure 12: Labelled oriented 4-gonal 2-tree which is fixed by orientation rever-
sion

For the unlabelled (weighted) enumeration, we have to adapt the results
obtained in Section 4.2 and 4.3 to take into account the perimeter.

e £ odd.

For k odd, we can easily see that the species @, G2 and @ satisfy the
following expressions in terms of the weighted quotient species @, S, and U,
which are adapted from Section 4.1:

G, = Qu(X,B.), (92)
@, = X-Su(X,B.7), (93)
@, = X-Uu(X,B), (94)
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with

Qu(X)Y) = (t+tXY?+ E>y(XY?)) /Ly, (95)
Su(X,Y) = Cult+ E+(XY?))/Zo, (96)
Up(X,Y) = ((t+E¢(XY?)¥) /2, (97)

where E> is the species of sets of cardinality at least two. The cycle index
series of these species are given by:

1

Q. = E(ZEW(XYz) + quw), (98)
1 E-1

Zs, = 3 (ZCk(t+E+(XY2)) +qu- (P20 (t+ Zp, (xv2)) 2 )) ;o (99)
1 Eo1

Zy, = 3 (Z(t+E+(XY2))k +qu- (P20 (t+ Zp, (xv2)) 2 )) ,  (100)

where gy = (t—1)(1+1y2) +ho (214 +p2 0 (21 552)) = g+ (t— 1) (1 +2192),
h being the homogeneous symmetric function, and p;, i > 1, denotes the i*}
power sum and E,,(XY?) = E(XY?) + (t —1)(1+ XY?).

Another use of the dissymmetry theorem gives the ordinary generating series
of unlabelled k-gonal 2-trees weighted by their perimeter:

a(e,0) = 3 (@l 1) + gule, BF (0,0] + (6= )1+ 2B @2, 2)), (101)

where

e k even.

When k is even, it suffices to adapt all species introduced in Section 4.2
in the present weighted context. This is easily done, as follows, the index w
meaning that the species are weighted according to perimeter. Note that the
species (s, is a sub weighted-species of @, ,, by definition. We have:

~

as(x,t) = <E(PTS,w +PM,w+PAL,w)+(t_1)(1+PTS,w+PM,w)> (:1:), (102)

where
Qrs,w = t+t-Prsw+ E>a(Prsw) (103)
= (t=1)(1+ Prs,w) + E(Prs,w), (104)
Prsw = X -X2<B7 > (Grsw+ (1—1)Prs.y), (105)
Panw = ® <XBF' — (Prs., + Puw) >, (106)
Paw = X-X2Z<BT > (Asw+(1—t)Puw— Qrsw).  (107)
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We then have

Os(z,t) = exp(> %(JSTS(:Ui,ti)+13M(xi,ti)+13AL(:Ui,ti)))+(t—1)(1+13Ts(:U,t)+13M(ar,t)),

i>1
(108)
where
= > Ly i
afTS(xat):(t_l)(1+PTS($7t))+eXp ZZPTS(:L‘:t) ) (109)
i>1
Prs(w,t) = oB*F (o%,8) (Qrs(w,8) + (1 - ) Prs(z,), (110)
~ 1, .~ 5 ~ 5 ~ .
PAL(w7t) = 5 (;Uszil(xzatZ) - PTS(xzatZ) - PM(xzatZ))a (111)
and
~ k=2 ~
Pu(z,t) = (XXi < By® > (Grsw+ (1—1)(14 Prs,w)) - By (PavL,w + PM7UI)) (z)
— B2, (le(:n,t) + (1= t)Pu(z, t) - a/rs(a:,t)) . (112)
It is then possible to compute the tilde generating functions of unlabelled
structures associated to the species (89):
a’;r(wat) = le(a:,t),
=~ b D 5 2 omE=2oo
U, (@,t) = a(Gsa,t)+(1—8)(Prs(e,t) + Pula, 1) - B= (@1,
o o 5 5 SV D L mk 2 .2
G, (@) = 3 (@s@,)+1=0(Prs(et) + Pulat)) - BT (%) + SBE @)
Finally, we obtain
~ 1~ 1~ ~
a(;l?,t) = an(xat) + EG’S(xat) + §B§($2;t2)
~ ~ ~ 2 g
~7 (@@ + 1= O(Prs(a.0) + Pu(at)) - B (@2, 82).
(113)

6 Asymptotics

Thanks to the dissymmetry theorem and to the various combinatorial equations
related to it, the asymptotic enumeration of (labelled or unlabelled) k-gonal 2-
trees depends essentially on the asymptotic enumeration of B-structures where
B is the auxiliary species characterized by the functional equation (5). In the
labelled case, the asymptotics is trivial since we have the simple explicit formulas
(9), (19) and (21). The unlabelled case is more eleborate and makes use of the
funtional equation (14) satisfied by the series B(z).
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We need first the following result, which is a consequence of the classical
theorem of Bender (see [2]) and is inspired form the approach of Fowler et al.
for 2-trees (see [5, 6]).

