Multisectioning, Rational Poly-Exponential Functions and
Parallel Computation.

by

Kevin Hare

B.Math, University of Waterloo, 1997.

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the Department
of
Mathematics & Statistics.

© Kevin Hare 2002
SIMON FRASER UNIVERSITY
October 2002

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Kevin Hare

Degree: Master of Science

Title of thesis: Multisectioning, Rational Poly-Exponential Functions and Parallel
Computation.

Examining Committee: Dr. R. Lockhart
Chair

Dr. J. M. Borwein

Senior Supervisor

Dr. M. Monagan

Dr. L. Goddyn

Dr. A. Gupta
Department of Computing Science

External Examiner

Date Approved:

ii

Abstract.

Bernoulli numbers and similar arithmetic objects have long been of interest in mathematics. Histori-
cally, people have been interested in different recursion formulae that can be derived for the Bernoulli
numbers, and the use of these recursion formulae for the calculation of Bernoulli numbers. Some of
these methods, which in the past have only been of theoretical interest, are now practical with the

availability of high-powered computation.

This thesis explores some of these techniques of deriving new recursion formulae, and expands
upon these methods. The main technique that is explored is that of “multisectioning’. Typically,
the calculation of a Bernoulli number requires the calculation of all previous Bernoulli numbers. The
method of multisectioning is such that only a fraction of the previous Bernoulli numbers are needed.
In exchange, a more complicated recursion formula, called a “lacunary recursion formula”, must be

derived and used.

iii

Dedication.

I would like to dedicate this thesis to my parents, who always supported me with my interest in

mathematics.

v

Acknowledgments.

I would like to thank my supervisor, Jon Borwein, for all his help and insight with respect to this
area of research. Also, I would like to thank Marni Mishna, Cindy Loten and Jeff Graham for their
proof reading of my thesis, Greg Fee for all of his suggestions on how to improve my Maple code,

and numerous other people both within the CECM, and at SFU who made my time here enjoyable.

Contents

Abstract. e
Dedication. L e
Acknowledgments. L e
List of Tables e
List of Figures e
1 Introduction and preliminaries. oL oo
1.1 Introduction. L L
1.2 Outline. e
2 Poly-exponential functions.
2.1 Poly-exponential functions. L
2.2 Exponential generating functions. o000
2.3 The recurrence polynomial. L L oo
2.4 The structure of P.. oL
2.5 Hierarchy of P.« . . o
2.6 Some complexity bounds. L oo
2.7 Examples. L
2.8 Conclusions.
3 Rational poly-exponential functions. 0oL
3.1 Rational poly-exponential function. L.
3.2 Recursion formula for functionsin R.

vi

iii

iv

10

18

19

3.3 Multisectioning. L
3.4 The structure of R.
3.5 Hierarchy of R. o o
3.6 Some complexity bounds. oL
3.7 Examples.o
3.8 Conclusion. e
Calculations of recurrences for P.
4.1 Multisectioning the recurrence polynomial.
4.2 Multisectioning via resultants. Lo oL
4.3 Using linear algebraon P. Lo
4.4 Using symbolic differentiation with linear algebra.
4.5 Using compression.
4.6 Computing over the integers. L L
4.7 Techniques for smaller recurrences.
4.8 Conclusions.
Calculations of recurrences for R.
5.1 Multisectioning recurrence polynomials by resultants.
5.2 Fast Fourier transforms and linear algebra.

5.2.1 Fast Fourier transform method 1.

5.2.2 Fast Fourier transform method 2.
5.3 Using the bottom linear recurrence relation.
5.4 Symmetries.
5.5 Computing over the integers. L oo
5.6 Techniques for smaller linear recurrence relations.
5.7 Conclusions.

5.7.1 Denominator.o

5.7.2 Numerator.

vii

6 Doing the calculation. L L 85

6.1 Load balanced code. L 86

6.1.1 Overview. o 86

6.1.2 Details of algorithm. 0oL 86

6.2 Load balancing code. L L L 89

6.2.1 Overview. o 89

6.2.2 Details of algorithm. 0oL 90

6.3 A large calculation.o 98

6.4 Validating results. L 99

6.4.1 Validating the Bernoulli numbers. 99

6.4.2 Validating the Euler numbers. 100

7 Conclusion. L e 102
Appendices

A Outlineofcode. 103

A.1 Code for poly-exponential functions., 103

Al1 Naive method. L 103

A1.2 Linear algebra and symbolic differentiation method. 104

A.2 Code for exponential generating functions. 104

A21 Making procedure from an exponential generating function. 104

A2.2 Stripping zeros from exponential generating function. 105

A.2.3 Naive method to multisection. 105

A24 Recurrence polynomial method. 105

A25 Recurrence polynomial via resultants method. 106

A.2.6 Linear algebra method. 106

A2.7 Compression method. L. 107

A3 Metrics. o 107

A31 Metric deg®. 107

viii

A32 Metricdeg?. 107

A4 Conversions. e 108
A4l Convert to the recurrence polynomial. 108
A4.2 Convert to the linear recurrence relation. 108
A4.3 Convert to the exponential generating function. 109
A44 Convert to the exponential generating function. 109
A5 Bottom linear recurrence relation. Lo Lo 109
A5.1 Naive method. L o 109
A5.2 Fast Fourier transform and linear algebra. 110
A.5.3 Symbolic differentiation and linear algebra. 110
A54 Using the recurrence polynomial and resultants. 111
A.5.5 Factoring out common polynomials. 111
A.6 Top linear recurrence relation. oL oL 111
A6.1 Naive method. 111
A.6.2 Fast Fourier transform and linear algebra method. 112
A.6.3 Symbolic differentiation and linear algebra. 112
A6.4 Computing top linear recurrence relation with bottom. 113
A.6.5 Knowing probably linear recurrence relation. 113
A.6.6 Computing new recurrence polynomial using resultants. 113
A6.7 Factoring out common polynomials. 114
A.7 Doing the calculation. 114
A7l Normal method. 114
A.7.2 Multiprocessor, even load-balance method. 115
A.7.3 Multiprocessor, uneven load-balance method. 115
Notation. e e 116
Definitions. e 118
Maple bugs and weaknesses. 120

ix

D.1
D.2
D.3

D.4

EA4

E.5
E.6
E.7

E.8

Bug 7345 - expand/bigpow and roots of unity. L. 120

Bug 7357 - help for Euler. oo 123
Bug 7497 - the “process” package. oL 124
Bug with “process package” and bytes used message. 126
Bug with “process” package on xMaple. L. 128
Bug 7552 - factorial. 130
Bug 5793 - Multi-argument forget does not work. 132
... 134
Conversions. 134
Metrics. e 136
Poly-exponenial
function. L 136

Exponential generating

function. L. 137
Denominator. Lo 141
Numerator. L 144
Linear Algebra. 147
Performing the calculations. 0oL 149

List of Tables

6.1 Upper bounds of completed calculations

xi

List of Figures

6.1 Load balanced master/slave diagram. oL

6.2 Load balancing master/overseer/slave diagram.

xii

91

Chapter 1

Introduction and preliminaries.

1.1 Introduction.

Bernoulli numbers and similar arithmetic objects have long been of interest in mathematics. Histori-
cally, people have been interested in different recursion formulae that can be derived for the Bernoulli
numbers, and the use of these recursion formulae for the calculation of Bernoulli numbers. Some of
these methods, which in the past have only been of theoretical interest, are now practical with the

availability of high-powered computation.

This thesis explores some of these techniques of deriving new recursion formulae, and expands
upon these methods. The main technique that is explored is that of “multisectioning”. Typically,
the calculation of a Bernoulli number requires the calculation of all previous Bernoulli numbers. The
method of multisectioning is such that only a fraction of the previous Bernoulli numbers are needed.
In exchange, a more complicated recursion formula, called a “lacunary recursion formula”, must be

derived and used.

There is a simple formula for ((n), the “Riemann zeta function” evaluated at n, for positive
even integers n and for negative odd integers n in terms of the Bernoulli numbers. Also, there are
numerous constants, (727, log 2, v - the Euler gamma function, 7 - the golden mean, G - Catalan’s
constant) that admit identities of infinite sums of zeta values. Thus the calculations of Bernoulli

numbers can be used for certain high precision evaluations of other constants [6].

Bernoulli numbers were first introduced by Jacques Bernoulli (1654-1705), in the second part
of his treatise published in 1713, Ars conjectandi (“Art of Conjecturing”). At the time, Bernoulli
numbers were used for writing the infinite series expansions of hyperbolic and trigonometric functions
[7].

CHAPTER 1. INTRODUCTION AND PRELIMINARIES. 2

Von Staudt and Clausen independently discovered a rapid means of determining the denominator
of the Bernoulli numbers [17]. This is very useful for testing to see if the calculation was done without
errors. (Any error will most likely return a result for which the Clausen - von Staudt theorem does
not hold.)

Van den Berg was the first to discuss finding recurrence formulae for the Bernoulli numbers
with arbitrary sized gaps (1881) [19]. (Gaps of size m implies that only %—th of the information is
required, and is the result of multisectioning by m.) Haussner worked on this again, 12 years later
(1893) giving the results in terms of hypergeometric functions [19]. Ramanujan, in 1911, is given
credit for first giving the formulae for small gaps explicitly. Ramanujan showed how gaps of size 7
could be found, and explicitly wrote out the recursion for gaps of size 6 [4, 19, 22]. These methods
were extended to the Euler numbers in 1914 by Glaisher, who used these to compute the first 27

non-zero Euler numbers [14].

Nielsen in 1922, gave an improved notation from a computational point of view to deal with gaps

of large sizes [19].

Lehmer in 1934 extended these methods to Euler numbers, Genocchi numbers, and Lucas numbers
(1934) [19], and calculated the 196-th Bernoulli number.

The goal in this thesis is to expand these techniques to much more than just Bernoulli and Euler

n . A
numbers. In general anything that is in the form %
25ty g (@)e

for polynomials p;(z), g;(z) € Clx]
and constants A;, ;t; € C can have the terms of its exponential generating function calculated quickly

via multisectioning. This type of function is called a “rational poly-exponential function”.

This thesis will be looking at examples that are derived from Bernoulli numbers, such as Euler
numbers, Genocchi numbers and Lucas numbers. But there are a large variety of other situations

where rational poly-exponential functions occur. Some are listed below:

o (1+ z)(tan(z) + sec(z)) - Boustrophedon transform of sequence 1,1,0,0,0,0,... [21]. Reference
number A000756 [25, 26].

o ¢%*(tan(x)+sec(z)) - Boustrophedon transform of powers of 2 [21]. Reference number A000752
25, 26].

e e”(tan(z) + sec(x)) - Boustrophedon transform of all-1’s sequence [21]. Reference number
A000667 [25, 26].

o (1 + x)e*(tan(x) + sec(x)) - Boustrophedon transform of natural numbers [21]. Reference
number A000737 [25, 26].

—x

a7 - a(n) =na(n — 1) + (n — 2)a(n — 2) [23]. Reference numbers A000153, M1791, N0706
25, 26].

CHAPTER 1. INTRODUCTION AND PRELIMINARIES. 3

—x

* T - a(n) = na(n — 1) + (n — 1)a(n — 2) [11, 23]. Reference numbers A000255, M2905,
N1166 [25, 26].

z

°* T Srolk+DI(}) [3, 29]. Reference numbers A001339, M2901, N1164 [25, 26].

—x

* G- a(n) =na(n — 1) + (n — 3)a(n — 2) [23]. Reference numbers A000261, M2949, N1189
25, 26].
) % - Simplices in barycentric subdivisions of n-simplex. Reference numbers A002050,

M3939, N1622 [25, 26].

Q_Hc%egg - Partition n labeled elements into sets of sizes of at least 2 and order the sets. Reference

number A032032 [25, 26].

2n+1
e The tangent numbers 7T, where tan z = Z;’io(—l)"‘*l% [5

These examples, with the exception of the last one, were all found with the help of The Encyclo-
pedia of Integer Sequences and its online counterpart [25, 26]. The reference number is the number

associated with the sequence within The Encyclopedia of Integer Sequences.

Also, although most of the techniques discussed in this thesis are for rational poly-exponential
functions in one variable, it is possible to perform multisectioning in a more general setting, such

as for the Bernoulli polynomials, or Euler polynomials (the exponential generating function with

2%t
e?+1

Ietm
er—1

and give the Bernoulli and Euler polynomials respectively as polynomials

respect to x of
in t) [2].

The goal of multisectioning by m is to calculate a lacunary recursion formula so that to calculate
a term of the exponential generating function of the rational poly-exponential function requires
only %—th of the time and an %—th of the information when compared with the standard recursion
formula. This allows the calculation on m different machines to achieve a theoretical speed up of
a factor of m. (In actual fact, experience shows that the speed up will be greater than this, as the
reduction in memory requirements will delay thrashing, and the system can better utilize memory
management.) Unfortunately for large m it becomes impractical to determine what these lacunary
recursion formulae are as the time to determine the recursion formulae and the complexity of these

recursion formulae far exceeds the time to calculate these values with smaller gaps.

Hence multisectioning is a method to compute the Bernoulli numbers that does not require any
shared memory. This method is limited by the growth in the cost of determining the lacunary
recursion formulae. Conversely there are methods which make use of shared memory (or limited
message passing) that are not limited by any increase in the complexity of the lacunary recursion
formulae. These methods are limited by the effectiveness of the communication between processes.

These techniques are called “recycling methods” [6].

CHAPTER 1. INTRODUCTION AND PRELIMINARIES. 4

Included with this thesis are are a description of the computer programs to determine the lacu-
nary recurrence relations for multisectioned poly-exponential functions, programs to determine the
lacunary recursion formulae for multisectioned rational poly-exponential function, as well as algo-
rithms to perform these calculations by recycling. For space consideration the actual code was not
included within the thesis. These programs can be found on the web at [1]. This is all written in
Maple [13].

1.2 Outline.

Chapter 2 defines and explores poly-exponential functions. This chapter examines some closure
properties and metrics upon these functions. As well, this chapter looks at some examples of multi-

sectioning functions of this type.

Rational poly-exponential functions are defined and explored in Chapter 3. Again some closure
properties, and metrics upon these functions are examined. As well, examples of how to calculate
the coefficients of the exponential generating functions of rational poly-exponential functions and
multisectioned rational poly-exponential functions via their lacunary recursion formulae are looked

at.

Chapter 4 examines different techniques of calculating lacunary recursion formulae for multisec-

tioned poly-exponential functions.

Different techniques of calculating lacunary recursion formulae for multisectioned rational poly-

exponential functions are examined at in Chapter 5.

Chapter 6 looks at different methods to perform the calculation of the coefficients of the ex-
ponential generating functions of rational poly-exponential functions, after the lacunary recursion
formulae are determined. These different techniques take advantage of multi-processor computers,

and distributed computer networks.

The last chapter, Chapter 7 discusses some of the results of this thesis, and makes some conclu-

sions as to what has been learned as a result of these investigations.

Appendix A is an outline of the code. Appendix B lists the common notation and page references.
Appendix C contains a list of definitions along with the page reference where the definition is first
made. Appendix D is for the bugs reports of bugs found in Maple during the course of these
investigations. The last appendix, Appendix E is the code.

Chapter 2

Poly-exponential functions.

2.1 Poly-exponential functions.

The study of rational poly-exponential functions is begun with the exploration of a simpler model;

that of poly-exponential functions. To that end define:

Definition 2.1 (Poly-exponential function.) Let A1, ..., A\, € C be constants and pi(x), ...,
pn(z) € Clx] be polynomials. Then

n
> pix)eN,
i=1

is a ‘poly-exponential function”. Denote the set of all such functions by P.

This definition along with Lemma 2.1 and Theorem 2.1 are generalization of examples found in

Wilt’s Generating Functionology [30].

Many results for poly-exponential functions can be extended to ratios of poly-exponential func-
tions, thus allowing a simpler setting for developing techniques for the calculations that are the
goal of this thesis. Section 2.2 examines the relationship between exponential generating functions
and poly-exponential functions. In Section 2.3 the recurrence polynomial corresponding to a linear
recurrence relation is defined and explored. Section 2.4 examines in detail the structure and some
of the substructure of P, defining both PF1:#2 and Pg, g, (PF1F2 and Pg, g, being subrings of
P where the certain coefficients lie within Ry or Rs). The relationship between two subrings of P,
PluE2 and Pg, g,, and showing that these subrings are distinct are shown in Section 2.5. (The
subrings are defined by restricting the coefficients to certain rings.) In Section 2.6 some metrics of

complexity are introduced for the functions in P, and the relationships between these metrics, with

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 6

each other and with standard operations such as addition or multiplication are explored. Section 2.7
contains three detailed examples. The last section, Section 2.8, summarizes the main points of this

chapter into a final theorem.

2.2 Exponential generating functions.

The main result of this section is the detailing of the relationship between poly-exponential functions

and exponential generating functions.

Lemma 2.1 Let s(x) be a complex valued function. Then s(x) can be written as an exponential
generating function s(x) = Z?io bif,—;, where the b; satisfies an N-term linear recurrence relation
with constant terms if and only if s(x) can be written as Y i, pi(z)eN® for polynomials p;(z) € C|z]

and non-zero constants \; € C.

Proof: Let s(z) = 2, blf—, where the b; satisfy the linear recurrence relation b; = 31b;_1 + ...+
Bnbi_n, By # 0 for i > N. Let Ay, ..., Ay be roots of the polynomial 2% — g2V =1 — ... — By (not
necessarily distinct). It is worth noting here that A; # 0 for all ¢. From a standard result on linear
recurrence relations [16], it follows that b; = sz\; @;jIN T for some r; € Z, and some a; € C.

Here the notation of Comtet [10] is used, where j") = j(j —1)(j —2)...(j =7 +1) and j(® = 1. Thus:

N

(s —r; i N oo
s(z) = Zb ZZ’]]*":ZZO{ZWH(

j=0i=1 i=1 j=0

GO T g
4!
J(TY))\] Tlxj T4

Zaz Z #):Zam” Z(A] ”xﬁ ’”1 Za AT

— T’
7=0 =1 Jj=r; (]

Now combine the a;z" which have the same);, and relabel to get s(z) = > p;(z)e*®, where the

A; are distinct and non-zero.

To prove the other direction, let t(x) = Z;"':l g;(x)ets®, where pu; # 0, p; € C and g¢;(z) € Clz]
are polynomials. Consider the polynomial:

P(z) = H(m — pj)deel@i@) — g gl .
j=1

Then ¢(x) = Z;io dj?—f where the d; satisfies the n term linear recurrence relation d; = ond;—1 +

..+ apdj_,. Later, in Section 2.3 it will be shown that P(z) is the recurrence polynomial of ¢(x).

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 7

Theorem 2.1 Let s(z) be a complex valued function. Then s(z) =Y .2, blf—: where there exists an
m, such that for i > m the b; satisfy an N-term linear recurrence relation with constant terms if and

only if s(x) € P.

Proof: First consider s(z) = >°.°, blf—, where after some m, the b; satisfy an N-term linear
recurrence relation. A degree m polynomial can be extracted, say po(z) (= Yo, ﬁif—:) such that
the resulting b; (= b; — 3;) satisfy an N-term linear recurrence relation. Then by Lemma 2.1 s(z)
can be written as:

n

:gbizzzbfﬂo(©) = D pil@)e T + po(w)e™,

i=0 i=1
for some polynomials p;(x) and constants A;.

Similarly, if t(x) = 327, g;(2)e"s™ + po(z), for polynomials po(x), ¢;(x), and non-zero constants

ij, by Lemma 2.1, ¢(x) can be rewritten as:
o0 ' o0 _ x]
=y d] Pt po(z) = d; i
Jj=0 j=0

where the d; satisfy an N-term linear recurrence relation and where the d; (which are derived by
adding the d; to the coefficients of the polynomial py(x)) satisfy an N-term linear recurrence relation
for j > N + deg(po(x).

Example 1 Consider the following example in Maple. For more information about the Maple
code, see Appendix A. For the Maple code see Appendiz E. The Maple code and help files

(including information about syntaz) are available on the web at [1].

> with(MS):

Consider the function si(x) = x + xze®. Converting this to an exponential generating function
gives:
> s[1] =z +z * exp(x):
> convert_egf(s[1], b, z);
b(z) =2b(z — 1) —b(z —2), b, z, [b(0) =0, b(1) =2, b(2) =2, b(3) = 3]

So s1(x) can be written as Z;ﬁo bif where b; = 2b;_1 — b;_o, with by = 0, by = 2, by = 2 and
bz = 3.

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 8

Example 2 Consider the following example in Maple.

> with(MS):

Consider the function so(x) = Z;’io b"'ifi , where by = b;_1 + bj_o with by =0 and by = 1. These

b; are the “Fibonacci numbers” [2]. Converting this to a poly-exponential function gives.

> s[2] :=b(z) = b(z-1) + b(z-2), b, =z, [b(0) =0, b(1) = 1];
s :=b(z) =b(x — 1)+ b(z — 2), b, x, [b(0) =0, b(1) =1]

> convert_pe(s[2]);
,% VB el (1/2-1/2V5) é V5 e (1/2+1/2 \/g))’ .

So this can be written as a poly-exponential function, as demonstrated above.

2.3 The recurrence polynomial.

Identifying linear recurrence relations with polynomials will be useful for the further exploration of

poly-exponential functions and rational poly-exponential functions. To this end define:

Definition 2.2 (Recurrence polynomial P*(z).) Let s(z) € P, where s(z) = > =, bif.—;, where
the b; satisfy an N-term linear recurrence relation for allb;, 1 > m+N, say b; = a1b;—1+...+anb;—_N.
For m > 1 assume that for i = m+ N — 1, that b; # a1b;—1 + ... + anb;_n. Define the ‘recurrence
polynomial” P*(z) by:

Pi(z) = 2™z — a2V — L —an_1z — ay).

Example 3 Consider the following example in Maple.

> with(MS):

Again consider s1(x) = x+e® x from Example 1. This example determines what s1(x)’s recurrence
polynomial is.
> s[1] := z + exp(z)*z;

sy i =x+zxze”

> egf := convert_egf(s[1], b, x);
egf :=b(z) =2b(z — 1) —b(z —2), b, x, [b(0) =0, b(1) =2, b(2) =2, b(3) = 3]

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 9

> convert_poly(egf);

a2t =223 + 22

In contrast consider a random polynomial, and determine what its linear recurrence relation would
be.

> poly := randpoly(z);
poly := —552° — 372 —352% + 9722 + 502 + 79

> convert_rec(poly,b,z);

b(z) = 57 (x—1)

37, 79
55

97 10

The recurrence polynomial P?(x) is defined in this way so that it will contain information about
when a linear recurrence relation is valid. This construction was suggested by my supervisor, Jon

Borwein partly because a useful corollary follows from this definition as a result.

Corollary 1 If s(z) € P, s(z) = > i, pi(z)eN®, with n distinct \;, then:

n

deg(P*(x)) =) _(deg(pi(2)) +1).

i=1

Later, it will be show that this corollary also follows from Lemma 2.5 and is related to the

definition of deg” (s(z)) as given in Definition 2.7.

Let s(z) € P, s(z) = Y oy blf—, It is possible to find more than one linear recurrence relation for
the b;. For example b; = b;_1+b;_o and b; = 2b;_o+b;_3 are both valid linear recurrence relations for
the Fibonacci numbers. Next it is shown how to avoid the ambiguity of which recurrence polynomial

or linear recurrence relation to use.

Define the “length” of a linear recurrence relation to be the degree of the recurrence polynomial
associated with it. (Later it is shown that this is equivalent to the metric deg”.) Consider the
minimal integer n > 0 such that there is a linear recurrence relation of length n; this gives a unique
lower bound to the length of a linear recurrence relation. From this it can be shown that this minimal
linear recurrence relation is unique, for if there were two different linear recurrence relations of length
N

b = aib_1+..+anbi_n
and b; = [B1bi_1 + ...+ Onbi_n,

then
0= (a1 —B1)bi—1+ ...+ (an — Bn)bi—n,

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 10

which has non-zero terms, hence is a smaller linear recurrence relation, which is a contradiction.

Therefore from the comments above, and the results of Corollary 1, assume that P*(x) is the
unique smallest polynomial associated with the unique linear recurrence relation of minimal length

associated with s(z) € P.

If P(z) and Q(x) are two recurrence polynomials associated with the linear recurrence relation
of s(x) € P (not necessarily minimal) then ged(P(x), Q(z)) is also associated with s(z). In fact, any
polynomial P(x) such that P*(x)|P(z) will yield a linear recurrence relation for s(x), albeit not one

of minimal length.

2.4 The structure of P.

As yet, P has only been looked at as a collection of functions. However P has an internal structure.
The main result of this section is to show that P is a ring. As well, some subrings of P are examined.
Some of the consequences of this are re-examined in Section 4.6 in which calculations over different
subrings of P and R (to be defined in Chapter 3) are made.

To the best of my knowledge, the subrings of P in this section have never been examined before,

and the results in this section are new.
Definition 2.3 (Pg, r,.) Let R1 and Rz be subrings of C. Define

Pry.r, = {s(x) € P:s(z) = Zpi(a:)e)‘iz,)\i € Ry, pi(z) € Ralx]}.

Definition 2.4 (PF+:52.) Let Ry and Ry be subrings of C. Define

o i
PRLE: — [g(2) e P s(z) = Zbi%7Ps(x) factors in Ry[z],b; € Ra}.
i=0

The main result of this section is to show that Pg, r, and P®:f2 are both rings. First some
preliminary definitions are made to help discuss multisectioning. The process of multisectioning has
had a long history, including Ramanujan, Lehmer, Glaisher [14, 19, 22]. For a more detailed describe
of the history, see Section 1.1.

2mi

Definition 2.5 Define w,, = e™m .

Definition 2.6 (Multisectioning.) Let f(x) be a function acting on a subset of C. Define f2 () =

-1 . .
w Lico W't f(wh).

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 11

The term “multisectioning” is used to describe this process [24]. To say a function s(x) is
“multisectioned by m” means that s (z) is being discussed for some g. To say a function s(z) is
“multisectioned by m at ¢” means that the function s, (x) is being discussed. The term “lacunary
recurrence relation” is used to describe the linear recurrence relation of a poly-exponential function
that has been multisectioned [24].

If s(z) € P, then it follows that s,(x) € P. Let s(z) =Y .= bs f, , then:

—1 m—1 oo ; ; e}

1% _ 1 L Wk _
sl(z) = — g wFas(wk — wka E b —1 = E i g wFagke
m m — —~ 7! e !m

k=0 = = i=
m—1
—_ E b 7kq+k7,'.
k=0

By noticing that % ZZZOI w; katki is equal to 1 if and only if ¢ =4 (mod m) and 0 otherwise, this

simplifies to
m7,+q

q
Sm meH—q (mz—i—q)

=0
So the process of multisectioning will isolate certain terms within the power series.

Consider a poly-exponential functions, say t(z) = >i"_, pi(z)e®, then a simple calculation shows
that tZ (x) has the form:

H

m—

n

=]
§ :wm]qu)ex\zxwm)
7=0 =0

1
m
Rewriting this as t2 (z) = Z?:l Dj(x)et®, shows that, the recurrence polynomial of t2 () is:

P) (p H J)des(ps @),

The set {u; : j = 1..n} is independant of g, (they will run through \;w?,). By multisectioning, it is
possible that the roots will be of a different multiplicity, hence giving a different recurrence polynomial
(as shown in the example below). But to do this, a sub-component of the poly-exponential function
needs to have a symmetry when shifting by w,,, around the origin, which would result in a different
degree for some p;(z). (For example e* — e~ ® has a symmetry which shifting by wy = —1 about
the origin, as e* — e % = —1(e™1® — ¢71X~%), For a more detailed discussions of symmetries, see
Section 5.4.) For example when multisectioning by two, then the function would need to have an
even component or an odd component. The probability of this happening is not very great (measure
zero) so, as long as something is known about s(z), then the fact that the recurrence for s?,(z) is
likely the same as s (z) can be taken advantage of; by simplifying the calculation of the lacunary
recurrence relation of s (z) to checking if the lacunary recurrence relation of s¢,(x) is valid for the

first few initial values.

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 12

Example 4 Consider the following example in Maple.

> with(MS):

This is an example of a poly-exponential function, which when multisectioned by 2 will give
a different linear recurrence relation if it is multisectioned at 0 or at 1. Consider the function
s(x) = e 4 e(77) 4 e(22) _ g(=22),

> s := exp(z)texp(-z)+exp (2%z)-exp (-2*z) ;

s:= €% 4 €77 4 27 _((=22)

> ‘pe/ms‘(s, f, z, 2, 0);

> ‘pe/ms‘(s, f, z, 2, 1);

f(z) = 4f(x — 2), f, z, [f(0) = 0, £(1) = 4]

In the first case the linear recurrence relation is f(x) = f(x —2) and in the second f(x) = 4f(x—2).

The notation of Herstein [18] is used with respect to rings and subrings. Let A be a subset of C.
Then (A) is the smallest subring of C that contains A. Denote A™! = {a™! : a € A}. Let Ry and
R be subrings of C. Denote RjRs = {ajas : a1 € Ry and ay € Ry}.

Next some closure properties for PF1:%2 and Pg, g, are collected.

Lemma 2.2 Let Ry, Ry, R3, Ry and Rs be subrings of C. If s(x) € Pgr,.r,, t(z) € Pry r, and
«a € Rs, then:

1. s(x)t(x) € P(r1,R3),RsRa>

2. 5(x) +t(x) € P(ry,Rs),(Ro,Ra)>
3. 8'(x) € P, (R ,Rs)>

4. 5 s(y)dy € PRy (QRs, R Ra)
5. s(ax) € PR, Rs,(Rs,RaRs)

6. S?n(x) € ,P<wm)R17<%><Wm)R2'

Proof: Assume that s(z) = Y1 pi(z)et®, and t(z) = Y 7" g;(x)e!s* throughout this proof.

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 13

1. Observe that:

n m i=n,j=m
Y pi(@)e Ty gi(a)ets T = N pia)gy ()T,
= Jj=1 i=1,j=1

Then p;(x)q;(x) € RaRaz], and \; + p; € (Ry, R3). So s(x)t(x) € P(r,,Rs),RaRa-
2. Observe that: . .
= Zpi(x)e’\“” + Z g;(x)eti®.
i=1 j=1
Both p;(z) and g¢;(z) are in (Ry, R4)[z] and further \;, u; € (Ry, Rs). Thus s(x) + t(z) €
PR Rg) (B2 Ra)-
3. Observe that: . .
"(z) = Z Aipi (z)e™ + Zp;(sc)e’\ !
i=1 i=1
Consequently pj(x), \ipi(z) € (Ra, R1Ry)[x] and that \; € Ry. Thus s'(z) € Pr, (r,,R: Rs)-

4. Re-index the function s(z) so that s(z) = Y1, | Lo ieM™ + 371 Biat, where \; € Ry, i,
Bi € Ry and r; € Z, r; > 0. Then:

/0' s(y)dy = / Z ay"e ”’+Zﬁzydy

=1,1;0

I
M:
\
L
g
®>‘
@
&
+
INagE
S~
@
&
&

g rilarehin(gt
oy az:: fo“(e E:: i1
n T ' i]
= Z aieAimZ%T Z i+1

i=1,\;7#0 7=0 i

The case \; # 0 gives that the coefficients are contained in the subring (RyR;). In the case
A; = 0, the coefficients are contained in QRy. The \; are still in Ry. Therefore fo y)dy €

PRIv(QR27R2R;)
5. Notice that s(azx) = Z?:lpi(oza:)e“k”. So pi(ax) € (Rg, RoRs). Further a); € RiRs, so

5(0493) € PR1R5,<R2,R2R5>'

6. By combining part 2 and part 5 of this lemma s (z) can be written as:

fzw) € Pl R (62,) Ra e (w5) Ba) (o) R (5 62,) R (o) R

This simplifies to P<wm>R17< Y (wm) Ra -

1
m

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 14

Lemma 2.3 Let Ry, Ry, R3, Ry and Rs be subrings of C. If s(z) € PFvB2 t(x) € PHRs:Fa and
a € Ry then:

1. s(z)t(z) € PHLs) ol

\S)

. s(z) + t(x) € PiFFa) (B2, Ra)

co

s'(z) € PHRz,

B

. foz s(y)dy c ’]DR17R27

5. s(ax) € PR3 (2, RaRy)

6. s?n(x) c PR1<UJm),R2'

Proof: Again, assume that s(z) = Y2, bi% = XL pi(a)e™?, and t(z) = 33, dj% —
>0i1 gj(x)ers® throughout this proof.

1. Consider:

n m i=n,j=m
S(it)t(it) = Zpi(x)e)\ixij(x)eﬂsz Z pi(x)qj(x)e()‘iJr“j)z,
=1 j=1 i=1j=1

From this Hi?;:{n (z— \i — py)de8Pi(2))+deg(ai(2)) i5 a recurrence polynomial (not necessarily
minimal) for s(z)t(x). Hence:

i=n,j=m
Pst(x)| H (x— N\ — Mj)deg(m(w))-ﬁ-deg(rh(m)).

i=1,j=1
This splits in (Ry, R3). Further,

2 g I bd, . L N i
) = 3u) Odj‘”.!ZZ(jf_i)mﬂZij-idi@)”ﬁ-
7= 1=

J
Therefore the coefficients are in RyRy. Thus s(z)t(x) € P fs) Rala

2. Consider:

s(x) +t(z) = Zpi(x)eAi"” + qu(z)e"ﬂ.

