Training Courses
Journal Affiliations
Journal of Recreational
Mathematics
Journal of Object-
Oriented Programming
Smarrandache Notions
Journal
Mathematics and
Computer Education
Books
Problems
Contact Info
Home

"On A Conjecture By Russo," from Smarandache Notions J ournal, Volume 11

Charles Ashbacher
Charles Ashbacher Technologies
Hiawatha, IA USA
e-mail 71603.522@compuserve.com

The Smarandache Square-Partial-Digital Subsequence(SSPDS) is the sequence of square integers which can be partitioned so that each element of the partition is a perfect square [1] [2] [3]. For example, 3249 is in SSPDS since 3249 can be partitioned into $324=18^{2}$ and $9=3^{2}$.

The first terms of the sequence are:
49, 144, 169, 361, 441, 1225, 1369, 1444, 1681, 1936, 3249, 4225, 4900, 11449, 12544, 14641, ...
where the square roots are
$7,12,13,19,21,35,37,38,41,44,57,65,70,107,112,121, \ldots$
This sequence is assigned the identification code A048653 [4].
L. Widmer examined this sequence and posed the following question [2]:

Is there a sequence of three or more consecutive integers whose squares are in SPDS?

For the purposes of this examination, we will assume that 0 is not a perfect square. For example, 90 will not be considered a number that can be partitioned into two perfect squares. Furthermore, elements of the partition are not allowed to have leading zeros. For example, 101 cannot be partitioned into perfect squares.

Russo [5] considered this question and concluded that the only additional solution to the Widmer question up to $3.3 \mathrm{E}+9$ was

n	$\mathbf{n}^{\mathbf{2}}$	Partition
12225	149450625	$1,4,9,4,50625$
12226	149475076	$1,4,9,4,75076$
12227	149499529	$1,4,9,4,9,9,529$

and made the following conjecture:
There are no four consecutive integers whose squares are in SSPDS.
The purpose of this short paper is to present several additional solutions to the Widmer question as well as a counterexample to the Russo conjecture.

A computer program was written in the language Delphi Ver. 4 and run for all numbers n,
where $n<=100,000,000$ and the following ten additional solutions were found

\mathbf{n}	$\mathbf{n}^{\mathbf{2}}$
974379	949414435641
974380	949416384400
974381	949418333161

\mathbf{n}	$\mathbf{n}^{\mathbf{2}}$
999055	998110893025
999056	998112891136
999057	998114889249

\mathbf{n}	$\mathbf{n}^{\mathbf{2}}$
999056	998112891136
999057	998114889249
999058	998116887364

\mathbf{n}	$\mathbf{n}^{\mathbf{2}}$
2000341	4001364116281
2000342	4001368116964
2000343	4001372117649

\mathbf{n}	$\mathbf{n}^{\mathbf{2}}$
2063955	4259910242025
2063956	4259914369936
2063957	4259918497849

\mathbf{n}	$\mathbf{n}^{\mathbf{2}}$
2083941	4342810091481
2083942	4342814259364
2083943	4342818427249

\mathbf{n}	$\mathbf{n}^{\mathbf{2}}$
4700204	22091917641616
4700205	22091927042025
4700206	22091936442436

\mathbf{n}	$\mathbf{n}^{\mathbf{2}}$
5500374	30254114139876
5500375	30254125140625
5500376	30254136141376

n
n^{2}

Partition

1, 4, 1, 9, 6241, 4, 841
1, 4, 196, 3168400
1, 4, 196392196, 1

Partition

9, 4, 9, 4, 1, 4, 4356, 4, 1
9, 4, 9, 4, 16, 384400
9, 4, 9, 4, 1833316, 1

Partition

9, 9, 81, 1089, 3025
9, 9, 81, 1, 289, 1, 1, 36
9, 9, 81, 1, 4, 889249

Partition

9, 9, 81, 1, 289, 1, 1, 36
9, 9, 81, 1, 4, 889249
$9,9,81,16,887364$

Partition

400, 1, 36, 4, 116281
400, 1, 36, 81, 16, 9, 64
400, 1, 3721, 1764, 9

Partition

4, 25, 9, 9, 1024, 2025
$4,25,9,9,1,4,36,9,9,36$
$4,25,9,9,1849,784,9$

Partition

43428100, 9, 1, 4, 81 434281, 4, 25, 9, 36, 4 434281, 842724, 9

Partition

2209, 1, 9, 1764, 16, 16 2209, 1, 9, 2704, 2025 2209, 1, 9, 36, 4, 42436

Partition

3025, 4, 1, 1, 4, 139876
3025, 4, 1, 25, 140625
3025, 4, 1, 36, 141376

Partition

```
80001024 6400163841048576 6400, 16384, 1048576
80001025 6400164001050625 6400, 1, 6400, 1050625
80001026 6400164161052676 6400, 1,64, 16, 1052676
```

\mathbf{n}	$\mathbf{n}^{\mathbf{2}}$	Partition
92000649	8464119416421201	$8464,1,1,9,4,16,421201$
92000650	8464119600422500	$8464,1,19600,4,22500$
92000651	8464119784423801	$8464,1,1,9,784,423801$

Pay particular attention to the four consecutive numbers 999055, 999056, 999057 and 999058. These four numbers are a counterexample to the conjecture by Russo.

Given the frequency of three consecutive integers whose squares are in SSPDS, the following conjecture is made:

There are an infinite number of three consecutive integer sequences whose squares are in SSPDS.

In terms of larger sequences, the following conjecture also appears to be a safe one:
There is an upper limit to the length of consecutive integer sequences whose squares are in SSPDS.

We close with an unsolved question:
What is the length of the largest sequence of consecutive integers whose squares are in SSPDS?

References

[1] Sylvester Smith, "A Set of Conjectures on Smarandache Sequences", Bulletin of Pure and Applied Sciences, (Bombay, India), Vol. 15 E (No. 1), 1996, pp. 101-107.
[2] L. Widmer, "Construction of Elements of the Smarandache Square-Partial-Digital Sequence", Smarandache Notions J ournal, Vol. 8, No. 1-2-3, 1997, 145-146.
[3] C. Dumitrescu and V. Seleacu, Some notions and questions in Number Theory, Erhus University Press, Glendale, Arizona, 1994.
[4] N. Sloane, "On-line Encyclopedia of Integer Sequences", http://www.research.att.com/~njas/sequences.
[5] F. Russo, "On An Unsolved Question About the Smarandache Square-Partial-Digital Subsequence" http://www.gallup.unm.edu/~smarandache/russo1.htm.

