
Maximally Flexible Assignment of
Orthogonal Variable Spreading

Factor Codes for Multi-Rate Traffic

Yang Yang and Tak-Shing Peter Yum

Department of Information Engineering
The Chinese University of Hong Kong, Shatin, Hong Kong

Tel: 852-2609 8346, 2609 8386 Fax: 852-2603 5032
Email: yyang@ie.cuhk.edu.hk, yum@ie.cuhk.edu.hk

Abstract

In UTRA systems, Orthogonal Variable Spreading Factor (OVSF) codes are
used to support different transmission rates for different users. In this paper, we
first define the flexibility index to measure the capability of an assignable code
set in supporting multi-rate traffic classes. Based on this index, two single-code
assignment schemes, non-rearrangeable and rearrangeable compact assignments, are
proposed. Both schemes can offer maximal flexibility for the resulting code tree
after each code assignment. We then present an analytical model and derive the
call blocking probability, system throughput and fairness index. Analytical and
simulation results show that the proposed schemes are efficient, stable and fair.

Index Terms — Code assignment, Orthogonal Variable Spreading Factor (OVSF)
code, Universal Terrestrial Radio Access (UTRA).

1 Introduction

The third-generation mobile communication system has been under active research and
development in the past decade. The most important issue to decide on is, of course,
the air-interface. After much effort by the various technical groups at ITU, a family of
air-interface standards are agreed upon. The Universal Terrestrial Radio Access (UTRA)
is mainly a joint European-Japanese contribution. UTRA consists of two parts, the FDD

∗This work was supported in part by the Hong Kong Research Grants Council under Grant CUHK
4325/02E.

1

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 2

part (choosing WCDMA as air interface) is for wide-area coverage and paired spectrum
allocation; the TDD part (choosing TD-CDMA as air interface) is for local-area coverage
and unpaired spectrum allocation.

In UTRA, a traffic channel is identified by an Orthogonal Variable Spreading Factor
(OVSF) code and OVSF codes can support multi-rate transmissions for different users [1,
2]. According to 3GPP technical specifications [1, 2], multi-code transmission and single-
code transmission are both possible to support multi-rate multimedia applications. Two
multi-code assignment schemes were proposed in [3] and [4] respectively. In general,
however, single-code transmission is preferred due to lower transceiver complexity [5]. We
focus on single-code assignment schemes in this paper.

There are two types of code assignment schemes: non-rearrangeable and rearrangeable.
In [6], several code assignment schemes were proposed. The static (non-rearrangeable)
approach applies the first-fit scheme (for the bin packing problem) in the algorithm de-
sign. The dynamic approach is based on a tree partitioning method, which requires the
knowledge of traffic composition (percentage of different data-rate users). Two priority-
based rearrangeable code assignment schemes were proposed in [7] and [8], respectively, to
accommodate both the real time traffic (circuit-switched, e.g. voice communication and
video streaming) and the non-real time traffic (best-effort, e.g. file transfer and email).
Obviously, real time traffic has a higher priority to obtain a code. Specifically, the scheme
in [8] makes use of the bursty property of real time traffic and can therefore offer higher
system utilization. The code assignment scheme suggested in [7] performs code reas-
signment for real time traffic classes on every call departure instant. At these instants,
the “right-most” call in the same layer (of the code tree) is moved to occupy the “just-
released” code. As a result, the remaining assignable single-code capacity is maximized.
Subsequently, Chen, Wu and Hsiao [9] extended this scheme by partitioning the codes
into two groups based on code capacity (the bandwidth that a code can support). When
a code is released, the “right-most” or the “left-most” (according to the group the code
belongs to) call in the same layer will be rearranged to the “just-released” code. After
that, the ongoings calls in the lower layers (if any) are rearranged similarly, layer by layer.
It is interesting to note that similar packing methods were used in Dynamic Channel As-
signment (DCA) schemes for TDMA/FDMA systems [10, 11]. Furthermore, the Region
Division Assignment (RDA) scheme presented in [12] divides the code tree into multiple
mutually exclusive regions with each region dedicates to a particular transmission data
rate. When a new call cannot be accommodated in the corresponding region, a suitable
code in other regions is borrowed and assigned to the new call. This is equivalent to the
concept of channel borrowing in literature [13, 14]. In [15], Minn and Siu proposed a
rearrangeable assignment scheme whereby the number of OVSF codes that must be rear-
ranged to support a new call is minimized. According to the authors, the main challenge
of using this scheme lies in the searching effort of the “minimum-cost” branch 1.

In this paper, the flexibility index is defined to measure the capability of an assignable

1In [15], the “cost of a branch” is defined as “the minimum number of code rearrangements necessary
to reassign all occupied codes in the branch to other branches so that the branch is left empty”.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 3

code set in supporting multi-rate traffic. Based on this new concept, two computational
efficient single-code assignment schemes, namely Compact Assignment (CA) and Rear-
rangeable Compact Assignment (RCA), are proposed and analyzed. Both schemes leave
the system as flexible as possible after each code assignment.

The rest of this paper is organized as follows. In Section 2, the OVSF codes are
represented by a tree, and some basic concepts are introduced. In Sections 3 and 4, the
maximally flexible non-rearrangeable and rearrangeable assignment schemes are proposed.
The Markov chain models for studying the performance of CA and RCA are given in
Section 5. Based on these models, the call blocking probability, system throughput and
fairness index are derived for RCA under the Poisson arrival of calls and exponential
call holding time assumptions. In Section 6, numerical and simulation results are given.
In Section 7, performance and implementation complexity are discussed and compared
between different schemes.

2 Basic Concepts

2.1 Ancestor Code Set S
(k,m)
A and Descendant Code Set S

(k,m)
D

1

1 2

2

3 4

41 2 3

1 2

1

Layer
Number

2K-1

2K R

2R

2KR

2K-1R

2K-2R

Code
Capacity

Code Number

K

K-1

2

1

0

Figure 1: A K-layer Code Tree

The OVSF codes can be represented by a tree [16]. Fig. 1 shows a K-layer code tree2.
Each layer corresponds to a particular spreading factor, so all codes in the same layer can
support the same data rate. The data rate a code can support is called its capacity. Let

2In some other notational convention, this is referred to as a (K + 1)-layer tree.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 4

the capacity of the leaf codes (in layer K) be R. Then, the capacity of the codes in layer
(K − 1), (K − 2), . . . , 1 and 0 are 2R, 4R, . . . , 2K−1R and 2KR respectively, as shown in
Fig. 1.

Layer k has 2k codes and they are sequentially labeled from left to right, starting from
one. The mth code in layer k is referred to as code (k, m). The total capacity of all the
codes in each layer is 2KR, irrespective of the layer number.