The polynomial []i,(z — A;)des®i(@) H;”:I(x — p)de8(e:(=) is a recurrence polynomial for
s(x) 4+ t(z) (not necessarily minimal). Hence P*(z)|P*(x)P*(x). Thus P***(x) will split in
(R1, R3). Further,

o0

xt = xJ = xt
= ! s ! !

% =0

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 15

Where the b; 4 d; are in (Ry, Ry). Hence s(z) + t(x) € P(F1.Hs) Rz, Ra)

3. If s(z) = >0, b,f—: then

o0

s’(x):z Lz 1 Zb”‘l T

i=1

Hence the coefficients are in the same ring as before, hence in Rs.

Now consider s(z) = Y., pi(z)e*i®. This implies that:

n
"(2) = Zqi(ac)ek“”7
i=1

where deg(p;(z)) = deg(qi(x)) if \; # 0 and deg(pi(z)) = deg(qi(z)) + 1 if \; = 0. Thus
P (z) = [T (= \;)4e8(@ @) Therefore if there exists a); that is equal to 0, then P¥ (z) =
P$(z)z, and otherwise P* (z) = P*(x). So P¥ (z) splits over the same field as P*(x). Hence
s'(z) € PRuL2,

4. By observing that

oo

by b1
Vi (2 z+1 — i—1 4
/0 / ! / |y (i+1)! lo = Z T

=1

it follows that all the coefficients of fo y)dy are in R

Now consider s(z) = Y7, p;(z)e*i®. This implies that:

/ sy = 3 gi(w)e,
0 i=1

where deg(p;(x)) = deg(g;(z)) if A; # 0 and deg(p;(z)) + 1 = deg(g;(x)) if A; = 0. From
this P*'(z) = [/, (\;)de8(i (@) - Consequently if there exists a \; that is equal to 0, then
Pl s®dy(z) = Ps(z), and otherwise PJo *® (z) = Ps(z). So PJo W (1) splits over the

same field as P*(z). Thus fo y)dy € PFRe,

5. It can be seen that

= ozt
s(ax) = ZbiT’

i=0
Consequently all of the b;a® € (Ra, RoR5).

The next aim is to find a linear recurrence relation for the b;a. Now if:

n

Pi(z) = a" — ﬁlxnfl — . —fBn = H(x _)\i)deg(m(z)),

i=1

and letting ¢; = b;a then:

CZ?’L

+ -+ Bn

am—1 '

C; Ci—
S _p
(6% Oé

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 16

Multiplying through by o’ gives:
¢ = af1Ci—1 + ... + " Bpcin,

which gives:

pslox) (z) = 2" — fraz™ ' — ..a"B,,

this factors as: .

P (@) = [(2 — Aia) e8P,

i=1

Therefore P*(®®)(z) splits over Ry Rs. So s(ax) € PHifis, (2 Rals)

6. By combining part 2 and part 5 of this lemma s (z) can be written as:

m
Zw;‘*qs(w;‘n@ € Plwm) Ri(wh) R (@) R1) (5 (wm) Ra, (rwi) Ra,eo (55wl Ra)

i=1

L
m
But this will simplify to Plwm) B (50 (wm) Re

An even tighter bound on the coefficients can be seen by noticing that:

mi+q

(mi+ q)!”

sm () = Z bimitq
=0

From this all the coeflicients in the resulting formula are still contained within the ring Ra.

Hence 59 (z) € PH{wm) Rz,

In the proof of Lemma 2.3, some intermediate results were obtained, which are summarized below:

Corollary 2 Let Ry, Ry and Rs be subrings of C. If s(x), t(z) € P such that P*(z) € Ry[x],
P!(z) € Ra[z] and o € R3. Then:

1. P*'(z) € Ry Rolx],

2. Pst4(z) € Ry Ro[x],

3. P (x) € Ry[x] (infact P*(x) = P (z) or P*(x) = 2 P% (x)),

4. PlosWay(y) e Ry[x] (infact Plo sWW (3) = P5(x) or Plo sWd(z) = 2P5(x)),
5. Ps(a®)(z) € (Ry, Rs)[z],

6. Psn(x) € Ry[z].

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 17

These results will be useful later in Chapters 4 and 5. These results imply that the calculations

can normally be assumed to be over “nice” rings such as the integers or rationals.
Corollary 3 Let Ry and Ry be subrings of C. Then Pg, r, and PF1R2 are both rings.

Example 5 Consider the following example in Maple.
> with(MS):

Consider the function s(x) = Z;’io biifi , where b; = bj_1 + b;_o and bg = 2, by = 1. These are
the Lucas numbers as defined by Graham, Knuth and Patashnik, [16, 24]. To avoid confusion with

the Lucas numbers as defined by Lehmer, call these the “Lucas numbers, type 1”7 . Now multisection
s(x) by 4 at 1.
> s :=b(z) = bl(z-1) + b(z-2), b, =z, [b(0) =2, b(1) = 1];
s:=b(z) =b(z — 1)+ bz —2), b, z, [b(0) =2, b(1) =1]

First convert this to poly-exponential form.:

> pe := convert_pe(s)[1];

pe = (@ (1/2=1/2VE) | (@ (1/2+1/25))

Now multisection the poly-exponential function using the formula as given in Definition 2.6.

ms := 1/4*sum(subs (z=z*exp (2*Pi*I/4*1), pe)*exp (=2*%Pi*I/4*i), 1=0..3);

>
1 oy 1 oy 1 [oy [y 1 [y 1 [y
ms = 1 e(a: %2) + i e(a: %1) _ ZI(e(laxc %2) +e(1x Ayl)) _ 76(—58 %2) _ Ze(—ac %1)
1 07 [y
+ ZI(e(—lac %2) +e(—1x /61))
1 1
l:==—+-vV5
% 2+2f
1 1
2:=-—=-V5
%2:=5 -5 Vb

Now convert this back into an exponential generating function.

> convert_egf(ms, b, x);

b(z) = —b(z — 8) + 7b(z — 4), b, z,
b(0) = 0, b(1) =1, b(2) = 0, b(3) = 0, b(4) = 0, b(5) = 11, b(6) = 0, b(7) = 0]

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 18

From this it follows that si(x) = Z?io biﬁ"i, where by = Tb;_4 — bj_g and by = 1, bs = 11 and
(4i41)

b; =0 if i # 1mod4. So sj(z) = 0, %

Alternatively there is automated code to achieve the same result, using this naive method.

> ‘egf/ms/naive‘(s,4,1);

b(z) = —b(z — 8) + Tbh(z —4), b, z,
b(0) =0, b(1) =1, b(2) =0, b(3) =0, b(4) =0, b(5) =11, b(6) = 0, b(7) = 0]

This is a relationship for the Lucas numbers, type I that is only concerned with by, bs, by, ...

Automating the process of multisectioning is covered in Chapter 4.

2.5 Hierarchy of P.

While many results for both P®1:52 and Pg, g, have been obtained, it is not yet clear as to how
these two rings relate to each other. This section shows that they are in fact different sets of rings.

Further an inclusion relationship between the rings is shown.

Theorem 2.2 Let Ry and Ry be subrings of C. Then the following inclusion relationships of the
subrings of P hold.

1. PR17R2 C ’])Rl’(Rle,Rﬁ’

Ri.R
2. P2 C Pl Rro(ry Ry
Proof:

1. Let s(x) € Pr, gy s(x) = S0 pi(®)e*®, pi(z) € Rofz], \; € Ry. Noticing that P*(z) =
[T/ (z — A\;)38Pi@) " demonstrates that P*(x) splits in Ri[z]. Now notice that b; = s (0),
the i-th derivative of s(z). But s (z) € PR, ,(R. Rs,Ro) Dy Lemma 2.2 part 3. Evaluating at 0
gives b; € (R1Ra, Ro), hence Pg, r, C Pl (R1Ra,Ra)

2. Let s(z) € PRvF2 () = 3002, b/’;—,ﬁ By definition P*(x) splits in R;. Lemma 2.1 implies
that if s(x) = > a;x(")eX® then all the \; are in R;.

Again from Lemma 2.1 it follows that:

by =Y "IN "a,,,

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 19

where \; € Ry, j7%) € Z and b; € Ry, and j) = (j)(j — 1)...(j — r +1). A solution to these
equations using Gaussian elimination requires only addition, subtraction, multiplication, and

division of elements in R;. Thus a,, € Rg(Rfl, Ry). Hence PHuF2 C PR1,32<R1_17R1>.

Consider the following examples, which shows that the two rings are distinct.

Example 6 Consider s(z) = V2" Povz)z- Now s'(z) = V2eV2% and /2 & 7 implies that
s'(xz) & Po(va)z- But all rings of the form PR gre closed under differentiation (Lemma 2.3).
Hence there do not exist rings R1, Ry such that PQ(\@)’Z = phukz,

Example 7 Consider P%%. The goal here is to show that there do not exist rings Ri, Ry such
that PX% = Pp, g,. Consider the exponential generating function s(x) =Y o bzf—f with the linear
relation b; = 3cb;_1 — 2¢b;_o, for ¢ € Z. If by, by € 7Z, then s(x) € P%%. But this is equivalent
to s(z) = are™ + a0e?® where o = 2by — %1 and ag = —bg + %1. Hence oy can be any arbitrary
rational in Q, say %, by picking by = 0, by = —p and ¢ = q. Thus if P2 C Pg, g,, then Z C Ry
(as Ry must contain arbitrary ¢, where ¢ € Z) and Q C Ry. Now PLL s q strict subset of Praq, as

% € Pz and % ¢ PLL Hence there do not exist rings Ry and R, such that PLL — PRy ,Ro-

Corollary 4 If Iy is a subfield of C, and Ry C F} is a subring of C then Pr, r, = PR

2.6 Some complexity bounds.

Understanding the complexity of the functions being manipulated is useful for doing computations
on s(z) € P. To this end some metrics of complexity are defined. These metrics have been looked
at in the past but not in such a generalized fashion. Typically they would be applied to a particular

problem, such as the Bernoulli numbers [9)].
Definition 2.7 Let s(x) € P, where s(x) =Y., p;(x)e*®. Define the following metrics:

1. deg®(s(x)) = max(deg(p;(z))),

2. deg”(s(x)) = deg(P?*(z)).

Example 8 Consider the following example in Maple.

> with(MS):

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 20

This exzample determines what deg®(s(z)) and deg® (s(z)) are for various s(x). This evample

uses the automated code described in appendiz A.

First consider the function from Example 1.
> s[1] =z + x * exp(zT);

s1:=x+xe”

> ‘pe/metric/d‘(s[1],z);

Recalls that P*'(z) = z* — 223 + 2.

> ‘pe/metric/P‘(s[1],x);

Next, consider the Fibonacci numbers from Example 2.

> s[2] :=b(z) = b(z-1)+b(z-2),b,z, [b(0)=0,b(1)=1];
s2 :=b(z) =b(z — 1)+ b(x —2), b, z, [b(0) =0, b(1) = 1]

> ‘egf/metric/d‘(s[2]);

> ‘egf/metric/P‘(s[2]);

These metrics are of use later on in Chapter 4 and 5. In those two chapters, upper bounds for

functions under different operations are required.
Lemma 2.4 Let s(x), t(z) € P, and o # 0 a constant. Then:

1. deg®(s(z)t(x)) = deg”(s(x)) + deg”(t(x)),

2. 0 < deg(s(x) + t(x)) < max(deg?(s(z)), deg*(t(z))),
3. deg?(s(z)) — 1 < deg?(s'(x)) < deg?(s(x)),

4. deg(s(x)) < deg?([y s(y)dy) = deg(s(x)) +1,

5. deg’(s(ax)) = deg”(s(x)),

6. 0 < deg?(sd,(z)) < deg?(s(x)).

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 21

Proof: Write s(z) = Y1, pi(x)eM* and t(x) = 7", q;(x)es™ for the remainder of this proof.

1. Notice that:

i=n,j=m

deg(s(x)t(x)) = deg™(Z pi(x)g;(z)eNitrey,

i=1,j=1
Denote I = {i : deg(pi(z)) = deg?(s(x))} and J = {j : deg(qi(x)) = deg?(t(x))}. Pick
A = max;er(A;) and p = max;es(A;). (The maximum is taken lexigraphically, for example, for
two complex numbers a and 3, « is greater than (if the real component of « is greater than
that of 3, or if the real component of « and 3 are equal, and the imaginary component of « is
greater than that of 3.)

Consequently the polynomial associated with A + p is of degree deg?(s(z)) + deg?(t(z)). Thus

deg?(s(x)t(z)) = deg®(s(x)) + deg®(t(z)).
2. The upper bound is clear, and taking s(z) = —t(z) gives the lower bound.

3. Notice that:

n

degd(s'(x)) sz = deg (Z(/\ipi(x) +p;.(x))eAiz)_

i=1
Notice that deg(p;(z)A; +pi(x)) = deg(p;(x)) if A; # 0, and is equal to deg(p;(z)) —1 if A; = 0.
Hence deg?(s'(z)) = deg?(s(x)) or deg?(s(z)) — 1.

4. Part 4 of Lemma 2.2 shows that:

degd</0z8<y)dy> = d@gd(/ Zpl Lydy _deg qu)\i:C).

Where deg(gi(z)) = deg(pi(x)) if A; # 0 and deg(qi(z)) = deg(pi(z)) + 1 if A\; = 0. Thus
deg?([y s(y)dy) = deg®(s(x)) or deg®(s(x)) + 1.

5. Observe that: .
deg?(s(ax)) = degd(z pi(ax)erior),
i=1

As deg(p;(ax)) = deg(p;) it follows that deg?(s(ax)) = deg?(s).

6. Part 2 and part 5 of this lemma, in combination shows that deg?(s?,(x)) < deg?(s(z)). If s(z) =
Yo bif—; and b; = 0 whenever i = ¢ (mod m), then s (z) = 0. Hence deg?(s?,(z)) = 0 in

m

this case.

Lemma 2.5 Let s(x),t(z) € P, and o a constant. Then:

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 22

~

. deg" (s(z)t(x)) < deg” (s(x))deg” (t(x)),

2. 0 < deg”(s(x) + t(x)) < deg”(s(x)) + deg” (t(x)),
3. degP(s(x)) — 1 < deg”(s'(x)) = deg” (s(x)),

4. deg®(s(x)) < deg”([y s(y)dy) = deg” (s(z)) + 1,
5. deg”(s(ax)) = deg” (s(x)),

6. 0 < deg”(si,(x)) <m x deg” (s(x)).
Proof: Write s(z) = I, pi(z)e*® and t(z) = ZT:l g;j(x)ets® for the remainder of this proof.

1. Noticing that P*!(x)| Hi?;zn(x — \i — pj)despi(@)+deg(@i(@) a5 shown in Lemma 2.3 gives

deg” (s(x)t(x)) < deg” (s(x))deg” (t(z)).
2. Observing that P*+t(z)|P*(x)P!(x), as shown in Lemma 2.3 gives deg” (s(x)+t(x)) < deg” (s(z))+
deg® (t(x)). The lower bound comes from taking s(z) = —t(z).

3. In Lemma 2.3 it was shown that P (z) = P*(z) or zP% (z) = P5(z). Hence deg”(s'(z)) =
deg® (s(x)) or deg” (s(z)) — 1.

4. In Lemma 2.3 it was shown that PJo *®% () = Ps(z) or Plo W) (z) = xP5(x). Hence
deg? ([s(y)dy) = degP(s(x)) or deg (s(x)) + 1.

5. 1f P*(x) =[], (z— A\;)3e8®i@) then P(@®) (z) =[], (z — a\;)4°&@i@) which has the same
degree. Hence deg? (s(ax)) = deg? (s(x)).

6. Part 2 and part 5 of this lemma, in combination shows that deg? (3" | s(wk z)w,, %) < S/,
deg® (s(wF x)) = m x deg” (s(z)). The lower bound follows by considering the same example

as is found in Lemma 2.4 part 6.

Chapters 4 and 5 typically work with the recurrences instead of with the poly-exponential function
directly. These results are useful as they give bounds for the linear recurrence relations. The bound
given by the metric deg” is obvious, and the metric deg? gives a bound to the multiplicity of roots

in the recurrence polynomial.

Now the relationship between the metrics is examined.

Lemma 2.6 Let s(z) € P. Then 1+ deg?(s(z)) < deg® (s(z)).

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 23

Proof: Write s(z) = Y., p;(z)e*® for the remainder of this proof. By Corollary 1 it follows
that:

1+ deg’(s(x)) = max(deg(pi(z)) +1) <Y _(deg(pi(x)) +1) = deg” (s(x)).
i=1

Which gives the desired result.

2.7 Examples.

In this section, three detailed examples are worked out. That of s(z) = Y"1 | ;e and t(z) =

e p(z), and the Chebyshev T polynomials.

Example 9 Consider s(z) = Y. | «; €@, Therefore the recurrence polynomial is P*(x) =

[T, (z=X;). Denoting B), = Z.}g{)\l _____
of N wvariables gives P*(x) = ZkN:O Nk B (=1)k.

M| =k [I.cs A to be the elementary symmetric polynomials

Writing s(z) = Y 0y bzf—, gives a linear recurrence relation for the b; namely b; = Zgzl B
bi,k(—l)k.

The first N values of the b; must be determined. Note that b; = s (0), the i-th derivative of
s(x). Also s(x) = Y1 | c;eM® s0b; = 1 ap)i.

Example 10 Consider t(x) = e p(x). So the recurrence polynomial satisfies P'(x) = (v —
M\)dee(e(@) - Let N = deg(p(x)) for convenience. Consequently Pt(x) = Zszo (]Z)xN*k(f)\)k, Thus
linear recurrence relation is simply: b; = — Zszo (1;[) bik(—\)F.

Now determine the first N values of the b;. Observe that b; = t©)(0), the i-th derivative of t(x).
Further, observe that t(z) = e p(z). So t(0) is simply p(0). Next t1)(0) = Ap(0) + p'(0). Neat
t2)(0) = A2p(0)+2Ap' (0)+p"(0). In general t**)(0) = Zf:o (MN=ip@(0). Ifp(z) = ana™N +...+ao,
then this formula for the b; will simplify to t*)(0) = Zf:() (f) Ne—iila,.

Thus the linear recurrence relation is b; = _Zszo bi,k(—A)k and where for k < N, b; =
Yo (DX FElay,.

Example 11 Consider the following example in Maple.

> with(MS):

This example will demonstrate that process of multisectioning can be used where the recurrence

has symbolic values rather than simply numeric ones. Consider the “Chebyshev T polynomials”, as

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 24

polynomials in t, with the recurrence T,, = 2tT,,_1 —T},,—o with initial polynomials To =1 and Ty =t

[2]. Consider multisectioning this by 5 at 1, to get a recurrence for Ty, Tg, T11, Ti6, .-
> egf := f(z) = 2*t*xf(z-1)-f(z-2), f,z, [f(0)=1, f(1)=t];
eof 1= f(z) = 2tz — 1) — f(z — 2), f, @, [f(0) = 1, £(1) = 1]

> ‘eqgf/ms‘(egf,5,1);

f(z) = —f(z — 10) + (32¢° — 40> + 10t) f(x — 5), f, =, [f(0) = 0, f(1) =, f(2) = 0,
£f(3) =0, f(4) = 0, £f(5) = 0,(6) =
2t (2t (2t (2t (212 — 1) —t) — 242 + 1) — 2t (24> — 1) + 1)
—2t(2t (2t — 1) —t) + 22 — 1, £(7) = 0, £(8) = 0, £(9) = 0]

> expand([%]1);

[f(x) = —f(x — 10) + 32f(x — 5)t° — 40f(x — 5)t> + 10f(x — 5) ¢, f, =, [f(0) = 0, f(1) =

f(2) =0, f(3) = 0, f(4) = 0, f(5) = 0, f(6) = 325 —48¢* +18¢* —1,£(7) =0
f(8) =0, £(9) = 0]]

This example is interesting in that it shows that the \; used in the definition of poly-exponential
functions, (Definition 2.1) can be symbolic values in the complexr numbers, as opposed to just the

numeric values.

2.8 Conclusions.

By combining the results of Theorem 2.1, Lemmas 2.3, 2.5 and Corollary 2 the following results are

true.

Theorem 2.3 Let s(x) € P.

1. Then there exists a lacunary recurrence relation for the mi+q-th coefficient of s(x)’s exponential
generating function in terms of the mj+ q-th coefficient j =i— N, ...,i—1, where N is bounded
above by deg® (s(x)).

2. Moreover if the linear recurrence relation associated with s(x) is such that the associated re-
currence polynomial is in Ry[x|, then the recurrence polynomial of the new lacunary recurrence

relation will also be in Ry[z].

CHAPTER 2. POLY-EXPONENTIAL FUNCTIONS. 25

3. Furthermore if the linear recurrence relation associated with s(x) is of length N, then the new
lacunary recurrence relation will be of length less than or equal to mN, where only %—th of the

terms are non-zero.

The following corollory was know in [16], but its proof was specific to either the Fibonacci or

Lucas type I numbers, and was not the consequence of a more general theorem.

Corollary 5 The mi+ q term of the Fibonacci and Lucas type I numbers can be computed in terms
of mj+q term for j = i—2,i—1 via a lacunary recurrence relation. Moreover the lacunary recurrence
relation will be over Z. Lastly, the lacunary recurrence relation will be of length 2m with 2 non-zero

terms.

Chapter 3

Rational poly-exponential

functions.

3.1 Rational poly-exponential function.

Some techniques for poly-exponential functions where developed in Chapter 2. This chapter expands
the scope of the study to a more general setting; that of ratios of poly-exponential functions. To
that end, define:

Definition 3.1 (Rational poly-exponential function.) Let s(z), t(x) € P and t(xz) # 0. Then

is a ‘rational poly-exponential function”. Denote the set of all such functions by R.

This definition was suggested by my supervisor, Jon Borwein, as a generalization of the Bernoulli
numbers. All of the methods Lehmer, or Glaisher [19, 14] to multisectioning the Bernoulli numbers
relied only upon the fact that these numbers had “nice” linear recurrence relation to describe the
exponential generating function of the numerator and denominator. Definition 3.1 maintains this
property, but expands the scope of the results to a much large class of functions. To the best of my
knowledge, the results in this chapter are new, in the sense that they have not been done in this

degree of generality before.

Section 3.2 shows how to calculate the coefficients of the exponential generating function of

functions in R by use of recursion formulae. Section 3.3 will demonstrate the effects of multisectioning

26

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 27

on functions in R. The structure of R is studied in Section 3.4, examining different rings, subrings,
fields and subfields of R, along with some closure properties. In Section 3.5 the examination of
subfields of R is continued, by exploring how these subfields relate to each other. Some metrics
of complexity for functions in R are investigated in Section 3.6. Section 3.7 contains three worked
out examples. The last section, Section 3.8 summarizes the main points of this chapter into a final

theorem.

3.2 Recursion formula for functions in R.

The study of rational poly-exponential functions begins by looking at an example of how to calculate
the coefficients of the exponential generating function of —%5. These are the “Bernoulli numbers”

(in even suffix notation) [2].

Example 12 Define

[es} k oo zt
ZC T T >imo bi%r
k=5 = = —.

| T _ 00 Lz

k=0 k! € 1 ijo dJ 41

Then the ¢ are the Bernoulli numbers. A simple calculation shows that b; = 1 if i = 1 and 0

otherwise. Further d; =0 if j = 0 and 1 otherwise.

Now:
ic zk Zzo blf:
k5 = :
|
e L Yicodi%T
0 i 0o k o i
xJ T T
> jﬁzcky = biy
]:O k=0 =0
oo k k— o :
xt xtI x*
N
| J !]
k=0 j=0 J (k=) i—0
oo k 0o ;
k xk z*
S (oo - Lk
k=0 j=0 =0

From this a recursion formula for the Bernoulli numbers is derived that, for k > 2 gives:

k

k

(s -
— \J

J

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 28

k=2
Ck—1 = - Z (j)cj.
7=0

This is the standard recursion formula used for the Bernoulli numbers, as would be found in
[2, 10, 16].

Note 3.1 It is important to note that the term “linear recurrence relation” is different than that of
“recursion formula”. A recursion formula is a formula where the n-th term depends on the previous
n — 1 terms, where as a linear recurrence relation only requires the previous N terms of which a
linear combination is used to determine the n-th term. Examples 12 gives a recursion formula for

the Bernoulli numbers.

It is not always possible to write f(z) € R as > ., cz‘f—, In particular if f(x) has a pole at 0,
this will not be possible (i.e. 1). The restriction to f(z) € R which do not have poles at 0, is closed
under addition, differentiation, multiplication, f(z) — f(az) and multisectioning, by simply looking

at the Taylor series under these operations. Denote this set as R to get this definition:

Definition 3.2 (R.) Define
.1

R ={f(z): lim oka 0, f(z) € R}.

3.3 Multisectioning.

This section explores the effects of multisectioning on rational poly-exponential functions. The main
result of this section allows for the improvement in the efficiency of calculating the coefficients of

exponential generating functions for functions in R.

Lemma 3.1 If h(z) € R then hi, () can be written as jgfng; where s(z), t(z) € P.

Proof: Write h(z) = %) Thus:

1 1w s (ewi) TS th(ewf)
m ety (awi,) om 17" th(zwh)
o iy wnsn(awi) TS tn(ewdt) (sn(@) TT7 tn(awd))s,
I () I ()
Picking s(z) = sp(z) [[17 " ta(zwi,) and t(z) = [[/"" tn(azwl,) gives the desired result. Tt is also
worthwhile to note that 2, () = t(x).

hin(x) =

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 29

Theorem 3.1 Given a function f(x) € 7@, m,q € Z, 0 < q <m, a recursion formula can be found
for the mi + q-th coefficient of the exponential generating function of f(x) that depends only on the

mj + q-th coefficient, for j < i, and two lacunary recurrence relations.

Later, in Section 3.8, by combining this theorem, Theorem 3.1, with some later results, Lemmas
3.3, 3.4 and 3.6, an even tighter result will be given, the lengths of these lacunary recurrence relations,

will be determined, and the ring that their coefficients will lie will be known.

Proof: Let

027 = = Y
— il ty(z) Z 0di% i
where s(z), t(z) € P. Lemma 3.1 gives

z) :i o sy(e) | NEobih

) - mi+q
0N g™ g8 () im0 Dmita Grrgy
fm(x) - Zcmi-‘rfl (mi+q)! - t?n(.%‘) - ZOO T ami ’

i=0 7=0 dm] (myj)!

where s¢,, t € P, and the b; and the d; satisfy lacunary recurrence relations.

m?

A simple calculation shows that

- mi+q

Z - et Yo bmitatmirqy
Cmi+q = = poour
i=0 (mi + q)! Z(;io dmgj (gCTij
> o0 m'LJrq $mt+q
dm] m ' Z m7,+q<7) = Z mH»qﬁ
= j mi+ q = mi + q
oo 1 . i
mi+ q\ - rmitq rmitaq
Z (i)dmjcm(ij)+q(7ni+)| = Z mz+qm
i=0 j=0 J a); i=0 q
i .
mi+q\ - —
Z (mj >dmjcm(i—j)+q = Dmitg-

§=0
Picking s = min{j : d,,; # 0} gives:
i .
mi+q\ - -
dm‘ m(i—j = bmi
Z(mj) JiCm(i—j)+q +q

j=s
mi+q\ - - mi+q\ -
< ms >dmscm(i—s)+q = bmitq — j:;q (mj)dmﬁcm(i—qu

1 . ‘L mi+q) -
Cm(i—s)+q = m(bqu_ _Z (mj)dmjcm(ij)ﬂ)-
ms Jj=s+1

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 30

Let k=17 — s, to get

k+s
1 - m(k+s) +q\ -

k

1 = m(k +s)+ q)

= — = b — 5 C s)

P (b (kt5)+4 Z(: m(j+s) Cm(k—5)+q
((Zs)ﬂ)dms et m(j + s)

This is a recursion formula for the ¢,544 based on the previous cp,j+4 with j < k and two

lacunary recurrence relations for the by, and dp,.
| |

The recursion formula associated with fg (z) is called the “lacunary recursion formula” [8, 14].

Example 13 Consider the following example in Maple. For more information about the Maple
code, see Appendix A. For the Maple code see Appendiz E. The Maple code and help files

(including information about syntax) are available on the web at [1].

> with(MS):

.
oo b; x

Consider again the Bernoulli numbers "= = ==—1=. Multisection this by 3 at 1, using the
oo J

j=0 ~ 4T
formula, as given in Lemma 3.1. After this, this example ‘will calculate the 1-st, 4-th 7-th and 10-th

Bernoulli number, using the formula given in Theorem 3.1.

Let sp(x) =z and tp(z) = € — 1, and solve for s(x) and t(x) in the theorem.
> s[h] =z -> z;

Spi=T— T

> t[h] :

(z) -> ezp(z)-1;

thi=x— e —1

> omegal[3] := exp(2*%Pi*I/3);
1 1
=113
w3 2+2 \f

From Lemma 3.1 s(z) = sp(x) ([I"]" thwm®), and t(z) = [[15" th(zwn?), which, for this

particular case 1s:

> S := s[h](z) * t[h](z*omega[3]) * t[h](z*omegal3]°2);
S .=z (e(w(—1/2+1/21¢§)) —1) (e(w(—1/2+1/21\/§)2) —1)

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 31

> T := t[h](z)*t[h] (z*omega[3])*t [h] (z*omegal[3]"2);
Ti=(e* —1) (6($(71/2+1/21\/§)) 1) (e(x(71/2+1/21\/§)2) —1)

Now, determine what the linear recurrence relation for this would be.

> ‘pe/ms‘(S8,b,z,3,1);

b(z) = —b(z — 12) + 2b(z — 6), b, =, [b(0) =0, b(1) =0, b(2) =0, b(3) =0, b(4) = —12,
b(5) =0, b(6) =0, b(7) = =7, b(8) =0, b(9) =0, b(10) = —30, b(11) = 0, b(12) =0,
b(13) = —13]
So si(z) = Z;’io b"i‘fi , where by = b;_12 + 2b;_g, with initial values of by = —12, by = =7, byg =
—30 and b13 = —13.

> convert_egf(T,d,z);
d(z) =d(z —6), d, z, [d(0) =0, d(1) =0, d(2) =0, d(3) =6, d(4) =0, d(5) = 0]

So the bottom linear recurrence relation t3(x) = Z;io djj,—!gcl, where d; = d;_g, and the initial

values are d3 = 6.
FEqually easy the two built-in commands could have been used to do this in the naive fashion.
> top := ‘top/ms/naive‘(z,exp(x)-1,b,z,3,1);
top :=b(x) = —b(x —12) +2b(xz —6), b,

:)
b(4) = —12, b(5) =0, b(6) =0, b(7) = -7, b
b(12) = 0, b(13) = —13]

I=d
—~
o
I
=
o
—~
—_
I
L
o
—~
[\
Il
=
o
—~
w
=
I
=

> bot := ‘bottom/ms/naive‘(exp(z)-1,d,z,3);
bot :=d(z) =d(z —6), d, =, [d(0) =0, d(1) =0, d(2) =0, d(3) =6, d(4) =0, d(5) = 0]

Now, to calculate the first few Bernoulli numbers, use the formula as given in Theorem 3.1, first

noting that s is equal to 1.

> Top := ‘egf/makeproc‘(top):

> Bot := ‘egf/makeproc‘(bot):

> s :=1:
> m := 3:
> k :=0:
> q :=1:

> Bernoulli[m * k + q] := 1/binomial(m*(s + k) + q, m * s) / Bot(m * s) *

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS.

\%

(Top(m *(k + s) + q) - add(binomial (m *(k +

s) + q,

m *(j + s)) * Bot(m * j) * Bernoulli[m * (k+s-7) + qJ,

J = 1+s .. k+s));

-1
Bernoulliy := -

k :=1:
Bernoulli[m * k + q] := 1/binomial (m*(s + k)
(Top(m *(k + s) + q) - add(binomial (m *(k +
m %(j + s)) * Bot(m * (j + s)) * Bernoulli[m
j=1.. k));

-1

B iy == —
ernoulliys 30

k :=2:

Bernoulli[m * k + q] := 1/binomial (m*(s + k)
(Top(m *(k + s) + q) - add(binomial (m *(k +
m *(j + s)) * Bot(m * (5 + s)) * Bernoullil[m

j=1.. k));

Bernoulli; := 0

k := 3:

Bernoulli[m * k + q] := 1/binomial (m*(s + k)
(Top(m *(k + s) + q) - add(binomial (m* (k +
m *%(j + s)) * Bot(m * (j + s)) * Bernoulli[m
i=1.. k));

5
B i := —
ernoulliig 5

There is automated code to get the same result.

>

>

A := ‘calcul/normal ‘(10, Top, Bot, 3, 1):

seq(A[3 * ¢ + 1], 4 =0 ..3);

+ g, m * s) / Bot(m * s) *
s) + g,
* (k_j) + q]:

+ g, m * s) / Bot(m * s) *
s) + g,
* (k_j) + QJ,

+ g, m * s) / Bot(m * s) *
s) + q,
* (k-j7) + ql,

32

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 33

3.4 The structure of R.

Like P, this section will show that R has a rich structure. To explore this structure, this section

first makes some definitions for subsets of R analogous to the Definitions 2.3 and 2.4 for P.