Proposition 19. Let p = k — 1 and B(z) = Y. bu(p)z™. Then, there exist
constants a,, and 3, such that

bn(p) ~ apﬁgn_3/2, as n — 0. (114)
Moreover,
’ 1
11 -2 Pépw (ﬁp)> ?
ap =« =——&§ 7|1+ —=2——2 115
v= i) = g (1 2 (115)
and 1
By =+ (116)
&p
where ¢, is the smallest root of the equation
1
— P 117
€= (o), (117)
where w(x) is the series given by
w(z) = e%x2b1’(w2)+%z3b”(zg)-‘rm' (118)

Proof. Write, for simplicity, b(z) = B(z). Then, thanks to (14), y = b(z)
satisfies the relation

y=e"w(x), where w(z)= 2@ b7 (@) +5a 0P (@®) 4 (119)

By Bender’s theorem applied to the function f(z,y) = y — e"¥"w(z), we have
to find a solution (&,,7,) of the system

flz,y) =0 and fy(z,y) =0. (120)

It is equivalent to say that &, is solution of (117) and that p,78 = 1.
Since fyy(&p, Tp) # 0, &p is an algebraic singularity of degree 2 of b(z) and,
for z near §,, we have an expression of the form

ba) = po + 7pa(l= )F 1l = )+ 7= )F 4o (12D)
where
1\
o = Tp = b(&) = (p—fp> ) (122)
V2 1 pfpwl(fp) :

= — 5T 12y 123
! p1+5£ <+ w(&p) (123)

1 1 '
ra = 3p2—+%fp*’((2p+3>—p(p—3>f"j(—§f;)>. (124)
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The asymptotic formula (114) with «, and 3, given by (115) and (116) then
follow from the fact that the main term of the asymptotic behavior of the
coefficients b, (p) of ™ in (121) depends only on the term 7,1 (1 — é)% in (121)
and is given by

1

5 1

bn(p) ~ (;) Tpi(=1)"— ~ apﬁgn*% as m — oo. (125)
P

Note that &, is the radius of convergence of b(z) and that the radius of conver-
gence of w(z) is \/&,. It can be shown that 0 < &, < /& < 1. This implies
that numerical approximations of ,, for fixed p, can be computed by iteration
using (117), and a suitable truncated polynomial approximations of b(x). We
now state our main asymptotic result.

Proposition 20. Let p = k — 1. Then, the number a, of k-gonal 2-trees on n
unlabelled k-gons satisfy

~ 1.

a, ~ anyn, n — oo, (126)
where @, ,, is the number of oriented k-gonal 2-trees over n unlabelled polygons.
Moreover,

o ~TpBin™2, 0 — o0, (127)
where
2

@ = 2mp'tigial, (128)

3

1 1 -1 w &)\
= — 7|1 129
\/ﬂp2+%£p ( +pW(£p) ) ( )

and B, = é is the same growth as in Proposition 19.

Proof. The asymptotic formula (127) follows from the fact that the radius of
convergence, &,, of Q(z), given by (31) for k£ odd and by (58) for k even, is
equal to the radius of convergence of the dominating term %ZZO(:U) This is due
to the easily checked fact that all terms in (31) and (58), except %Zl,o(a:), have
a radius of convergence greater or equal to \/5 > &p. To establish (127), note
first that, because of equation (18), the radius of convergence of @, () is equal
to the radius of covergence, &, of
k-1

b(x) — Txbk (z), (130)
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where b(z) = B(z) and k = p+ 1. This implies that the asymptotic behavior of
the coefficients @, ,, of Q,(z) is completely determined by that of (130). Substi-
tuting (121) into (130) and making use of (124) gives the following expansion

1 3
k-1 2 E
b(:l?)— A ;L'bk (.’L‘) = Fp70+7p71 (1 — E) +Fp72 <]. — E) +Fp73 (1 — ﬁ) +- -

& & & (131)
where
Too = I%T,,,O, (132)
Tpa = 0, (133)
- _1P(P+ 1)7'1%71 - 27}?,0 (134)
P2 2 (p + 1)7'1),0 ’

_ _ 1 7p1 (6p7p07p2 + p(p — 177, — 677 ) 1
Tp3 = _g T20 ) ( 35)
P,

3
PTp1
= ==, 136
3 Tlio (136)

This implies that the dominating term for the asymptotic behavior of the co-
3

efficients @y, of 2" in @,(z) depends only on the term 7, 3 (1 - Ei) *in (131)
and is given by