For a typical code (k, m) (k ≥ 1), its ancestor codes are the codes on the path from
(k, m) to the root code (0, 1). Therefore, the set of ancestor codes of (k, m), denoted by

S
(k,m)
A , is given by

S
(k,m)
A =

{
(p, q) | 0 ≤ p ≤ k − 1, q =

⌈ m

2k−p

⌉}
, k ≥ 1 (1)

where �x� is the ceiling function. On the other hand, the descendant codes of (k, m)
(k ≤ K − 1) are the codes in the branch under (k, m). The set of these descendant codes

S
(k,m)
D is given by

S
(k,m)
D =

{
(p, q) | k + 1 ≤ p ≤ K, (m − 1) · 2p−k + 1 ≤ q ≤ m · 2p−k

}
, k ≤ K − 1 (2)

2.2 Busy Code Set SB and Assignable Code Set S

When a code is assigned to a call, we say that the code is busy. They are denoted by
black circles in Fig. 2. Codes that are not assigned to calls are called idle codes. Idle
codes can be assignable or non-assignable. An idle code (k, m) is assignable if and only if

Condition I: all the ancestor codes of (k, m) in S
(k,m)
A are idle, and

Condition II: all the descendant codes of (k, m) in S
(k,m)
D are idle.

Code (k, m) is non-assignable otherwise. These two conditions guarantee that the assignable
code under consideration is orthogonal to all the busy codes in the tree [1, 2, 16]. Further,
based on the framework given in [16], two propositions can be directly derived as follows.

Proposition 1 The ancestor and descendant codes of a busy code are non-assignable idle
codes.

Proposition 2 If code (k, m), where k ≤ K − 1, is assignable, so are all its descendant
codes.

Proposition 1 can be illustrated by the busy code (2, 1) in Fig. 2 (a). According to the
definitions given in (1) and (2), the ancestor and descendant code sets of (2, 1) can be

calculated to be S
(2,1)
A = {(0, 1), (1, 1)} and S

(2,1)
D = {(3, 1), (3, 2)}. Since S

(2,1)
A ∩ SB = φ

(empty set), all the codes in S
(2,1)
A are idle. On the other hand, S

(2,1)
A ∩ S = φ means

all the codes in S
(2,1)
A are also non-assignable. Similar argument holds for S

(2,1)
D , thereby

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 5

all the codes in S
(2,1)
D are non-assignable idle codes, too. Proposition 2 can be illustrated

by code (2, 2) in Fig. 2 (a) and its descendant code set S
(2,2)
D = {(3, 3), (3, 4)}. In other

words, (2, 2) ∈ S implies S
(2,2)
D = {(3, 3), (3, 4)} ⊂ S.

The occupancy status of a K-layer code tree can be uniquely specified by the set of
busy codes SB. Based on Proposition 1, the set of assignable codes S can be derived from
SB by the following algorithm 3.

SB to S Transformation Algorithm

INPUT: the busy code set SB and the tree size K.
OUTPUT: the assignable code set S.

1. Generate S = {all codes in the K-layer code tree}.
2. WHILE SB is not empty, repeat the following:

2.1 Arbitrarily select a code, say (k,m), from SB.
2.2 Generate S

(k,m)
A by (1).

2.3 Generate S
(k,m)
D by (2).

2.4 Update S = S − S
(k,m)
A − S

(k,m)
D − {(k,m)}.

2.5 Update SB = SB − {(k,m)}.
3. Return S.

To illustrate, the occupancy status of the 3-layer code tree shown in Fig. 2 (a) can be
specified by the busy code set SB = {(2, 1), (3, 6), (3, 8)}. The set of assignable codes is
found to be S = {(2, 2), (3, 3), (3, 4), (3, 5), (3, 7)}.

2.3 Assignable Capacity r and Flexibility Index f

In our study, J classes of calls are defined where a class-j (0 ≤ j ≤ J − 1) call has data
rate 2j (in unit of R). A class-j call can be supported by an assignable code in layer
(K − j) under the single-code assignment schemes.

The assignable leaf codes in layer K are inflexible since they can only support unit
data rate R. The assignable codes from layer (K − 1) upwards are flexible in supporting
multiple data rates since their descendant codes are also assignable (Proposition 2). As
an example, code (3, 3) in Fig. 2 (a) is inflexible, whereas code (2, 2) is flexible since it
can support a class-1 call or two class-0 calls by its descendant codes (3, 3) and (3, 4).

The assignable capacity r of a code tree can be calculated by adding the capacity of
all inflexible assignable codes in layer K. In unit of R,

r =

2K∑
m=1

I
(K,m)
A (3)

3The mapping from SB to S is a surjection but not a bijection.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 6

Busy Assignable

(a)

S
B

= {(2,1),(3,6),(3,8)};

S = {(2,2),(3,3),(3,4),(3,5),(3,7)};

r = 4; f = 2.

S
B

= {(2,1),(3,3),(3,4)};

S = {(1,2),(2,3),(2,4),(3,5),

 (3,6),(3,7),(3,8)};

r = 4; f = 8.

(b)

Non-assignable

Figure 2: Occupancy Statuses of Two 3-layer Code Trees

where I
(K,m)
A is the assignability index function of code (K, m) and is defined as

I
(k,m)
A =

{
1, (k, m) is assignable;

0, otherwise.
(4)

For the code tree shown in Fig. 2 (a), r = 4.
To measure the capability of a code tree in supporting different data rates, we define

flexibility index f as the total capacity (in unit of R) of the flexible assignable codes.
Specifically,

f =
K−1∑
k=0

2k∑
m=1

2K−k · I
(k,m)
A (5)

For example, the flexibility indices for the trees in Fig. 2 (a) and Fig. 2 (b) are computed
to be f = 2 (the capacity of code (2, 2)) and f = 8 (the total capacity of codes (1, 2),
(2, 3) and (2, 4)), respectively.

Proposition 3 For a K-layer code tree with assignable capacity r (r ≥ 1), flexibility
index f is bounded by

0 ≤ f ≤
�log2 r�∑

i=1

⌊ r

2i

⌋
· 2i = fmax, r ≥ 1 (6)

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 7

where �x	 is the floor function.

Proof of Proposition 3: First, since I
(k,m)
A is nonnegative, so is f according to (5).

Second, the maximum value of f occurs when all assignable codes are located on the same
idle branch as much as possible. Adding up the capacity of all the assignable codes from
layer (K − 1) upwards, we obtain the upper bound fmax.

When f = fmax, the code tree is said to be in the compact state. In compact state,
the capacities of assignable codes are aggregated and the tree is maximally flexible in
supporting different data rates. As an example, the code tree in Fig. 2 (a) has f = 2
under r = 4. It can only support a new call of rate R or 2R. While in Fig. 2 (b), the
code tree has f = fmax = 8 under the same assignable capacity. Therefore, it is in the
compact state and can support a new call of rate R, 2R or 4R.