Definition 3.3 (RF+52 Ry g,.) Let Ry and Ry be subrings of C. Denote RF1E2 (Rp g,) to be
the subset of R, such that all elements can be written in for the form ‘Sg)) with s(x), t(z) € PRz

(S()7 ()e PRI;R2)'

Definition 3.4 (R™ %2 Ry, g,.) Let Ry and Ry be subrings of C. Define Rt = REuLR2 AR
and 7%31’32 =RR,,r, N R.

First collect some closure properties for R.

Lemma 3.2 Let Ry, R2, R, and Ry be subrings of C and let h(z) € Rr, r, and g(z) € Rp,.R,
then:

1. g(x)h(x) € R(R,,Rs),Ro R4

2. g(z) + h(x) € R(R, Rs),RoRa>

3. h'(x) € Rr, (Ry,Rs)>

4- hE () € Ry (wn),Ra(wm) -

Proof: For convenience, write h(z) = 322) with s, (2), ty(z) € Pry .., and g(z) = 222 with

th(z)’ tg(x)?
89(1')7 tg(x) € PR3~,R4‘

1. Now g(z)h(z) = %, so by Lemma 2.2 it follows that sq(z)sn(z) € P(r, Rs),RsRys and

to(@)th(z) € PR, Ry),RoRy- Consequently g(w)h(z) € R(r, Ry),RyRa-

2. Observe that g(x) + h(q;) = qh(z)ti:?ﬂz;zﬁz;?th(x) FI‘Ol’Il Lemma 2.2 Sg(l‘)th(l') + tg(l')Sh($) (S

P(Ry,Rs),RoRs» a0 g (2)tn(2) € PR, Ry) RoR,- Hence g(z) + h(z) € R(r, Rs),RsR-
sp(@)tn(x)—sn(x)t) ()
3 (x)

t,(x)sn(x) € Pr, (Rry,r,) and t2(x) € Pry.r,- Thus W'(z) € RR.,(Ry,Rs)-

3. By considering h'(z) =

, and Lemma 2.2 it is seen that s (x)ty(z) —

m—1
4. Now h (z) = (gh((l"f[)nl:[ﬁ ™ (:Lff“)};g)) (Lemma 3.1). From Lemma 2.2 the numerator and the

denominator are both in Pg, (.., Ry (w,,)- This gives bl (z) € Ry, (), Ra (wnm) -

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 34

Lemma 3.3 Let Ry, Ry, Rz, and Ry be subrings of C and let h(z) € RFvE2 and g(x) € REsFa
then:

1. g(x)h(z) € R As) Rala

2. g(z) + h(z) € REFs) R la
3. h(x) € REvE:

4. hd (z) € REx(wm) Rz,

Proof: For convenience, write h(z) = ‘Z’Z—((wm;, with s, (), tp(x) € PELE2 and g(z) = Z:’E;ﬁ;, with
sg(x), ty(x) € PR3 R,

1. As g(z)h(z) = % and Lemma 2.3 it follows that s,(z)sp(z) € PFufis)R2Ra and

ty(2)ty(x) € P R2Ra - Consequently g(x)h(x) € R Ha) Ralle,

2. Observing that g(z)+h(z) = 5”(m)t§g((z;;i-“(’g)th(z), and appealing to Lemma 2.3 gives s4(z)t)(x)

+ty(w)sp(z) € PR Fe R and ¢ (z)ty,(v) € PIF-Fa)R2 R Hence h(z)+g(z) € R{F-Fa) Ra R,

3. Now h/(z) = S;‘(w)th(ﬁ%z;)’l(@t;l(w). So from Lemma 2.3 it follows that s}, (z)t,(z) —t} (z)sn(z) €

PRuR2 and 12 (z) € PR1R2. Thus b (z) € RIFR2,

) m—1 i \\a

4. As a result of hl (z) = (5"((113[),,,11"1:; (t’b(fh;;’[;))"” (Lemma 3.1), and Lemma 2.3 it follows that
i=0 th (TWp))m

both the numerator and the denominator are in P{wm)fi{wm)B2 A tighter bound on the

denominator H:’;Bl th(rw!)) and numerator (sp(x) Hg_llth(acwfn))?n, by noticing that they

are fixed by automorphism of the number field (w) and hence are in P{wm)F1. Rz,

Corollary 6 Let Ry and Ry be subrings of C. Then RT12 and RR,,r, are both fields, more over

RER2 s closed under differentiation.

Corollary 7 Let Ry and Ry be subrings of C. Then REvR2 gpd 7@31,32 are both rings, more over

RER2 s closed under differentiation.

Now examine some closure properties of the recurrence polynomial.

Lemma 3.4 Assume that h(z), g(x) € R, where h(x) = ZLE;)) and g(z) = 2583 with sp(x), th(z),

sq(z), ty(x) € P. Let Ri, Rs, R3 and Ry be subrings of C and assume that P°»(z) € Ri[z],
P (z) € Rax], P*(x) € R3[z] and P's(x) € Ry[z].

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 35

1. Then g(z)h(z) = 22 where Pt (x) € (Ry, Rs)[z] and P's"(z) € (R, Ry)[x].

- tghr(x)

2. Then g(x) + h(z) = Sox1T) oihere PSa+h (z) € (R1, Ra, R3, Ry)[x] and Pls+h(z) € (Ro, Ry)[z].

tg+n(x)’

3. Then h'(z) = 3222 where Psw (z) € (Ry, Ry)[z] and Pt (2) € Ry[x].

ty ()’

4. Then h, (z) = i) where P (z) € (R1, Ry)[z] and P4 (z) € Ry[z].

thgn (I) ’

Proof:

1. By letting sgn(z) = sg(x)sn(x) and tgp(x) = ty(x)tn(x) the result follows from Corollary 2.

2. By letting sgqn(z) = sg(@)tn(x) + sn(2)ty(x) and tg4n(z) = ty(z)tn(2) the result follows from
Corollary 2.

3. By letting sj/ () = s}, (@)tn(z) —sp(2)t) (z) and tp (x) = t2 (x) the result follows from Corollary
2.

4. By letting spq (x) = (s () [T]%, ta(zw?,))%, and tye (2) = ([[7" th(zwi,))9, the result fol-

lows from Corollary 2.

These results are useful, as they allow the assumption to be made that certain calculations will
always be over nice rings, (for example, the lacunary recurrence relation for the Euler numbers will

be over the integers).

3.5 Hierarchy of R.

As with P, there is an interrelationship between the different subfields and subrings of R, and a
hierarchy of the different subfields.

Theorem 3.2 (Hierarchy.) If Ry and Ry are subrings of C then the following subset relationships
hold:

1. Rr,.ry C R, .r, C RIFF1l2,

=

2. 7:\5,R1’R2 - R IR - RRl,Rle-

Proof:

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 36

1. If f(z) € Rr, R,, then f(z) = ‘:;g;, where s¢(x), ty(x) € Pgr, Rr,, then sy(x), ty(x)

Phu(RLER2) - Take any non-zero element of Ry, say [, and notice that Bsf(x), Bte(z)

PRGRIR: thys f(z) = gi;g; € RER1R2 a9 required.

Noticing that 7@31, Ry & RR, R, follows from noticing that R R.,R, is not closed under division.

=

m m

2. If f(x) € REvE2 where f(x) = xé;))v with sf(z), ts(z) € PRz then sp(x), ty(z) €
PRy Ro(ry,r;ty DY Theorem 2.2, Say sp(z) = 371, pi(x)e®, and tp(x) = Y70, qj(x)er”,
with p;(z), ¢;(z) € Ra(Ry, Ry"). For each coefficient of p;(2) and ¢;(z), multiply the coefficient
by some «; € R; (dependent on p;(x)) so that the resulting coefficients are in Ry Ry. Now taking
the least common multiple of all these «;, gives some 3 € Ry such that 8p;(z), 8¢;(x) € R1Ra[z]
for all i. Then write this as f(z) = (@) Ber(®) where Bsy(z),Btr(z) € Pr, r R, Hence

ty(z) = Btp(z)’
f(x) € RR, ,R\R,-

Noticing that RE1R2 C RP:E2 follows from noticing that RE1R2 s not closed under inversion.

Corollary 8 Let Ry and Ry be subrings of C. If 1 € Ry C Ry then RELR — RRi,Rs-

The next two examples show that the set of rings Rf:f2 and that of Rp, g, share neither
a superset nor a subset relationship with each other. These examples are such that RT%2 for

particular R; and Ry that cannot be written as Ry, g, for any R3 and R4 and vice-versa.

Example 14 Let f(z) = eV2® € Ro(va) - Notice that f'(z) = V2eV2r ¢ Ro(va) - But RE B2

is closed under differentiation. Consequently there do not exist rings Ry, R such that ’RQ(\@)’@ =
RELE:z,

Example 15 The goal here is to show that there do not exist subrings Ry and Ry of C such that
RZV2LQ = Rp,,r,- Consider s.(z) = Zfio bzf—, where b; satisfies b; = 2c2b;_y for ¢ € Z, with
bo,b1 € Z. Then s.(x) € REZV2AQ . Fyrther this is equivalent to

Se(x) = 1€V 4 q2e~ V2

b1
24/2¢

Rapvaaiva) € Rea k-

gives that REZV2),Q #+ Rz[ﬂ]@[ﬁ] from which the desired result follows.

and ag = %0 — 2\b/1§c- From this conclude that if REVZ.Q — RRi,R,, then

where ap = %0 +

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 37

3.6 Some complexity bounds.

This section determines some metrics of complexity of functions in R, as was done earlier for func-
tions in P (Section 2.6). This section uses the metrics from Definition 2.7 on the numerator and

denominator of functions in R to get the following lemmas:

Lemma 3.5 (deg?.) Let h(z) = ”:Z((g, g(z) = :ZS; € R, such that s,(z), th(x), s¢(z), ty(x) € P.
Then:

1. Then f(z) = :ff((ig = g(z)h(x), where 1 < deg¥(s;(x)) < deg?(sy(z)) + deg?(sn(z)) and

1< degi(ty () < deg?(t,y(x)) + deg(tn()).

2. Then f(x) = i;g; = g(z) + h(z), where 0 < deg?(sp(x)) < max(deg?(sy(z)) + deg?(tn(z)),

deg?(sn(x)) + deg(ty(2))) and 0 < deg?(ty(x)) < deg?(ty(x)) + deg®(tn()).

:?E;; = ¢'(z), where deg?(ss(z)) < deg?(sy(x)) + deg?(ty(x)) and deg?(ts(z)) <

3. Then f(z) =
2deg?(t,(x)).

4. Then f(x) = i;gi; = g2, (z), where deg(sy(z)) < deg?(sy(x)) + (m — 1)deg?(ty(z)) and
degd(ts(x)) < m x deg?(ty(x))).

Proof:

1. By letting s¢(x) = sq(z)sp(x) and t¢(z) := tg(x)ts(x) the upper bounds follows from Lemma

2.4. The lower bounds follow by taking f(x) = ﬁ.

2. By letting sy(x) = sg(x)tn(z) + sp(x)ty(z) and ty(x) = t4(x)ty(x) the upper bounds follow
from Lemma 2.4. The lower bounds follow by taking f(z) = —g(z).

3. By letting sy(z) = s/ (2)ty(x) — sg(x)t,(x) and ty(z) = t2(z) the upper bounds follow from
Lemma 2.4.

4. By letting s(z) = (s4(2) [T ta(zwi))e, and t(x) = ([T " te(zw?,))9, the upper bounds

follow from Lemma 2.4.

Lemma 3.6 (deg”.) Let h(z) = :Zgg, g(z) = ijgg € R, such that s,(x),th(x), sq(z), te(x) € P.

1. Then f(z) = i;g; = g(z)h(x), where 1 < degf (sy(z)) < deg? (s,(x))deg” (sp(x)) and 1 <

deg”(t;(x)) < deg” (ty(x))deg"” (tn(x)).

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 38

2. Then f(x) = :;g)) = g(x) + h(z), where 0 < deg’(s¢(x)) < deg”(s,(x))deg” (tn(x)) +
deg” (sn(x)) deg”(ty(w))) and 1 < deg”(t(x)) < deg”(ty(x))deg” (ta(x)).

3. Then f(x) = :;((;)) = ¢'(x), where deg® (sf(x)) < 2deg? (sy(x))deg? (t,(x)) and deg® (tp(x)) <
deg” (ty(x))

4. Then f(x) = :;((g = g4.(z), where degf (sp(x)) < m x deg? (s,(x))deg” (ty(z))™* and also
that deg® (ts(z)) < deg® (tq(z))™

Proof:

1. By letting s¢(z) = sq(x)sn(z) and t¢(x) = tg(x)ty(x) the upper bounds follows from Lemma

2.5. The lower bounds follow by taking f(z) = ﬁ.

2. By letting sy(x) = sg(x)tn(x) + sp(2)ty(z) and ty(x) = ty(x)tn(x) the upper bounds follow
from Lemma 2.5. The lower bounds follow by taking f(z) = —g(x).

3. By letting sy(z) = s/, (2)ty(x) — sg(x)t,(x) and ty(z) = t2(z) the upper bounds follow from

Lemma 2.5.

4. By letting sf(z) = (sq(x) H?i_ll to(xwi)4, and t¢(z) = (H:';)l ty(zw?)2 the upper bounds

follow from Lemma 2.5.

Note 3.2 It is worth noting that the metrics under the operations of f(x) — f(ax) was not examined
as nothing interesting happens, and integration of functions in R was not examined as R is not closed

under integration.

These bounds will be used later in Chapter 5, as many methods to determine lacunary recurrence
relations require bounds on the , size of these lacunary recurrence relations and also bounds on the

multiplicity of the roots associated with their recurrence polynomials.

3.7 Examples.

This section does three detailed examples. That of f(z) = ﬁ € R with p(z) a polynomial, of
1

g(z) = ST e © 7A2, and lastly the Bernoulli polynomials.
i=1 ¥i€

Example 16 Consider f(z) = ﬁ € R. Let p(x) = apz™ + ... + ag. As f(z) € R, notice that
ap # 0.

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 39

Then:
T 1
chﬁ - ™ 4+ ...+ g
iaﬂ' 4ch— =1
1=0
oo n k

Considering k = 0 gives ¢y = O%D, and considering k > 0 demonstrates that:

i(f)ckzalz' = 0

=0

—1 <~ [k _
ck:aOZ(i)ck_iaiz! = 0.

i=1
So a recursion formula for ¢, was derived that only requires the previous n — 1 terms.

Example 17 Consider g(x) € R where g(z) = W A simple calculation gives s(z) =
) i=1 i€
SEN b,i , where the b; = > a;X]. This example will use this knowledge throughout.

Hence:

Ckf =
| o] n Jxi
k! Dm0 2aim1 N ril
n

oo
DI .zcw -
7=0 =1

o0 . n

. . x]
J(i)%zw 5= b
0 i=1 J:

=0 k=

Considering k = 0 shows that ¢y = ﬁ As g(z) € R it follows that ¢ # 0. Considering
k > 0 gives:

o — Z()zwcw

’L 1al

Example 18 Consider the following example in Maple.

> with(MS):

This example will demonstrate how the methods of multisectioning can be applied to functions with

symbolic parameters for parameters of the exponentials of rational poly-exponential functions. Define

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 40

the “Bernoulli polynomials” to be the coefficients of the exponential generating function of Iei(:j) n

x. The denominator and numerator of this function have very complicated lacunary recurrence

relations, even when multisectioning by a small value such as 8 (at 0).

> top := xz* exp(t*x):

> bot := exp(z)-1:

> botlrr := ‘bottom/ms‘(bot, f, z, 3);
botlrr := f(z) = f(xz — 6), f, =, [{(0) =0, (1) =0, f(2) =0, {(3) =6, f(4) =0, {(5) = 0]

> toplrr := collect([‘top/ms/linalg/sym‘(top,bot, f, =, 3, 0)],f);

toplrr := [f(x) = (=7152¢" — 7152416 4193211 — 359918 — 84012 — 15 + 5544117
+ 7780115 + 286 71 4 554413 1127 — 72¢*2 — 2 — 7218 41932110
+ 122 — 840110 + 286t — 3599 t'3)f(x — 24) + 2(4 ' — 4247 + 216 ¢1°
— 722t 4 1764t — 3366 t1° + 5244 2 — 6894 ' + 783610 — 7813¢°
+68521% — 523817 4 34271° — 1872¢° 4+ 828¢* — 285¢% 4+ 72¢% — 12t 4 1)
3 f(x — 21) + (—28¢18 4252417 — 1080 ¢16 + 2928 t1° — 5688 t1* 4 8568 ¢1°
— 10578 ' + 11052 ' — 9960 ¢'° + 7978 t° — 5976 ¢® + 4320¢" — 2910¢°
+ 16925 — 792 + 2823 — 7242 + 12t — 1)f(x — 18) + (56 t1° — 420¢'*
+ 144013 — 2990 t12 + 4272t — 4620 t1° + 4066 7 — 2952¢% + 1536 ¢7
—202¢% — 55245 +612¢* — 346 3 + 1201 — 241 + 2)f(x — 15) + (—70¢'2
+ 420" — 1080410 + 15501 — 1368 % 4 79247 — 3541° 4+ 180¢° — 120¢*
+ 7443 — 241% + Df(z — 12) +
(56t — 2525 + 43217 — 336° 4+ 721° + 72t* — 241° — 3612 + 241 — 4)
f(z —9) + (—281° +841° — 72t* + 4¢3 + 24¢* — 12¢ + 1) f(z — 6)
+ (8t3 1262 + 2) f(x — 3), f, =, [f(0) = 0, f(1) = 0, £(2) = 0, £(3) = 6, f(4) = 0,
f(5) = 0, f(6) = 60t + 120> — 1802, £(7) = 0, £(8) = 0,
f(9) = 18 — 252¢% + 1260 t* + 504 t° — 1512¢°, £(10) = 0, f(11) = 0,
f(12) = 264 ¢ + 3960 ¢> — 1980 % + 7920¢" — 5940 % — 5544 > + 1320,
f(13) = 0, f(14) = 0, £(15) = 30 — 1365 > + 30030 t* — 16380 ¢'* + 90090 ¢°
— 45045 ¢% + 30030 ' — 90090 t° 4 2730 ¢'2, £(16) = 0, f(17) = 0, f(18) =
612t — 36720t + 244803 — 73441% — 222768t + 489615 + 8568013
+ 7001287 — 1312740¢% — 111384 > + 875160 %, f(19) = 0, £(20) = 0
f(21) = 42 — 813960 t'* — 3990 ¢ + 203490 t* + 203490 +'6 — 10581480 ¢'*
+ 7980 18 4- 16279205 — 71820117 — 2645370t + 7759752 ¢1°
— 9767521 4 5290740 12, £(22) = 0, £(23) = 0]]

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 41

Now, if t =0 this will reduce to the situation of looking at the normal Bernoulli numbers.

> subs(t=0, [toplrr]);

[[f(z) = —f(ac —18) + 2f(x — 15) + f(z — 12) — 4f(x — 9) + f(x — 6) + 2f(x — 3), f, =,]

£(0) = 0, £(1) = 0, £(2) = 0, £(3) = 6, f(4) = 0, £(5) = 0, £(6) = 0, £(7) = 0, £(8) = 0,
£(9) = 8 £(10) = 0, £(11) = 0, £(12) = 0, £(13) = 0, £(14) = 0, f(15) = 30,

£(16) = 0, £(17) = 0, £(18) = 0, £(19) = 0, £(20) = 0, f(21) = 42, £(22) = 0,

f(23) = 0]]]

This example is interesting because it demonstrates how large and complicated the results get when

done symbolically, but still shows that feasibility of doing these calculations.

3.8 Conclusion.

By combining Theorem 3.1, Lemmas 3.3, 3.4 and 3.6 the follow results follow: Although some
corollaries of this result are know, (for examples, for the particular cases of the Bernoulli, Euler,
Genocchi, or Lucas type II numbers), to the best of my knowledge, they have not been done to this

degree of generality before

Theorem 3.3 Let f(z) € R, m,q € Z, 0 < q<m.

1. Then a lacunary recursion formula can be found for the mi+ q-th coefficient of the exponential
generating function of f(x) that depends only on the mj + g-th coefficient, for j =0,1,...;i—1,

and two lacunary recurrence relations.

2. Moreover, if f(x) = ig; then upper bounds on the length of the two lacunary recurrence
relations are m x deg® (s(x))deg? (t(z))™~ ! for the numerator and deg® (t(x))™ for the de-

nominator.

3. Furthermore if f(z) € REVE2 then the two lacunary recurrence relations are both in PR, Ry

4. Lastly, if the recurrence polynomials of s(x) and t(z) are in R3[x], then the recurrence polyno-

mials of the two lacunary recurrence relations are in Rs|x].

Corollary 9 A lacunary recursion formula can be found for the (mi + q)-th Bernoulli number that
depends only on the (mj+ q)-th Bernoulli number, for j = 0,1, ...,i— 1, and two lacunary recurrence
relations, with upper bounds on their sizes of m2™ and 2™ respectively, where all the terms of the

lacunary recurrence relations and the recurrence polynomials themselves are in Z.

CHAPTER 3. RATIONAL POLY-EXPONENTIAL FUNCTIONS. 42

Note 3.3 Tighter upper bounds for the sizes of the lacunary recurrence relations were determined
by Chellali [9] for the Bernoulli numbers. This was

S w2 am

d|m,odd
for the lacunary recurrence relation that is derived from the denominators and twice this for that of
the numerator, when multisectioning by m. Here 1 is the Mobius function, as defined in [2]. This
result requires specialized techniques and does not follow directly follow from any of the results in this

thesis.

Chapter 4

Calculations of recurrences for P.

In the previous chapters a very naive approach was used to calculate the lacunary recurrence re-
lations that would be needed for the calculation of the coefficients to the exponential generating
functions of the functions in both P and R. The function’s representation as polynomials and ex-
ponential functions, was naively multisectioned using the formula in Definition 2.6. After this, the
multisectioned function was converted to a formula where the lacunary recurrence relation could be
observed. The goal of the next two chapters is to show some other, more efficient ways, by which

these lacunary recurrence relations and lacunary recursion formulae can be computed.

In this chapter, different methods to multisection functions in P are examined, and Chapter 5

examines different methods for those functions in R.

Section 4.1 looks at how to use recurrence polynomials to multisection poly-exponential functions.
This method takes advantage of the factorization of m, the quantity by which the poly-exponential
function is multisectioned. Section 4.2 looks at how to use recurrence polynomials and resultants to
multisection poly-exponential functions. Using linear algebra to find the new lacunary recurrence
relations of a poly-exponential functions that are multisectioned, as well as how to use symbolic
differentiation with linear algebra is looked at in Section 4.3 and 4.4. Section 4.5 looks at how to
take advantage of the factorization of m, by iteratively compressing the results. Section 4.6 and 4.7
looks at two theories where by the problem being studied can be simplified. The last section, Section

4.8, makes some conclusions based on empirical evidence as to which methods are best.

43

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 44

4.1 Multisectioning the recurrence polynomial.

Recall that if s(z) € P then P*(x) is the recurrence polynomial associated with s(z) (Definition 2.2).

The first thing needed was shown in Corollary 2 and Lemma 2.5 which is reiterated here:

Lemma 4.1 Ifs(z), t(z) € P, a # 0 where s(z) = Y i, pi(z)eN® and where t(x) = Z;nzl g;(x)ets®
then:

1. Pst(z)| Hi?;:{” (x— N\ — uj)deg(m(r))ereg(th(x))7
2. Psti(x)|P*(z)P!(x),

3. P (z) = P*(ax),

4. P*(x) = P*(z).

By using this information, the linear recurrence relation for a poly-exponential function may be

multisectioned by only looking at the recurrence polynomial.

Lemma 4.2 If s(x) € P then

Proof: By noticing that P***(z)|P*(x)P!(z), and P*(®®)(z) = P*(az) from Lemma 4.1, it
follows that:

m—1 m—1
pS%(w)(m) - p= Zl’éﬁl%,“"g(ww;‘n)(x)| H pS(wZn)(x) - H Ps(xwfn).
i=0 i=0

By recalling that any polynomial which the recurrence polynomial divides is a valid recurrence
polynomial (Section 2.3), the above product H;":'_Ol Ps(zw!)) will give a valid lacunary recurrence
relation for s (x). Further it is fairly easy to do this computationally. With the additional informa-
tion of deg?(s(z)), an even better recurrence polynomial can be found, as deg?(s%,(z)) = deg?(s(z))
(Lemma 2.4). Hence this shows that the recurrence polynomial can have no roots of multiplicity

greater than deg?(s(z)) + 1 (Corollary 1).

From a computational point of view, the order in which the P*(zw!,) for 0 < i < m — 1 are
multiplied together is important. For example if m = 2* and P*(z) € Z[x] then: P*(z), P*(—x) €
Z[z], and further that P®(z)P*(—x) € Z[x?]. It follows that P*(iz)P*(—ix) € Z[x?] and hence
P3(z)P*(—x)P*(ix) P*(—ix) € Z[z*]. Etc.

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 45

In general, if m = dids...dg, for d; € Z where 2 < d;, then this computation is best done as:

de—1 do—1di—1

S il 'i2 ik
I1 - 11 11 Pt -, a):

ik=0 i2=0 i, =0
performing the computation at the inner levels first, and using scaling to perform the next level out.

As a result of implementing this, a bug in Maple was found, which made the original method to

scaling very inefficient. See Appendix D Section D.1 for more information about this.

Example 19 Consider the following example in Maple. For more information about the Maple
code, see Appendix A. For the Maple code see Appendiz E. The Maple code and help files

(including information about syntax) are available on the web at [1].

> with(MS):

Consider the exponential generating function s(x) = Y .o, biﬁ with a linear recurrence relation

b; = bj_1 — bj—2 + b;_3, with initial values of by = 1, by = 1 and by = 1. This ezample multisections
this linear recurrence relation by 16 at 0, using the methods described in this section. First determine
the value of deg?(s(x)).

> s :=b(z) = b(z-1)-b(z-2)+b(z-3), b, z, [b(0) =1, b(1) =1, b(2) = 1];
s:=b(z) =b(zx —1) = b(z —2) +b(x —3), b, z, [b(0) =1, b(1) =1, b(2) = 1]

> ‘egf/metric/d‘(s);

From this it follows that the multisectioned recurrence polynomial can have no multiple roots.
So now determine the recurrence polynomial.

> P := convert_poly(s);
P=x—2?4+z2-1

Now multiply P(z) by P(—x) and expand.
> P2 := expand(subs(z=-z,P)*P);

P2:=—af — a2t +2%2+1

Now this polynomial should have no multiple roots, so get rid of the multiple roots.
> P2p := quo(P2,9cd(P2, diff(P2,z)),z);
P2p = —zt+1

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 46

Now multiply P2p(z) by P2p(x 1), and expand. This gives a recurrence polynomial that divides
P(x)P(—z)P(I z) P(—I) and has no multiple roots.

> P4 := ezpand(subs(z=z*I,P2p)*P2p);
Pji=a8—22"+1

Again, get rid of the multiple Toots.

> P4p := quo(P4, gcd(P4, diff(P4,z)),x);
Pjp =zt -1

Lastly, multiply P4p(z) by P4p(z /1) and expand. This gives a recurrence polynomial that divides
P(z)P(—2)P(Iz)P(~I2) P(VT2) P(—VIx) P(I\Ix)P(—ITx) and has no multiple roots.

> P8 := expand(subs(z=z*sqrt(I),P4{p)*P4ip);
P8 :=—z%+1

Again, get rid of the multiple roots.
> P8p := quo(P8, gcd(P8, diff(P8,z)),z);
PSp = —a8+1

So converting back gives a linear recurrence relation of:

> convert_rec(P8p,b,z);

b(z) = b(z — 8)

This is the same linear recurrence relation that is derived using the naive technique discussed in

Example 13.

> ‘egf/ms/naive‘(s,8,0);

b(z) =b(z —8), b, z,
[b(0) =1, b(1) =0, b(2) =0, b(3) =0, b(4) =0, b(5) =0, b(6) =0, b(7) = 0]

This has been automated as the Maple command ‘egf/ms/rec”.

> ‘egf/ms/rec‘(s,8,0);

b(z) =b(z —8), b, x,
[b(0) =1, b(1) =0, b(2) =0, b(3) =0, b(4) =0, b(5) =0, b(6) =0, b(7) = 0]

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 47

4.2 Multisectioning via resultants.

In the previous section, the recurrence polynomials of s(z) € P, say P*(z), was multisectioned by
computing HZ_OI P#(zw!)) in a naive fashion, and then getting rid of root with too high of an order.
This section again computes H?:Ol P#(2w!)) but in a more sophisticated manner; by using resultants
[20].

Definition 4.1 Let p(z) = a[[_,(z — X\;) and q(z) = b]_[;"zl(x —). The ‘resultant”, denoted
Resz(p(z), q(x)) is defined as:

i=n,j=m

Res, (p(x),q(z)) = a™b" [(N — my).
i=1,j=1
This next theorem follows from the definition of the resultant.
Theorem 4.1 Let s(x) € P, and P*(x) be the recurrence polynomial for s(z) and P*n®)(z) the
recurrence polynomial for s (z). Then:
P (x)[Res, (y™ — 2™, P*(y))

Proof: Write P*(y) =[]/, (y — \i). Notice that y™ —z™ = [['", (y —w’,x). Thus from Lemma
4.2 it follows that P*m(®)(z)] H;.n:_ol Ps(zwi)). Further:

m—1) m—1 n)
11 P@@w) = T TT@hz = X) = Resy (y™ — 2™, P*(y)).
7=0 7=0 i=1

Which is the desired result.
|]

There are many good methods for computing resultants efficiently, in a symbolic setting. See,

for example [12, 13].

Example 20 Consider the following example in Maple.

> with(MS):

Consider the example of the Padovan numbers defined in [28] . Let s(x) = Y oy bl—?, where
b; =bi_2+bi_3 and by =1, by =0, and by = 1 . Consider multisectioning this by 17 at 0. This

example will do this by computing the resultant of PS(y) with y'" — x!7.

> s :=b(y) =b(y-2) +b(y-3), b, y, [b(0) =1, b(1) =0, b(2) = 1];

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 48

> poly := convert_poly(s);

poly :=y> —y —1

resultant (y~17-z"17,poly,y);
poly == —18 27 —1 — 119234 + 2°!

> poly :

> convert_rec(poly, f, z);

f(x) = 18f(x — 34) + f(x — 51) + 119f(z — 17)

There is a command in Maple to do this called ‘egf/ms/result’.

> ‘egf/ms/result‘(s,17,0);

b(y) = 18b(y — 34) + b(y — 51) + 119b(y — 17), b, y, [b(0) = 1, b(1) =0, b(2) =0,

b(3) = 0, b(4) = 0, b(5) = 0, b(6) = 0, b(7) = 0, b(8) = 0, b(9) = 0, b(10) = 0,
b(11) = 0, b(12) = 0, b(13) = 0, b(14) = 0, b(15) = 0, b(16) = 0, b(17) = 49,
b(18) = 0, b(19) = 0, b(20) = 0, b(21) = 0, b(22) = 0, b(23) = 0, b(24) = 0,
b(25) = 0, b(26) = 0, b(27) = 0, b(28) = 0, b(29) = 0, b(30) = 0, b(31) = 0,
b(32) = 0, b(33) = 0, b(34) = 5842, b(35) = 0, b(36) = 0, b(37) = 0, b(38) =0,
b(39) = 0, b(40) = 0, b(41) = 0, b(42) = 0, b(43) = 0, b(44) = 0, b(45) = 0,
b(46) = 0, b(47) = 0, b(48) = 0, b(49) = 0, b(50) = 0]

This gives the same result.

4.3 Using linear algebra on P.

If s(z) € P, and an upper bound on the size of the linear recurrence relation is known, then this

linear recurrence relation can be determined by the early cases.

This can be written concisely as:

Lemma 4.3 If s(z) € P and deg” (s(x)) < N and deg?(s(z)) = k, then P*(x) can be calculated by
the first 2N + k values.

This result is fairly well know, and can be found in a number of difference linear algebra text

books as an application of linear algebra. It is included here for completeness sake.

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 49

Proof: If bi41, bkt2, ..., bgron are the initial values of some linear recurrence relation, then this

leads to the following system of N linear equations:

anbrir +an—1brgo + ... Faibpn = bpynia
anbiyo +anN—1bpt3 + ... F a1bprnt1 = bpingt2
anbern +anv—1bgyrnt1 + oo Farbpron—1 = bryon.

There are N linear equations, and N unknowns (as,...,an), hence a solution exists. To rewrite

this in the language of linear algebra, find the values a, ..., ay so that they satisfy the equation:

bry1 bry2 .. brgn an bri N1
br+2 bris T N an—1 brt+N+2
bryn brent1 o brpon—1 ay bryan
| |
If when solving for the a4, ..., ay above, a unique solution is not found, set ax to zero, and see if

that gives a unique solution. If not, set ay_1 to 0, and see if that gives a unique solution. Continue

in this manner. In this way when a unique solution is found, it will be of the shortest possible length.

It is also worth noting that if the order of all the columns is reversed then the resulting matrix is
a Toeplitz matrix (this would mean that the expected solution is also reversed). This is nice, because

there is an O(n?) algorithm for solving n x n Toeplitz matrix [15].