3
~ 5 1
an,o ~ <2>?p,3(—1)n— ~ apﬂpn_%, as n — 0o. (137)
n &
Computations making use of (136), (122) and (123), show that @, is indeed
given by (128) and (129). [ |

Our final result gives an explicit formula in terms of integer partitions for the
common radius of convergence &, of the series B(z), G(z) and @,(z) from which
the growth constant (3, = é is obtained. We need the following special nota-
tions. If A = (A1 > A2 > ... > \,) is a partition of an integer n in v parts, we
write A Fn, n = |\, v =1(\), mi(A) = |{j : A\; = i}| = number of parts of size
7 in A. Furthermore, we put

oi(N) =Y _dma(A), of(\) = D dma(N), (138)
d|i d|i,d<i
X=1+ A +I0), 20) =2 N m (W13 N, (W) (139)

Proposition 21. We have the convergent expansion

o0

&= ;— (140)

n=1
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where the coefficients ¢,, are constants, independent of p, explicitely given by

en = Z 0i(A) = N)™ N7 (A) = ), (141)

)\)—n ) z>1

where A runs over the set of partitions of n.

Proof. We establish the explicit formulas (140) and (141) by applying first
Lagrange inversion to the equation £ = zR(§) where z = % and R(t) = wP(t),
to get

=E§= Z’Yn <—> , and 7y, = %[tn_l]w_np(t). (142)

n>1

Next, to explicitely evaluate w™"?(z), we use Labelle’s version ([12]) of the Good
inversion formula in the context of cycle index series as follows. We begin with

1 . . 1
wP(z) = eXp(prsz(xz) + gp:vgbp(:vS) + ), (143)
1 1
= eXP(§p$2 + §P$3 + 1) o Zxpr(x) _ (144)

where the o denotes the plethystic substitution. Using (7), we can then write
XBr(X) = 42X This implies that

1 1 VA 2y

WP(2) = exp(Lpra + Lpos + o) 0 ZAPTLPT, ) : (145)

2 3 p ri=xt

and we get
—np _ n n 1
wi(x) = exp(—gpr2 — gprs =) o | SZalpor,prs, ) (146)
n n

= eXp(—EZL“z—§$3—"')OZA(SU1,$2,...) (147)

T;:=pT’

Then, using Labelle’s inversion formula for cycle index series, we have, for any
formal cycle index series g(z1, 22, . ..)

(1=t;) exp(ni(tit~taite ),

’,:18

[271 252 .. ] goZa(my, x2,...) = [t1't52 .. Jg(t1, b2, .. .)

2
i=1
(148)
and
1
H exp(n;(t; + tzj . Hexp Zdnd— (149)
j=1 di
Taking g(x1,z2,...) = exp(—gpr2 —§prs—---), gives, after some computations,
[zt 232 .. ] (exp(—%xz - %Cl}'g —--)o ZA) =
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0 if n1>0,

[T(v+ X dna v+ Y dna)
dli

i>2 d|i,d<i . (150)
l 22, 138 T et if ni=0.
Making the substitution z; := pz?, for i = 1,2,3,..., gives the explicit formula
H(—z/ + Zdnd)ni_l(—u + Z dng)
—vp _ natngte 122 dli d|i,d<i n
“ (x) B Z Z b ) ’ 2”2n2!3n3n3! “e. v

n>0 | 2n2+3nz+=n

This implies, taking v = n and using (142), that

H(l —n+ Zdnd)”"*l(l —n+ Z dng)

& = Z 1 Z pn2+n3+---i22 d|i d|é,d<i
v n 2n2n2!3”3n3! Ce
n>1 2ns+3ng+-=n—1
= >
= =,
n>1 p
where the coefficients ¢,, n > 1, are given by (141). [ |

Table 1, in the Appendix, gives, to 20 decimal places, the constants &,, ap,
@, and B, = é for p=1,...,5. Table 2 gives the exact values of the numbers
ay,, for k from 2 up to 12 and for n = 0,1,...20, of the number of unlabelled
k-gonal 2-trees built over n k-gons.

Here are the first few values of the universal constants ¢, occuring in (140),
form=1,...,5.