3 Compact Assignment

The objective of Compact Assignment (CA) scheme is to keep the remaining assignable
codes in the most compact state after each code assignment without rearranging codes,
i.e. to maximize tree’s flexibility index. To achieve this purpose, new-code assignments
in CA are packed as tightly as possible into the existing busy codes, i.e. the assignable
code in the most congested position is found for the new call. As a result, the busy codes
are also kept as compact as possible after each code assignment.

3.1 Compact Index g(k,m)

To find the assignable code in the most congested position, the compact index g(k,m) of an
assignable code (k, m) is defined to represent the positional relationship between (k, m)
and all the other assignable codes in layer k. Codes (in the same layer) that are connected

by an i-layer sub-tree are defined as the ith-layer neighbours. Let S
(k,m)
i denote the set of

ith-layer neighbours of code (k, m). Then,

S
(k,m)
i =

{
(k, m − p + q) | p = (m − 1) mod 2i, 0 ≤ q ≤ 2i − 1

}
(7)

Take code (3, 3) in Fig. 2 (a) as an example, the sets of 1st- and 2nd-layer neighbours

are S
(3,3)
1 = {(3, 3), (3, 4)} and S

(3,3)
2 = {(3, 1), (3, 2), (3, 3), (3, 4)}, respectively. The com-

pact index g(k,m) of code (k, m) is the total number of assignable codes in its k different
neighbourhoods, or

g(k,m) =
k∑

i=1

|S(k,m)
i ∩ S| (8)

where |x| denotes the size of set x. For example, in Fig. 2 (a), g(2,2) = 1 + 1 = 2 and
g(3,3) = 2 + 2 + 4 = 8. Note that in (8), the assignable codes located close to (k, m) are
counted multiple times in different neighbourhoods. The closer these codes are located to
(k, m), the more times they are counted. This is because a closer code is more “compact”

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 8

and therefore should carry a higher weight in the computation of compact index. As a
result, a small g(k,m) implies that (i) code (k, m) is surrounded by a small number of other
assignable codes; and/or (ii) these codes are far away from (k, m).

Proposition 4 For assignable code (k, m), the range of compact index g(k,m) is given by

k ≤ g(k,m) ≤ 2k+1 − 2. (9)

Proof of Proposition 4: First, the minimum value of g(k,m) occurs when code (k, m) is

the only assignable code in layer k. In this case, |S(k,m)
i ∩ S| = 1 for 1 ≤ i ≤ k. g(k,m) is

then equal to
∑k

i=1 1 = k. Second, g(k,m) is maximum when the whole tree is empty, i.e.

the assignable capacity r is equal to 2K . In this case, |S(k,m)
i ∩ S| = |S(k,m)

i | = 2i and the
maximum value is

∑k
i=1 2i = 2k+1 − 2.

3.2 CA Algorithm

According to the definition of g(k,m), an assignable code with the smallest compact index
in layer (K − j) is chosen by CA for carrying a class-j new call. The newly assigned code
is marked busy and set SB is then updated. The detailed algorithm of CA is as follows.

CA Algorithm

INPUT: the busy code set SB and the layer number (K − j).
OUTPUT: the busy code set SB, it will be updated after a successful code assignment.

Phase I: Search for assignable code in the most congested position.

1. Generate S by using the “SB to S Transformation Algorithm”.
2. Compute kmin = Min{ k | (k,m) ∈ S}.
3. IF kmin ≤ K − j, THEN do the following:

3.1 Generate SC = {(K − j,m) | (K − j,m) ∈ S}.
3.2 IF SC is not empty, THEN do the following:

3.2.1 Compute g(K−j,m) for each code in SC by (8).
3.2.2 Compute gmin = Min{ g(K−j,m) | (K − j,m) ∈ SC}.
3.2.3 Update SC = {(K − j,m) | g(K−j,m) = gmin}.

ELSE do the following: (kmin > K − j, all the individual assignable codes
in S do not have sufficient capacity for the new call.)
3.3 Block the new call.
3.4 Return SB. (SB is NOT updated.)

Phase II: Assign a code from SC to the new call.

4. Arbitrarily select a code, say (K − j,m′), from SC .
5. Assign (K − j,m′) to the new call.
6. Return SB = SB ∪ {(K − j,m′)}.

In the algorithm, kmin is the smallest layer number in the assignable code set S and SC

is the set of candidate codes in layer (K − j). According to Proposition 2, kmin ≤ K − j

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 9

ensures that SC is not empty. To illustrate the CA Algorithm, let us assume a class-0
(j = 0) call arrives and the existing busy code set is SB = {(2, 1), (3, 6), (3, 8)} as shown
in Fig. 2 (a). S = {(2, 2), (3, 3), (3, 4), (3, 5), (3, 7)} will first be generated and kmin is
then computed to be 2 < K − j = 3. Next, the candidate code set SC is generated as
{(3, 3), (3, 4), (3, 5), (3, 7)}. Compact indices for the codes in SC are computed one by one
to be {g(3,3) = 8, g(3,4) = 8, g(3,5) = 7, g(3,7) = 7}. Therefore, we obtain gmin = 7 and SC

is updated to be {(3, 5), (3, 7)}. In Phase II, codes (3, 5) and (3, 7) are selected with the
same probability for the new call.

4 Rearrangeable Compact Assignment

Although CA is very simple, it has the drawback that, sometimes, even if there is enough
assignable capacity, a new call will still be blocked if individual assignable codes all have
smaller capacity than the required data rate. These blockings are avoidable since they
can be resolved by rearranging the busy codes. Code rearrangement need only be trig-
gered at call arrival instants when avoidable blockings occur. Therefore, we call this
blocking-triggered code rearrangement. For example, the assignable capacity of the 3-
layer code tree shown in Fig. 2 (a) is r = 4, but a class-2 new call will still be blocked
by CA since each code in S has a smaller capacity than 4. At this instant, code re-
arrangement is triggered so that the calls on codes (3, 6) and (3, 8) are reassigned to
codes (3, 3) and (3, 4) as shown in Fig. 2 (b), and the assignable code set becomes
S = {(1, 2), (2, 3), (2, 4), (3, 5), (3, 6), (3, 7), (3, 8)}. Code (1, 2) being freed up can then be
used to accommodate the class-2 new call.

Codes can be rearranged in different ways. One way is to rearrange all the busy codes
and pack them as tightly as possible to one side of the tree. In doing so, the assignable
codes are aggregated together and the resulting tree is maximally flexible according to
Proposition 3. This method is simple, but it incurrs many unnecessary code rearrange-
ments. Alternatively, we can just rearrange all the busy descendant codes of a particular
code, say code (k, m), so that code (k, m) can be released for assignment to the new
call. In [15], the total number of code rearrangements is used as a performance index. In
addition to that, the code rearrangement efficiency (including branch-searching effort) is
also considered for design optimization in this paper.