This algorithm was not implemented with the Maple package included with this thesis, as most
of the problems would still finish in a reasonable amount of time with Maple’s less efficient linear

algebra package.
This lemma is of great use for the computation of Bernoulli numbers, as an upper bound for

H;igl(e‘”fnl — 1) is determined in a paper by Chellali [9], as being;:

> u(d2m 4 2m. (4.1)

d|m,odd

Here p is the Mobius function, as defined in [2]. Later in Section 5.2 of Chapter 5, it will be seen

how to use this.

Example 21 Consider the following example in Maple.

> with(MS):

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 50

Consider the example of the Fibonacci numbers. Let s(x) =Y o0 biifi , where by =0 and by = 1.
Consider multisectioning this by 17 at 0. From Lemma 2.5, the size of the new linear recurrence
relation will be at most 17 times deg” (s(z)) = 2. Further deg?(s(z)) = 0 so it follows that the values
b1, ba, ... birxoxo are needed. All but biz, bsg, bs1, and bgg will be zero, so only these four values

are needed to determine the linear recurrence relation.
> s :=0b(i) = b(i-1) + b(i-2), b, i, [b(0) =0, b(1) = 1];
s:=b(i) =b(i—1)+b(i —2), b, 4, [b(0) =0, b(1) = 1]

> ‘egf/metric/P‘(s);

> ‘egf/metric/d‘(s);

> Fib := ‘egf/makeproc‘(s):

So this gives the following two linear equations:

> eqnl := af1] * Fib(17) + a[2] * Fib(34) = Fib(51);
eqnl := 1597 a; + 5702887 ay = 20365011074
> eqn2 := af1] * Fib(34) + al[2] * Fib(51) = Fib(68);

eqn? := 5702887 a; 4+ 20365011074 ay = 72723460248141

Solving these two equations gives a1 and as.
> solve({eqnl, egn2});
{a1 = 1, a9 = 3571}

So this gives the linear recurrence relation b; = 3571b;_17 + bj_2s. This could have also been

solved by using the linear algebra package in Maple in the following way.

> C = matriz(2,2, [Fib(17), Fib(34), Fib(34), Fib(51)]);
1597 5702887
C =
5702887 20365011074
> B = wector(2, [Fib(51), Fib(68)]);

B :=[20365011074, 72723460248141]

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 51

> linsolve(C,B);
[1, 3571)

There is also a command in Maple to do this called ‘egf/ms/linalg”.

> ‘egf/ms/linalg‘(s,17,0);

b(i) = b(i — 34) + 3571 b(i — 17), b, i, [b(0) = 0, b(1) = 1, b(2) = 0, b(3) = 0, b(4) =0,

b(5) = 0, b(6) = 0, b(7) = 0, b(8) = 0, b(9) = 0, b(10) = 0, b(11) = 0, b(12) = 0,
b(13) = 0, b(14) = 0, b(15) = 0, b(16) = 0, b(17) = 0, b(18) = 2584, b(19) = 0,
b(20) = 0, b(21) = 0, b(22) = 0, b(23) = 0, b(24) = 0, b(25) = 0, b(26) = 0,
b(27) = 0, b(28) = 0, b(29) = 0, b(30) = 0, b(31) = 0, b(32) = 0, b(33) = 0]

So this again gives the same result.

4.4 Using symbolic differentiation with linear algebra.

Section 4.3 used knowledge about what the linear recurrence relation to determine the first 2NV + &
cases, (N and k defined as before). If s(x) is function instead in poly-exponential form, then symbolic

differentiation can be used to find the first 2N + k cases.

Example 22 Consider the following example in Maple.

> with(MS):with(linalg):

Consider the poly-exponential function s(z) = e 23 + eB3®) . Notice that deg” (s(z)) = 5 and
deg?(s(z)) = 3. Hence to multisection by 7 at 4, we need only look at the values for by, biy, bis...,
bry.

> s := exp(2*z)*z 3 + exp(3*z);

g = 6(21) (E3 + e(3w)

> ‘pe/metric/P‘(s,z);

> ‘pe/metric/d‘(s,x);

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 52

> for 1 from 4 to 74 by 7 do
> b[i] := eval(diff(s,z£i),z=0);

> od;

by :=129
b11 := 430587
big := 547852617
bas := 905170004643
bso 1= 1868997467192961
bsg := 4056323316806318091
bae := 8863739267804963800569
bs3 := 19383403919667326068655667
bso 1= 42391187864946619249022072241
be7 1= 92709468450045486192098346397467

bra 1= 202755596822820624363186974870842281

b1 big bas b3z bag
big bas b32 b3g bug
Set the matriz C' equal to | bys bsa bsg bag bss
b3 b3g bis bsz beo

b3g bss sz beo ber

> C := matriz(5,5, [seq(seq(b[4+7*(i+5-1)],%=1..5),5=1..5)]):

Set the vector v equal to ba4, bs1, bss, bes, brd -

> v := vector(5, [seq(b[4+7*i+35],4=1..5)]):

Now solve.

> linsolve(C,v);

[587068342272, —18614321152, 223379456, —1218048, 2699]

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 53

This gives a linear recurrence relation of d; = 587068342272d;_35 — 18614321152b;_og + 223379456
bi_o1 — 1218048b; _14 + 2699b; 7.

This could have also been done by the Maple function ‘pe/ms/linalg/sym’.

> ‘pe/ms/linalg/sym‘(s,f, =,7,2);

f(x) = 587068342272 f(x — 35) — 18614321152 f(x — 28) + 223379456 f(x — 21)
— 1218048 f(x — 14) + 2699 f(z — 7), f, =, [f(0) = 0, £(1) = 0, f(2) = 9, £(3) = 0,
f(4) =0, £(5) = 0, £(6) = 0, £(7) = 0, £(8) = 0, £(9) = 51939, £(10) = 0,
f(11) = 0, £(12) = 0, £(13) = 0, f(14) = 0, £(15) = 0, £(16) = 70571841,
£(17) = 0, £(18) = 0, £(19) = 0, £(20) = 0, £(21) = 0, £(22) = 0,
£(23) = 105285347403, £(24) = 0, £(25) = 0, £(26) = 0, £(27) = 0, £(28) = 0,
(29)
(34)

£(29) = 0, £(30) = 209160675948729, £(31) = 0, £(32) = 0, £(33) = 0,
£(34) = 0]

Which is the same result.

4.5 Using compression.

In most situations, the main interest is the lacunary recurrence relations not the poly-exponential
functions themselves. Define a new operation that will maintain the useful information of a lacu-
nary recurrence relation such that the function under this operation will have a smaller recurrence

polynomial.

Definition 4.2 (C4,.) Define C4, that acts on Y ;o bmitq 2y CaL (32, bmiW%) =

(mi+q)!
S by z
i=0 Yim+q 1 -

The term “compressing’ will be used to describe this process. When saying a function s(x)
is “compressed by m”, C% (s(z)) is being looked at for some q. When saying a function s(z) is

“compressed by m at ¢”, then C% (s(x)) is being studied.

Methods similiar to those that arrive via compressing can be found for Fibonacci or Lucas numbers
[16]. To the best of my knowledge, the definition, or consequences of compressing have not been

written in this way before.

Some properties of compression are enumerated below.

Lemma 4.4 Let s(x) € P and let Ry, Ro be subrings of C, then:

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 54

1. If 84, (x) € PEvE2 then C4,(sd,(z)) € PR1EB2,

2. If 3 (z) € Pr,,r, then CL(s% (x)) € PRy Ro(Ry, BT
3. If Psn®)(x) € Ry[z] then PCnm@)(z) € Ry[z].

4. Then deg®(s},(z)) > deg?(C,(s%,(x)))-

5. Then deg (s4,(x)) = m x deg” (CY,(s4,(x))).
Proof:

L If Psn@)(2) = [T, (@™ — \;) then PO (n @) (z) = [T, (¥ — A;), hence the recurrence poly-
nomial for C4,(s% (x)) splits in Ry. The coefficients of the exponential generating function are
still in Rs, as they haven’t changed value, only positions within the exponential generating

function.

2. This follows from the hierarchy theorem (Theorem 2.2) as if s? (z) € Pr, r, then s? (z) €
PHu(RLE2, R2) - Hence from part 1 of this lemma, as (59, (z)) € PR R2) then C9 (59 (2)) €
Pl (Fifi2,R2) - This again from Theorem 2.2 gives that CY, (s (z)) € PRy (R Ra,Ra) (R, R

which is equal to PRI’RMRI’R;l),

3. If Psfn(z)(x) = 2" 4 q, 2™ 4 ag, then PEm(m®) = g 4 g, 12" 4+ _ag. From

this coefficients of PEm(m (@) are still in R;.

4. The recurrence polynomial of s,(x) can be written as a polynomial in 2™, say [, (™ — \;).
After the compression, the recurrence polynomial will be written as a polynomial in x, namely
[T, (z — A;). If some A; has multiplicity deg?(C4,(s?,(x))) in i, (z — A;), then)\; will also

appear with that multiplicity in [];_, (z™ — ;). From this deg?(s4,(z)) > deg?(C4,(s2,(x))).

5. The recurrence polynomial of s¢ (x) can be written as a polynomial in ™ say ™" + Ay ™)
+ ... + ag. After the compression, it will be written as a polynomial in x, namely x™ +
an_12" "' + ...ag, in ™. This is a polynomial with the same coefficients, but with %—th the
degree. Thus deg? (s4,(x)) = m x deg? (CY,(s4, (x))).

Theorem 4.2 Let s(x) € P, with m = dy...d,, and ¢ = ay(ds...d,) + a2(ds...d,) + ... + a,, where
0 <a; <d;. Consequently:

O (st (2)) = Cg ((Cgz ((--Cqr (s () 23 -)ah)-

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 55

Proof: Show that if m = dids and ¢ = asdy + a1 for d; € Z where 2 < d;, and 0 < a; < d; then:

Ch(sh () = Cgl ((Cg; (sa; (€)))a,)-
and then the result will follow by induction.
Assume that s(z) =Y o0, b; “’—,. Then:

xd2i+a2

CRUCEEWNE = CRCE(S N RIE) = O (O3 (3 basan 5 gy Vi)

dl i+aq

e 7
a € a
= Cdll((z bayitas ﬁ)di Cy! Zbdl(dzz+a2)+a1 7((1 i))

=0

zt

= E :bdl d2l+02)+a1 . E bd1d2l+d1a2+a1 : E bm2+q il

=0

But this is precisely C% (s, (z)), hence the result follows by induction.
|

This is of great value as CF' ((CgZ ((...Cg" (sg" (:z:)))znj)gi) is much easier to compute than is
Cg (s2 (z)). This method of iteratively multisectioning requires less memory and time than doing

the multisectioning process all in one calculation.

To see this, first let f(m) be the complexity of the underlying algorithm that a poly-exponential
function s(z) is being multisectioned, when multisectioned by m. (This is something roughly linear
for a fixed s(x) but the exact order is not relevant to this argument.) Consider multisectioning by
m = pips....pn, Where p; is a non-decreasing sequence of primes (not necessarily distinct). Then
to iteratively perform this multisectioning by m requires O(f(p1) + f(p2) + ...f(pn)) < O(mf(pn)).
Thus even if f(n) > n (i.e. f(n) is worse than linear), and to multisection by a power of a prime p,
say m = p", then the running time is logarithmic in m (regardless of the running time of the actual
algorithm). (This ignores some of the problems associated with large integers, but is essentially

correct.)

Example 23 Consider the following example in Maple.

> with(MS):

This example looks at the Lucas numbers type I. Consider the linear recurrence relation b; =
bi—1+bi_o where by = 2 and by = 1. Multisection this by 8 at 2. Notice that 8 = 2% and further that
2=201(4) +1(2) + 0. Any method can be used to compute the intermediate multisectioning. For

this example the naive method is used.

So the first step is to calculate s3(x), where s(z) =Y 1o, biz' with the bis defined as above.

2!

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 56

> s :=b(i) = b(i-1) + b(i-2) , b, 7, [b(0) =2, b(1) = 1];
s:=b(i) =b(i — 1) +b(i — 2), b, i, [b(0) = 2, b(1) = 1]
> t := ‘egf/ms/naive‘(s,2,0);

t:=b(i) = 3b(i — 2) — b(i — 4), b, i, [b(0) = 2, b(1) = 0, b(2) = 3, b(3) = 0]

Now compress this result.
> s2 := readlib(‘egf/compress ‘) (t, 2, 0);
$2:=Db(i) =3b(i — 1) —b(i — 2), b, i, [b(0) =2, b(1) = 3]

The second step is to calculate the multisectioning of the above function s2 by 2 at 1.
> t2 := ‘egf/ms/natve‘(s2, 2, 1);
t2 :=b(i) = 7b(i —2) —b(i — 4), b, 7, [b(0) =0, b(1) = 3, b(2) =0, b(3) = 18]

Now compress the result.
> s3 := ‘egf/compress‘(t2, 2, 1);
$3:=b(i) =7b(i — 1) —=b(i — 2), b, i, [b(0) =3, b(1) = 18]

Now the last step is to multisection the above function s3 by 2 at 0.
> t3 := ‘egf/ms/natve‘(s3, 2, 0);
t3 :=Db(i) =47b(i —2) — b(i — 4), b, 4, [b(0) = 3, b(1) =0, b(2) = 123, b(3) = 0]

By compressing this result, a linear recurrence relation for the Lucas numbers type I is found

using only every 8-th term.
> s4 := ‘egf/compress‘(t3, 2, 0);
s4 :=b(i) =47b(i — 1) = b(i — 2), b, i, [b(0) = 3, b(1) = 123]

Uncompress this result to get the answer, as expected from the other commands.

> readlib(‘egf/uncompress ‘) (s4, 8, 2);

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 57

Notice that using the naive method directly to multisection by 8 at 2 gives the same result, but

the method takes much longer to work.

> ‘egf/ms/naive‘(s,8,2);

b(i) = 47b(i — 8) — b(i — 16), b, 4, [b(0) = 0, b(1) = 0, b(2) = 3, b(3) = 0, b(4) = 0, b(5) = 0,
b(6) =0, b(7) =0, b(8) =0, b(9) =0, b(10) =123, b(11) = 0, b(12) =0, b(13) =0,
b(14) = 0, b(15) = 0]

This process has been automated with the Maple command ‘egf/ms/compress‘. The last option of

the command specifies to use the naive method to do the underlying computation.

> ‘egf/ms/compress‘(s, 8, 2, naive);

Which gives the same results.

4.6 Computing over the integers.

Doing calculations over the rationals is always expensive. This is because of the inherent problem
of rational numbers of computing the greatest common divisor with every addition or multiplica-
tion. As well, memory requirements double for each addition of comparable sized rationals. For
a more detailed description of these problems see Graham, Knuth and Patashnik’s book Concrete
Mathematics [16].

For this reason, it is desirable to perform the calculations over the integers if possible. Below are

some conditions and techniques to get the computations to work for the integers.

Lemma 4.5 If s(z) € PS? say s(z) = >0, bi‘f.—!i, where P*(z) € Q[z], then all calculations can be

performed for the b; over the integers.

Proof: To do this, make two observations.

The first observation is that if:

a a
bi = —bi 1+ oo+ by,
C1

m

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 58

with a;, ¢; € Z, then:

am ard A d™

d'b; = —dzbl 1+ + —dzbz m=——d i o d T D,
Cm C1 Cm
So choose d such that %d, e “m € Z. This will give the relation:
bi = a1bi_1 + ... + Gmbi_m,
with b; = bid’, and @; = 4L € Z.
Notice that the initial values are changed to by = bod", ..., by, = bod™.
The second observations is that if by = f sy by = %, €;, fi € Z are the initial conditions for

the linear recurrence relation then by letting d = lem(fo, ..., fm), the linear recurrence relation:

db; = daybj_1 + ... + daybi_m,

is a calculation made completely over the integers.

|
Example 24 Consider the following example in Maple.
> with(MS):
Consider the exponential generating function s(z) = Y oy biifi, where b; satisfy the linear re-
currence relation b; = bi; + bi4’2, with initial conditions of by = 0, by = % Notice that the

computation bp, = 20 b; using the linear recurrence relation 2* b; = 2= . | 4 20=2) bi_2, or equiv-
alently bp; = bp,_; + bp,_5 gives the same result. Remember that now the initial values are bpy =0
and bp; = % Now notice that if instead bpp; = 3 bp; is computed then the computation is wholly

within the integers, as are the initial values. So from this it follows that b; = b;p?: Check this by

computing the first few terms of both pm and b;.

> Bpp := ‘egf/makeproc‘(bpp(i) = bpp(i-1) + bpp(i-2), bpp, 1,
> [vopp(0)= 0, bpp(1) = 2]):

> seq(1/3%(1/2) ~i*Bpp (i) ,4=0..10);
11115 1 13 7 17 55
73767 678 48 127 1927 128’ 384’ 1536

> B := ‘egf/makeproc‘(b(i) = b(i-1)/2+b(i-2)/4, b, i, [b(0) = 0, b(1) = 1/3]):

> seq(B(i),1=0..10);
1111 5 1 13 7 17 55
73767678 487 127 192’ 128’ 384 1536

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 59

4.7 Techniques for smaller recurrences.

This section is interested in methods to speed up the calculation of the coefficients of poly-exponential
functions. One way, that was suggested by Wilf [30], is to do a calculation of a simpler linear

recurrence relation, and then use a non-linear (yet simple) means to get the desired sequence.

This is stated formally as:
Theorem 4.3 Let t(z) = Z?io bzf—: € P have an N-term linear recurrence relation b; = a1b;_1 +
canbi_n. Let p(x) = Bpa™ + ... + By be some polynomial in Clz]. Then p(x)t(x) = Z;io dj”;—]!,

where d; = B,i™b;_y, 4+ Br1i™ Vb1 + ... Bobi.

Proof: Then:

>0 .’L‘j > -'I»'i - n xi
Zdjﬁ = p(a)t(z) = p(z) Zbif = (Boa" + ..+ Po)bi—
o i=0 =0
oo xi"'"(i + n)(n) mi e -(n) xi xi
_ ;ﬁnbiw Yo _,_50(%.@ - ;Bnbifnl) + ...ﬁObiW.

Example 25 Consider the following example in Maple.

> with(MS):

i=0
satisfing b; = bj_1 + bj_o with initial values of by = 0 and by = 1. This example shows how to

. . . 0o d
determine the linear recurrence relation for s(x) = > .~ dli,m ,

functions of the b;. But this can just be rewritten as (Zfio M) + (Z:io bs ﬂ), which is just

4! 4!

(i ; (i42) i) S N\ i
(Z?io %) + (Z?io Ly), or in other words <, % There is a facility

in Maple to make procedures with this additional information of the p(x) in Theorem 4.3, (in this

case % +1).

Consider the function s(r) = (22 + 1) (ZOO l”z—f), where the b;s are the Fibonacci numbers

where the d; are to be written as

> t :=b(i) =b(i-1) + b(i-2), b, i, [b(0)=0,b(1)=1];
t:=b(i) =b(i — 1) +b(i — 2), b, i, [b(0) =0, b(1) = 1]

> T := ‘egf/makeproc‘(t):

> S := ‘egf/makeproc‘(t,i"2+1):

Check the first few cases to see if it is correct.

> seq(i*(1-1)*T(1-2)+T(%),4=0..10);

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 60

0,1, 1, 8, 15, 45, 98, 223, 469, 970, 1945

> seq(S(i),1=0..10);
0,1, 1, 8, 15, 45, 98, 223, 469, 970, 1945

4.8 Conclusions.

The conclusion that are listed in this section are conclusions as to which implemenations are faster,
the conclusions are not for which methods are faster. This is because Maple combines a relatively
sophisticate code to deal with certain problems, and some very naive methods for others. Hence
the implementation of any method in this chapter can be greatly impacted on by the underlying
methods used by Maple for certain problems, (for examples, solving linear systems of equations, how

it performs resultants, etc).

The different methods that are possible (in combination or otherwise) are:

1. naive method (Chapter 2 Definition 2.6),

2. multiplying recurrence polynomial (Section 4.1),

3. using resultants on recurrence polynomial (Section 4.2),

4. linear algebra, (Section 4.3),

5. linear algebra with symbolic differentiation, (Section 4.4),

6. compression with any of the above methods, (Section 4.5),

7. working over the integers with any of the above methods, (Section 4.6),

8. factoring out a polynomial to reduce the size of the recurrence polynomial with any of the
above methods, (Section 4.7).

o Of the first five, methods 4 and 5 are the most efficient. Multisectioning by m for m > 7000
are very doable problems.

e The naive method (method 1) is slow, and works poorly for m > 14.

e The recurrence polynomial method (method 2) works well for m that is a product of a large
number of small primes. In general though, it does not work for large prime values; for primes

m > 43, it is not really a feasible method.

CHAPTER 4. CALCULATIONS OF RECURRENCES FOR P. 61

e The resultant method (method 3), although not as bad as method 1 or 2 is noticeably slower
than method 4 or 5. (For the situation of multisectioning the Fibonacci numbers by 1000,
method 4 is faster than method 3 by a factor of 20.)

e The compression techniques (method 6) will improve the efficiency of methods 1, 3, 4, or 5,
but do little for method 2, (as this method already takes into account the factorization of m).

Here it is easy to do problems on the order of 10° (when used in combination with method 4).

e Functions rarely meet the criteria for methods 7 and 8 to be used, so they are not of interest.

Chapter 5

Calculations of recurrences for XK.

The previous chapter studied methods to determine the lacunary recurrence relations for multisec-

tioned functions in P. This chapter examines techniques for functions in R.

Section 5.1 of this chapter deals with how to multisection the bottom of a rational poly-exponential
function, (i.e. perform the necessary multiplication of poly-exponential functions) by looking at the
recurrence polynomial and resultants. Section 5.2 looks at two different related methods to perform
the multiplication for the bottom linear recurrence relation using fast Fourier transforms and lin-
ear algebra. These methods are also extended to determine the top recurrence. How to determine
the top linear recurrence relation by using the knowledge about the bottom and about the numbers
themselves is examined in Section 5.3. Section 5.4 investigates how symmetries in a poly-exponential
function can simplify the calculation of the bottom lacunary recurrence relation. Sections 5.5 and 5.6
investigates two different methods to simplify the problem, by making sure that the work is always
done over the integers, or by factoring out polynomials. The last section, Section 5.7 makes some

conclusions about which methods are best for which problems.

5.1 Multisectioning recurrence polynomials by resultants.
Given s(z), t(z) € P, with recurrence polynomials P*(z), P*(x), it is difficult to calculate P*!(x),

the recurrence polynomial of s(z)t(x). This section will demonstrate a method using resultants to

perform this calculation.

Combining the results in Lemma 4.1 with the resultant (Definition 4.1) gives:

Lemma 5.1 Let s(x) and t(x) € P, where s(z) = Y21y pi(x)eN® and t(x) = 37", q;(x)ets”. Then

62

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 63

Pt ()| H;i?jjlm(z — - uj)dcg(m(z))ercg(fIi(m)) = Res, (P*(z —y), P'(y)).

Recall in Section 4.1 that the order in which the calculations were done made a difference in
the efficiency of the computation. Here too, the same order is desirable for calculating the linear

. —1 i
recurrence relation of [T " t(zw?,).

Example 26 Consider the following example in Maple. For more information about the Maple
code, see Appendix A. For the Maple code see Appendiz E. The Maple code and help files

(including information about syntax) are available on the web at [1].

> with(MS):

Consider the Genocchi numbers, as defined by Lehmer [19] having an exponential generating
function of ef—i The calculation of H?!Ol (e(“””i) + 1), where wy, is e s of interest to
compute the recurrence of the denominator. Set t(x) = e + 1 and s(x) = 2z. Assume that this
function is to be multisectioned by 4. Then to do this with recurrence polynomials, first find the
recurrence polynomial of t(z) = e® + 1. Notice deg?(t(z)) = 0 hence degd(]_[;i_o1 t(zwn')) = 0.
This means that the resulting recurrence polynomial may have no multiple roots.

> t := ezp(z)+1;
t:=e"+1

> poly := convert_poly(convert_egf(t,f,z));

poly == x* — x

Scale this to get the recurrence polynomial of t(—x) and then use the resultant to get the result

of multiplying the two poly-exponential functions together.
> poly2 := subs(z=-z,poly);
poly2 = 2> +x

> poly3 := resultant (subs(z=z-y,poly),subs(z=y,poly2),y);
poly8 = (2* — x) (2% +)

There are no multiple Toots, so factor out multiple root, and factor out the leading coefficient.

> gcd(poly3, diff(poly3,z), ’‘poly4’): poly4 := expand(poly4/lcoeff(polys,z));
polys = 2° —x

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 64

Scale this again, to get the recurrence polynomial for t(I x)t(—1Ix), and then use the resultant to

get the result of multiplying the two poly-exponential functions together.
> polys := subs(z=I*z,polys);
polys == —ITa® —ITx

> poly6 := resultant (subs(z=z-y,poly4),sudbs(z=y,polys5),y);
poly6 := I (2% — z) (—a* — 42 — 4 —)

There will be no multiple roots, so factor out spurious multiple roots, and factor out the leading
coefficient..
> gcd(poly6, diff(poly6,z), ’poly7’): poly7 := expand(poly7/lcoeff(poly7,z));
poly7 :=3x° + 2% — 4z
Now determine the linear recurrence relation.

> convert_rec(poly7, f,z);

f(z) = =3f(x — 4) + 4f(x — 8)

Alternatively, the automated function in Maple could have been used.

> ‘bottom/ms/result‘(t,f,z,4);

flx) = -3f(x — 4) +4f(x - 8), f, =,
[f(0) =16, f(1) =0, f(2) =0, £(3) =0, f(4) = =8, {(5) =0, £(6) = 0, £(7) = 0, £(8) = 72]

Which gives the same result.

This example demonstrates how the order in which the resultants are taken is important. Also

shown is how the use of the metric deg?(t(x)) can be used to simplify the computation.

5.2 Fast Fourier transforms and linear algebra.

The methods of linear algebra from Section 4.3 needed to know the first 2V 4+ k values, where N

is the length of the recurrence polynomial, and k is a bound on the multiplicity of the roots. In

a practical situation, the calculation of []", ¢(w’ x) is of interest where f(z) = i((i)), s(z), t(z) €

P. If t(x) is easy to approximate as a polynomials, then t(zw!) is also easy to approximate as a

polynomial, via scaling.

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 65

Multiplying polynomials can be done quickly via the “fast Fourier transform”. Maple uses a
“divide and conquer” method instead of fast Fourier transform, which is still asymptotically better
that the naive polynomial multiplication. All of these algorithms can use fast Fourier transform
as the basis of polynomial multiplication, but it was deemed beyond the scope of this thesis to
implement this method within Maple. See [12] for a proper definition of the divide and conquer and

of fast Fourier transform.

Recall in Section 4.1 that the order in which the calculations were done made a difference in
the efficiency of the computation. Here too, the same order is desirable for calculating the linear
recurrence relation for H?lgl t(zw?). To determine the top linear recurrence relation, the order is
not useful, and the polynomials can only be multiplied together in a naive fashion.

The calculation of multisectioning by m, where m = dids...d; with d; € Z where d; > 2,
where an upper bound for degP(H?!Ol(t(xwfn)) (from Lemma 2.5), say N and an upper bound for
degd(H?:Ol t(xw?))) (from Lemma 2.4), say k, can use two different approaches to determine the

new linear recurrence relation.

5.2.1 Fast Fourier transform method 1.

Calculate a polynomial approximation of ¢(z) to degree 2N + k, call this p(z). Then iteratively

perform:
dp—1 do—1di—1

i1 2 ik
H H H P(20g, Wi 4y Wiy dy .y,)5

k=0 is=0 i1=0
by the fast Fourier transform, doing the inner multiplication first, and using scaling for the next
level out, etc. Each time a multiplication is done, truncate the polynomial to degree 2N + k as any
component of the polynomial past that point is not of interest. After this, use linear algebra on
the coefficients, to determine what the linear recurrence relation would be. Scaling by a factor of

(2N + k)! avoids using rationals in these calculations (assuming t(z) € PCZ).

The problem with this is that the first few multiplications are expensive, as these are dense

polynomials of typically large degree.

As a result of implementing this, a bug in Maple was found, which made the original method to
scaling very inefficient. This bug had to do with inefficient powering of roots of unity. See Appendix

D Section D.1 for more information about this.

Example 27 Consider the following example in Maple.

> with(MS):

When looking at the “Euler numbers” [2], generated by the calculation of HZBI (el wm')

2
em+e(7z) }

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 66

eTwn’)) where wy, is e5n) is of interest. Set t(z) = e* + (=) and s(z) = 2. This ezample will
multisection by 4. An upper bound on the size of the linear recurrence relation is 16 from Lemma
2.5. Also deg®(t(x)) = 0, and hence degd(H?;)l t(zwm?)) = 0. So polynomials of degree 32 needs
to be calculated, and then linear algebra is used to determine the result. So first calculate the Taylor
series approximation for 32\t(x), call this T(xz) (scaling by 32! will mean that the calculation will

avoid working over the rationals).

> t := exp(z)texp(-z);

t = e® 4+ ()

v
~
i

convert (taylor(t,z=0,33),polynom)*32!;

T := 526261673867387060334436024320000000
+ 263130836933693530167218012160000000 2
+ 21927569744474460847268167680000000 *
+ 730918991482482028242272256000000 z°
+ 13052124847901464790040576000000 2
+ 145023609421127386556006400000 °
+ 1098663707735813534515200000 22
+ 6036613778768206233600000 4 + 25152557411534192640000 26
+ 82197900037693440000 *® 4 216310263257088000 2
+ 468204033024000 222 + 848195712000 2* + 1304916480 226
+ 1726080 228 + 1984 230 + 2 32

Now multiply T(x) by T(—z) and divide by 32!.

> T2 := convert(series(expand(T * subs(z=-z, T)),z,33),polynom)/32!;

T2 := 1052523347734774120668872048640000000
+ 1052523347734774120668872048640000000 222
+ 350841115911591373556290682880000000 z*
+ 46778815454878849807505424384000000 2:°
+ 3341343961062774986250387456000000 x*
+ 148504176047234443833350553600000 2 *°
+ 4500126546885892237374259200000 22
+ 98903880151338290931302400000 24
+ 1648398002522304848855040000 2
+ 21547686307481109135360000 & + 226817750605064306688000 :2°
+ 1963790048528695296000 222 + 14230362670497792000 z2*
+ 87571462587678720 226 + 463341071892480 22® + 2130303778816

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R.

+ 8589934592 232

: _ . T(a) T(=2) T(I) T(~1)
Now scale this by I, so that the product will give an approximation for —= S =23

> T3 := convert(series(expand (T2 * subs(z=I*z, T2)),x,33),polynom)/32!;

T3 := 4210093390939096482675488194560000000
— 1403364463646365494225162731520000000 2*
+ 120288382598259899505013948416000000 2®
— 558015691813850637434408140800000 2:'2
+ 850573369301509302009200640000 ¢

— 463615482236751442870272000 z2° + 116632052447399903232000 22+
— 15180906879485214720 %8 + 1125934266580992 32

Now collect the coefficients of importance (the non-zero ones).
> for i from 0 to 32 by 4 do

> blt/4] := coeff(T3,z,t)*1!/32!;

> od;
bo := 16
by := —128
by 1= 18432
bz := —1015808

by 1= 67633152
bs := —4286578688
be := 275012124672
by := —17590038560768
bg 1= 1125934266580992
Now use linear algebra to solve the linear recurrence relation.

> ‘recurrence/solve/linalg‘(b, f, =, 4);

f(x) = 1024 f(x — 8) — 48f(x — 4)

67

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 68

This could also have be done by using the Maple function for this technique

> ‘bottom/ms/linalg/fft‘(t,f,x,4);

f(x) = 1024 f(x — 8) — 48f(x — 4), f, x,[f(0) = 16, f(1) =0, {(2) =0, {(3) =0, f(4) = —128, {(5) = 0,

£(6) = 0, £(7) = 0, £(8) = 18432]

Which is the same result.

5.2.2 Fast Fourier transform method 2.

Again, the calculation of interest is

de—1 do—1di—1

I1 - IT II i it.a)

ik=0 i3=0 i;=0
with ¢(z) € P. Recall that method 1 (Subsection 5.2.1) performed all of these calculations with a
large degree polynomial, performing the inner calculations first, and then the next level out, etc.
This method differs in that the inner computation is done with a small degree polynomial, the linear
recurrence relation for the inner multiplication is then determined with linear algebra, after which
the large degree polynomial needed for the next computation is constructed. By scaling out a factor
of (2N +k)! each time, (for the various N and k as they apply to each step), can avoid using rationals

in these calculations (assuming t(x) € PS%).

The advantage to this over method 1 is that the polynomials are of small degree near the beginning

of the calculation when they are densest. The disadvantage is that linear algebra is repeatedly used.

As a result of implementing this, a bug in Maple was found, which made the original method to
scaling very inefficient. This bug had to do with inefficient powering of roots of unity. See Appendix

D Section D.1 for more information about this.

As a result of testing this on large examples, some inefficiencies with the factorial function in

Maple were discovered. For more information about this, see Appendix D Section D.6.

Example 28 Consider the following example in Maple.