1
= o= 0.36787944117144232160,
11
€2 = 55 = —0.02489353418393197149,
11 11
¢ = ZF T3l = —0.00526296958802571004, (151)
11 1 11
cy = + = - = 0.00077526788594593923,

486 T ef 46
11 41 491 11

= —— —=——+4+ ————— = 0.00032212622183609932.
“ 384¢% 3e8 + 72e7  Heb

Remark 2. The computations of this section are also valid for the case k = 2
(p = 1), corresponding to the case of classical rooted trees (Cayley trees) defined
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by the functional equation A = XE(A). In this case, the growth constant
B = B1, in (114), is known as the Otter constant (see [17]). It is interesting to
note that this constant takes the explicit form £ = gil, with

a=> cn (152)

n>1

Notice also that, when k& = 3, we recover the asymptotic results of Fowler et
al. in [5, 6].
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Appendix

Table 1 gives, to 20 decimal places, the constants &,, a,, @, and 3, = gl for
p=1,...,5.

€p

Qp

ap

Br

==
— o ©0oNO O W N T

0.338321856899
0.177099522303

0.119674100436
0.090334539604
0.072539192528
0.060597948397
0.052031135998
0.045585869619
0.040561059517
0.036533820306
0.033233950789

1.300312124682
0.349261381742
0.191997258650
0.131073637349
0.099178841365
0.079660456931
0.066517090385
0.057075912245
0.049970993036
0.044433135893
0.039996691773

1.581185475409
0.349261381742
0.067390781222
0.034020667269
0.020427915489
0.013601784466
0.009699566188
0.007262873797
0.005640546218
0.004506504206
0.003682863427

2.955765285652
5.646542616233
8.356026879296
11.069962877759
13.785651110085
16.502208844693
19.219261329064
21.936622211299
24.654188324989
27.371897918664
30.089711763681

Table 1: Numerical values of &,, a,, @, and 3,, p=1,...,5

Table 2 gives the exact values of the numbers a,, for k from 2 up to 12
and for n = 0,1,...20, of the number of unlabelled k-gonal 2-trees built over n
k-gons.

Tables 3 and 4 give the polynomials b,(t), for n =0,1,...,9 and for k from
2 up to 9, of the weighted (by their perimeter) unlabelled oriented-edge-rooted
k-gonal 2-trees over n k-gons.
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k=2

1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, 19320, 48629, 123867,
317955, 823065, 2144505

k=3

1,1, 1, 2, 5, 12, 39, 136, 529, 2171, 9368, 41534, 188942, 874906, 4115060, 19602156
94419351, 459183768, 2252217207, 11130545494, 55382155396

k=4

1, 1, 1, 3, 8, 32, 141, 749, 4304, 26492, 169263, 1115015, 7507211, 51466500,
358100288, 2523472751, 17978488711, 129325796854, 938234533024, 6858551493579,
50478955083341

k=5

1, 1, 1, 3, 11, 56, 359, 2597, 20386, 167819, 1429815, 12500748
111595289, 1013544057, 9340950309, 87176935700, 822559721606, 7836316493485,
75293711520236, 728968295958626, 7105984356424859

k=6

1, 1, 1, 4, 16, 103, 799, 7286, 71094, 729974, 7743818, 84307887, 937002302,
10595117272, 121568251909, 1412555701804, 16594126114458, 196829590326284,
2354703777373055, 28385225424840078, 344524656398655124

k=17

1, 1, 1, 4, 20, 158, 1539, 16970, 199879, 2460350, 31266165, 407461893, 5420228329,
73352481577, 1007312969202, 14008437540003, 196963172193733, 2796235114720116,
40038505601111596, 577693117173844307, 8392528734991449808

k=38

1, 1, 1, 5, 26, 245, 2737, 35291, 483819, 6937913, 102666626,
1558022255, 24133790815, 380320794122, 6081804068869, 98490990290897,
1612634990857755, 26660840123167203, 444560998431678554, 7469779489114328514,
126375763235359105446

k=9

1, 1, 1, 5, 32, 343, 4505, 66603, 1045335, 17115162, 289107854,
5007144433, 88516438360, 1591949961503, 29053438148676, 536972307386326,

10034276171127780, 189331187319203010, 3603141751525175854,
69097496637591215442, 1334213677527481808220
k=10

1, 1, 1, 6, 39, 482, 7053, 117399, 2070289, 38097139, 723169329
14074851642, 279609377638, 5651139037570, 115901006038377, 2407291353219949,

50553753543016719, 1071971262516091572, 22926544048209731554,
494103705426160765546, 10722146465907412669810
k=11

1, 1, 1, 6, 46, 636, 10527, 194997, 3823327, 78118107, 1646300388,
35570427615, 784467060622, 17601062294302, 400750115756742, 9240636709048733,

215435023547580882, 5071520482516388865, 120417032326341878672,
2881134828445365441407, 69410468220307148620226
k=12

1, 1, 1, 7, 55, 840, 15189, 309607, 6671842, 149850849, 3471296793, 82442359291,
1998559329142, 49290785442796, 1233639304644946, 31268489727956101,
801335133177932829, 20736286803363051714, 541224489038545084067,
14234799536039481373552, 376974819516101224941091