4.1 Maximally Flexible Code Rearrangement

In this section, we propose a computational efficient blocking-triggered code rearrange-
ment scheme named

Maximally Flexible Code Rearrangement (MFCR). It finds a suitable branch for rear-
rangement so that the root code of that branch can be released for the new call.

To reduce the branch searching and code rearrangement effort, MFCR chooses the
least loaded branch for rearrangement. For a typical branch, say the branch under (k, m),

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 10

let r(k,m) be the assignable capacity of the branch, which is defined as the total capacity
of the assignable leaf codes in this branch. In other words,

r(k,m) =

m·2K−k∑
i=1+(m−1)·2K−k

I
(K,i)
A (10)

Correspondingly, the branch load l(k,m) can be computed by

l(k,m) =

[
Capacity of
code (k, m)

]
−

[
Assignable capacity of
the branch under (k, m)

]
= 2K−k − r(k,m)

(11)

For single-code assignment, the least loaded branch is just the branch with the maximum
assignable capacity rmax. In other words, (10) and (11) are equivalent for finding the least
loaded branch. The detailed operations of identifying the set of least loaded branch(es)
is given in Phase I of the MFCR Algorithm.

Let f (k,m) denote flexibility index of the branch under (k, m). From (5), we have

f (k,m) =

K−1∑
j=k

m·2j−k∑
i=1+(m−1)·2j−k

2K−j · I
(j,i)
A (12)

Take code (1, 1) in Fig. 2 (a) as an example, f (1,1) is equal to 2. When there are several
least loaded branches available, MFCR identifies the branch with smallest flexibility index
fmin, or the least flexible branch, for rearrangement. By rearranging the busy codes in the
least flexible branch, flexibility index of the whole tree is kept as large as possible after
each code assignment. This explains the name Maximally Flexible Code Rearrangement.
The least flexible branch can be identified by Phase II of the MFCR Algorithm.

In Phase III of MFCR Algorithm, all the ongoing calls located on the busy codes in
the selected branch are reassigned to the assignable codes in neighbouring branches by
the RCA algorithm (to be described in the next section). After that, the newly released
root code of the selected branch is assigned to the new call.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 11

MFCR Algorithm

INPUT: the busy code set SB and the layer number (K − j).
OUTPUT: the updated busy code set SB . (Code (K − j,m′) is released and assigned

to the new call.)

Phase I: Search for the Least Loaded Branch.

1. Generate S by using the “SB to S Transformation Algorithm”.
2. Compute r(K−j,i) for the branch under code (K − j, i) (1 ≤ i ≤ 2K−j) by

(10).
3. Compute rmax = Max{ r(K−j,i) | 1 ≤ i ≤ 2K−j}.
4. Generate SC = {(K − j,m) | r(K−j,m) = rmax}.

Phase II: Search for the Least Flexible Branch.

5. IF |SC | ≥ 2, THEN do the following:
5.1 Compute f (K−j,m) for each code in SC by (12).
5.2 Compute fmin = Min{ f (K−j,m) | (K − j,m) ∈ SC}.
5.3 Update SC = {(K − j,m) | r(K−j,m) = rmax, f (K−j,m) = fmin}.

Phase III: Empty out a branch and assign its root code to the new call.

6. Arbitrarily select a code, say (K − j,m′), from SC .
7. Generate S

(K−j,m′)
D by (3).

8. Generate S
(K−j,m′)
B = SB ∩S

(K−j,m′)
D . Identify the busy codes in the branch

under (K − j,m′).)
9. WHILE S

(K−j,m′)
B is not empty, repeat the following:

9.1 Arbitrarily select a code, say (k∗,m∗), from S
(K−j,m′)
B .

9.2 Rearrange the ongoing call on (k∗,m∗) to a neighbouring branch by using
the “RCA Algorithm”. SB is then updated.

9.3 Update S
(K−j,m′)
B = S

(K−j,m′)
B − {(k∗,m∗)}.

10. Assign (K − j,m′) to the new call.
11. Return SB = SB ∪ {(K − j,m′)}.

4.2 RCA Algorithm

Based on the CA and MFCR algorithms, we design the algorithm for Rearrangeable
Compact Assignment (RCA) as follows.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 12

RCA Algorithm

INPUT: the busy code set SB and the layer number (K − j).
OUTPUT: the busy code set SB, it will be updated after a successful code assignment.

1. Generate S by using the “SB to S Transformation Algorithm”.
2. Compute r by (4).
3. IF r ≥ 2j , THEN do the following:

3.1 Generate SC = {(K − j,m) | (K − j,m) ∈ S}.
3.2 IF SC is not empty, THEN do the following:

3.2.1 Compute g(K−j,m) for each code in SC by (8).
3.2.2 Compute gmin = Min{ g(K−j,m) | (K − j,m) ∈ SC}.
3.2.3 Update SC = {(K − j,m) | g(K−j,m) = gmin}. (Search for assignable codes

with the smallest compact index.)
3.2.4 Arbitrarily select a code, say (K − j,m′), from SC .
3.2.5 Assign (K − j,m′) to the new call.
3.2.6 Return SB = SB ∪ {(K − j,m′)}.

ELSE do the following: (An empty SC indicates all the individual assignable
codes do not have sufficient capacity for the new call. Therefore, code rear-
rangement is necessary.)

3.2.7 Find, release and assign a suitable code for the new call by using the “MFCR
Algorithm”. SB is then updated.

3.2.8 Return SB.
ELSE do the following: (r < 2j , assignable capacity of the code tree is
NOT sufficient.)

3.4 Block the new call.
3.5 Return SB. (SB is NOT updated.)

Again, consider the tree shown in Fig. 2 (a), upon the arrival of a class-2 new call, RCA
will first transform the code tree in Fig. 2 (a) to the one shown in Fig. 2 (b) by using
MFCR Algorithm. Then, the newly released code (1, 2) is assigned to the new call and
the busy code set SB is updated to {(1, 2), (2, 1), (3, 3), (3, 4)}. Note that step 3.2.4 of
the RCA Algorithm indicates the major difference between RCA and other algorithms in
[7, 9] where the “left-most” or “right-most” code is always chosen when several choices
are available. As illustrated by the example shown in Fig. 2 (a), choosing either code
(3, 5) or (3, 7) (the “right-most” one) for a class-0 new call does not make a difference
in performance since the adjacent busy codes (3, 6) and (3, 8) have the same probability
to be released. It is the distinction between code sets {(3, 3), (3, 4)} and {(3, 5), (3, 7)}
that makes the different. By using code set {(3, 5), (3, 7)} for the class-0 new call, high
flexibility index of the resulting code tree is maintained so that a new class-1 call can be
supported.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 13

5 Performance Analysis

5.1 Traffic Model

Let there be J (1 ≤ J ≤ K + 1) classes of calls where class-j (0 ≤ j ≤ J − 1) calls are
characterized by

(i) data rate in unit of R equals to 2j ;

(ii) Poisson arrivals with rate λj ; and

(iii) exponentially distributed call holding time with mean µ−1
j .