> with(MS):

Consider the Lucas numbers as defined by Lehmer, [19]. To avoid confusion with the Lucas num-
bers defined in Graham, Knuth and Patashnik, [16] we will call these Lucas numbers, “Lucas numbers
type 1I”. When looking at the Lucas numbers type II generated by e(fz%z_l, the calculation of interest

is H?;’Bl (e@zwm’) 1), where wy, is eFa). Set t(z) = @) —1 and s(z) = ze®. Assume that the

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 69

m

function is being multisectioned by 4. Notice deg®(t(z)) = 0, and hence that degd(]_[i:'_o1 t(zwm?))
= 0. Notice that deg® (t(x)) = 2, hence deg? (t(z)t(—x)) is at most 4. So for the first step only a
linear recurrence relation to degree 8 is needed. So first calculate the taylor series approzimation for

t(z), call this 8!'T(x) (scale by 8! to avoid having to work over the rationals).
> t := exp(2*x)-1;
ti=e® 1

> T := convert(taylor(t,z=0,9),polynom)*8!;

T := 80640 z + 80640 22 + 53760 2> + 26880 z* + 10752 2° + 3584 25 + 1024 "
+ 256 28

Now multiply T(x) by T(—z) and divide by 8!.
> T2 := convert(series(expand(T * subs(z=-z,

> T)),z,9),polynom)/8!;
T2 := —161280 2% — 53760 z* — 7168 2% — 51228

Determine the interesting (non-zero) values.
> for 4 from O to 4 do

> b[i] := coeff(T2,x,2*t)*(2*%i)!/8!;

> od;
bo:=0
by := -8
by := —32
by = —128
by := =512
Solve this linear recurrence relation.
> rec := ‘recurrence/solve/linalg (b, f, z, 2);

rec := f(x) = 4f(x — 2)

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 70

> t2 :=rec, f, ® [f(0) =0bl[0], f(1) =0,
v[1], f(3) =0, f(4) =b[2], f(5) =0,
b[3], f(7) =0, f(8 =bl[4]];

> f(2)

> f(6)

t2 1= f(z) = 4f(z — 2), f, =, [f(0) = 0, £(1) = 0, £(2) = —8, £(3) = 0, f(4) = —32, £(5) = 0,
f(6) = —128, £(7) = 0, £(8) = —512)

Now determine what deg” (T2(z)) and deg®(T2(z)) are, as these will be useful in the calculation.

> ‘egf/metric/P‘(t2);

> ‘egf/metric/d‘(t2);

Notice that deg” (t2(x)) = 3, and hence deg” (t2(x) * t2(I * x)) is at most 9. Thus only the first
18 terms of the polynomial approxzimation needs to be calculated, say 18!t2(x) (scale by 18! to avoid

having to work over the rationals). Call this T2(x).
> Fun := ‘egf/makeproc‘(t2):
> T2 := add (Fun(i)*z"i/i!,1=0..18)*18!;
T2 := —25609494822912000 2 — 8536498274304000 z*

— 1138199769907200 2% — 81299983564800 28 — 3613332602880 :'°
— 109494927360 212 — 2406481920 z'* — 40108032 216 — 524288 x;!8

So now multiply T2(x) by T2(I x) and divide by 18!.
> T3 := convert(series(expand (T2 * subs(z=I*z, T2)),x,19),polynom)/18!;

T3 := —102437979291648000 z* + 2276399539814400 z°
— 14453330411520 2'2 + 20374880256 ;16

Collect the interesting (non-zero) terms.
> for 4 from O to 4 do
> b[i] := coeff(T3,xz,4*t1)*(4*3)!/18!;

> od;

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 71

by := 14336
bs := —1081344
by 1= 66584576

Solve this linear recurrence relation.

> rec := ‘recurrence/solve/linalg (b, f, z, 4);

rec := f(x) = 1024 f(z — 8) — 48f(x — 4)

This also could have been done by using the Maple function for this technique

> ‘bottom/ms/linalg/fft2(t,f,z,4);

f(x) = 1024 f(x — 8) — 48f(x — 4), f, =,

) [
£(0) =0, f(1) = 0, £(2) = 0, £(3) = 0, f(4) = —384, £(5) = 0, £(6) = 0, £(7) = 0, £(8) = 14336]

Which is the same result.

It is worth pointing out in this example that fewer terms of the polynomial needed to be worked
out. This was because a better bound for deg” (H:if)l t(xw?,) was known as a result of the iteratively
calculating t(x)t(—z) and then t(x)t(—z)t(Ix)t(—Ix).

5.3 Using the bottom linear recurrence relation.

The method described in Section 4.3 is easy if s(x) € P is known in poly-exponential function form.
But there are situations when to explicitly calculate what s(z) is in poly-exponential function form
is space consuming and undesirable. For example when trying to determine the top linear recurrence

relation of a rational poly-exponential function.

Consider a rational poly-exponential function % where s(z), t(z) € P with s(z) = Y o, bif—:

and t(z) = 372, dj%. Further assume i((g =", ci%. This gives

3 (Naes = o 1)

j=s

Then if a simple formulae for the d;s and c¢;s are known, then the b; can be determined using
Equation 5.1. If a bound on the size of the linear recurrence relation for the b; is known, say N, and
a bound for the metric deg? on the linear recurrence relation for the b; is known, say k, then only

the first 2NV + k values of b; need be calculated to determine the linear recurrence relation for the b;.

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 72

Recall from Section 2.4 that typically the linear recurrence relation for multisectioning some ¢
will be the same regardless of the value of ¢q. This can be utilized here by using the process above
for the top when multisectioned by m at 0, and then assume that the linear recurrence relation will
be the same when multisectioning at other values of q. Hence linear algebra need not be used to
determine the linear recurrence relation but instead simply reuse the linear recurrence relation from

the first calculation, thus simplifying future calculations immensely.

Example 29 Consider the following example in Maple.

> with(MS):

This example tries to find the linear recurrence relation for the top of the Euler numbers f(z) =

ot
oo b; x

2 — e Ci zt i=0 4l y y ; y y
T = Yo & = a7 given the bottom linear recurrence relation, when multisection-

! o

j=0 — 1
ing by 4 at 0. As the function is being multisectioned by 4 at 0, then only those b; where i = 0 mod 4
are needed.
> bot := ‘bottom/ms/linalg/fft2‘(exp (x)+exp(-z),f,z,4);
bot := f(x) = 1024 f(x — 8) — 48f(x — 4), f, =, [f(0) = 16, (1) = 0, {(2) = 0, £(3) = 0,
f(4) = —128, £(5) =0, f(6) = 0, {(7) = 0, {(8) = 18432]

> Bot := ‘egf/makeproc‘(bot):

Now b; = Z;ZO binomial(4, j) ¢;—; d; from Equation 5.1. An upper bound of the number of b;
needed as 42322 + 2 = 130 by Lemma 2.5.

> F := 1 -> add(binomial (¢, j)*euler(i-5)*‘Bot ‘(j),7=0..%);

Warning, ‘j‘ in call to ‘add‘ is not local

F := i — add(binomial(i, j)euler(i — j) Bot(j), j = 0..9)

> for i from 4 to 130 by 4 do
> b[i/4] = F(3):
> od:

> rec := ‘recurrence/solve/linalg‘(b,f,z,4);

rec := f(r) = 625f(z — 12) — 611 f(x — 8) — 13f(x — 4)

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 73

This could have also been discovered by using some of the other built in functions.

> ‘top/ms/linalg/fft‘ (2, exp(z)+texp(-z),f,x,4,2);

f(z) = 625f(x — 12) — 611 f(x — 8) — 13f(x — 4), f, =, [f(0) =0, £(1) = 0, £(2) = —16,
£(3) =0, f(4) = 0, £(5) = 0, £(6) = 944, £(7) = 0, £(8) = 0, £(9) = 0,
£(10) = 1904, £(11) = 0]

> ‘top/ms/linalg/sym‘ (2, exp (z)texp(-x), f,x,4,2);

f(z) = 625f(x — 12) — 611 f(x — 8) — 13f(x — 4), f, =, [f(0) =0, £(1) = 0, £(2) = —16,
£(3) =0, f(4) = 0, £(5) = 0, £(6) = 944, £(7) = 0, £(8) = 0, £(9) = 0,
£(10) = 1904, f(11) = 0]

This method is automated with the given function below.

> ‘top/ms/linalg/know‘(Bot, euler, f, z, 4, 2, 16, 2);

f(x) = 625 f(x — 12) — 611 f(x — 8) — 13f(x — 4), f, =, [f(0) = 0, £(1) = 0, £(2) = —16,
£(3) = 0, f(4) = 0, £(5) = 0, £(6) = 944, £(7) = 0, £(8) = 0, £(9) = 0,
£(10) = 1904, £(11) = 0]

Which all give the same result.

Now determine the linear recurrence relation multisectioned by 4 at 2. Taking advantage of the
fact of what the linear recurrence relation most likely is, all that really needs to be done is to determine
the initial values, and see if the linear recurrence relation is correct. By looking at the recurrence
that for the top multisectioned by 4 at 0 that there are only about 12 terms needed. Calculate the first

32 terms for when the function is multisectioned by 4 at 2, and see if this linear recurrence relation
holds.

> dnitial := [seq(op([f(4*i) = F(4*i), f(4*i+1) = 0, f(4*i+2) = 0, f(4*i+3)
=0 7)), ©=0..8)]1;

initial := [£(0) = 16, f(1) = 0, £(2) = 0, £(3) = 0, £(4) = —48, £(5) = 0, £(6) = 0,
f(7) = 0, £(8) = —4208, £(9) = 0, £(10) = 0, f(11) = 0, £(12) = 94032,
£(13) = 0, f(14) = 0, f(15) = 0, f(16) = 1318672, f(17) = 0, £(18) = 0,
£(19) = 0, £(20) = —77226288, £(21) = 0, £(22) = 0, £(23) = 0
f(24) = 257003152, £(25) = 0, £(26) = 0, £(27) = 0, £(28) = 44668390992,
£(29) = 0, £(30) = 0, £(31) = 0]

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 74

> ‘egf/clean‘(rec, f, z, initial);

f(z) = 625 f(z — 12) — 611f(z — 8) — 13f(x — 4), f, =, [f(0) = 16, f(1) = 0, £(2) = 0,
£(3) =0, f(4) = —48, £(5) = 0, £(6) = 0, £(7) = 0, £(8) = —4208, £(9) = 0,
£(10) = 0, f(11) = 0]

When cleaning up all of the terms, (getting rid of the terms that can be calculated based on
the linear recurrence relation) then fewer than the 32 terms are left. Hence, this linear recurrence

relation is most probably correct.

This could have done this with the automated function.

> ‘top/ms/know‘(rec, Bot, euler, f, =, 4, 0, 130);

f(z) = 625 f(x — 12) — 611 f(z — 8) — 13f(x — 4), f, =, [f(0) = 16, £(1) = 0, £(2) = 0,
f(3) = 0, f(4) = —48, £(5) = 0, f(6) = 0, £(7) = 0, f(8) = —4208, £(9) = 0,
£(10) = 0, f(11) = 0]

Which gives the same result.

As a result of working on this example, a bug in the help for the Euler function in Maple was

found. For more information see Appendix D Section D.2.

5.4 Symmetries.

Recall Lemma 3.1 showed that when multisectioning a rational poly-exponential function % by
m at ¢ then the bottom poly-exponential function could be written as Hzr:ol t(rw!)) and the top
as (s(z) H:’;}l t(zw?,))%,. Doing this made the simplifying assumption that there were no common
factors among the t(zw!), as 0 < i < m — 1. For numerous examples of functions, such as the
Bernoulli, Euler, Genocchi and Lucas type II numbers, this assumption is not true. (Some rewriting
of the Bernoulli and Genocchi functions are needed for this.) This section explores a small subset
of the possible situations where this assumption is not valid, and how, by looking at these common

factors, the size of the linear recurrence relation can be reduced for the bottom.

These properties have been exploited before in the standard papers on Bernoulli and Euler
numbers [9, 19], but, to the best of my knowledge, have not been written in this type of generality

before, nor has there been a formal theory behind what is being done.

To this end, define a symmetry.

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 75

Definition 5.1 (Symmetry.) A poly-exponential function, s(z) has a “symmetry of order p” if

s(zwy) = w;,fs(x)

for some integer k.
Example 30 The denominator of the Euler numbers e* + e~* has a symmetry of order 2.
Note 5.1 If s(z) has a symmetry of order p, say s(aw,) = wks(x), then s(z) = sh(z).

If a symmetry of a function is known, then it can be taken advantage of to find a smaller form
for the linear recurrence relation of the denominator of a multisectioned rational poly-exponential
function.

Theorem 5.1 Let f(x) = %, where s(x), t(z) € P, and let t(x) have a symmetry of order p, say
t(zwy) = w]’,ft(x). Further, let plm. Then a recursion formula can be found for the coefficients of
x™T4 of the exponential generating function of f(x) that depends only on the coefficients of x™I+4,
for 7 < i, and two lacunary recurrence relations, where the lacunary recurrence relation for the

denominator has a smaller upper bound on its length than that of Theorem 3.35.

Proof: Now

fl(x) = 1 ﬂf M _1 m/ilpl wfn(iﬂ(m/p))qs(mwﬂj(m/p))
" m i=0 t(zwin) m i=0 j=0 t(l‘w?{j(m/p))
U S iy ins(eatel) | 1R vty s(awtw))
= = _ 1 3 .
m =0 =0 t(zw), Wz]v) m 30 i=o wy t(zw?,)
“Ap=1 iy —ig—i o
- 1 K pz: Wy w71 Jks(xwﬁnwga)
—1m/p—1 _; s 1
= ip RS Wi 1wy 7 Ihs (), wj) ;n/lp t(zwl))
B 1
[?;/Op t(zwk,)

LS (P w39 E s () TP t(aw,)

)
;Z/Op t(zwt))

By observing that t(z) = tk(z) a careful analy51s shows that Hm/p Ytawl) = (;n/p e

wfn))fnm/p. Denote this r5™/?(z). Further, letting r5™/? (z) = o d; gj, , f(z) =352 e and the
numerator as .-, blf—, gives, from Equation 5.1 that b; = 0 unless ¢ = ¢ + m/pk (mod m). So

both the numerator and the denominator are lacunary recurrence relation.

Further, from Lemma 2.5 the denominator ri*/?(z) has the property that deg? (ri™/?(z)) <
deg® (t(x))™/?, which is better than the upper bound in Theorem 3.3 of deg” (t(z))™.

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 76

Example 31 Consider the following example in Maple.

> with(MS):

Consider the example of the Fuler numbers, given by the exponential generating function of
WQ(,T) The denominator of this has a symmetry of order 2. Below are two methods to compute
the recurrence for the denominator, when multisectioned by 8. The first method does not take into
account the symmetry, where as the second does. Also demonstrated in this section is the code
‘eqf/strip‘, which will strip away the useless zeros.

> botNoSym := ‘egf/strip‘(‘bottom/ms/linalg/fft2¢(exp(z)+exp(-z),f,,8,[2,2,2]),

8, 0);

botNoSym := f(z) = —8317055588097413103219869730471936 (2 — 80)

+ 37233002781512387579098036015464448 (2 — 72)

+ 1166788033962137493268685150748672 f(2 — 64)

— 2859937097119408702278567198720 (2 — 56)

— 9461191179037171953143119872 f(x — 48)

+ 2389168763320088873926656 f(— 40)

+ 543960885098446848 f(x: — 32) + 3635955734937600 f(z — 24)

+ 158590697472 f(z — 16) — 283392 f(z — 8), £, x, [f(0) = 256,

f(8) = —557056, £(16) = 3901315088384, £(24) = —968280866994257920,
£(32) = 889603035003170066530304,
£(40) = —391268789233378370377876504576,
£(48) = 248444193868941930601282703112273920,
£(56) = —129215330691656123194089717482165880487936,
£(64) = 74595026599387417869017590514149872898213412864,
£(72) = —40726729378210421739875778036712241401761762629386240,
£(80) =
22901077288442548007301641325421696523514722946588788916224]

> botSym := ‘egf/strip‘(‘bottom/ms/linalg/fft2°(exp (z)+exp(-z),f,x,8,[2,2,2],2),
8, 0);

botSym = f(x) = —4096 f(x — 16) — 2176 f(x — 8), f, =, [f(0) = 16, f(8) = —17408]

> BotNoSym := ‘egf/makeproc‘(botNoSym):

> BotSym := ‘egf/makeproc‘(botSym):

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 7

Next consider the top recurrence, determined by the bottom recurrence and the definition of the
Euler numbers, when multisectioning by 8 at 0. Again, the first method does not take into account
symmetries, where as the second does.

> topNoSym := ‘eqgf/strip‘(‘top/ms/linalg/know‘(BotNoSym, euler, f, z, 8, 0, 30,
2),8,0);

topNoSym = f(x) = —4392025928221058335153360507594023962511346\
48683978210964402620f(x — 112) + 16393772837213378973317\
93880466746952280765509411555035472655322493113f(x — 128) —
67935617032022466623362959771720542170351788782354098321860
f(x — 104) +
2876648532964249458940710162842517424309120851325640780
f(z — 96) +
12317355685492381103398811128923389311076842285298151
f(x — 88) + 655832062449372229076571004417263593355727800\
131131068695310939956{(x — 120) + 2993228897753578954485\
46471100949079463875894816986365120488249152442430920'\

Tf(xz — 144) — 21560794660949732482905702 f(x — 40)

— 1147574017569591751566 f(z — 32) 4+ 40165361247172240331\
34271147981468527276768231111313116699323362393438941

f(x — 136) + 78534920070959476847834710678200244534384891\
8616770779592494739390443923558731f(x — 152) — 131973 f(x — 8)
134667150111 f(z — 16)

— 9517414585447652068034637402058 f(x — 48)

— 9251259445755474173537457900144356053803 (2 — 64)

+ 84498622102085814949560058480710284331283721 f(z — 72)
— 11330622454927027 f(z — 24)

+ 2385705997943699776309273668532297345747765388163 f(x — 80)
+ 813025823757402553384293284463211806 f(x — 56) — 534357\
78925402174043593582652123877017565504064446362041782\
95645494995747709214341741f(x — 192) + 48814666275054200\
19598847210198941016989441097805143093477702173480496\,
780911470929727f(2 — 200) — 1653398870056921737185389990\
88841525971187576508195022171625614736231233240285290\
971f(z — 208) + 2326130891384570590380157721546063909849\
3030873003515999259565279964744546250390625f(x — 216) +
63863245107313263027107180301422790406080328209255828\
9220903993807817345738772746958f(x — 184) — 320988767861\

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 78

01181638457651707722006068094231238003543924144111985\
708574073397954266f(x — 176) — 2210912755112381032331783)\
37892525477178428723084412946378807494559266311589839\
3462f(z — 168) — 133606751722998530775061168178227029948\
257269876573785252499938191919945990602718f(x — 160), f, z, |
£(0) = 256, £(8) = —202496, f(16) = — 1063953149696,

f(24) = 64570730111514880, £(32) = 114754084128082385215744,
£(40) = —12617880498158977441699755776,

£(48) = —13558757497291064142754260447399630,

£(56) = 2170619805897092133382221060532917885184,

£(64) = 1558910469676572327193388845250484736038617344,

£(72) = —333883571310415940905401481565768759116901484189440,
£(80) =

— 175662840644520683985176861750371976893040536974264594176,
£(88) = 484965667430663900125702569069025106198846760656\
73716295825664, £(96) = 193208469295406084354751329180571\
49348363091224927642362608361529600, £(104) = —6772366215\
58780337958692538975970599262543691319285386324099989)\
2141422336, £(112) = —20617726717245267743646468252135139\
63598057011996874738073663893749583225474816, £(120) = 91\
T7542784877584642796201877918487801614158162503036098\
66903104438817246864966621440, f(128) = 21143779189020025\
19981142759968877814678251583679412389531928218427761\
85067654949642600704, f(136) = —1213802012475459576770870\
37339337942042861219535152681693440017948231511735765\
368016547875428096, f(144) = —204843433643956974604943432\
60014391790909623367791573352316771152068070097942288\
026991331458997169920, f(152) = 1572454621839193312893023\
47331717651025235741794364808372617318943520862719524\
52387887218455502637116274944, f(160) = 18101793798981768\
97468850458775460758110185354473802874927366725986819\
476313522730216369680662400806527709421824, £(168) = —199\
99867933843650702413266982315969889081786544044255134\
29193831155787180531188119439676780471386768670887694)\
728820480, £(176) = —133119618633120701901850512085771108\
32431364491287555186444541707366739308588765758549330)\
5736594807846804570292679550799616, f(184) = 250105285632\
03785116103490520672684517978976645058273583097955243\

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 79

88734189966221418884084211412008912595964318134910812\
70300530944, £(192) = 52588307706405763257356025072347343\
600495284'72499715635754362341679820173967167656920852\
960488865900108937646494807733495019412373760, (200) = —\
30775725978976969510046824935955938885269811664308452'\
69243135131736053830822282944758255863223017288525489'\
5205660578522216409200451213022976, £(208) = 711146486248\
35393457944380270059054429282827263572950086035928327\
1765493631217308229237693307648431127574266041 7555667\
52813061990395310739755264]

> topSym := ‘egf/strip‘(‘top/ms/linalg/know‘(BotSym, euler, f, =, 8, 0, 30, 2),8,0);

topSym :=
f(x) = —6561 f(x — 32) + 7571428 f(x — 24) — 45798 f(x — 16) + 1188 f(x — 8),
f, x, [f(0) = 16, £(8) = 4752, {(16) = 5278992, f(24) = 6144667536]

So both the top and the bottom recurrences are smaller when the symmetries of the denominator

are taken into account.

5.5 Computing over the integers.

Recall in Section 4.6 that all of the calculations of the coefficients of the exponential generating
function of a poly-exponential function can be calculated over the integers if certain criteria are
met. Here, a similar result holds, given certain criteria all of the calculations of the coefficients of
the exponential generating function of a rational poly-exponential function can be done over the

integers.

Consider the equations in Theorem 3.1 again. This gives the following lemma.

Lemma 5.2 If f(z) = 283 =320 cif—; where s(z), t(x) € P, with s(x) = Y 0y bif—: and t(x) =

Z?O:o dj“;.—'; such that dg # 0, where d;, b; € Q, and P*(z), Pt(xz) € Q[z] then all of the calculations

of the ¢; can be done over the integers.

Proof: A few observations are needed to see this.

Without loss of generality, let m = 1 and ¢ = 0. Based on the equation of Theorem 3.1 the

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 80

following equation holds:

j=s+1
Hence, if b;, d; € Z for all i, s =0, and ds; = +1 then ¢; € Z. (This is in fact the case with the

Euler numbers.)

Now if s =0, and dy # 1 and dy € Z, then instead calculate ¢} = c;db. Notice that:

%

i dp i
diei = do(bz Z<j)djcw)

j=1

C;(= (d%ﬁlbl — Z <Z> déﬁldjci,j)
=1 M

* i— : i j — i—j

¢ = (dy ' — Z <j>d€) 1dj(do ¢i—j))
j=1

* i— : i j *

. = (dg 1bz‘ - Z <j>d€)djci—j)'
j=1

which will remain in the integers.

Further, if b; and d; come from functions s(z) and t(z), both of which satisfy all of the conditions
of Lemma 4.5, namely that P*(x), P!(z) € Q[z], where s(z), t(z) € P52, then by the ¢! can be

altered so that all the calculations are still done over the integers.

Here take e, and f;, as the d and ¢ in the proof of Lemma 4.5, as it applies to b;, and set &; = b;e fp.

Similarly set d; = dieg fa, where eq and f; have similar definitions. Further assume that f; = 1.

So now consider calculating ¢ = c}lem(ep, eq)™lem(fy, fa) For ease of notation, denote e =

lem(ep, e4) and f similarly. For ease of notation, denote &, = i, and define €4, f, and fy similarly.

Then:

eifc;< = elf(d%)bl — Z (;) dg)djcf,j)

Jj=1

¢ = (dye'fo; — Z (]) dye fdjci_;)
j=1
_ i (5 Vi ET S0 i—j
a = (dy(e) fubi — Z (]) doe’djfe' ™ ci_;)
j=1
& = (dy(e) fobi —> <;) A () ;).

Jj=1

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 81

Where finally everything is calculated over the integers.

Corollary 10 The Euler numbers and the Genocchi numbers are integers. Moreover the recursion
formula and lacunary recursion formula used to compute the Euler and Genocchi numbers are also

over the integers.

5.6 Techniques for smaller linear recurrence relations.

As before, in Section 4.7, polynomials can be factored from a poly-exponential function, to make
the linear recurrence relations easier to solve. Write t(z) = p(x)#(z), the denominator of some
rational poly-exponential function, for ¢(z), ¢(x) € P and p(z) a polynomials. Then notice, that for

calculating the denominator, then a factor of [[," p(zw?,) can be pulled out.

A similar process for the top linear recurrence relation can be done, but some extra care need be

taken.

Example 32 Consider the following example in Maple.

> with(MS):

This example looks at the Bernoulli numbers. But for this example, modify the equation, so

that it can be demonstrated how common factors of polynomials can be taken out. So examine

oo bz’
2’4o = =i=0 @ Now multisection this by 4 at 2.

T e®—xr+e?—1 o djad’

j=0 T jT

So the bottom can be

H?:o (zws® +1) (e@ws) — 1) = (H?:o (rwy® —1)) (H?:o (e@«s) —1)). So there is a polynomial
that can be factored out. After this simply work out the normal linear recurrence relation for the

bottom. This could have done automatically by:

> ‘bottom/ms/factor‘((z+1)*(ezp(z)-1),f,z,4);

f(x) = 4f(x — 8) — 3f(x — 4), f, z,]|
f(0) =0, (1) =0, f(2) =0, f(3) = 0, f(4) = —24, {(5) = 0, £(6) = 0, {(7) = 0, £(8) = 56]
, —zt 41

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R.

Where the last value is the polynomial that is pulled out.

The top can be similarly manipulated so as to get the common polynomial to be pulled out.

> ‘top/ms/factor‘(z"2+z, (z+1)*(exp(z)-1),f,z,4,2);

f(x)

41(x —2)—3f(x—1)f ,[f(0) =0, f(1) =0, f(2) =0, {(3) =0, f(4) =0, {(5) =
f(6) =0, £(7) =0, £(8) = 0, £(9) = 30, £(10) = 0, £f(11) =0, £(12) =0, {(1) = —130,
f(14) = 0, £(15) = 0, f(16) 0, f(1 7) = 510, f(18) = 0, f(19) = 0, £(20) = 0,

f(21) = —2050, £(22) = 0, £(23) = 0, f(24) = 0, {(25) = 8190, {(26) = 0, {(27) = 0,
f(28) =0, £(29) = —32770, {(30) =0, f{(31) =0], (z =D (x = 1) (z+) x (x + 1)

5.7 Conclusions.

82

The conclusion that are listed in this section are conclusions as to which implemenations are faster,

the conclusions are not for which methods are faster. This is because Maple combines a relatively

sophisticate code to deal with certain problems, and some very naive methods for others.

Hence

the implementation of any method in this chapter can be greatly impacted on by the underlying

methods used by Maple for certain problems, (for examples, solving linear systems of equations, how

it performs resultants, etc).

5.7.1 Denominator.

The different methods that are possible for determining the bottom linear recurrence relation of a

multisectioned rational poly-exponential function are:

1. naive method, (Chapter 3, Lemma 3.1),

2. the recurrence polynomial with resultants (Section 5.1),

3. linear algebra, with symbolic differentiation (Chapter 4, Section 4.3),
4. linear algebra, fast Fourier transform method 1, (Subsection 5.2.1),
5. linear algebra, fast Fourier transform method 2, (Subsection 5.2.2),
6. looking at symmetries of the denominator, (Section 5.4),

7. computing over the integers, (Section 5.5),

8. factoring polynomials out, in combination with any of the above, (Section 5.6).

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 83

e Here, the use of some knowledge (of how large the linear recurrence relation will be) is of great
use to method 3 and 4. For example, without this knowledge, trying to determine the bottom
linear recurrence relation of the Euler numbers when multisectioned by 8 takes over 60 seconds
and 10.65 for methods 3 and 4 respectively, where as with this knowledge this take 4.58 and
3.86 seconds.

e The naive method, method 1, although the easiest to implement, is not very efficient taking
11 seconds to do this problem, whereas method 2 and 5 take 2.72 seconds and 1.42 seconds

respectively.

e If the same problem is looked at, but multisectioning by 9 instead of by 8, then of all the
methods from 1 to 5, with the exception of method 5, take too long to be practical (even with

knowledge).
e Method 5 takes about 126.9 seconds.

e By taking into account a symmetry (method 6) of order p, the existing methods can be expected
to be able to multisection by a factor of p more. For example, with the Euler numbers, instead
of having a upper bound of 12 for multisectioning, an upper bound of about 24 is achieved.

(The Euler numbers have a symmetry of order 2 in the denominator.)

e Methods 7 and 8 are of little interest, as rarely do functions meet the criteria that would be

required for these methods to be of use.

o (These times were done on “bb” (2 180 MHZ IP27 Processors, Main memory size, 256 Mbytes),
using the Maple interpretation of a CPU second.)

5.7.2 Numerator.

The different methods that are possible for determining the top linear recurrence relation of a mul-

tisectioned rational poly-exponential function are:

1. naive method, (Chapter 3, Lemma 3.1),

2. the recurrence polynomial and resultants (Section 5.1),

3. linear algebra with symbolic differentiation, (Chapter 4, Section 4.3),

4. linear algebra, fast Fourier transform, (Subsection 5.2),

5. factoring polynomials out, in combination with any of the above, (Section 5.6),

6. using information about the bottom linear recurrence relation. (Section 5.3).

CHAPTER 5. CALCULATIONS OF RECURRENCES FOR R. 84

e Again the problem of the Euler numbers was looked at - trying to determine the top linear

recurrence relation.
e An examination of the times gives that method 6 is by far the best.

o When multisectioning by 8 at 2, the other methods, in order take;

with method 1, 201.733 seconds,

— with method 2, over 1000 seconds,

— with method 3, over 1000 seconds,

— with method 3, 55.62 (with knowledge),
— with method 4, over 1000 seconds, and

— with method 4, 494.15 (with knowledge).
e This is in comparison to method 6, which took only 30.467 seconds.

e If the denominator had a symmetry of order p, then it becomes possible to multisection by a
factor of p more. For example, instead of having an upper bound of multisectioning by 12 for
the Euler numbers, the upper bound becomes 24. (The Euler numbers have a symmetry of

order 2 in the denominator.)

o (These times were done on “bb” (2 180 MHZ IP27 Processors, Main memory size, 256 Mbytes),
using the Maple interpretation of a CPU second.)

Chapter 6

Doing the calculation.

When doing calculations, there are numerous things that can be done at the programming level to
speed up the calculations. The first two sections, Sections 6.1 and 6.2 talk about methods where
concurrence is exploited. The third section, Section 6.3 discusses the largest problems at the time
of submission of this thesis that these techniques have been used for. The last section, Section 6.4

discusses some methods of validating the correctness of the results.

The methods in this thesis so far have allowed the calculation of terms of rational poly-exponential
functions to be run on m different machines by multisectioning by m. After the problem is divided up
by multisectioning, to m different computers, no communication is needed between these computers.
The method of multisectioning is limited by the size m, as multisectioning by large m quickly becomes
impractical. After multisectioning by m, the computation can only be done on at most m different

machines.

This does not mean though that only m different processors can be used. By allowing communi-
cation between processors, the problem can be broken up further. The basis of this idea is that to
calculate the k-th number, the previous £ — 1 numbers are needed, but not all of them need to be
known when the computation is started. When calculating the k-th number, have n other processors
working out the kK — 1, k — 2, ..., Kk — n numbers. So long as this information is available by the
end of the computation there is no problem. Many of the techniques for concurrency used here are
described in Snow, [27].

There are two different techniques described here. The first as described in Section 6.1 is in the
case with n processors, where all the processors are the same speed (i.e. a dedicated multi-processor

machine). This type of problem does not need to worry about load balancing.

The second case, as described in Section 6.2 is that with multiple CPU’s, not all of which are

85

CHAPTER 6. DOING THE CALCULATION. 86

the same speed (i.e. a cluster of PCs with different clock speeds). To properly take advantage of
the CPUs to their maximum efficiency, more complicated code need be written that will attempt
to balance the load. Failing to do this will lead to a computation on n CPU’s that is only n times

faster than the slowest processor.

6.1 Load balanced code.

6.1.1 Overview.

Assume there are n processors, all of which are the same speed, and the calculations are of well-
distributed difficulty (as is the case with rational poly-exponential function), then give every n-th
problem to each CPU. At the end of each calculation, the results are communicated to the other

Processors.

For this problem, the master/slave paradigm is used, as it reduces the number of communication
channels that are required. The “process” package in Maple was used, which utilized the Unix
commands of fork, pipe, wait, block, etc. As a result in implementing this, and preparing the
worksheets, numerous bugs in the “process” package in Maple were found. For more information see
Appendix D Sections D.3, D.4, and D.5.

6.1.2 Details of algorithm.

Assume the program is run with n slaves. Using the master/slave paradigm, have the master tell
the slave which calculation to start with, and how large an increment to use. So slave 1 is told to
calculate by, b14p, bi12n, ..., Up to some maximum, slave 2 will calculate by, a4y, ..., etc. The slave,
when it has done a calculation will tell the master. The master then passes this information on to

all of the other n — 1 slaves.