Table 2: Values of a,, for k =2,..., 12and n=0,..., 20
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k=2

t7

t7

t+ 2,

t+2¢82 + 3,

4412+ 383 + ¢4,

t+6¢% 4 8¢5 +4t* +¢°,

t+ 9t +18¢% + 14t + 5¢° + 5,

t+12¢2 43583 +39¢ +21¢5 +6¢° +1¢7,

t 41662 + 623 +97¢* + 72° +30¢° + 7¢7 + 15,
t+204% +103¢3 +212¢* + 2145 4+ 120t° 4+ 40¢7 + 8¢5 + ¢°

k=3
t
t2
2¢% + ¢

5t +4¢° +¢8

14¢° + 185+ 6¢" + ¢°

42¢% +72¢7 +37¢% + 8¢ +¢1°

132¢7 +291¢% +204¢° + 64 ¢1° + 1041 + ¢12

42918 +1152¢° + 1048 ¢1°0 + 438 ¢! +97¢12 + 12413 + ¢4

1430¢° + 4558 t1° 4+ 5128 ¢ + 2757 ¢12 + 804 ¢13 + 138 ¢ + 14¢1° 4 ¢1©

4862110 + 17944 t1* + 24249 t12 + 16108 ¢ + 5981 ¢1% + 1332 ¢1° + 18516 + 16417 +¢18

k=4
t
t3
315 4 ¢°

12¢" + 6% +1t°

55¢° + 42410 4+ 9 ¢t 4 12

273t + 274 ¢12 + 87 ¢13 + 1241 +¢1°

142813 + 1806 ¢'* + 767 ¢1° + 150¢1¢ + 15¢17 4 ¢18

7752° 4 11820 ¢1° + 638717 + 1641 ¢18 4 228 ¢19 + 18420 4 ¢!

43263 t'7 4+ 77440 t*® + 51078 t'° + 16614 2° + 3006 2! + 324 22 + 21 ¢23 + ¢4

246675 t*° + 507246 t2° 4396905 31 +157638 22 +35847 ¢2 +4972 14 +435 t%° + 24 ¢%° +
t27

k=5
t
t4
4" +¢8

22¢10 4 8¢ 4 ¢12

140¢'3 + 76 ¢14 4 12¢1° + ¢1©

969 ¢16 + 688 ¢17 + 15818 4+ 16 ¢1% + 20

7084t 4 6290 ¢2° + 1916 ¢ + 272¢%2 + 2023 + ¢

53820 22 + 57376 ¢2% + 22064 ¢2* + 4092 ¢2° + 414 ¢26 + 24 ¢%7 + ¢%8

420732 %5 + 524412 ¢26 + 244840 ¢>7 + 57113 ¢2® + 7488¢2° + 588¢30 + 28 ¢3! 4 ¢3?
3362260 ¢2° + 4799568 ¢2° + 2645854 ¢3° + 749908 ¢31 + 122908 ¢32 + 12376 3% + 790 ¢34 +
32 t35 + t36

Table 3: Polynomials b,(t) for k =2,3,4,5and n=0,...9
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k=6

t

t5

5¢° +¢°

35t +10¢ + ¢4

285t +120¢18 4+ 1519 +¢2°

2530 t2% 4 1390 t22 4 250 ¢2% + 20 ¢4 4 ¢2°

23751 t%° + 16255 t2¢ + 3860 t27 + 430¢%® + 2529 + ¢*°

231880 ¢2° + 190106 ¢3° + 56755 31 + 8235¢32 + 65532 + 30¢31 4+ ¢3°

2330445 £33 + 2229120 t3* + 805621 ¢3° + 146510 ¢3¢ + 15060 37 + 930 3% + 35 ¢39 + ¢°
23950355 t37 + 26193570 t3® + 11149900 t3° + 2457081 t1° + 314810 ¢* + 248802 +
1250 ¢13 + 40 ¢4 4 ¢%°

k=7

t

6
611 4 ¢12

5116 + 12¢17 4 ¢18

506 ¢%1 + 174 ¢%2 + 18¢23 4 ¢4

5481 ¢26 + 2456 27 + 36328 + 2429 +¢3°

62832 t3 4 34989 t32 4 6808 ¢33 + 624 34 + 30¢3° 4 ¢36

749398 ¢3¢ + 499188 37 + 121800 3% + 14514 t3° 4 951 ¢%° + 36 ¢4 + ¢42

9203634 t*! + 7143466 2 + 2106138 t*° + 313872 t** + 26532 ¢%° + 1350 £1¢ + 42 ¢17 4 ¢*8
115607310 ¢¢ + 102489288 t17 + 35536296 & + 6406278 t1° + 673749 t5° + 43820 ¢°* +
1815 ¢°2 + 48¢°3 + ¢**