Let the class-j offered traffic Gj be defined as Gj = λj/µj and let G =
∑J−1

j=0 Gj be the
total offered traffic.

5.2 Markov Chain for Compact Assignment

The code assignment and release process can be modeled by a Markov chain. Consider
the simple Random Assignment (RA) scheme whereby all suitable codes are identified and
one is picked at random. Its Markov chain model is shown in Fig. 3 for the case K = 2
and J = 3. This chain has 26 states and they are denoted by αi (0 ≤ i ≤ 25) as shown.
Let S(αi) be the set of assignable codes in state αi. Code assignments and releases are
represented by transition between states. As an example, the transition rates to and from
α6 are shown in Fig. 4. For class-0 new calls, the transition rates from α6 to α12, α13 and
α16 are each λ0

3
since all the layer-2 codes in S(α6), namely (2, 1), (2, 2) and (2, 4), have

the same chance of being assigned.
The Markov chain for CA scheme is the same as that for RA scheme in Fig. 3 without

the dashed lines and with different transition rates. As compact index is used to choose
codes, some transitions are now removed. For example, the new transition rates for α6

is given in Fig. 5, where the rates from α6 to α12, α13 and α16 are now 0, 0 and λ0,
respectively. For a class-0 new call, only code (2, 4) is used since it has smaller compact
index than codes (2, 1) and (2, 2).

5.2.1 Blocking Probability

Let πi be the limiting probability for state αi. These probabilities can be computed by
solving the Markov chain in the usual manner. The blocking probability PB(j) of class-j
calls is then given by

PB(j) =
∑

αi∈Ωj

πi (13)

where Ωj = {αi |S(αi) does not contain any layer-(K − j) codes}.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 14

Size of Size of the Markov Chain

Code Tree |Φ1(J, K)| |Φ2(J, K)|
K = 0 2 2

K = 1 5 4

K = 2 26 10

K = 3 677 36

K = 4 4.6 × 105 202

K = 5 2.1 × 1011 1828

K = 6 4.4 × 1022 2.7 × 104

K = 7 1.9 × 1045 6.9 × 105

K = 8 3.8 × 1090 3.0 × 107

Table 1: Size of the Markov Chain for Different Code Assignment
Schemes and Tree Sizes, J=K+1.

5.2.2 Size of State Space

Let Φ1(J, K) denote the set of all possible occupancy states of a K-layer code tree with
J classes of calls. When J = K + 1, all codes in the tree have the chance to be occupied.
In this case, the K-layer code tree with J classes of calls can be decomposed into two
(K − 1)-layer sub-trees each with (J − 1) classes of calls. Therefore the size of Φ1(J, K),
denoted as |Φ1(J, K)|, can be calculated iteratively by

|Φ1(J, K)| = |Φ1(J, J − 1)|
= |Φ1(J − 1, J − 2)|2 + 1, J = K + 1, K ≥ 1

(14)

starting from |Φ1(1, 0)| = 2. Table 1 shows the values of |Φ1(J, K)| for 0 ≤ K ≤ 8 and
J = K + 1. It can be derived from (14) that 22K ≤ |Φ1(J, K)| < 22K+1

.
When 1 ≤ J ≤ K, the codes from layer (K −J) upwards will not be occupied. In this

case, the size of Φ1(J, K) can be derived by

|Φ1(J, K)| = [|Φ1(J, J − 1)|]2K−J+1

, 1 ≤ J ≤ K, K ≥ 1 (15)

where |Φ1(J, J − 1)| can be compute iteratively from (14).

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 15

5.3 Markov Chain for Rearrangeable Compact Assignment

Recall that for the blocking-triggered rearrangeable code assignment scheme, rearrange-
ment is performed only for avoidable blockings. As unavoidable blockings only occurs
when there is insufficient assignable capacity, the blocking probability for rearrangeable
code assignment schemes is just the probability of these unavoidable blocking instants.
In other words, whether the codes are being packed tightly or loosely when there are
spare assignable capacity arround does not affect the blocking probability. With that, we
introduce in the following an equivalent model for blocking probability calculation called
event-triggered model. Under the event-triggered model, codes are rearranged as tightly
as possible after every arrival or departure event.

Let nj denote the number of ongoing class-j calls in the system. Under the event-
triggered model, vector �n = (n0, n1, · · · , nJ−1) can uniquely characterize the code occu-
pancy status of the code tree and so can be taken as a state vector. The Markov chain
for the event-triggered model under the case K = 2 and J = 3 is shown in Fig. 6. Note
that the Markov chain in Fig. 6 can be derived from that in Fig. 3 by aggregating states
with the same number of busy codes in each layer. As an example, the six states α11 to
α16 in Fig. 3 all have two busy codes each accommodating a class-0 call and so can be
collapsed into state (2, 0, 0) in Fig. 6.

5.3.1 Blocking Probability

Let Φ2(J, K) denote the state space under the event-triggered model and let π�n be the
limiting probability for state �n. Since the event-triggered model is actually a multi-server
Markovian queueing system with no waiting room and with linear constraints on the state
space. Its solution was derived in [17] to be of the product form. Specifically, for state �n
in Φ2(J, K),

π�n = π0 ·
J−1∏
j=0

1

nj!
(Gj)

nj (16)

where π0 is the limiting probability of the empty state (�n = (0, 0, . . . , 0)) and is given by

π0 =

 ∑

�n∈Φ2(J,K)

J−1∏
j=0

1

nj !
(Gj)

nj

−1

(17)

For a particular state �n, a class-j new call will be blocked if and only if the assignable
capacity r of state �n is less than 2j . In other words,

PB(j) =
∑
�n∈ξj

π�n (18)

where ξj =
{
�n | 2K −

[∑J−1
i=0 ni 2

i
]

< 2j
}

.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 16

5.3.2 Size of State Space

The state space Φ2(J, K) contains all possible combinations of nj’s under the capacity

constraint
∑J−1

j=0 nj 2j ≤ 2K . In other words,

Φ2(J, K) = {�n |
J−1∑
j=0

nj · 2j ≤ 2K} (19)

When J = K + 1, (19) can be simplified to

Φ2(J, K) =
2K⋃
i=0

{�n |
J−1∑
j=0

nj · 2j = i}

=

2K⋃
i=0

θi, J = K + 1, K ≥ 1

(20)

where θi is the set of all binary partitions of the integer i (binary partition means the
partitioning of an integer into powers of 2). Sloane’s database of integer sequences [18]
denotes |θi|, the size of set θi, as sequence “A018819”. It can be computed iteratively by

|θi| =

{
|θi−1|, i odd;

|θi−1| + |θ i
2
|, i even.