When the slave needs information, it simply waits for the master to provide this information.
This is one of the reasons why in this model it is very important that the slaves are the same speed.
If one slaves is slower than the other slaves, then all of these slaves will constantly be waiting for

this one slave to complete its calculation before they can continue.

This is summarized below in Figure 6.1.

CHAPTER 6. DOING THE CALCULATION. 87

Master

A L,B A passes information
c to B.

A_° B A creates B with

bjtin,J #1 bjttn,g #0 information c.

Slave 1 Slave n
calculate calculate
b1,b14n .. bn, boy, ...
Vbi4gn, 1 +qn < M. Vbygn, qgn < M.

Figure 6.1: Load balanced master/slave diagram.

For more information, see Appendix A, Subsection A.7.2.

Example 33 Consider the problem of calculating the Genocchi numbers, defined by the exponential

generating function —2%—. For more information about the Maple code, see Appendiz A. For the
er+1

Maple code see Appendiz E. The Maple code and help files (including information about syntax) are
available on the web at [1]. For this, consider the calculation given that the recursion formula is

multisectioned by 2 at 0. Further assume that there are two slaves (i.e. a 2 CPU machine).

N~/ Maple V Release 5 (Simon Fraser University)
._INI |/|_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
S > Waterloo Maple Inc.
| Type 7 for help.
> with(MS): with(process): readlib(‘calcul/balanced/worker®):
>

> bot := ‘bottom/ms/linalg/fft2‘ (exp(x)+1,f,x,2);

CHAPTER 6. DOING THE CALCULATION.

bytes used=1007116, alloc=851812, time=0.24
bot := f(x) = £f(x - 2), £, x, [£(0) =4, £(1) =0, £(2) = 2]

> Bot

‘egf/makeproc‘ (bot):
‘top/ms/linalg/fft¢(2*x, exp(x)+1, f, x, 2, 0);
top := f(x) = -f(x - 4) + 2 f(x - 2), £, x,

> top :

[£(0) =0, £(1) =0, £(2) = -4, £(3) = 0]

Top := ‘egf/makeproc‘ (top):

Increase the information presented, so as to demonstrate how

the slaves and the master interact with each other.

vV V H# # Vv V

infolevel[MS] := 4;
infolevel [MS] := 4

>

> B := ‘calcul/balanced‘(2, 10, Top, Bot, 2, 0): seq(B[2*i], i=0..5);
calcul/balanced: "Starting up slave" 0

calcul/balanced/worker: "Slave" O "working on problem" 0
calcul/balanced/worker: "Slave" 0 "getting needed info from Master"
calcul/balanced/worker: "Slave" O "finishing calculation"
calcul/balanced: "Starting up slave" 2

calcul/balanced/worker: "Slave" 0 "Reporting to Master"
calcul/balanced/worker: "Slave" 2 "working on problem" 2
calcul/balanced/worker: "Slave" 2 ‘"getting needed info from Master"
calcul/balanced: "Getting information from slave" 0
calcul/balanced/worker: "Slave" O "working on problem" 4
calcul/balanced/worker: "Slave" O "getting needed info from Master"
calcul/balanced: "Sending info to slave" 2

calcul/balanced: "Getting information from slave" 2
calcul/balanced/worker: "Slave" 2 "finishing calculation"
calcul/balanced/worker: "Slave" 2 "Reporting to Master"
calcul/balanced/worker: "Slave" 2 ‘"working on problem" 6
calcul/balanced/worker: "Slave" 2 "getting needed info from Master"

calcul/balanced: "Sending info to slave" 0

88

CHAPTER 6. DOING THE CALCULATION. 89

calcul/balanced: "Getting information from slave" 0
calcul/balanced/worker: "Slave" O "finishing calculation"
calcul/balanced/worker: "Slave" O "Reporting to Master"
calcul/balanced/worker: "Slave" O "working on problem" 8
calcul/balanced: "Sending info to slave" 2
calcul/balanced/worker: "Slave" 0 "getting needed info from Master"
calcul/balanced/worker: "Slave" 2 "finishing calculation"
calcul/balanced/worker: "Slave" 2 "Reporting to Master"
calcul/balanced/worker: "Slave" 2 "working on problem" 10
calcul/balanced/worker: "Slave" 2 "getting needed info from Master"
calcul/balanced: "Getting information from slave" 2
calcul/balanced: "Sending info to slave" 0

calcul/balanced: "Getting information from slave" 0
calcul/balanced/worker: "Slave" 0 "finishing calculation"
calcul/balanced/worker: "Slave" O "Reporting to Master"
calcul/balanced: "Sending info to slave" 2
calcul/balanced/worker: "Slave" 2 "finishing calculation"
calcul/balanced/worker: "Slave" 2 "Reporting to Master"
calcul/balanced: "Getting information from slave" 2
calcul/balanced: "Sending info to slave" 0

calcul/balanced: "Stopping slave" 0

bytes used=1964100, alloc=1441528, time=0.01

calcul/balanced: "Stopping slave" 2

bytes used=1966624, alloc=1441528, time=0.02
o, -1, 1, -3, 17, -155

> quit

bytes used=1969268, alloc=1441528, time=0.51

6.2 Load balancing code.

6.2.1 Overview.

If the system does not have balanced CPU power, then the code must balance the load.

Again this method uses the master/slave paradigm, although refinements to this have been made

which will be discussed later. Say at some time in the calculation there are k processes running to

CHAPTER 6. DOING THE CALCULATION. 90

calculate by, byy1, ..., byyr. If on the computation n+ s, (1 < s < k), the processor can do no more
calculations until the information of the value of b, is provided to it. Instead of waiting (as would
have been done in Section 6.1), this process will ask for more work. It will then start calculating

bn+k+1, and will get back to the calculations of b, s when the necessary information is available.

For technical reasons it was decided to have an intermediate process, the overseer, between the
master and the slave. This overseer’s job is to provide communication between the master and the
slave, as well as deciding when a slave can no longer continue working (as the information needed is

not available yet), and start a new calculation.

6.2.2 Details of algorithm.

There is one overseer per machine, and one master.

The master will wait until it receives a “need work” message from an overseer. At this point, the

master will send the overseer an index of something to be computed.

The overseer will first delegate the work to some slave (if creating the slave, the overseer will also

tell the slave everything that the overseer knows).

The slave upon creation/call will start its calculation of the index i given to it. If the slave gets
to a point where it needs more information, it will ask the overseer. Upon completion, it will send

back the calculation to the overseer and await new work.

The overseer, when it gets a request for information from a slave, will send the information, if
it is known. If the information is not known then the overseer will send a message to the master
asking for more work. The overseer will keep track that this slave is waiting for this information, and
when the overseer acquires this information, it will provide this information to the slave. When the
overseer receives the result of a calculation, it will send the result of this calculation to the master.

The overseer will ask for work if it has no slaves working (slaves get in each other’s way).

The overseer will constantly be waiting for information from the master. The master, when it

has a new calculation, will send the information to the other overseers.

This is summarized below in Figure 6.2.

CHAPTER 6. DOING THE CALCULATION. 91

Master

A L,B A passes information
c to B.

Data - b;

Work - 4

Need Work eed Work
Data - b; ata - b;
Overseer “penny” Overseer “perfect”

Parcels out work for the slaves.
Sends request for more work to the master.

Answers any questions from slaves.
One overseer per machine.

Need Data - j Need Data - j

Data - b; Data - b;

slave 1 slave n

Wait to be told what work to do.
Work on this until it is missing some information

and then asks overseer for information.
Returns data when it is finished work.

Figure 6.2: Load balancing master/overseer/slave diagram.

Example 34 Consider the following example. The first part is the master, which shows what the

CHAPTER 6. DOING THE CALCULATION. 92

master is asking the overseer to do. The second and third parts are the two overseers, which demon-

strates their side of the conversation.

1. The master,

N~/
AN [/1_.
\ MAPLE /

Maple V Release 5 (Simon Fraser University)
Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights
reserved. Maple and Maple V are registered trademarks of

Waterloo Maple Inc.

| Type 7 for help.

with(MS): with(process):

>

> Info[0] := 1:

> infolevel [MS] := 2:
> A :=

>

‘calcul/balancing/master‘ (bb, [perfect, pennyl, 10, 2, 2,

Euler, 125, Info):

calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
calcul/balancing/master:
>

> seq(A[i],i=0..10);

"Working on requested for work from perfect"
"Tell perfect to work on the value of 2"
"Working on requested for work from penny"
"Tell penny to work on the value of 4"

"Working on requested for work from perfect"
"Tell perfect to work on the value of 6"
"Working on requested for work from penny"
"Tell penny to work on the value of 8"

"Got some data for the value of 2 from perfect"
"Got some data for the value of 8 from penny"
"Working on requested for work from perfect"
"Tell perfect to work on the value of 10"
"Working on requested for work from penny"
"Tell penny to quit"

"Got some data for the value of 4 from penny"
"Working on requested for work from penny"
"Tell penny to quit"

"Got some data for the value of 6 from perfect"
"Got some data for the value of 10 from perfect"
"Telling perfect to quit"

"Telling penny to quit"

CHAPTER 6. DOING THE CALCULATION. 93

1, A[1], -1, A[3], 5, A[5], -61, A[7], 1385, A[9], -50521

> quit
bytes used=420460, alloc=393144, time=0.12

2. Qwverseer perfect,

N~/ Maple V Release 5 (Simon Fraser University)
I\ |/1_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
< > Waterloo Maple Inc.

| Type ? for help.

> with(MS): with(process): readlib(‘process/block®):

> readlib(‘calcul/writepipe‘):

>

> Info[0] := 1:

> Top := ‘egf/makeproc‘(‘top/ms/linalg/fft‘(2,exp(x)+exp(-x),f,x,2,0)):
> Bot := ‘egf/makeproc‘(‘bottom/ms/linalg/fft2¢(exp(x)+exp(-x),f,x,2)):
bytes used=1292572, alloc=1048384, time=0.35

>

> infolevel[MS] := 4:

>

> ‘calcul/balancing/overseer‘ (bb, perfect, Top, Bot, 2, 0, Info, 1, 1);
calcul/balancing/overseer: "Waiting for instructions"
calcul/balancing/overseer:

"Has 0 slaves O running O waiting and the message is Work"

calcul/balancing/overseer: "Got info from slave/master 0"
calcul/balancing/overseer: "Told to do work on 2 from O"
calcul/balancing/slave: "Slave 1 is waiting for instructions"
calcul/balancing/slave: "Slave 1 is working on determining the value for 2"
calcul/balancing/overseer: "Waiting for instructions"
calcul/balancing/slave: "Telling the overseer about the new value for 2"
calcul/balancing/slave: "Slave 1 is waiting for instructions"

calcul/balancing/overseer:

"Has 1 slaves 1 running O waiting and the message is Work"
calcul/balancing/overseer: "Got info from slave/master 0"
calcul/balancing/overseer: "Told to do work on 6 from O"

calcul/balancing/overseer: "Waiting for instructions"

CHAPTER 6. DOING THE CALCULATION. 94

calcul/balancing/overseer:
"Has 1 slaves 1 running O
calcul/balancing/overseer:
calcul/balancing/overseer:

calcul/balancing/overseer:

waiting and the message is Data"
"Got info from slave/master 1"
"Given some new data 2 from 1"

"Slave" 1 "is no longer working, "

"so give it outstanding work"

calcul/balancing/overseer:
calcul/balancing/slave:

calcul/balancing/slave:

calcul/balancing/overseer:
"Has 1 slaves 1 running O
calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/slave:

calcul/balancing/slave:

calcul/balancing/overseer:
"Has 1 slaves 1 running O
calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/overseer:

calcul/balancing/overseer:

bytes used=2293024, alloc=

calcul/balancing/overseer:
"Has 1 slaves 1 running 1
calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/overseer:
"Has 1 slaves 1 running 1
calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/overseer:
"Has 1 slaves 1 running 1
calcul/balancing/overseer:

calcul/balancing/overseer:

"Waiting for instructions"
"Slave 1 is working on determining the value for 6"

"Asking for data of " 2

waiting and the message is Need Data"
"Got info from slave/master 1"
"Asked for data" 2 "from" 1
"Waiting for instructions"

"Got some data 2 from 1"

"Asking for data of " 4

waiting and the message is Need Data"
"Got info from slave/master 1"
"Asked for data" 4 "from" 1
"Doesn’t know the info" 4 "for" 1
"Waiting for instructions"

1703624, time=1.04

waiting and the message is Data"
"Got info from slave/master O"
"Given some new data 8 from 0"

"Waiting for instructions"

waiting and the message is Work"
"Got info from slave/master O"
"Told to do work on 10 from 0"

"Waiting for instructions"

waiting and the message is Data"
"Got info from slave/master O"

"Given some new data 4 from 0"

calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/slave:
calcul/balancing/slave:
calcul/balancing/slave:
calcul/balancing/overseer:
"Has 1 slaves 1 running O
calcul/balancing/overseer:
calcul/balancing/overseer:

calcul/balancing/overseer:

CHAPTER 6. DOING THE CALCULATION.

"Telling waiting slave 1 about this data"
"Waiting for instructions"

"Got some data 4 from 1"

"Telling the overseer about the new value for 6"

"Slave 1 is waiting for instructions"

waiting and the message is Data"
"Got info from slave/master 1"
"Given some new data 6 from 1"

"Slave" 1

"is no longer working, "

"so give it outstanding work"

calcul/balancing/overseer:
calcul/balancing/slave:
10"
calcul/balancing/slave:
calcul/balancing/overseer:
"Has 1 slaves 1 running O
calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/slave:
calcul/balancing/slave:
calcul/balancing/overseer:
"Has 1 slaves 1 running O
calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/slave:
calcul/balancing/slave:
calcul/balancing/slave:
calcul/balancing/overseer:
"Has 1 slaves 1 running O
calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/overseer:
calcul/balancing/overseer:

calcul/balancing/overseer:

"Waiting for instructions"

"Slave 1 is working on determining the value for

"Asking for data of " 6

waiting and the message is Need Data"
"Got info from slave/master 1"
"Asked for data" 6 "from" 1
"Waiting for instructions"

"Got some data 6 from 1"

"Asking for data of " 8

waiting and the message is Need Data"
"Got info from slave/master 1"
"Asked for data" 8 "from" 1

"Waiting for instructions"

"Got some data 8 from 1"

"Telling the overseer about the new value for 10"

"Slave 1 is waiting for instructions"

waiting and the message is Data"
"Got info from slave/master 1"
"Given some new data 10 from 1"
"Slave 1 is no longer working"
"Ask for more work"

"Waiting for instructions"

95

CHAPTER 6. DOING THE CALCULATION.

calcul/balancing/overseer:

"Has 1 slaves O running O waiting and the message is Quit"

calcul/balancing/overseer: "Got info from slave/master 0"
calcul/balancing/overseer: "Telling the 1th slaves to quit"
calcul/balancing/slave: "Slave Quitting" 1

bytes used=2248948, alloc=1703624, time=0.02
calcul/balancing/overseer: "The 1th slave has quit"
calcul/balancing/overseer: "Everyones quit, time to go home"
> quit

bytes used=2600132, alloc=1703624, time=1.30
3. QOwverseer penny,

N~/ Maple V Release 5 (Simon Fraser University)
._INI [/1_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
< > Waterloo Maple Inc.

| Type 7 for help.

> with(MS): with(process): readlib(‘process/block®):

> readlib(‘calcul/writepipe‘):

>

> Info[0] := 1:

> Top := ‘egf/makeproc‘(‘top/ms/linalg/fft‘(2,exp(x)+exp(-x),f,x,2,0)):
> Bot := ‘egf/makeproc‘(‘bottom/ms/linalg/fft2¢ (exp(x)+exp(-x),f,x,2)):
bytes used=1292572, alloc=1048384, time=0.33

>

> infolevel [MS] := 4:

>

> ‘calcul/balancing/overseer‘ (bb, penny, Top, Bot, 2, 0, Info, 1, 1);
calcul/balancing/overseer: "Waiting for instructions"
calcul/balancing/overseer:

"Has O slaves O running O waiting and the message is Data"

calcul/balancing/overseer: "Got info from slave/master 0"
calcul/balancing/overseer: "Given some new data 8 from 0"
calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/overseer:
"Has O slaves O running O waiting and the message is Work"

calcul/balancing/overseer: "Got info from slave/master O"

CHAPTER 6. DOING THE CALCULATION.

calcul/balancing/overseer: "Told to do work on 4 from 0"
calcul/balancing/slave: "Slave 1 is waiting for instructions"
calcul/balancing/overseer: "Waiting for instructions"
calcul/balancing/slave: "Slave 1 is working on determining the value for
calcul/balancing/slave: "Asking for data of " 2

calcul/balancing/overseer:

"Has 1 slaves 1 running O waiting and the message is Need Data"

calcul/balancing/overseer: "Got info from slave/master 1"
calcul/balancing/overseer: "Asked for data" 2 "from" 1
calcul/balancing/overseer: "Doesn’t know the info" 2 "for" 1
calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/overseer:

"Has 1 slaves 1 running 1 waiting and the message is Work"

calcul/balancing/overseer: "Got info from slave/master 0"
calcul/balancing/overseer: "Told to do work on 8 from O"
calcul/balancing/overseer: "Already know the info"
calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/overseer:

"Has 1 slaves 1 running 1 waiting and the message is Data"

calcul/balancing/overseer: "Got info from slave/master 0"
calcul/balancing/overseer: "Given some new data 2 from 0"
calcul/balancing/overseer: "Telling waiting slave 1 about this data"
calcul/balancing/overseer: "Waiting for instructions"
calcul/balancing/slave: "Got some data 2 from 1"

calcul/balancing/slave: "Telling the overseer about the new value for 4"
calcul/balancing/slave: "Slave 1 is waiting for instructions"

bytes used=2292796, alloc=1572576, time=0.84
calcul/balancing/overseer:

"Has 1 slaves 1 running O waiting and the message is Data"

calcul/balancing/overseer: "Got info from slave/master 1"
calcul/balancing/overseer: "Given some new data 4 from 1"
calcul/balancing/overseer: "Slave 1 is no longer working"
calcul/balancing/overseer: "Ask for more work"
calcul/balancing/overseer: "Waiting for instructions"

calcul/balancing/overseer:
"Has 1 slaves O running O waiting and the message is Quit"

calcul/balancing/overseer: "Got info from slave/master O"

97

4|I

CHAPTER 6. DOING THE CALCULATION. 98

calcul/balancing/overseer: "Telling the 1th slaves to quit"
calcul/balancing/slave:

bytes used=2210520, alloc=1507052, time=0.01

"Slave Quitting" 1
calcul/balancing/overseer: "The 1th slave has quit"
calcul/balancing/overseer: "Everyones quit, time to go home"
> quit

bytes used=2346676, alloc=1572576, time=0.89

6.3 A large calculation.

As of submitting this thesis, the following upper bounds of calculations have been completed, as

shown in the Table 6.1. These calculations are available on the web at [1].

Bernoulli Euler Genocchi | Lucas numbers
numbers | numbers | numbers type II
Bottom recurrence 20 24 20 20
Top recurrence 18 16 20 14
Largest number 35 298 8 500 8 700 5 404

Table 6.1: Upper bounds of completed calculations.

The typical bottle neck for a calculation is with the linear algebra. If a proper Toeplitz matrix
solver were used, one would predict that the time to perform a calculation would be much improved.
For example, to calculate the denominator of the Bernoulli numbers, multisectioned by 20, it requires
only 7 minutes 15 seconds to determine the underlying matrix; the rest of the 2.6 days is to find the
solution associated with this 90 x 90 matrix. (The time here represents a CPU second as measured
by Maple on “penny”, CPU: MIPS R10000 Processor Chip Revision: 2.7.)

Similarly, when multisectioning the numerator of the Bernoulli numbers by 18 it takes 69.6
seconds to determine the underlying 24 x 24 matrix and the remained of the 116.35 seconds to solve
this linear algebra problem. (The time here represents a CPU second as measured by Maple on
“pecos”, CPU: MIPS R10000 Processor Chip Revision: 2.7.)

Next consider a large calculation of the Bernoulli numbers, say the first 1 800 Bernoulli numbers.
It takes 30.56 seconds to perform this calculation, using recurrences that have been multisectioned
by 18. (Hence only %—th of the information is calculated.) In contrast, the normal recurrence (which

by the nature of the Bernoulli numbers is multisectioned by 2) takes 527.61 seconds. Thus there is

527.61
30.56x9

a speed up of a factor of = 1.92 by multisectioning by 18. (Here, the extra factor of 9 comes

CHAPTER 6. DOING THE CALCULATION. 99

in because one would have to perform 9 different calculations to get all of the information using
the multisectioned method.) This demonstrates that these multisectioned recursion formulae, even
when used in serial environment upon a single computer, represent a significant speed up over the

traditional recursion formula.

If the multi-processor method described in Section 6.1 is used, with 5 slaves, with the recurrences
that has been multisectioned by 18, then it takes on average 6.20 seconds for each slave. (The master
takes an insignificant amount of processor time; taking less than half a second.) So the total processor
time is bounded above by 31.5 seconds. This indicates that about 3% of the processors time, when
using a multi-processor method, goes towards the overhead of communication. (In actual fact, this is
too high an estimate when doing a large calculation, but relatively little numerical data is available
at this time.) So these calculations can advantageously exploit parallel computing techniques. (The
time here represents a CPU second as measured by Maple on “manyjars”, 8 250 MHZ IP27 Processors
CPU: MIPS R10000 Processor Chip Revision: 3.4.)

6.4 Validating results.

When doing large calculations such as these, some methods to test if the calculations are done

correctly are needed, both for confidence and as a useful aid to debugging.

6.4.1 Validating the Bernoulli numbers.

To test if the calculation for the Bernoulli numbers is done correctly, the following theorem of von
Staudt [17] is used.

Theorem 6.1 (Clausen - von Staudt Theorem) Let Boy be the 2k-th Bernoulli number. If k >
1, then

(1) By =3~ (mod 1)

p

the summation being extended over the primes p such that (p — 1)|2k.
From which it follows that:
Corollary 11 Ifk > 1, then the denominator Of(_l)kBQk, where Bayy, 1s the 2k-th Bernoulli number

is equal to the demominator of Z% the summation being extended over the primes p such that
(b — 1)l2k.

CHAPTER 6. DOING THE CALCULATION. 100

Example 35 Thus, to test if the 10 008-th Bernoulli number, calculated as

N
3262901044146573454170

where N is a 27716 digit number, is correct, the denominator need only be checked.
Calculate (—1)* Z% for (p — 1)|2k where 2k = 10008 yields:

4402843531608629672099
3262901044146573454170

Noticing that the denominator of these two numbers is the same is a good indication that the calcu-

lation was done correctly.

6.4.2 Validating the Euler numbers.

To test if the calculation for the Euler numbers is done correctly, the following theorem of Glaisher
[14] is used.

Theorem 6.2 Let Esy be the 2k-th Euler number. For k > 0, and any r > 0:
Eg, = (=1)F2[1%F — 32k £ 5% — 4 (—1)Y20=D(r —2)2k] (mod 7).
Combining this with Fermat’s little theorem gives that:
Theorem 6.3 Let p be prime. If 2k = 2§ (mod p — 1) and Eay, Eaj the 2k-th and 2j-th Euler
numbers respectively then

EQk = Egj (mod p)

Example 36 Thus, to test if the 8 000-th Euler number, calculated as N where N is a 26 184 digit

number, is correct, look at N modulo a number of small primes.

CHAPTER 6. DOING THE CALCULATION.

Notice that

8000 =2 (mod 2) and F2 =2 (mod 3),
8000 =4 (mod 4) and F4 =0 (mod 5),
8000 =2 (mod 6) and E2 =6 (mod 7),
8000 =10 (mod 10) and Ejp =2 (mod 11),
8000 =8 (mod 12) and Es =7 (mod 13),
8000 =16 (mod 16) and E16 =0 (mod 17).

Thus N has the correct residues to be the 8 000-th Euler number, and it passes the test.

101

Chapter 7

Conclusion.

This thesis highlights the complex issues that arise when working in an environment, such as Maple,
where the code is not all written by the principle author, or to an agreed standard. One problem in
such a system is the necessary reliance on a mixture of code, some of which is very sophisticated,
some of which is more naive, some of which is written for a very general problem, and some of
which has been tailored to a specific problem. Hence the caveat in Sections 4.8 and 5.7 that the
conclusions therein were as to which implementation was fastest, and not to which method was
fastest. Another problem is in the debugging of code, where the underlying problem being tracked
down in the debugging process might not be within the code written, but instead in the system being
used. This could be either an incompatibility of the different functions within the system, a misuse
of an algorithm being offered by the system, or an actual problem with the algorithm within the

system. Hence the inclusion of Appendix D for bugs or weakness found in Maple.

Some of the achievements of this thesis include implementations of algorithms to multisection
rational poly-exponential functions. The new recursion formulae, that these algorithms yield, repre-
sent an improvement over the traditional methods of computing Bernoulli numbers, Euler numbers,
and other rational poly-exponential functions. Traditionally multisectioning has been looked at in
the narrow setting to its use in calculating Bernoulli numbers and Euler numbers. Here, the inves-
tigation was done in a more general setting; allowing a wider applicability of the multisectioning

process.

102

Appendix A

Outline of code.

This code can be found on my homepage [1]. It can also be found in Appendix E.

The appendix is laid into five sections. The first section will look at code for manipulating
poly-exponential functions. Section A.2 will look at code for manipulating exponential generating
functions. Section A.3 looks at the code to determine the metrics of different poly-exponential func-
tions. Section A.4 looks at the code to convert poly-exponential functions to exponential generating
functions and back, as well as code to convert linear recurrence relation to the recurrence polynomial
and back. Then Section A.5 will look at code for manipulating the bottom linear recurrence relation
of a rational poly-exponential function. After which Section A.6 will look at code for manipulating
the top linear recurrence relation of a rational poly-exponential function. Lastly Section A.7 will

deal with code to do the calculation, after the linear recurrence relations are know.

Within each section, a brief description of a piece of code, the command name, file where it can be
found, which example in the thesis demonstrates how it is used with a page reference, the expected

input and output of the command, and a reference to which theorems or definitions it automates.

A.1 Code for poly-exponential functions.

A.1.1 Naive method.

This will take a poly-exponential function and multisection it using the naive method, using the

definition of multisectioning as given in Definition 2.6.

e file: Pe,

103

APPENDIX A. OUTLINE OF CODE. 104

A.1.

command: ‘pe/ms/naive’,

examples: Example 5 pp. 17,

input: exponential generating function, m,

output: exponential generating function multisectioned by m,

reference: Lemma 2.1, Definition 2.6 and Theorem 2.1.

2 Linear algebra and symbolic differentiation method.

This method will take a poly-exponential function and multisection it by using symbolic differenti-

ation after which point the method will use linear algebra.

file: Pe,

command: ‘pe/ms/linalg/sym’,

examples: Example 22 pp. 51,

input: exponential generating function, (M, opt), m, g,

output: exponential generating function of the poly-exponential function multisectioned by m

at q,

reference: Section 4.3.

A.2 Code for exponential generating functions.

A.2.

1 Making procedure from an exponential generating function.

This will turn a linear recurrence relation into a procedure, which will calculate any particular value

of the linear recurrence relation.

file: Egf,
command: ‘egf/makeproc’,

examples: Example 21 pp. 49, Example 24 pp. 58, Example 25 pp. 59, Example 28 pp. 68,
Example 29 pp. 72, Example 33 pp. 87, and Example 34 pp. 91,

input: exponential generating function,

output: Function.

APPENDIX A. OUTLINE OF CODE. 105

A.2.2 Stripping zeros from exponential generating function.

This will take a multisectioned exponential generating function, and strip out the terms that are

known to be zero.

file: Egf,

e command: ‘egf/strip’

e examples: Example 31 pp. 76,

e input: exponential generating function, m, q,

e output: exponential generating function.

A.2.3 Naive method to multisection.

This will take an exponential generating function and multisection it using the naive method as given
in Definition 2.6.

o file: Egf,

e command: ‘egf/ms/naive’,

e examples: Example 5 pp. 17,

e input: exponential generating function, m, ¢

e output: exponential generating function multisectioned by m, at ¢,

e reference: Lemma 2.1, Definition 2.6 and Theorem 2.1.

A.2.4 Recurrence polynomial method.

This will take an exponential generating function and multisection it by multiplication of its recur-

rence polynomial.

e file: Egf,
e command: ‘egf/ms/rec’,

e examples: Example 19 pp. 45,

APPENDIX A. OUTLINE OF CODE. 106

e input: exponential generating function, m, q,
e output: exponential generating function multisectioned by m, at q,

e reference: Section 4.1.

A.2.5 Recurrence polynomial via resultants method.

This will take an exponential generating function and multisection it by using resultants.

o file: Egf,

e command: ‘egf/ms/result’,

e examples: Example 20 pp. 47,

e input: exponential generating function, m, q,

e output: exponential generating function multisectioned by m, at ¢,

e reference: Section 4.2.

A.2.6 Linear algebra method.

This will take the exponential generating function and use linear algebra to multisection the linear

recurrence relation.

o file: Egf,

e command: ‘egf/ms/linalg’,

e examples: Example 21 pp. 49,

e input: exponential generating function, M, m, q,

e output: exponential generating function multisectioned by m, at ¢,

e reference: Section 4.3.

APPENDIX A. OUTLINE OF CODE. 107

A.2.7 Compression method.

This will use compression techniques to multisection the linear recurrence relation of an exponential

generating function.

file: Egf,

e command: ‘egf/ms/compress,

e examples: Example 23 pp. 55,

e input: exponential generating function, m, ¢,

e output: exponential generating function multisectioned by m, at ¢,

e reference: Section 4.5.

A.3 DMetrics.

A.3.1 Metric deg’.

This is the code that will return deg?(s(z)) given input s(z).

file: Metric,

e command: ‘egf/metric/d‘, ‘pe/metric/d,

e examples: Example 8 pp. 19,

e input: exponential generating function or poly-exponential function,
e output: deg?(s(z)),

e reference: Definition 2.7.

A.3.2 Metric deg”.

This is the code that will return deg? (s(z)) given input s(x).

o file: Metric,

e command: ‘egf/metric/P*, ‘pe/metric/P*,

APPENDIX A. OUTLINE OF CODE.

e examples: Example 8 pp. 19,

e input: exponential generating function or poly-exponential function,

e output: deg® (s(z)),

e reference: Definition 2.7.

A.4 Conversions.

A.4.1 Convert to the recurrence polynomial.

This will convert a linear recurrence relation to a recurrence polynomial.

o file: Convert,

e command: ‘convert_poly‘,

e examples: Example 3 pp. 8,

e input: linear recurrence relation,
e output: recurrence polynomial,

e reference: Definition 2.2.

A.4.2 Convert to the linear recurrence relation.

This will convert a recurrence polynomial to a linear recurrence relation.

e file: Convert,

e command: ‘convert_rec’,

e examples: Example 3 pp. 8§,

e input: recurrence polynomial,

e output: linear recurrence relation,

e reference: Definition 2.2.

108

APPENDIX A. OUTLINE OF CODE. 109

A.4.3 Convert to the exponential generating function.

This will convert a poly-exponential function into an exponential generating function so that the

linear recurrence relation is easily read.

file: Convert,

e command: ‘convert_egf*,

e examples: Example 1 pp. 7,

e input: poly-exponential function,

e output: exponential generating function,

e reference: Lemma 2.1 and Theorem 2.1.

A.4.4 Convert to the exponential generating function.

This will convert an exponential generating function where the linear recurrence relation is easily

readable into a poly-exponential function.

file: Convert,

e command: ‘convert_pe’,

e examples: Example 2 pp. 8,

e input: exponential generating function,
e output: poly-exponential function,

e reference: Theorem 2.1.

A.5 Bottom linear recurrence relation.

A.5.1 Naive method.

This code will naively use the formula in Lemma 3.1 to determine the bottom linear recurrence

relation.

e file: Bottom,

APPENDIX A. OUTLINE OF CODE. 110

e command: ‘bottom/ms/naive’,

e examples: Example 13 pp. 30,

e input: poly-exponential function ¢(z), m,

e output: exponential generating function of []}" t(zwf,),

m

e reference: Lemma 3.1.

A.5.2 Fast Fourier transform and linear algebra.

Uses a combination of linear algebra and fast polynomial multiplication to determine the bottom

linear recurrence relation.

file: Bottom,

e command: ‘bottom/ms/linalg/fft‘, ‘bottom/ms/linalg/fft2¢,
e examples: Example 27 pp. 65 and Example 28 pp. 68,

e input: exponential generating function t(x), M, m,

e output: exponential generating function of []}", t(zwp,),

e reference: Section 5.2.

A.5.3 Symbolic differentiation and linear algebra.

This method uses a combination of symbolic differentiation and linear algebra.

e file: Bottom,

e command: ‘bottom/ms/linalg/sym¢,

e examples: Example 22 pp. 51,

e input: poly-exponential function t(z), 2M, m,

e output: exponential generating function of [}, t(zw},),

e reference: Section 4.3.

APPENDIX A. OUTLINE OF CODE. 111

A.5.4 Using the recurrence polynomial and resultants.

This will use the resultant to determine the linear recurrence relation.

e file: Bottom,

e command: ‘bottom/ms/result’,

e examples: Example 26 pp. 63,

e input: exponential generating function ¢(z), m,

e output: exponential generating function of []}", t(zw},),

e reference: Section 5.1.