k=8

t

t7

7¢t ¢t

7080 4+ 14¢20 4 ¢

819¢2° + 238125 + 21 ¢27 +¢28

10472 ¢3! + 396232 + 497133 4 28 ¢34 4 ¢3°

141778 £37 + 66556 3% + 10969 ¢3° + 854 ¢40 + 35 ¢4 4 ¢42

1997688 t*2 4 1120658 t1* + 231203 t%5 + 23373 ¢%6 + 1302 ¢*7 + 42¢18 4 ¢1°

28989675 t19 418932368 t°° + 4713849 t°1 + 595077 t°2 +42714 72 + 1848 t>* +49 ¢55 4456
430321633 t°° 4 320771256 t°° 4 93827895 ¢°7 4+ 14311479 t°° + 1276471 t°° 4 70532 ¢5° +
2485 t%1 + 56 52 4 ¢62

k=9

t

tS

8¢5 4 ¢

92122 + 1623 + %4

1240 ¢%° + 312¢30 4 24 ¢3! 4 ¢32

18278 ¢38 + 5984 ¢37 + 652 ¢3° + 32¢3° 4 ¢4°

285384 ¢ + 115796 t1* + 16552 ¢%° + 1120 ¢ + 40 ¢*7 + ¢*8

4638348 t°° + 2247376 t°* + 401632 t°2 + 35256 t°° + 1708 t>* + 48 ¢°° + ¢°°

77652024 57 +43772920 t°8 +9432184 £°° + 1032814 t5° + 64416 % +2424 £52 56 5% +¢5
1329890705 t5* + 855243648 t5° + 2163400245 + 28597424 ¢%7 + 2214272t +
106352 ¢%° +3260¢7° + 64¢™ 4 ¢72

Table 4: Polynomials b,,(t) f@4k =6,7,8,9 and n =0,...,9



t2

2+

t2+t3+t4

24283 +2¢1 +¢°

2 +382 4t + 285 + 8

2443 +8t1 +6t°+3t° +17

24583 +14¢* +14¢° +9¢5 +3¢7 +¢°

24+ 785 +23¢1 43285 + 2685 +12¢7 + 45 +¢°
t2+8t% +36¢* + 645 +66t° +39¢7 + 16¢5 + 4¢° +¢1°

t4

5+

38 +t7 + 18

41" 4+ 515 +2¢° +¢1°

12¢% +14¢° + 100 + 24 4 ¢12

27t° +53¢1° + 37¢1 + 15412 4+ 313 ¢4

82¢10 4 179 ¢ + 171 ¢12 + 71412 4+ 22¢14 4 315 4-¢16

298t + 664 12 + 716 £ + 401 14 + 128 ¢1° + 29416 4+ 4¢17 4 ¢18

733¢12 4+ 2386 12 + 3128 t1* + 2051 t*° + 82516 + 201 ¢17 + 39+¢1® + 4¢1° 4 ¢2°

k=4
t
t4
t6
218 +¢°

710 4 3¢t 4 ¢12

25¢12 +18¢13 4+ 5¢tt 4 ¢1°

108¢1 +101¢'° + 3686 + 6417 +¢18

4926 + 58817 + 25918 + 58¢1% + 8¢20 4 ¢

2431 ¢'® 4+ 3471 ¢'° + 188720 + 519 ¢%1 + 87¢22 4+ 9¢23 ¢4

12371 ¢2° + 20834 t21 + 1352122 + 456922 + 921 ¢2* + 120¢%° + 11¢%6 4+ ¢*7

65169 t22 4125976 t2° + 96096 t>* +38730 t2° +9411 t2° + 1474 ¢*" +160 25 +12¢%° +¢%°

k=5

t

45

48

9411 4 412

8t14 + 2t15 + t16

33¢17 + 18¢18 44410 ¢

194¢2° + 124 ¢%' + 3622 + 4¢3 + ¢4

1196 ¢23 + 1014 ¢2* + 324 ¢%° + 56 26 + 6¢27 + ¢28

8196 26 + 8226 t27 + 3233¢%% 4 640¢%° + 84 ¢%0 + 63! +¢*2

58140 t2° + 68780 30 + 31846 ¢3! + 778732 + 1143133 + 114 ¢34 + 8¢3% 4¢3

427975 32 + 579266 2 +313832 t31 +9074235° + 16019 ¢3¢ +1820 37 +152 ¢35 -8 439 4410