(21)

starting from |θ0| = 1. Since the set union operation in (20) is for different values of i, θi

and θj are disjoint if i �= j. Therefore, from (20), we obtain

|Φ2(J, K)| =

2K∑
i=0

|θi|, J = K + 1, K ≥ 1 (22)

Following the derivation in Appendix A, (22) can be further simplified to be

|Φ2(J, K)| = |θ2J |, J = K + 1, K ≥ 1 (23)

The values of |Φ2(J, K)| (J = K + 1) for 0 ≤ K ≤ 8 are shown in Table 1. Comparing to
non-rearrangeable code assignment schemes, the Markov chain size for the event-triggered
model is much smaller.

When 1 ≤ J ≤ K, |Φ2(J, K)| can be derived from the definition of Φ2(J, K) given
in (19). To count all the possible combinations of nj’s (0 ≤ j ≤ J − 1) under the
capacity constraint, let us start from nJ−1, the number of calls with highest bandwidth
requirement in the system. Since there are altogether 2K−J+1 layer-(K − J + 1) codes
for accommodating class-(J − 1) calls, the range of nJ−1 is simply [0, 2K−J+1]. As to
class-(J − 2) calls, the maximum value of nJ−2 under the capacity constraint is obtained
by subtracting 2nJ−1 (the number of non-assignable layer-(K−J +2) codes) from 2K−J+2

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 17

(total number of layer-(K − J +2) codes). The range of nJ−2 is then [0, 2K−J+2 − 2nJ−1].
Similar reasoning holds for nJ−3, nJ−4 and so on until n0. Therefore, |Φ2(J, K)| is given
by

|Φ2(J, K)| =
2K−J+1∑
nJ−1=0

2K−J+2−2nJ−1∑
nJ−2=0

2K−J+3−4nJ−1−2nJ−2∑
nJ−3=0

· · ·
2K−2J−1nJ−1−2J−2nJ−2−···−2n1∑

n0=0

1, 1 ≤ J ≤ K + 1, K ≥ 1

(24)

5.4 Overall Blocking Probability PB

With the blocking probability PB(j) of class-j calls given in (13) and (18), the overall
blocking probability PB is simply the weighted sum of PB(j)’s, or

PB =

J−1∑
j=0

Gj

G
· PB(j) (25)

5.5 System Throughput T

The offered load L to the system is defined as offered traffic weighted by the bandwidth
requirements (in unit of R). Specifically,

L =

J−1∑
j=0

Lj =

J−1∑
j=0

Gj · 2j (26)

where Lj = Gj · 2j is the offered load (in unit of R) of class-j calls. The throughput of
class-j calls, denoted as Tj , is then given by

Tj = [1 − PB(j)] · Lj (27)

The system throughput T is just the sum of Tj’s.

5.6 Fairness Index F

Fairness measures have been studied extensively in the literature. For a J-class system,
a convenient fairness index F derived from the definition of variance is given in [19] as

F =

{∑J−1
j=0 [1 − PB(j)]

}2

J
∑J−1

j=0 [1 − PB(j)]2
(28)

As seen, F is nonnegative and its maximum value of one is achieved when all PB(j)’s are
the same, indicating all classes of calls have the same probability of getting served.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 18

6 Numerical and Simulation Results

In UTRA-FDD [20], the spreading factor of the uplink Dedicated Physical Data Channels
(DPDCH) may range from 4 to 256. The downlink DPDCH and the downlink Dedicated
Physical Control Channels (DPCCH) are merged into the so called downlink Dedicated
Physical Channels (DPCH) by time multiplexing with spreading factor ranging from 4 to
512. For UTRA-TDD, the range of spreading factor that may be used for uplink physical
channels is from 1 to 16 [21].

Without loss of generality, our simulation model consists of a 6-layer code tree (K = 6)
with a total system capacity 2K = 64 (in unit of R) and four classes of calls (J = 4).
Further, we assume Gj ’s take on two different ratios:

Case I: G0 : G1 : G2 : G3 = 1 : 1 : 1 : 1. This is the case where the number of calls
per second is the same for all four classes. The offered loads for the four classes,
however, are in the ratio L0 : L1 : L2 : L3 = 1 : 2 : 4 : 8.

Case II: G0 : G1 : G2 : G3 = 8 : 4 : 2 : 1. This is the case where the bandwidths required
by the four classes of calls are the same. In other words, L0 : L1 : L2 : L3 = 1 : 1 :
1 : 1.

Fig. 7 shows the overall blocking probability PB versus total offered traffic G under
different code assignment schemes. We see that, in both cases, RCA gives the lowest
blocking probability among the three schemes considered. Further, the analytical results
in solid lines matches well with the simulation results in dashed lines. Also, the perfor-
mance improvements of CA and RCA over that of RA are very significant over the entire
range of offered traffic. Specifically, at G = 16 in Case II, P RCA

B = 0.005, P CA
B = 0.008

and P RA
B = 0.045.

It is seen that at the same G value, Case II has much smaller blocking than Case I.
This is expected as most of the calls are the low-bandwidth type for Case II and hence
the total load is much smaller than that for Case I.

Fig. 8 shows the system throughput T as a function of offered load L for Case II. The
95% confidence intervals are all made comparable to the marker size shown. It is seen that
under CA and RCA, the system throughputs are monotonically increasing with respect
to the offered load and are uniformly higher than that of RA. Specifically, at offered load
L = 64 (i.e. at system capacity), the throughput values for RA, CA and RCA schemes
are 41, 48 and 52, respectively. Similar results hold for Case I and are therefore omitted.

Fig. 9 compares the throughput under the two cases of traffic mix for RCA. The
analytical results show that Case II is more efficient in utilizing the system resources as
there are more low-bandwidth calls.

Fig. 10 shows the fairness index F as a function of G for Case II. It demonstrates
that CA and RCA are fairer to different classes of calls than RA over the entire loading
range.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 19

7 Discussions and Comparisons

7.1 Performance Metrics

In Section 5.3, the event-triggered model is used for analyzing the blocking performance
of RCA. Actually, it is equivalent to the model for studying “complete sharing policy” in
shared resource environment [17]4. RCA and other proposed rearrangeable code assign-
ment schemes [6, 7, 8, 9, 15] all use the “complete sharing policy” in code assignments.
Therefore, all these proposed schemes have the same blocking performance as RCA, which
is given by (18) and (25).