A.5.5 Factoring out common polynomials.

This factors out common polynomials to simplify the problem. This can be used in combination

with any of the other methods.

o file: Bottom,

e command: ‘bottom/ms/factor,

e examples: Example 32 pp. 81,

e input: poly-exponential function ¢(zx), m,

e output: exponential generating function of (]!~ , t(zw?,)),

e reference: Section 4.7.

A.6 Top linear recurrence relation.
A.6.1 Naive method.
This code will naively use the formula in Lemma 3.1 to determine the top linear recurrence relation.

e file: Top,

e command: ‘top/ms/naive‘,

APPENDIX A. OUTLINE OF CODE.

e examples: Example 13 pp. 30,

e input: poly-exponential functions ¢(z), s(x), m, g,

e output: exponential generating function of (s(x) [T/ " t(aw?,))4,,

e reference: Lemma 3.1.

A.6.2 Fast Fourier transform and linear algebra method.

112

This will use a combination of fast polynomial multiplication and linear algebra to solve the problem.

e file: Top,

e command: ‘top/ms/linalg/fft¢,

e examples: Example 27 pp. 65,

e input: exponential generating function t(x), s(z), M, m, q,
m—1,

e output: exponential generating function of (s(z) [[\, t(zw?,))?

m>

e reference: Section 5.2.

A.6.3 Symbolic differentiation and linear algebra.

This uses a combination of symbolic differentiation and linear algebra.

e file: Top,

e command: ‘top/ms/linalg/sym°,

e examples: Example 22 pp. 51,

e input: exponential generating function of s(z),t(x), [[t(zw?,), m, q,
m—1,

e output: exponential generating function of (s(z) [/, t(azw?,))?

m>

e reference: Section 4.3.

APPENDIX A. OUTLINE OF CODE. 113

A.6.4 Computing top linear recurrence relation with bottom.

This computes the top linear recurrence relation given the bottom linear recurrence relation.

file: Top,
command: ‘top/ms/linalg/know,
examples: Example 29 pp. 72,

input: exponential generating function of s(z), t(z), []t(zw?,), m, g,

output: exponential generating function of (s(z) 1—[7;1 t(aw?)))d

m>

reference: Section 5.3.

A.6.5 Knowing probably linear recurrence relation.

This computes the initial values given the top linear recurrence relation, the bottom linear recurrence

relation and the recursion formula.

file: Top,

command: ‘top/ms/know",

examples: Example 29 pp. 72,

input: exponential generating function of s(z), t(z), []t(zw?,), m, g,
m—l,

output: exponential generating function of (s(x) [T/, t(azw?,))?

m>

reference: Section 5.3.

A.6.6 Computing new recurrence polynomial using resultants.

This computes the new recurrence polynomial by using resultants.

file: Top,
command: ‘top/ms/result’,
examples: Example 26 pp. 63,

input: exponential generating function s(z), t(z), m, g,

APPENDIX A. OUTLINE OF CODE.

e output: exponential generating function of (s(x) [T/ t(aw?,))4,,

e reference: Section 5.1.

A.6.7 Factoring out common polynomials.

This method will factor out common polynomials to simplify the problem.

combination with any of the other methods.

e file: Top,

e command: ‘top/ms/factor’,

e examples: Example 32 pp. 81,

e input: poly-exponential function s(z), t(x),

e output: exponential generating function of (s(x) [T/ " t(aw?,))4,,

e reference: Section 4.7.

A.7 Doing the calculation.

A.7.1 Normal method.

This is just the normal method, using only one processor.

e file: Normal,

e command: ‘calcul/normal’,

e examples: Example 13 pp. 30,

e input: linear recurrence relations, m, ¢, and how far to calculate.,
e output: the mi + g-th values ,

e reference: Theorem 3.1.

114

This can be used in

APPENDIX A. OUTLINE OF CODE. 115

A.7.2 Multiprocessor, even load-balance method.

This will assume multiple, evenly balanced processors, which this algorithm will take advantage of

with communication.

e file: Multi,

e command: ‘calcul/balanced’,

e examples: Example 33 pp. 87,

e input: linear recurrence relations, m, ¢, and how far to calculate,
e output: the mi + g-th values,

e reference: Section 6.1.

A.7.3 Multiprocessor, uneven load-balance method.

This will assume multiple, unevenly balanced processors. This algorithm will balance, and utilize

these processors with communication to perform calculations.

e file: Multi,

e command: ‘calcul/balancing’,

e examples: Example 34 pp. 91,

e input: linear recurrence relation, m, ¢, and how far to calculate,
e output: the mi + g-th values,

e reference: Section 6.2.

Appendix B

Notation.

Symbol, Meaning, Page,
a, (3, elements of C,

v, Euler gamma function, 1,
A 1, elements of C as e* or (z — \),

T, golden ratio, 1,
Wi, root of unity, 10,
¢(n), Riemann zeta function. 1,
a;, bi, d;, variables in a linear recurrence relation, 6,
Ci, variables in a recursion formula, 28,
deg®(f(x)), 19,
degP ((x)), 19,
f(z), g(x), h(z), functionsin R, 26,
12 (x), multisectioned function, 10,
i, j, k, indexes for sums, or products,

i, JG =1 =2)(G =7 +1)

m, by what a function is multisectioned, 10,
n, a fixed integer,

pi(x), ¢;(x) polynomials in z,

q to what a function is multisectioned, 10,
T an unrelated set of integers,

r(x), s(z), t(x) functions in P, 5,

116

APPENDIX B. NOTATION. 117

x variable,

Y variable of integration or resultant,

C Complex numbers,

CL(fe(x)), Compression, 53.
G, Catalan’s constant, 1,
N size of the linear recurrence relation in P,
Pf(z), Recurrence polynomial 8,
P, Poly-exponential functions, 5,
PRy Ry 10,
Pl ks 10,
Q Rationals,

R;, subrings of C,

R, Rational poly-exponential functions, 26,
R, 28,
RER2 33,
RR. Ry 33,
REuR2 33,
Ry Ro» 33,
Res,(p(z),q(x)), Resultant, 47,

7 Integers,

Appendix C

Definitions.

Definition, Symbol, Page,
Bernoulli numbers, T 27,
Bernoulli polynomials, e””f: 40,
Catalan’s constant, G, 1,
Chebyshev T polynomials, 23,
Compression, C4, (for some g and m), 53,
Compression by m, C4, (for some q), 53,
Compression by m at q, ca, 53,
Divide and conquer, 65,
Euler gamma function, v, 1,
Euler numbers e”_% 65,
Fast Fourier transform 65,
Fibonacci numbers, 8,
Genocchi numbers, efil 63,
Golden mean, T, 1,
Lacunary recurrence relation, 11,
Lacunary recursion formula, 30,
Linear recurrence relation, 6,
Lucas numbers type I, 17,
Lucas numbers type II, P 68,
Multisection, 2 (x) (for some g and m), 10,

118

APPENDIX C. DEFINITIONS.

Definition,

Symbol,

119

Page,

Multisection by m,

Multisection by m at g,

Padovan numbers,
Poly-exponential function,
Rational poly-exponential function,
Recursion formula,

Recurrence polynomial,

Resultant,

Riemann zeta function,

Symmetry of order p,

[() (for some g),

Res, (p(z), q(7)),
C(n)7

Appendix D

Maple bugs and weaknesses.

This appendix includes some email corresponding between myself and Maple Software concerning
bugs and weaknesses in their product. Some editing has been done on the letters for brevity as well

as grammatical and spelling corrections.

D.1 Bug 7345 - expand/bigpow and roots of unity.
From kghare Thu Nov 26 17:14:46 1998
Subject: expand/bigpow

To: mapledev@daisy.uwaterloo.ca

Why is ‘expand/bigpow‘ being called in the second case? It is noticeable

slower.

kernelopts(printbytes=false);
Poly := convert(taylor(exp(x)-1,x=0,73)*72!,polynom) :

readlib(profile);
readlib(‘expand/bigpow‘) :

profile(‘expand/bigpow‘):

120

APPENDIX D. MAPLE BUGS AND WEAKNESSES.

tt := time():

poly[2] := expand(subs(x=x*exp(4*Pi*I/5),Poly)):
time() - tt;

showprofile(‘expand/bigpow ‘) ;

tt = time();
poly[3] := expand(subs(x=x*exp(6*Pi*I/5),Poly)):

time() - tt;

showprofile(‘expand/bigpow‘) ;

> Poly := convert(taylor(exp(x)-1,x=0,73)*72!,polynom) :

> readlib(profile);

proc() ... end
> readlib(‘expand/bigpow‘) :
>
> profile(‘expand/bigpow‘) :
>
> tt = time():
> poly[2] := expand(subs(x=x*exp(4*Pi*I/5),Poly)):
> time() - tt;

.054

> showprofile(‘expand/bigpow‘) ;
function depth calls time time, bytes
expand/bigpow 0 0 0.000 0.00 0
total 0 0 0.000 0.00 0

> tt := time();
tt = .122

121

APPENDIX D. MAPLE BUGS AND WEAKNESSES.

> poly[3] := expand(subs(x=x*exp(6*Pi*I/5),Poly)):

> time() - tt;

> showprofile(‘expand/bigpow‘) ;

12.906

122

bytes Dbytes

37245244 100.00

function depth calls
expand/bigpow 2 1917
total 2 1917

From kghare Mon Nov 30 15:14:08 1998

Subject: Re: expand/bigpow

To: mapledev@daisy.uwaterloo.ca

I found an easier example demonstrating that something is

wrong. Noticed, I only changed which 5th root of unity

I was looking at.

> exp(2xPixI*2/5)~500;

12.877 100.00

500

exp(4/5 I Pi)

> expand (%) ;

> time();

> exp(2+Pi*I*3/5)~500;

.079

500

exp(- 4/56 I Pi)

> expand (%) ;

37245244 100.00

APPENDIX D. MAPLE BUGS AND WEAKNESSES.

bytes used=1000132,
bytes used=2000888,
bytes used=3001084,
bytes used=4001256,
<SNIP>

alloc=786288, time=0.19
alloc=1179432, time=0.40
alloc=1441528, time=0.68
alloc=1769148, time=1.00

bytes used=115099316, alloc=18477768, time=87.06
bytes used=116099516, alloc=18543292, time=88.17
bytes used=117099900, alloc=18739864, time=89.30
bytes used=119406568, alloc=19984820, time=90.15

This amount of time, (and for that matter, memory requirements)

doesn’t seem reasonable for a problem such as this.

Kevin

1

D.2 Bug 7357 - help for Euler.

Help for the Euler function was wrong.

From kghare Tue Dec

8 14:34:42 1998

Subject: Help page for Euler

To: mapledev@daisy.uwaterloo.ca

From the help page for the Euler function we have:

>euler - Euler numbers and polynomials

>

>Calling Sequence:

> euler(n)

> euler(n, x)

>

>Parameters:

> n - a non-negative integer
> X — an expression

>

>Description:

123

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 124

The function euler computes the nth Euler number, or the nth Euler
polynomial in x. The nth Euler number E(n) is defined by the exponential

>—
>

> generating function:
>

>

> 2/ (exp(t)+exp(-t)) = sum(exp(n)/n!*t"n, n = 0..infinity)
This line should read

2/ (exp(t)+exp(-t)) = sum(E(n)/n!*t"n, n = 0..infinity)

and there should be some description of what E(n,x) is, the nth Euler

polynomial.

Kevin

D.3 Bug 7497 - the “process” package.

From kghare Thu Oct 15 13:20:35 1998
Subject: Process Package in maple

To: mapledev@daisy.uwaterloo.ca

To: Stefan Vorkoetter;
cc: Maple Dev

I am currently trying to use the "process" package in Maple R5.
For some reason, the new forked processes are having problems

reading the library.
I get the error messages:

Error, (in DoWork) ¢/maple/mapleR5/1ib/process/block.m‘ is an incorrect or ou\
tdated .m file (rFfn)

> quit

bytes used=239656, alloc=262096, time=0.01

Error, (in DoWork) ¢/maple/mapleR5/1ib/process/block.m‘ is an incorrect or ou\

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 125

tdated .m file (ot3d)

> Error, (in Multi2) invalid subscript selector

This appears to be true on both the CECM machines at Simon Fraser University,
and daisy, at SCG. If you want to see a copy of the code,
it can be found in my daisy account at

“kghare/Multi2

If you don’t have access to daisy, and are interested in seeing

the code, just contact me, and I will mail it to you. (approx 236 lines)

If I have in my program,

unprotect (block) ;

block :=

and simply copy the code in, then everything works fine.
Except that it is an ever-growing list of files that I need to

do this to. (binomial, convert/string, type/odd, fprintf, close, readline, ...)

Any suggestions as to what I might be doing wrong would be appreciated.
I am too unfamiliar with the package to decide if it is a bug, or

I am just using it wrong.

Thanks

Kevin

From kghare Tue Nov 10 17:17:53 1998
Subject: Process Package

To: mapledev@daisy.uwaterloo.ca

When using the "process" package in maple, there is something
strange going on with the libraries and/or kernel after a fork
command. The child process does not seem to be able to access anything

in the library properly, and I get errors such as:

N~/ Maple V Release 5 (Simon Fraser University)

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 126

> read Multi;

> Multi(3,6);

Error, (in DoWork) could not find ‘process/block‘ in the library
Error, (in DoWork) could not find ‘binomial‘ in the library

> quit

bytes used=227108, alloc=262096, time=Error, exponent too large
maple: unexpected end of input

> quit

bytes used=227208, alloc=262096, time=Error, exponent too large
maple: unexpected end of input

Error, (in Multi) could not find ‘process/block‘ in the library

This is making the code very annoying to use, as I have to use
work-arounds to get around this bug. (I predefine anything that

the child process will need, so that the child process will not need to
access the library.) This is in the released version of maple, so it
is not simply a problem of rmaple being a bit out of sync. Further

it occurs both on the CECM machines (in particular "bb"), and on

the SCG machine (daisy), so it is not a problem with any particular

maple installation.

It would be nice if a patch or fix could be found for this, as I am

using this functionality in my research.

read Multi;

Multi(3,100);
Thanks

Kevin Hare

D.4 Bug with “process package” and bytes used message.

Subject: process([fork] and bytes used message
To: mapledev@daisy.uwaterloo.ca
Date: Wed, 27 Jan 1999 16:19:28 -0800 (PST)

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 127

When the process[fork] command is called, the options about printing bytes,
or not printing bytes is ignored by either the child of the parent.
(Probably the child.) Also, the printbytes message is not able to figure
out the time, and returns an error message. This was done with the

following scripts.

kernelopts(printbytes=false);

with(process):
A := procQ
local pid;

kernelopts(printbytes=false);

pid := fork();

if pid = O then # This is the child
print ("The child has run");
quit;

else # This is the parent
print ("The parent has run");

fi;

RETURNQ) :

> kernelopts(printbytes=false) ;

true

> with(process):

> A := proc()

> local pid;

> kernelopts (printbytes=false);

APPENDIX D. MAPLE BUGS AND WEAKNESSES.

> pid := fork();

> if pid = O then # This is the child
> print("The child has run");
> quit;

> else # This is the parent

> print ("The parent has run");
> fi;

> RETURN () :

> end;

A := proc(

local pid;

kernelopts(printbytes = false);

pid := fork(Q);

if pid = O then print("The child has run"); quit
else print("The parent has run")

fi;

RETURN ()

end

> AQ;
"The child has run"

"The parent has run"
bytes used=209100, alloc=196572, time=Error, (in A) exponent too large
> quit
> bytes used=209612, alloc=196572, time=Error, exponent too large

maple: unexpected end of input

> quit
bytes used=209184, alloc=196572, time=0.05

D.5 Bug with “process” package on xMaple.

Subject: process[fork] and xmaple interface

128

APPENDIX D. MAPLE BUGS AND WEAKNESSES.

To: mapledev@daisy.uwaterloo.ca

When using the process[fork] command, I get more than one
thread of execution running. As is standard, I must "quit"
all but one of these threads before returning control to

the command prompt level. Unfortunately, if I am using
xmaple, any quit command, from either the child, or the parent
will result in the worksheet exiting. Hence the following

procedure:

with(process);

A := proc(
local pid;

pid := fork();

if pid = O then # This is the child
print ("The child has run");
quit;

else # This is the parent
print ("The parent has run");

fi;

RETURNQ) :

end;

AQ;

This will run almost properly on the text based version (modulo the other

bug I just reported), but will terminate the worksheet if it is run under

xmaple (occasionally).

Kevin

129

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 130

D.6 Bug 7552 - factorial.

Subject: Kernel level factorial is slow, inefficient, and forgetful

To: bugkeeper@maplesoft.com

Below is a very rough version of a factorial function. It is
written using interpreted maple, where as the built-in versions
is kernel level. Despite the difference in speed of interpreted

code versus kernel level code, the interpreted version is considerably

faster.
N~/ Maple V Release 5 (Simon Fraser University)
> Facl := proc(n)
> local A;
> if n < 100 then RETURN (n!)
> else
> A = ((n"10-45*n"9+870%n"8-9450*n"7+63273*n"6-269325*n"5+
> 723680%n"4-1172700*%n"~3+1026576*n"2-362880%*n) * ‘ procname ‘ (n-10)) ;
> RETURN (A) ;
> fi;
> end
>
> tt := time(): Fac1(10000): time() - tt;

bytes used=1005196, alloc=982860, time=0.19

<SNIP>

bytes used=18202916, alloc=4259060, time=3.97
4.013

> tt := time(): 10000!: time() - tt;
11.516

Next, if we add some sort of memory to this function (for example,
here I remember every 100 th value), then the speed is greatly increased
for doing multiple calculations, (yet the memory requirements still

remain low).

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 131

Fac2 := proc(n)
local A;
if n < 100 then RETURN (a!)
elif (n = 0) mod 10 then
A = ((n~10-45%n"9+870*n"8-9450*n"7+63273*n"6-269325%n "5+
723680%n"4-1172700*n"3+1026576*n"2-362880%*n) * ‘procname ‘ (n-10)) ;
if (n=0) mod 100 then
‘procname‘(n) := A;
fi:
RETURN(A) ;
else
RETURN(‘procname‘ (n-1)*n) ;
fi;

end:

tt = time():

for i from 1 to 10000 by 19 do

Fac2(i):

od:

<SNIP>

bytes used=100348464, alloc=6945544, time=16.19
> time() - tt;

V V V V ¥V V V VvV VvV VvV V V V V V V V V V

16.263

tt := time():

for i from 1 to 10000 by 19 do

il:

od:

bytes used=101348908, alloc=6945544, time=22.80
bytes used=102359904, alloc=6945544, time=115.56
bytes used=103367344, alloc=6945544, time=262.03

vV V V VvV V

Killed as I didn’t have the patients to wait. But it is clear that it
is going to take more than 10 times the amount of time to finish.

(I estimated the time that it would take at around 3000 seconds,

but I don’t know exactly.)

APPENDIX D. MAPLE BUGS AND WEAKNESSES.

Kevin

D.7 Bug 5793 - Multi-argument forget does not work.

Subject: Forget forgets more than it should.

According to the help page for forget:

Calling Sequence:

forget(f,...)
forget(f,a,b,c,...)

Parameters:
f - any name assigned to a Maple procedure
a, b, ¢, ... - (optional) specific argument sequence for the function f
- options
<SNIP>
- forget(f,a,b,c,...) causes the value of f(a,b,c,..) to be ‘‘forgotten’’. As
with the one-argument case, the entry for the argument list a,b,c,... is

removed from the remember table for f and also from the remember table for

all functions whose names begin with f/.

<SNIP>

Yet this doesn’t even work with the example given in the help page.

\

\2

\4

\4

\4

f(x) 456:
£(y) 12:
£f(x),£(y);

456, 12

forget (f,x);
f(x),f(y);

132

APPENDIX D. MAPLE BUGS AND WEAKNESSES. 133

f(x), £(y)

It is forgetting too much.

Kevin

Appendix E

Code

E.1 Conversions.

File name: Convert.

Notation:

m.s. = multisection
r.p.e. = rational poly-exponential function
p.e. = poly-exponential function

e.g.f. = exponential generating function

macro(‘egf/clean’ = readlib(‘egf/clean®));

convert_pe
This will convert an e.g.f. to a p.e.
Input: e.g.f.

Output: p.e.

References: Theorem 2.1.

‘convert_pe‘ := proc(recur, f, var, init)

local poly, lambda, n, alpha, Pe, i, deg, Ped, eq, soln, Pez, Eq;
poly := convert_poly(recur, f, var, init);

lambda := [solve(poly, var)];
if has(lambda, RootOf) then

lambda := map(allvalues, lambda):
fi:

n := nops(lambda):

Pe := 0:
for i from 1 to n do
deg := degree(coeff(Pe, exp(varxlambda[il)), var)
if deg = -infinity then
deg := 0:
else
deg := deg + 1:
fi:

Pe := a[i] *exp(lambda[il*var)+*vardeg + Pe:

od:
Ped := Pe:

for i from 0 to nops(init) -1 do
Pez := subs(var=0,Ped):
Ped := diff(Pe, var)
eqli] := subs(init,f(i)=Pez):
od:

Eq := {seq(eq[il],i=0..nops(init)-1)};
Eq := simplify(Eq):
soln := solve(EQ);

Pe := subs(soln, Pe):

RETURN(Pe, var):

end:

pe/comb

Will take a sequence of p.e. components, and combine
ones with common lambda.

Input: seqn of p.e.

Output: seqn of p.e.

‘pe/comb‘ := proc(seqn)

local seqn2, lambda, temp, i;
userinfo(5,’MS’, "Combining lambdas together");
lambda := {};
=1{}
for i in seqn do
if member(i[2], lambda) then
temp := select(proc(x,y)

seqn2

if evalb(x[2] = y) then RETURN(true) fi; RETURN(false) end,

seqn2, i[2]);
seqn2 := seqn2 minus temp;
temp := op(temp);
temp[1] := radnormal(temp[1] + i[11);
seqn2 := seqn2 union {[temp[1],temp[2]1};

else
lambda := lambda union {i[2]};
seqn2 := seqn2 union {[i[1],i[2]11};
fi;
od;
RETURN (seqn2) ;
end:

#
#
#
#
#

convert_egf
Takes a p.e. and converts it to an e.g.f.

Input: p.e.

Output: e.g.f.

Reference: Theorem 2.1.

‘convert_egf‘ := proc(seqn, f, var)

134

local temp, poly, y, seqn2, size, i, init;

seqn2 := readlib(‘pe/convert‘) (seqn,var);

userinfo(3,’MS’, "Combining lambdas");

seqn2 := readlib(‘pe/comb‘) (seqn2);

userinfo(3,’MS’,"Creating polynomial®);

poly := mul((var-y[2])~(degree(y[1],var)+1),y=seqn2);

size := degree(poly,var);
userinfo(3,’MS’,"Expanding polynomial of degree", size);

poly := radnormal(expand(poly * var));

APPENDIX E. CODE

end:

userinfo(3,’MS’,"Creating Recurrence relation");

poly := convert_rec(poly,f,var);

userinfo(3,’MS’,"Finding taylor series (to deal with lambda 0)");
temp := add(y[1]*exp(var*y[2]),y=seqn2);

init := []:
for i from O to size-1 do

init

[op(init) ,f(i)=simplify(subs(var=0,temp))];
if (i mod 10) = 0 then
userinfo(3,’MS’, ‘Working on coeff®,i);
fi;
temp := expand(diff (temp,var));
od;

RETURN(‘egf/clean (poly, f, var, map(radnormal,init,expanded)));

pe/convert

#

Converts a p.e. to a segence of p.e.’s.

Input: p.e.

Output: sequence of p.e.’s.

‘pe/convert := proc(f,var)

option remember, system;

local func, t, combo, p, lambda, alpha, tt, counter;

userinfo(3, ’MS’, "Working on poly-exponential function");

func := convert(f,exp);
func := expand(func);

func := convert(func, exp);
func := combine(func, exp);

func := convert(func, exp);
userinfo(3, ’MS’, "Combining exp");

func := combine(func, exp);

if type(func, ‘+¢) then
func := [op(func)l;
else
func := [f];
fi;

userinfo(3, ’MS’, "Converting the", nops(func),

"terms to the correct type");

counter := 0;
=}

for tt in func do

combo

counter
if (counter mod 10) = O then

counter + 1;

userinfo(3,’MS’, "Working on number", counter);

:= combine(tt,exp);
:= frontend(degree, [t,varl);

=t / var'p;

o o oo

:= simplify(convert(t,exp));

if not has(t, var) then
alpha := t;
lambda := 0;
elif type(t,“*‘) then
lambda := select(has, t, var);
alpha := t/lambda;
lambda := op(1,lambda);

lambda := lambda/var;

else
alpha := 1;
lambda := op(1,t);
lambda := lambda/var;
£i
combo := [op(combo), [alpha * var“p, lambdall;

od;

combo

readlib(‘pe/comb*) (combo) ;
RETURN (combo) ;

end:

convert_poly
Converts the e.g.f. to its associate recurrence polynomial
Input: e.g.f.

Output: Recurrence polynomial

Reference: Section 2.3, Definition 2.2.

‘convert_poly‘ := proc(recur, f, var, init)

local size, temp, poly, i, tempi, VAR, k, egf;

userinfo(3,’MS’, "Converting to polynomial");

templ := expand(rhs(recur));

temp := {};

if type(templ,‘+‘) then
for i in templ do
if type(i,‘*‘) then
temp := {select(has,i,f)} union temp;
else
temp := {i} union temp;
£i;
od;
else
if type(templ, ‘*‘) then
temp := {select(has,templ,f)} union temp;
else
temp := {templ} union op(temp);
£i;
£i;
temp := map2(op,1, temp);
temp := subs(var=0,temp);
temp := min(op(temp));

size := -temp;

poly := rhs(recur);
userinfo(3,’MS’,"Creating Recurrence polynomial");
for i from size+l by -1 to 1 do
poly := subs({f(var-i) = VAR"(size-i)},poly);
od;
poly := expand(var”(size+1) - subs (VAR=var,poly)*var);

userinfo(3,’MS’,"Determine size of k");

if type(init,list) then

:= ‘egf/clean‘(recur, f, var, init);
nops (egf [4])-size - 1;

max(k,-1);

poly := expand(poly * var-k);

RETURN (poly) ;

end:

convert_rec

Converts the recurrence polynomial to the recurrence of some e.g.f.

#
#
Input: Recurrence polynomial
Output: Recurrence
Reference: Section 2.3, Definition 2.2.
‘convert_rec‘ := proc(Poly, f, var)

local size, VAR, poly, ij;

poly := Poly;

size := degree(poly,var);

userinfo(3,’MS’, "Expanding polynomial of degree", size);
poly := expand(poly * var);

poly := expand(poly/lcoeff (poly));

135

APPENDIX E. CODE

userinfo(3,’MS’,"Creating recurrence relation");
for i from size+l by -1 to 1 do
poly := subs({var~i=f(VAR-size+i-1)},poly);

od;

poly subs (VAR=var,poly);

poly := f(var) = solve(poly,f(var));
RETURN (poly) ;

end:

savelib(‘convert_pe‘, ‘convert_pe.m);
savelib(‘convert_egf‘, ‘convert_egf.m‘);
savelib(‘pe/convert‘, ‘pe/convert.m‘);
savelib(‘convert_poly‘, ‘convert_poly.m‘);
savelib(‘convert_rec‘, ‘convert_rec.m‘);

savelib(‘pe/comb‘, ‘pe/comb.m);

E.2 Metrics.

File name: Metric.

Notation:

m.s. = multisection

r.p.e. = rational poly-exponential function

p.e. = poly-exponential function

e.g.f. = exponential generating function

macro(‘pe/convert‘ = readlib(‘pe/convert‘),
‘pe/comb* = readlib(‘pe/comb‘)):

pe/metric/d

Takes a p.e. s and computes $degd(s)$
Input: p.e.

Output: $deg~d(p.e.)$

Reference: Definition 2.7.

‘pe/metric/d¢ := proc(pe, var)

local seqn;

userinfo(5,’MS’, "Determining the maximal degree polynomial of the".

poly-exponential function.");
seqn := [op(expand(pe))];

seqn := subs(exp=1,seqn);

seqn := simplify(seqn);

seqn := map(degree, seqn, var);
RETURN (max (op(seqn))) ;

end:

pe/metric/P

Takes a p.e. s and computes $deg”P(s)$
Input: p.e.

Output: $deg”P(p.e.)

Reference: Definition 2.7

‘pe/metric/P¢ := proc(pe, var)

local seqn, i, P, x;

userinfo(5,’MS’,"Determining the size of the recurrence relationship of ".

"the poly-exponential function");

seqn := ‘pe/convert®(pe, var);
seqn := ‘pe/comb‘ (seqn);

seqn [op(seqn)];

seqn
P o= 1;
for i in seqn do

P :=P + (i+1);
od;
RETURN (P-1) ;

end:

egf/metric/d
Takes a e.g.f. s and computes $deg d(s)$
Input: e.g.f.

= map(proc(x, var) RETURN(degree(x[1],var)) end, seqn,var);

Output: $deg”d(e.g.f.)
Reference: Definition 2.7
‘egf/metric/d¢ := proc(recur, f, var, init)

local poly, poly2, i, g;

userinfo(5,’MS’,"Determining the maximal degree polynomial of the ".

“exponential generating function");

poly := convert_poly(recur, f, var, init);

poly2
g := gcd(poly, poly2);
while g <> 1 do

:= diff (poly,var);

=i+ 1;
poly := g;
poly2 := diff (poly,var)
g := gcd(poly, poly2);
od;
RETURN (i) ;
end:

egf/metric/P
Takes a e.g.f. s and computes $deg P(s)$

#

#

Input: e.g.f.
Output: $deg”P(e.g.f.)

Reference: Definition 2.7

‘egf/metric/P¢ := proc(recur, f, var, init)

local poly;

136

userinfo(5,’MS’,"Determining the size of the recurrence relationship of ".

"the exponential generating function");

poly := convert_poly(recur, f, var, init);
RETURN (degree (poly,var));
end:

savelib(‘egf/metric/d‘, ‘egf/metric/d.m‘);
savelib(‘egf/metric/P‘, ‘egf/metric/P.m‘);
savelib(‘pe/metric/d‘, ‘pe/metric/d.m‘);
savelib(‘pe/metric/P¢, ‘pe/metric/P.m‘);

E.3 Poly-exponenial

function.

File name: Pe.

Notation:

m.s. = multisection
r.p.e. = rational poly-exponential function
p.e. = poly-exponential function

e.g.f. = exponential generating function

macro(‘egf/clean’ = readlib(‘egf/clean‘));

pe/ms/naive

M.s. the p.e. by m at q using the naive approach.

#

#

Input: p.e., m, q
Output: e.g.f.

Reference: Definiton 2.6.

Appendix A.1.1.
‘pe/ms/naive‘ := proc(func, f, var, m, q)

local pe, egf, k;
pe := func;

Ref: Definition 2.6.

userinfo(1,’MS’,"Multisectioning poly-exponential function");

pe := 1/m*sum(subs(var=var*(-1)~(2*k/m),pe)*(-1) " (-2*k*q/m) ,k=1..m);

userinfo(1,’MS’,"Convering multisectioned poly-exponential function to".

" an exponential generating function.");

egf := convert_egf(pe, f, var);

APPENDIX E. CODE

RETURN (‘egf/clean‘ (egf));

end:

pe/ms/linalg/sym

#
#
#

Here we determine the first $2 M m$ initial values (via
symbolic differentiation), and then use linear algebra

to solve the recurrence relationship.

Reference: Section 4.3.

#

‘pe/ms/linalg/sym‘

end:

Appendix A.1.2.
:= proc(func, £, var, m, q, N)
local C, MM, Ff, rec, i, initial, FF, Zero, B;

Zero := ‘pe/metric/d‘(func, var);
if nargs = 6 then
MM := N;
else
MM := ‘pe/metric/P‘(func,var);
£i;
userinfo(1, ’MS’, "Taking derivatives to determine taylor-series coeff");
if q <> 0 then
Ff := combine(expand(diff (func, [var$ql)),exp);
else
Ff := combine(func,exp);
fi;
clol eval(Ff,var=0);
for i from 1 to 2 * MM do
Ff := combine(expand(diff (Ff, [var$m])),exp);

C[i] := radnormal(eval(Ff,var=0));
od;

B := [seq(C[il,i=ceil((Zero-q)/m)..2+MM)];
userinfo(1, ’MS’, "Using linear algebra to determine recurrence of size",

2+MM) 5

‘recurrence/solve/linalg‘ (B, f, var, m);

:= proc(i, m, q, C)
if (i = @) mod m then
RETURN(C[(i-q)/m]);
else
RETURN(0) ;
fi;

end;

initial := [seq(f(i)=FF(i,m,q, C), i=0..MM * m - 1)];

RETURN(‘egf/clean‘(rec, f, var, initial));

pe/ms

#

M.s. the p.e. by m at q.

Input: p.e., m, q, method[methodarg]

Output: e.g.f.