Table 5: Coefficients of @, (z,t) for k =2,3,4,5and n =0,...,10



k=6

t

t6

th

3 t14 + t15

1918 + 5410 4 ¢

11822 4 50¢% + 8¢24 + ¢%°

931¢%6 + 495" +100¢%® + 10¢2° +¢%°

7756 ¢2° + 5110 ¢3! + 1266 ¢32 4+ 164 32 + 13 ¢3% + ¢35

68685 t>* + 53801 ¢>° + 1627536 + 2560 37 + 24538 + 15¢3° + ¢*°

630465 t3% + 575535 t3° + 206954 ¢1° + 39445 11 + 4529 ¢12 + 340¢*% + 18¢1 4+ ¢15
5966610 t*2 + 6224520 t*3 + 2611405 t** + 589676 t1° + 81145 ¢ + 7285 17 + 454 ¢ +
20 ¢4 4 ¢°°

k=17

t

t7

t12

3 t17 + tlS

1622 + 3¢ + ¢4

112¢%7 +39¢% 4+ 612 +¢3°

102032 4 434 ¢3% + 7834 + 613° +¢%°

10222 37 + 548738 + 1127¢%° + 124 ¢1° + 9 ¢! 4 ¢12

109947 %2 + 70053 12 + 17436 ¢1* 4+ 2247 ¢%5 + 186 ¢¢ + 9¢17 + %8

1230840 t*7 + 914103 t® + 268995 t*° + 42144 ¢°° + 4000 t°! + 2552 + 12¢°3 + ¢4
14218671 t52 4+ 12057540 t°2 + 4131929 ¢3¢ + 764623 ¢°° + 86652 t°¢ + 6397 57 + 340 t°% +
12 t59 + t60

k=8

t

tS

t14

4 t20 + t21

35670 + 747 4%

332t 4+ 98¢ 4 1143 4 ¢

3766 t3° + 1393 ¢%° 4+ 196 t*° + 14 ¢4 4 42

45448 t** 4+ 20650 ¢*° + 3561 t*° + 322¢*7 + 18 ¢ + ¢*°

580203 £°° + 312739 1 + 65590 ¢°2 + 7217 ¢°° + 483> + 21¢%° + ¢°°

7684881 t°° + 4813130 £57 + 1197467 £°° + 158928 ¢° + 12762 t°° 4 672 5 4 25 ¢52 4 ¢°
104898024 ¢ + 74961328 ¢°* + 21701960 ¢°* + 3403708 ¢°° + 326760 ¢°° 4 20552 °7 +
896 %% + 281%9 +¢™

k=9

t

t9

t16

4 t23 + t24

27830 4 4¢3 4 ¢32

26637 + 68138 + 8¢39 + 10

3312t 4+ 1048 t*° + 13616 + 8¢17 + 8

45711 ¢° 4 17948 £°2 4 271253 4+ 219¢%% + 12¢°° 4 ¢°6

670344 t°% 4 312276 ¢°° + 56942 ¢°° + 5432 %! + 328 152 + 1253 4 ¢54

10233201 t°° + 5539348 t° + 1194736 57 43137754 t°° + 9654 %9 + 452 +16¢™ +¢™
161055618 t™> + 99432684 t7> + 24928832 ¢t™* + 3391482 ¢7° + 283146 ¢t™® + 15472¢7" +
603t +16t™ 4 ¢*°

Table 6: Coefficients of @, (z,t) for k =6,7,8,9 and n =0,...,10



t2

2+

t2+t3+t4

24283 +2¢1 +¢°

2 +382 4t + 285 + 8

2443 +8t1 +6t°+3t° +17

24583 +14¢* +14¢° +9¢5 +3¢7 +¢°

24+ 785 +23¢1 43285 + 2685 +12¢7 + 45 +¢°
t2+8t% +36¢* + 645 +66t° +39¢7 + 16¢5 + 4¢° +¢1°

k=3
t
t3
t4
t° +¢°

45 4+ 2¢7 4+ ¢8

61" +8t% 4+3¢% +¢1°

19¢% 4+ 2812 + 16¢'0 + 4 ¢ 4 ¢12

49¢° +100¢° + 70 ¢t + 26 ¢12 + 53 4 ¢4

150¢10 + 358 ¢! + 325812 4 142¢1% + 38 ¢4 + 6415 + ¢16

442 ¢ + 1309 ¢12 + 1414 ¢ + 783 ¢ 4+ 250 ¢1° + 52410 4+ T¢17 4 ¢18

1424 ¢'2 + 477213 + 6186 ¢4 + 4102¢'° + 1615 ¢'° + 40287 + 708 + 8¢ +¢2°

k=4
t
t4
t6
2¢% +¢°

5t10 + 2t11 + t12

16822 + 11¢13 + 441 +¢15

60t +54¢1° + 22416 4 4417 4 18

261 ¢ +305¢7 4+ 142818 +34¢1° + 6420 + ¢

1243t +1755¢1° 4+ 975¢2° + 273 ¢%1 + 5122 4+ 6¢%° + ¢4

6257 t%° + 10478 21 + 6853 22 + 2336 2% + 490 t2* + 69¢%° + 8126 4 ¢27

32721 %2 4 63100 22 + 48271 ¢2* + 19497 ¢2° + 4803 26 + 770¢%7 4+ 92¢2® + 8¢2° +¢3°

k=5

t

"