System throughput T could be maximized by applying Hardy’s theorem [22]. To do so,
the system needs to adjust (say by blocking calls) the J individual blocking probabilities
always in the reversed order with respect to the corresponding offered loads. In other
words, for maximum system throughput, the largest load class should have the lowest
blocking probability; the second largest load class should have the second lowest blocking
probability and so on. This is a complex operation and has the fairness concern of
discriminating the low offered load class(es).

Very often, maintaining the fairness of service quality among different classes is more
important than purely maximizing the system throughput. We have shown that CA and
RCA are very fair under the First-Come-First-Serve (FCFS) discipline. If differentiated
blocking performance needs to be maintained, other strategies, such as Sharing with
Minimum Allocation (SMA) and Sharing with Maximum Queue Length (SMXQ) [23],
can be used. This, however, is beyond the scope of this paper.

7.2 Signaling Overhead

Each code rearrangement leads to a set of signalings between the base station and the
mobile station. In [7, 9], codes are rearranged after each call departure and the scope of
rearrangement is the whole tree. As a result, more code rearrangements are needed than
RCA scheme and the “minimum-cost” branch scheme [15], where code rearrangements are
performed only when avoidable blockings occur and the scope of rearrangement is limited
to the particular branch concerned. Specifically, in [15], the “minimum-cost” branch is
chosen (if possible) for code rearrangement, thereby the number of code rearrangements
(or signaling overhead) for accommodating a new call is minimized. On the other hand,
the RCA scheme simply identifies the least loaded branch (by the MFCR Algorithm) for
further code rearrangements reduction. As the number of code rearrangements needed
for emptying a branch and the code rearrangement efficiency are both proportional to
the branch load, the choice of least loaded branch in RCA also means lighter signaling
overhead.

4In [17], the “complete sharing policy” is defined as “a customer requiring b units of resource is blocked
if and only if fewer than b units of the (total) resource is available”.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 20

7.3 Computational Complexity

As mentioned in Section 1, computational complexity lies mainly in identifying the proper
branch for emptying. In [15], three “minimum-cost” branch searching algorithms are
presented. Among them, exhaustive search has very high computational complexity; code
pattern search does not always yield a “minimum-cost” branch, i.e. it is not accurate
enough; and topology search needs the assistance of a cost comparison table, whose size
grows dramatically with the increase of tree size and traffic classes [6]. While in MFCR,
to find out the least loaded branch (with its root code in layer-k), the loads of 2k branches
(at most) need to be compared. For each branch, the assignable capacity (defined in

(10)) is the sums of 2K−k code assignability index function values (I
(A,i)
A = 1 or 0 as

defined in (4)). Altogether, the least loaded branch(es) can be identified by at most
(2K−k − 1) · 2k · (2k−1) = 2K+k − 4k − 2K + 2k < 2K+k operations.

Besides the lower time complexity, the storage requirements of CA and RCA are
both minimum: only the (2K+1 − 1) code assignability index function values need to be
maintained since no table look-up is required.

8 Conclusions

The flexibility index of a code tree is a measure of how well the code tree can support
multi-rate traffic. In general, code choice should obey the principle that the code should
be as tightly fit into the existing busy code body as possible so as to leave the maximum
flexibility for the remaining codes to accommodate future multi-rate calls. Depending on
specific implementations, a code can or cannot be rearranged after assignment. For each
case, we have proposed a computational efficient code assignment scheme and analyzed its
performance. Analytical results, verified by simulation results, shown that the proposed
schemes are efficient, stable and fair.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 21

αααα0000

αααα1111

αααα2222

αααα3333 αααα4444 αααα5555 αααα6666 αααα7777 αααα8888

αααα9999 αααα10101010 αααα11111111 αααα12121212 αααα13131313 αααα14141414 αααα15151515 αααα16161616 αααα17171717 αααα18181818

αααα19191919 αααα20202020 αααα21212121 αααα22222222 αααα23232323 αααα24242424

αααα25252525

Figure 3: Markov Chains for RA and CA Schemes, K = 2 and J = 3.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 22

 S(αααα6666) =
{(1,1),(2,1),(2,2),(2,4)}S(αααα12121212)={(2,2), (2,4)}

S(αααα0000) = {(0,1),(1,1),(1,2),
 (2,1),(2,2),(2,3),(2,4)}

S(αααα13131313)={(2,1), (2,4)} S(αααα16161616)={(1,1), (2,1), (2,2)}

S(αααα17171717) = {(2,4)}
1λλλλ

1µµµµ

3
0λλλλ

0µµµµ

4
0λλλλ

3
0λλλλ

3
0λλλλ

0µµµµ0µµµµ

0µµµµαααα12121212

αααα13131313 αααα16161616

αααα17171717

αααα0000

αααα6666

Figure 4: Transition Rates of State α6 in RA Scheme

 S(αααα6666) =
{(1,1),(2,1),(2,2),(2,4)}S(αααα12121212)={(2,2), (2,4)}

S(αααα0000) = {(0,1),(1,1),(1,2),
 (2,1),(2,2),(2,3),(2,4)}

S(αααα13131313)={(2,1), (2,4)} S(αααα16161616)={(1,1), (2,1), (2,2)}

S(αααα17171717) = {(2,4)}
1λλλλ

1µµµµ0µµµµ

4
0λλλλ

0λλλλ
0µµµµ0µµµµ

0µµµµαααα12121212

αααα13131313 αααα16161616

αααα17171717

αααα0000

αααα6666

Figure 5: Transition Rates of State α6 in CA Scheme

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 23

λ1 2µ1

λ2
µ2

µ0

λ0

2µ0

λ0

3µ0

λ0

4µ0

λ0

µ0

λ0

2µ0

λ0

µ1
λ1 µ1

λ1 µ1
λ1

(0,0,0)

(0,0,1)

(0,1,0)

(0,2,0)

(1,0,0) (2,0,0) (3,0,0) (4,0,0)

(1,1,0) (2,1,0)

Figure 6: Markov Chain for the Event-Triggered Model of RCA Scheme,
K = 2 and J = 3.