48

9411 4 412

12t14 +4t15 +t16

5717 +32¢'8 +6¢1° + ¢

366 t2° + 2482 + 64 ¢22 + 8¢%° + 24

234023 4 2002 ¢2* + 630 ¢%° + 104 £2° + 10 ¢27 + ¢28

16252 ¢2% + 16452 27 + 6393 ¢2® + 12802 + 156 30 + 12¢3! 4 ¢32

115940 t2° + 137378 t3° + 63516 t3! + 15493 32 + 2259 32 + 216 3 + 14 ¢35 +¢36
854981 32 + 1158532 3% + 626996 t3* + 181484 t3° + 3188736 + 364037 + 288138 +
16%° + 1%

~ 37
Table 7: Coefficients of Q(x,t) for k =2,3,4,5and n=0,...,10



k=6

t

t6

th

3 t14 + t15

12¢18 4 3410 4 ¢20

68122 + 282 + 612 +¢2°

48312 + 25327 + 56 ¢%° + 6¢2° 4 ¢2°

3946 ¢3° + 2582 ¢ + 65932 + 8933 + 9¢3* 4 ¢3°

34485 t3* 4 26953 ¢3° + 8213 ¢3¢ + 130037 + 133¢3% + 9¢3° 4 ¢10

315810 3% + 288021 ¢3° + 103799 ¢%° + 19831 t*1 + 231812 + 182¢*2 + 12¢** 4+ ¢%°
2984570 %2 + 3112780 t*3 + 1306605 ¢4 + 295143 t*® + 40775 ¢ + 3689 47 + 243 ¢%° +
12t 4 ¢%0

k=17

t

t7

t12

317 418

26122 + 6123 + 24

203¢%7 + 727 4+ 9% +¢*°

41989 t3% 4 868 ¢33 + 144 t3* 4 12¢3° 4 ¢3¢

20254 37 + 10914 ¢3® + 2212¢%° + 236 ¢1° + 15 ¢4 + 12

219388 %2 + 140106 ¢*3 + 34704 ¢ + 4494 ¢%5 + 35416 4 18¢17 4+ ¢*®

2459730 t*7 + 1827555 t*8 + 537357 t1° + 84102 t°° + 7937 5 + 49252 + 21 ¢°% + ¢4
28431861 ¢°2 424115080 7> +8261473 t>* +1529246 ¢°°+172956 ¢°6+12794 57 +-656 t°° +
24 t59 + t60

k=8

t

tS

t14

4 t20 + t21

21620 4+ 4¢27 4+ ¢%8

18332 + 5332 4 8¢34 4 ¢%°

1918¢38 + 704 ¢3° + 106 ¢*° + 8¢t 4 ¢42

22908 44 + 10375 t*° + 1825 ¢%6 4+ 170 47 + 12¢*® + ¢4°

290511 ¢°° + 156471 t°1 + 32934 t52 + 3635 ¢°3 + 255 ¢°% + 12¢°° 4 ¢°°

3844688 t°¢ + 2407227 t°7 + 599513 t°8 + 79651 t°° + 6466 t°° + 351 ¢% + 16 5% + 53
52454248 £52 4 37482092 t5% + 108533325 + 1702405 t%° + 163728 t°¢ + 1033657 +
468158 + 1615 +¢7°

k=9

t

t9

t16

4 t23 + t24

46130 4+ 8¢31 +¢32

49437 + 128138 4+ 12¢3° +¢1°

6532t + 2096 t*° + 256 ¢ + 16¢47 + ¢18

90954 t°* 4 35788 t°2 4 5348 ¢°% 4 422 %% 4+ 20 ¢°° 4 ¢

1339448 t°% + 624552 t°° + 113582 t°° + 10864 %! + 632 5% + 243 + 54

20459857 %% +11077108 ¢5¢ + 2387924 ¢57 8875174 t°% +19194 t°° +880 ¢7° + 28 ¢7* +¢72
322092958 7% + 198865368 t 7> + 49851852 t™* + 6782964 t™° + 565666 76 + 30944 ¢77 +
1174¢™® +32¢7 + ¢

Table 8: Coefficients of G(x,t) for k =6,7,8,9 and n =0,...,10
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