2 4 6 8 10 12 14 16 18 20 22
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

o 95% Confidence Interval

Analytical Result

RCA

CA

RA
Case I

Case II

Offered Traffic: G(Erlang)

O
ve

ra
ll

B
lo

ck
in

g
P

ro
ba

bi
lit

y:
 P

B

Figure 7: Overall Blocking Probability

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 24

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

o 95% Confidence Interval

Analytical Result

RCA

CARA

System Capacity

Offered Load: L

S
ys

te
m

 T
hr

ou
gh

pu
t:

T

Figure 8: System Throughput, Case II.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 25

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Case II

Case I

System Capacity

Offered Load: L

S
ys

te
m

 T
hr

ou
gh

pu
t:

T

Figure 9: System Throughput of RCA, Analytical Results.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 26

6 8 10 12 14 16 18 20
0.8

0.85

0.9

0.95

1

6 8 10 12 14 16 18 20
0.8

0.85

0.9

0.95

1

o 95% Confidence Interval

Analytical Result

RCA

CA

RA

Offered Traffic: G (Erlang)

F
ai

rn
es

s
In

de
x:

 F

Figure 10: Fairness Index, Case II.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 27

Appendix A

Based on the definition of |θi| given in (21), equation (23) can be derived as follows.

|Φ2(J, K)| =

2K∑
i=0

|θi|

= |θ0| +
2K∑
i=1

|θi|

= |θ1| +
2K∑
i=1

|θi|

= |θ1| + |θ1| +
2K∑
i=2

|θi|

= |θ2| +
2K∑
i=2

|θi|

= |θ3| +
2K∑
i=2

|θi|

= |θ3| + |θ2| +
2K∑
i=3

|θi|

= |θ4| +
2K∑
i=3

|θi|

= |θ5| +
2K∑
i=3

|θi|

= |θ5| + |θ3| +
2K∑
i=4

|θi|

...

= |θ2K+1−1| + |θ2K |
= |θ2K+1 |
= |θ2J |, J = K + 1, K ≥ 1

References

[1] 3GPP TS 25.213 (V4.2.0), “Spreading and modulation (FDD),” Technical Specifica-
tion (Release 4), Technical Specification Group Radio Access Network, 3GPP, Dec.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 28

2001.

[2] 3GPP TS 25.223 (V4.3.0), “Spreading and modulation (TDD),” Technical Specifica-
tion (Release 4), Technical Specification Group Radio Access Network, 3GPP, Dec.
2001.

[3] R. G. Cheng and P. Lin, “OVSF code channel assignment for IMT-2000,” in Pro-
ceedings of IEEE VTC 2000, vol. 3, pp. 2188–2192, Spring 2000.

[4] F. Shueh, Z. E. P. Liu, and W. S. E. Chen, “A fair, efficient, and exchangeable chan-
nelization code assignment scheme for IMT-2000,” in Proceedings of IEEE ICPWC
2000, pp. 429–433, 2000.

[5] E. Dahlman and K. Jamal, “Wide-band services in a DS-CDMA based FPLMTS
system,” in Proceedings of IEEE VTC 1996, vol. 3, pp. 1656–1660, Apr. 1996.

[6] M. Dell’Amico, M. L. Merani, and F. Maffioli, “Efficient algorithms for the assign-
ment of ovsf codes in wideband CDMA,” in Proceedings of IEEE ICC 2002, vol. 5,
pp. 3055–3060, 2002.

[7] R. Fantacci and S. Nannicini, “Multiple access protocol for integration of variable
bit rate multimedia traffic in UMTS/IMT-2000 based on wideband CDMA,” IEEE
Journal on Selected Areas in Communications, vol. 18, pp. 1441–1454, Aug. 2000.

[8] C. E. Fossa Jr. and N. J. Davis IV, “Dynamic code assignment improves channel
utilization for bursty traffic in third-generation wireless networks,” in Proceedings of
IEEE ICC 2002, vol. 5, pp. 3061–3065, 2002.

[9] W. T. Chen, Y. P. Wu, and H. C. Hsiao, “A novel code assignment scheme for
W-CDMA systems,” in Proceedings of IEEE VTC 2001, vol. 2, pp. 1182–1186, Fall
2001.

[10] M. Zhang and T.-S. P. Yum, “Comparisons of channel-assignment strategies in cellu-
lar mobile telephone systems,” IEEE Transactions on Vehicular Technology , vol. 38,
pp. 211–215, Nov. 1989.

[11] S. M. Elnoubi, R. Singh, and S. C. Gupta, “A new frequency channel assignment
algorithm in high capacity mobile communication systems,” IEEE Transactions on
Vehicular Technology , vol. VT-31, Aug. 1982.

[12] R. Assarut, K. Kawanishi, U. Yamamoto, Y. Onozato, and M. Matsushita, “Region
division assignment of orthogonal variable-spreading-factor codes in W-CDMA,” in
Proceedings of IEEE VTC 2001, vol. 3, pp. 1884–1888, Fall 2001.

[13] J. S. Engel and M. M. Peritsky, “Statistically-optimum dynamic server assign-
ment in systems with interfering servers,” IEEE Transactions on Communications ,
vol. COM-21, pp. 1287–1293, Nov. 1973.

Yang and Yum: Maximally Flexible Assignment of OVSF Codes for Multi-Rate Traffic 29

[14] T. J. Kahwa and N. D. Georganas, “A hybrid channel assignment scheme in large-
scale, cellular-structured mobile communication systems,” IEEE Transactions on
Communications, vol. COM-26, Apr. 1978.

[15] T. Minn and K. Y. Siu, “Dynamic assignment of orthogonal variable-spreading-factor
codes in W-CDMA,” IEEE Journal on Selected Areas in Communications , pp. 1429–
1440, Aug. 2000.

[16] F. Adachi, M. Sawahashi, and K. Okawa, “Tree-structured generation of orthogonal
spreading codes with different lengths for forward link of DS-CDMA mobile radio,”
Electronics Letters , vol. 33, pp. 27–28, Jan. 1997.

[17] J. S. Kaufman, “Blocking in a shared resource environment,” IEEE Transactions on
Communications, vol. COM-29, pp. 1474–1481, Oct. 1981.

[18] N. J. A. Sloane, “Sloane’s on-line encyclopedia of integer sequences,”
http://www.research.att.com/∼njas/sequences/index.html.

[19] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Ex-
perimental Design, Measurement, Simulation, and Modeling. John Wiley and Sons,
1991.

[20] 3GPP TS 25.211 (V4.3.0), “Physical channels and mapping of transport channels
onto physical channels (FDD),” Technical Specification (Release 4), Technical Spec-
ification Group Radio Access Network, 3GPP, Dec. 2001.

[21] 3GPP TS 25.221 (V4.3.0), “Physical channels and mapping of transport channels
onto physical channels (TDD),” Technical Specification (Release 4), Technical Spec-
ification Group Radio Access Network, 3GPP, Dec. 2001.

[22] S. M. Ross, Introduction to Stochastic Dynamic Programming. Academic Press, 1983.

[23] T.-S. P. Yum and C. Dou, “Buffer allocation strategies with blocking requirements,”
Performance Evaluation, vol. 4, pp. 285–295, North-Holland 1984.