‘pe/ms*‘

:= proc(pe, f, var, m, q, opt)

local i, method, methodarg, egf;

userinfo(1, ’MS’, "Multisectioning the poly-exponential function.

if nargs = 6 then
if type(opt, indexed) then
method :

‘pe/ms/*. (op(0, opt));
methodarg := op(1, opt);

else
method ‘pe/ms/‘.opt;
£i;
else
method := ‘pe/ms/linalg/sym‘;

£i;

if assigned(methodarg) then
egf := method(pe,f,var,m,q,methodarg) ;
else

egt := method(pe,f,var,m,q);

£i;

RETURN(‘egf/clean‘ (egf));

end:
#libname := libname(3], libname[1..2]:
savelib(‘pe/ms‘, ‘pe/ms.m‘);

savelib(‘pe/ms/linalg/sym‘, ‘pe/ms/linalg/sym.m‘);

savelib(‘pe/ms/naive, ‘pe/ms/naive.m‘);

137

E.4 Exponential generating

function.

File name: Egf.

Notation:

m.s. = multisection
r.p.e. = rational poly-exponential function
p.e. = poly-exponential function
e.g.f. = exponential generating function
macro (clean = readlib(‘egf/clean‘),
ifactors = readlib(ifactors),
forget = readlib(forget),
compress = readlib(‘egf/compress‘),
y = ‘egf/ms/variable/y‘,

nn ‘egf/makeproc/variable/nn‘,

uncompress = readlib("egf/uncompress‘));

egf/ms/naive

M.s. the e.g.f. using the naive method of converting it
to a p.e., and then m.s.’ing that using the definition of
m.s.

Input: e.g.f., m , q

Output: e.g.f.

Reference: Definition 2.6.

Appendix A.2.3.

‘egf/ms/naive‘ := proc(recur, f, var, init, m, q)

local pe, egf;

userinfo(1,’MS’,"Convering the exponential generating function".
" to a poly-exponential function".

" and multisection it");

pe := convert_pe(recur, f, var, init)[1];
egf := ‘pe/ms/naive‘(pe, f, var, m, q);
RETURN (clean(egf)) ;

end:

egf/ms/result
M.s. the e.g.f by looking at the recurrence polynomial, and

using resultants.

Output: e.g.f.

#

#

#

Input: e.g.f, m, q
#

Reference: Section 4.2.
#

Appendix A.2.5.
‘egf/ms/Tesult’

:= proc(recur, f, var, init, m, q)
local poly, rep, size;

size := ‘egf/metric/P‘(recur,f,var,init);

The maximum number of repeated roots.

rep := ‘egf/metric/d‘(recur,f,var,init);

Ref Lemma 2.5.

userinfo(1,’MS’, "Creating recurrence polynomial");

APPENDIX E. CODE

poly := convert_poly(recur,f,var,init);

size := size * m;
Section 4.2.

userinfo(1,’MS’, "Using resultants with the polynomial");
poly := resultant(subs(var=y,poly), y'm - var'm, y);
userinfo(1,’MS’, "Creating recurrence equation");
poly :=
poly := simplify(poly);

convert_rec(poly,f,var);

RETURN(clean(poly,f,var,readlib(‘egf/init ‘) (recur,f,var,init,size/m,m,q)));

end:

egf/ms/rec

M.s. the e.g.f. by looking at the recurrence polynomial, and
dealing with it in an approriate manner.

Input: e.g.f., m, q

Output: e.g.f.

Reference: Section 4.1.

Appendix A.2.4.

‘egf/ms/rec’ := proc(recur, f, var, init, m, q)

local poly, size, rep;

size := ‘egf/metric/P‘(recur,f,var,init);
The maximum number of repeated roots.
rep := ‘egf/metric/d‘(recur,f,var,init);

Ref Lemma 2.5.

userinfo(1,’MS’, "Creating recurrence polynomial");
poly :=
size

convert_poly(recur,f,var,init);

:= size * m;

Section 4.1.

userinfo(1,’MS’, "Multisection recurrence polynomial");
poly := readlib(‘egf/ms/rec/multi)(poly, var, m, 1, rep);
userinfo(1,’MS’, "Creating recurrence equation");

poly :=
poly :=

convert_rec(poly,f,var);

simplify(poly);

RETURN (clean(poly,f,var,readlib(‘egf/init*) (recur,f,var,init,size/m,m,q)));

end:

egf/ms/rec/multi

M.s. the recurrence polynomial

Input: poly, m

Output: poly

Reference: Section 4.1.
‘egf/ms/rec/multi® proc(f, x, m, d, rep)

local p, F, i, F2, G;

userinfo(3, ’MS’, "Using multiplication of recurrence to get ".
"the new multisectioned recurrence", d);

F o= 1;

Ref: Section 4.1.

if isprime(m/d) then

for i from O to m/d-1 do

F := expand(F #* subs(x=x*(-1)"(2*i*d/m),f));
od;
else
p := ifactors(m/d) [2] [1][1];
if nargs = 5 then
F2 := ‘procname‘(f,x,m,d*p, rep);
else
F2 := ‘procname‘ (f,x,m,d*p);
£i

for i from 0 to p-1 do
F := expand(F * subs(x=x*(-1)"(2*i*d/m),F2));
od;
fi;

if nargs = 5 then

G

for i from 0 to rep do

G := gcd(diff(G,x), @);

quo(F, G, x);

£i;

F expand(F / lcoeff(F, x)):

RETURN (radnormal (F)) ;
end:
egf/ms/compress
m.s. the e.g.f. by repeated m.s.’ing by prime factor,
compressing that result, and m.s.’ing again. method
used to m.s. the e.g.f. will default to linalg, but
can be choosed to be something else.
Input: e.g.f., m, g, (optional) method
Output: e.g.f.
Reference: Section 4.5.
Appendix A.2.7.

“egt/ms/compress*

N

:= proc(recur, f, var, init, m, g, opt, opt2)

local method, d, p, qi, g2, egf;

if nargs >= 7 then

method := ‘egf/ms/¢.opt;

else
method := ‘egf/ms/linalg;

£i;

userinfo(1, ’MS’, "Multisection the exponential generating function".
" using compression techniques and", method);

egf := recur, f, var, init;

d :=1;

Ref: Section 4.5.
while d <> m do
P ifactors(m/d) [2] [1] [1];
userinfo(2, ’MS’, "Calculating multisectioning by", d, "at", q2);
d :=d * p;
ql := ((q mod d)-q2)/d*p;
Q2 := g2 + d * qi/p;

egf method(egf,p,ql);
if d = m then break; fi;
egf compress(egf, p, q1);
od;
if nargs = 8 and opt2 = "Leave Compressed" then
RETURN (clean(compress (egf,p,q1))):
fi;

if m <> p then
egf := uncompress(egf, m/p, q-m/p*ql);

£i;

RETURN (clean(egf)) ;

egf/ms/linalg
M.s. the e.g.f. determining how large the recurrence polynomial
is and then calculating even mth term and using
linear algebra to determine the new recurrence

Input: e.g.f., m, q

Output: e.g.f.

Section 4.3.

Appendix A.2.6.

Reference:

138

APPENDIX E. CODE

‘egf/ms/linalg‘ := proc(recur, f, var, init, m, q)

local C, MM, Ff, rec, i, initial, FF, Zero;

egf/metric/P‘ (recur, f, var, init);

‘egf/metric/d‘ (recur, £, var, init);

userinfo(1,’MS’,"Make the procedure for the egf");

Ff := ‘egf/makeproc’ (recur, f, var, init);

for i from Zero to 2 * MM do
clil Ff (m*i+q) ;
od;

C := convert(C, list):

userinfo(1,’MS’,"Solve new recurrence using linear algebra"

rec := ‘recurrence/solve/linalg‘(C, £, var, m);

FF := proc(i, m, q, Ff)
if (i = q) mod m then
RETURN (F£ (1)) ;
else
RETURN(0)
£i;

end;

initial := [seq(f(i)=FF(i, m, g, Ff), i=0..MM * m - 1)];

RETURN(clean(rec, f, var, initial));

end:

egf/ms

M.s. the e.g.f. by m at q.

Input: e.g.f., m, q, method[methodarg]

#

Output: e.g.f.

‘egf/ms‘ := proc(recur, f, var, init, m, q, opt)

local i, method, methodarg, egf;
userinfo(1, ’MS’, "Multisectioning the egf");
if nargs = 7 then

if type(opt, indexed) then
method := ‘egf/ms/‘.(op(0, opt));

methodarg := op(1, opt);
else
method := ‘egf/ms/¢.opt;
fi;
else
method := ‘egf/ms/linalg®;

fi;

if assigned(methodarg) then

egf := method(recur, f, var, init, m, q, methodarg);
else
egf := method(recur, f, var, init, m, q);
fi;
RETURN (clean(egf));
end
egf/clean

#
#
#
#
#
#

Will look at the initial conditions and get rid of terms at the

end which are not required.
Input: e.g.f.

Output: e.g.f.

Reference: NONE

‘egf/clean‘ := proc(recur, f, var, init)

local Init, k, Recur, Value;

option system, remember;

userinfo(5,’MS’,"Getting rid of useless initial values");

Init := init;
k := nops(Init);
do

Recur := subs(var=k-1, recur);
Value := subs(init, Recur);
Value := simplify(lhs(Value)-rhs(Value));
if evalb(Value=0) then
Init := Init[1..-2];

k := k-1;
else
break;
fi;
od;
RETURN(recur, £, var, Init, args[5..nargsl]);
end:
egf/makeproc
This, given and e.g.f. and a function name, will return a recurrsive
function using the recurrence relationship of the e.g.f. and
the initial values given.
Input: e.g.f.
Output: procedure
Reference: Appendix A.2.1.

‘egf/makeproc := proc(recur, f, var, init, scale)

local maxinit, P, Rec, Procname, T, m, n;

userinfo(1,’MS’, "Making the procedure to calculate a recurrence");

maxinit := map(lhs,init);

maxinit := map2(op,1,maxinit);

maxinit := max(op(maxinit));

Rec := rhs(recur);

if Rec = NULL then Rec := 0; fi;

Rec := subs({var=nn, f=Procname}, Rec);

P := subs({REC=Rec,Init=init,MaxInit=maxinit, F= £},
(proc(*egf/makeproc/variable/nn‘)
option remember, system;
if ‘egf/makeproc/variable/nn‘ < O then
RETURN(0) ;

elif ‘egf/makeproc/variable/mn‘ <= MaxInit then
RETURN (subs (Init,F(‘egf/makeproc/variable/nn‘)));

else
RETURN (REC) ;
fi;
end));

This is a hack suggested by Greg Fee to allow me
to get the key word "procname" substituted into the
procedure, as uneval quotes won’t work.

P := subs(Procname=procna.me,op(P));

if nargs = 4 then
RETURN (op(P)) ;

else
T

m=0..degree(scale,var));
RETURN (unapply(T,i));
fi;
end:

egf/makeproc2

This, given and e.g.f. and a function name, will return a recurrsive

function using the recurrence relationship of the e.g.f. and

Input: e.g.f.

#
#
#
the initial values given.
#
Output: procedure

#

Reference: NONE (Yet)

“egf/makeproc2‘ := proc(recur, f, var, init, After, PROCNAME)

local maxinit, P, Rec, Procname, T, m;

userinfo(1,’MS’,"Making the procedure to calculate a recurrence");

maxinit := map(lhs,init);

maxinit := map2(op,1,maxinit);

add(coeff (scale,var,m)*expand(i!/(i-m)!)*’P’ (i-m),

139

APPENDIX E. CODE

maxinit := max(op(maxinit));

Rec := rhs(recur);
if Rec = NULL then Rec := 0; fi;

Rec

subs({var=nn, f=Procname}, Rec);

P := subs({REC=Rec,Init=init,MaxInit=maxinit, F= f, after=After,P=PROCNAME},

(proc (‘egf/makeproc/variable/nn‘)
option system, remember;
if ‘egf/makeproc/variable/mn‘ < 0 then
RETURN(0) ;
elif ‘egf/makeproc/variable/nn‘ <= MaxInit then
RETURN (subs (Init,F(‘egf/makeproc/variable/nn‘)));
else
forget(P, ‘egf/makeproc/variable/nn‘-after)
RETURN (REC) ;
£i;
end));

This is a hack suggested by Greg Fee to allow me
to get the key word "procname" substituted into the
procedure, as uneval quotes won’t work.

P := subs(Procname=procna.me,op(P));

RETURN (op(P)) ;

end:

#
#
#
#
#

egf/scale
Scale an e.g.f. by lambda
Input: e.g.f., lambda
Output: e.g.f.
Reference: NONE

‘egf/scale’ := proc(recur, f, x, init, lambda)

#
#
#
#
#

local poly, Recur, Init, i;

userinfo(5,’MS’, "Finding P~{f(lambda x))} given P"f and P"g");
poly
poly := subs(x=x/lambda,poly);

convert_poly(recur,f,x,init);

Recur := simplify(expand(convert_rec(poly,f,x)));

userinfo(5,’MS’, "Finding inital values for P~{f(lambda x))} ".
"given P°f and P g");
Init := [];

for i in init do

Init := [op(Init), op(1,i) = expand(op(2,i)*lambda~op([1,1],i))];

od;

Init := (expand(radnormal(Init)));

Note, do not "clean" these results.

RETURN (Recur, f, x, Init);

egf/compress
Compress an e.g.f. by m at q

Input: e.g.f., m, q

Output: e.g.f.

Reference: Section 4.5.

‘egf/compress‘ := proc(recur, f, x, init, m, q)

local Recur, Init, i, F;

userinfo(3, ’MS’, "Working on compressing recurrence");

Recur := subs([seq(f (x-m*i)=F(x-i),i=0..nops(rhs(recur)))],recur);
Recur := subs(f = 0 ,Recur);

Recur := subs(F = f ,Recur);

Init := map(proc(x, mm, q, init) local ij;

subs ([seq(i=(i-q)/mm, i=0..nops(init))],1hs(x)) = rhs(x);
end, init, m, q, init);

Init := simplify(Init);

Init := select(proc(eq) type(op([1,1],eq), integer) end, Init);

RETURN (clean(Recur, f, x, Init));

end:

egt /uncompress

Uncompress an e.g.f. by m at q

Output: e.g.f.

#
#
Input: e.g.f., m, q
#
#

Reference: Section 4.5.

‘egf/uncompress‘ := proc(recur, f, var, init, m, Q)

local i, egf, Imit, F, j;

egf := [clean(recur,f,var,init)];

userinfo(3, ’MS’, "Working on uncompressing recurrence")

140

egf[1] := subs([seq(var-i=var-mxi,i=1..‘egf/metric/P‘(op(egf)))],egf[11);

Init := [I;
for j from O to nops(egf[4])-1 do
Init := [op(Init),seq(F(i+j*m)=0,i=0..q-1), F(g+j*m)=£(j),
seq(F(i+j*m)=0,i=q+1..m-1)]
od;
Init := subs(egf[4],Init);
Init := subs(F=f,Init);

RETURN(clean(egf[1], egfl2], egf[3], Init));

end:

egf/init

Determine the first values up to N of the

function for every mth value starting at g.

Input: e.g.f., N, m, g

Output: list
Reference: NONE

‘egf/init¢ := proc(recur, f, var, init, N, m, q)

end:

local b, Init, i, s;

userinfo(4,’MS’,"Find initial values for a recurrence");

if not type(init[1],‘=‘) then RETURN(init); fi;

b := ‘egf/makeproc*(recur, f, var, init);

if nargs > 5 then
Init := [seq(seq(f(m*i+s)=Heaviside(s-q+1/2)*
Heaviside(q-s+1/2) *b(m*i+s),s=0..m-1),i=0..0M)]1;
else
Init := [seq(f(i)=b(i),i=0..M)];
fi;

RETURN (expand (radnormal (Init)));

egf/result

#

Determine the resultant of two e.g.f.’s.

Input: e.g.f. 1, e.g.f. 2

Output: e.g.f.
Reference: NONE

‘egf/result’ := proc(recurt, f1, xi, initl, recur2, £2, x2, init2)

local polyl, poly2, y, poly, rec, init, Init, init3, i, InitT, j, g;

userinfo(5,’MS’, "Finding Recurrence for P"{f g} given P"f and P°g")

polyl := convert_poly(recurl, £1, x1, init1);
poly2 := convert_poly(recur2, f2, x2, init2);

y := ‘egf/result/variablename/y‘;

poly := resultant(subs(x1=x1-y,poly1l),subs(x2=y,poly2),y);
poly := expand(poly);

radnormal (poly) ;

expand (poly) ;

:= convert_rec(poly, f1, x1);

userinfo(5,’MS’, "Finding inital values for P{f g} given P°f and P°g");

g i= ‘egf/result/procname/g:
init3 := subs(f2=g, init2);

APPENDIX E. CODE

Init := [I;
for i from 0 to min(nops(init1),nops(init2))-1 do
InitT := add(f1(j)*g(i-j)*binomial(i,j),j=0..i):

Init := [op(Init), f1(i) = expand(subs([op(initl1), op(init3)], InitT))];

od;

init := (expand(radnormal(Init)));

RETURN(clean(rec, f1, x1, init));

end:

egf/strip
Remove extrenous zeros from e.g.f.

#
#

Input: e.g.f.,
Output: e.g.f.,
#

Reference: Appendix A.2.2.

‘egf/strip‘ := proc(rec, f, x, init, m, q)

local Imit, i;

Init := NULL;
for i in init do
if (op([1,1], i) = @) mod m then
Init := Init, i;
£i;
od;

Init := [Init];
RETURN(rec, £, x, Init);

end:

savelib(‘egf/ms‘, ‘egf/ms.m‘);
savelib(‘egf/ms/result‘, ‘egf/ms/result.m‘);
savelib(‘egf/ms/rec’, ‘egf/ms/rec.n®);
savelib(‘egf/ms/rec/multi‘, ‘egf/ms/rec/multi.m‘);
savelib(‘egf/ms/linalg‘, ‘egf/ms/linalg.m‘);
savelib(‘egf/ms/compress*, ‘egf/ms/compress.m®);
savelib(‘egf/ms/linalg‘, ‘egf/ms/linalg.n‘);
savelib(‘egf/ms/naive’, ‘egf/ms/maive.n);
savelib(‘egf/clean‘, ‘egf/clean.m‘);
savelib(‘egf/strip‘, ‘egf/strip.m‘);
savelib(‘egf/makeproc, ‘egf/makeproc.m‘);
savelib(‘egf/makeproc2‘, ‘egf/makeproc2.m‘);
savelib(‘egf/scale‘, ‘egf/scale.m‘);
savelib(‘egf/compress‘, ‘egf/compress.m‘);
savelib(‘egf/uncompress‘, ‘egf/uncompress.m‘);
savelib(‘egf/init¢, ‘egf/init.m¢);
savelib(‘egf/result‘, ‘egf/result.m‘);

E.5 Denominator.

File name: Bottom.

Notation:

m.s. = multisection

r.p.e. = rational poly-exponential function
p.e. = poly-exponential function

e.g.f. = exponential generating function

macro(‘Fac‘ = readlib(’ ‘bottom/ms/linalg/fft2/factorial‘’),
ifactors = readlib(ifactors),
‘Expand‘ = readlib(‘bottom/ms/linalg/fft2/expand),
‘egf/clean‘ = readlib(‘egf/clean‘),
‘egf/init‘ = readlib(‘egf/init),
‘egf/result‘ = readlib(‘egf/result),
‘egf/ms/rec/multi‘ = readlib(‘egf/ms/rec/multif),
‘egf/scale = readlib(‘egf/scale?));

bottom/ms/naive
M.s. the bottom of a r.p.e. using the naive method

of using the product as given in Lemma 3.1.

Input: p.e., m

Output: e.g.f.

Reference: Lemma 3.1.

Description Appendix A.5.1.

‘bottom/ms/naive‘ := proc(pe, f, var, m)

end:

local omega, egf, pe_m, k;

userinfo(1, ’MS’, "Using naive method to find exponential generating".
" function");
omega := (k,m) -> exp(2*Pi*I*k/m);

Ref Lemma 3.1.
pe_m := (product (subs(var=var*omega(k,m),pe),k=1..m));
egf := convert_egf(pe_m, f, var);

RETURN (‘egf/clean‘ (egf));

bottom/ms/linalg/fft

o o

#

M.s. the bottom of a r.p.e. using a combination of
linear algebra and the \fft\ method of fast
polynomial multiplication. N is the size of

the recurrence (less gaps). So (exp(x)-1), x, 8

would use an N of 10.

Input: p.e., m, (optional) N

Output: e.g.f.

Reference: Subsection 5.2.1

Description Appendix A.5.2.
‘bottom/ms/linalg/fft¢ := proc(pe, f, var, m, N)

local p, d, Poly, poly, FF, initial, i, rec, C, M, Zero;

Ref Lemma 2.5

if nargs = 5 then

M := Nkm;
else

M := ‘pe/metric/P‘(pe,var) m+(m-1)*(‘pe/metric/d* (pe,var)+1);
fi;
userinfo(1, ’MS’, "Finding polynomial approximation for the

poly-exponential function of degree", 2#M+1);

Poly := (2M)!*(convert(taylor(pe,var=0,2*M+1),polynom));

d = 1;

Ref: Subsection 5.2.1.

userinfo(1, ’MS’, "Using fft to find a poly approx for the ".
"bottom for the given poly-exponential function");

while m <> d do
p := ifactors(m/d) [2] [1]1[1];
d :=d * p;

userinfo(2, ’MS’, "Dealing with primative", d, "roots of unity")
for i from 0 to p-1 do
poly[il := subs(var=var*(-1)"(2*i/d),Poly);
od;
Poly := poly[0];
for i from 1 to p-1 do
if M > 250 then
Poly := Expand(Poly, poly[il, var, m, 2M+1)/(2%M)!;
else
Poly := convert(series(expand(Poly* poly[il]),var,2*M+1),
polynom)/(2+M) !: fi;
od;
Poly := radnormal(Poly);
od;

Poly := Poly /(2+M)!;

Zero

:= ‘pe/metric/d‘(pe, var)+l;

for i from mkceil(Zero*p/m) to 2#M by m do
Cli/m-ceil(Zero*p/m)+1] := coeff(Poly,var,i)*i!;

od;

userinfo(1, ’MS’, "Using linear algebra to determine recurrence");

141

APPENDIX E. CODE

Ref: Section 4.3.

rec := ‘recurrence/solve/linalg‘(C, £, var, m);

FF := proc(i, m, g, Poly)
if (i = q) mod m then
RETURN (coeff (Poly,var,i)*i!);
else
RETURN(0) ;
£i;

end;

initial := [seq(f(i)=FF(i, m, 0, Poly), i=0..M - 1)];

RETURN (‘egf/clean‘(rec, £, var, initial));

end:

bottom/ms/linalg/sym
M.s. the bottom of a r.p.e. using a combination of
linear algebra and symbolic differentiation.
N is the size of the recurrence (less gaps).
So (exp(x)-1), x, 8 would use an N of 10.
Input: p.e., m, (optional) N
Output: e.g.f.
Reference: Section 4.4.

Description Appendix A.5.3.

‘bottom/ms/linalg/sym‘ := proc(pe, f, var, m, N)

egf := ‘pe/ms/linalg/sym‘(Pe, £, var, m, 0, N);
else
NN := ‘pe/metric/P‘(Pe, var);
egf := ‘pe/ms/linalg/syn‘(Pe, f, var, m, 0, ceil(NN/m));
£i
RETURN(‘egf/clean‘ (egf));
end:
bottom/ms/result
M.s. the bottom of a r.p.e. using a resultant
methods on the recurrence polynomial
This will give a valid recurrence relation,
although not necessarily minimal
Input: p.e., m
Output: e.g.f.
Reference: Section 5.1.
Description Appendix A.5.4.

‘bottom/ms/result‘

local i, egf, Pe, NN;

Ref Lemma 3.1.

userinfo(1,’MS’,"Taking the product of the poly-exponential function".

symbolically");

Pe := expand(product (subs(var=varxexp(2*Pi*Ixi/m), pe),i=1.

if nargs = 5 then

proc(pe, f, var, m)

local Recur, recur, p, d, init, i, Init, size, egf, degr;

d:=1;

userinfo(l, ’MS’, "Finding recurrision of the poly-exponential function");

egt = [convert_egf(pe, £, var)l;
Recur := egf[1];
Init := egfl[4];

Ref: Section 5.1.

userinfo(1, ’MS’, "Using resultant to find a recursion for the

"bottom for the given poly-expomential function");

while m <> d do
p := ifactors(m/d) [2]1[1][1];
d :=d * p;

userinfo(2, ’MS’, "Dealing with primative", d, "roots of unity");

size := ‘egf/metric/P‘(Recur, f, var, Init);

Init ‘egf/init (Recur, f, var, Init, size * m , 1, 0);

for i from 0 to p-1 do

recur[i] := ‘egf/scale‘(Recur, f, var, Init, (-1)"(2%i/d));

init[i] recur[i] [4];

recur[i] := recur[i][1];
od;

Recur

= recur[0];
init[0];
for i from 1 to p-1 do

Init

Recur

‘egf/result(Recur, f, var, Init,
recur[i], f, var, init[il);

Init := Recur([4];

Recur := Recur[1];

userinfo(3,’MS’, ‘Recur & Init are‘, Recur, Init, i);

od;

od;
size := ‘egf/metric/P‘(Recur, f, var, Init);

Init := ‘egf/init‘(Recur, f, var, Init, size, 1, 0);
egf := Recur, f, var, Init;

RETURN (‘egf/clean‘ (egf));

end:

bottom/ms/linalg/fft2/factorial

142

This will compute the factorial of a value in a recurrrse manner.
It will compute this faster than the kernel level factorial in
maple, (which is a major bug in maple).
To do this, it will store every 100th value, as computed, (so
1% of the information calculated is remember, we don’t want much
more than this for memory reasons.)
It will act recurrsively, with jumps of either 1 or 10, as required.
Input: n
Output: n!
‘bottom/ms/linalg/fft2/factorial® := proc(n)
option system;
local A;
if n < 100 then RETURN (n!) elif (n = 0) mod 10 then
A := ((n"10-45*n"9+870*n"8-9450%n"7+63273%n"~6-269325%n"5+
723680*n"4-1172700*n"3+1026576%n"2-362880%n) * ‘ procname ‘ (n-10)) ;
if (n=0) mod 100 then
‘procname ‘ (n)
fi:
RETURN(A) ;
else
RETURN (‘procname ‘ (n-1)*n) ;
£i;
end:

bottom/ms/linalg/fft2

% % o#

#

M.s. the bottom of a r.p.e. using a combination of
linear algebra and the \fft\ method of fast
polynomial multiplication. After the multiplication
to get $\prod f£(x \omega_m"-d i})$, we use linalg
to determine the new recurrence, and then recompute
the new polynomial to the required length.

This will cut down on the initial polynomial size.

Input: p.e., m

Output: e.g.f.

Reference: Subsection 5.2.2.

Description Appendix A.5.2.

‘bottom/ms/linalg/fft2‘ := proc(pe, f, var, m, Factors, Sym, Deg)

deg, sym, sym2, fact;

egf := convert_egf(pe, f, var): size := ‘egf/metric/P‘(egf);

if nargs >= 6 then

sym := Sym;

else

sym = 1;

£i;

local p, d, Poly, poly, i, rec, C, M, T, egf, size, Zero, MM, MMM, Poly2,

APPENDIX E. CODE

if nargs >= 7 then
deg := copy(Deg);
£i

if nargs >= 5 then
fact :

Factors;
else
fact := ifactors(m);
fact := fact[2];
fact := map(x->(x[11$(x[2])),fact);
£i
userinfo(1, ’MS’, "Using fft to find a poly approx for the ".
"bottom for the given poly-exponential function");

Ref: Subsection 5.2.2.

sym2 := 1;
while m <> d do
p := fact[1];
fact := fact[2..-1];

d:=d * p;

=

if (sym = 0) mod p then

userinfo(2, ’MS’, "Skipping primative ". d. "th roots of unity".

cause of symmetry");

sym := sym / p;
sym2 := sym2 * p;
next;
£i;
userinfo(2, ’MS’, "Dealing with primative ". d. "th roots of unity");

Ref: Lemma 2.5.
if nargs >= 7 then
M := deglil;
:= degl2..-1];

deg
else

M := (size"p) + px(‘egf/metric/d‘ (egf)+1);
£i

T := ‘egf/makeproc‘(egf);

userinfo(3, ’MS’, "Determining polynomial to degree", 2xM,

"Every", d/p, "term is present");

:= Fac(2*M):

for i from O to floor(2xM/dxsym2*p) do
Poly := Poly + T(d*i/p/sym2)*var”(d*i/p/sym2)*MM;
MM := MM/product(d/p/sym2*i+j,j=1..d/p/sym2);
if (i = 0) mod 10 then
userinfo(6, ’MS’, "Determined ", i*d/p/sym2, "term.");
fi;
od:

userinfo(5, ’MS’, "Scaling polynomials");

for i from 0 to p-1 do

poly[il := subs(var=var*x(-1)"(2*i/d),Poly);
od;

userinfo(5, ’MS’, "Multiplying the polynomials together");
Poly2 := subs(var=var*(-1)~(2*(p-1)/d),Poly):
for i from p-2 to 0 by -1 do

userinfo(5, ’MS’, "Scaling polynomials");

poly := subs(var=var*(-1)~(2*i/d),Poly);

if M > 250 then
Poly2 := Expand(Poly2, poly, var, mxd/p, 2xM+1)/MMM;
else
Poly2 := convert(series(expand(Poly2 * poly),var,2M+1),
polynom) /MMM;

£i;

userinfo(6, ’MS’, "Multiplied the ".i."th polynomial in");
Poly2 := radnormal(Poly2):
userinfo(6, ’MS’, "Normalized the polynomial");

od;

Poly := Poly2/MMM;

Poly2 := ‘Poly2‘:
Poly := radnormal(Poly);

userinfo(3, ’MS’, "Determining coefficents from polynomial);

Zero := ‘egf/metric/d‘(egf)+1;

for i from d/sym2*ceil(Zero*p/d) to 2*M by d/sym2 do
C[i/d*sym2-ceil(Zero*p/d)+1] := coeff (Poly,var,i)*Fac(i);

od;

143

userinfo(3, ’MS’, "Determining recurrence for polynomial with linalg");

rec := ‘recurrence/solve/linalg(C, f, var, d/sym2);#, "toeplitz");

egf := rec, f, var, [seq(f(i)=coeff(Poly,var,i)*Fac(i), i=0..M - 1)];

size := ‘egf/metric/P(egf): C i= 'C’;
od;

RETURN (‘egf/clean‘ (rec, f, var,
[seq(f (i)=coeff (Poly,var,i)*Fac(i), i=0..size - 1)1));

end:

bottom/ms/factor

M.s. the bottom using any method mentioned, but factors out
any polynomials first, which it returns as a last argument
Input: p.e., m, method[methodarg]

Output: e.g.f., scale

‘bottom/ms/factor‘ := proc(pe, f, var, m, opt)

local i, method, methodarg, egf, Pe, Poly, j;

userinfo(1, ’MS’, "Removing common polymomials before determining"

" exponential generating function");
if nargs = 5 then

if type(opt, indexed) then

method := ‘bottom/ms/‘.(op(0, opt));
methodarg := op(1, opt);
else
method := ‘bottom/ms/‘.opt;
£i;
else
method := ‘bottom/ms/linalg/fft2¢;
£i;

Pe := factor(pe);
if type(Pe, ‘*‘) then
Poly := select(x->(type(x,polynom(anything,var))), [op(Pe)]);
Pe := select(x->(not type(x,polynom(anything,var))), [op(Pe)]);
Poly);
Pe := mul(j,j=Pe);

Poly := mul(j,

else
if type(Pe,polynom(anything,var)) then
Poly := Pe;
else
Poly := 1;
£i;
fi;

if assigned(methodarg) then

egf := method(Pe,f,var,m,methodarg);
else

egf := method(Pe,f,var,m);
£i;

Poly := ‘egf/ms/rec/multi‘(Poly,var,m,1):
RETURN (“egf/clean (egf), Poly);

APPENDIX E. CODE

bottom/ms

#

M.

s. the bottom of the r.p.e. with a p.e. bottom by m

Input: p.e., m, method[methodarg]

Output: e.g.f.

‘bottom/ms

= proc(pe, £, var, m, opt)

local i, method, methodarg, egf;

user

info(1, *MS’, "Dealing with the bottom of the r.p.e.");

if nargs = 5 then

else

fi;

if type(opt, indexed) then
method := ‘bottom/ms/‘.(op(0, opt));
methodarg := op(1, opt);

else
method := ‘bottom/ms/‘.opt;

£i;

method := ‘bottom/ms/linalg/fft2¢;

if assigned(methodarg) then

else

£i;

egf := method(pe,f,var,m,methodarg) ;

egf := method(pe,f,var,m);

RETURN(‘egf/clean‘ (egf));

end:

#* % % owow

#
#

‘bottom/ms/1inalg/fft2/expand

bottom/ms/linalg/fft2/expand
Expands the product of two polynomials. Attempts to use

less memory than the maple kernal equivalent.

It wil

where

Input:
Output

1 look at the different components of the polynomial,

the degree falls into different residuals modulo omega.

polyl, poly2, var, omega, cutoff
: polylxpoly2
:= proc(polyl, poly2, var, omega, cutoff)

local p1, p2, y, i, j, p, Poly, A, T;

for

od:

od;

i from 0 to omega-1 do
pili mod omegal := O:
p2[i mod omegal := 0: i

i from 0 to omega - 1 do

userinfo(6,’MS’,"Got information for omega ".i.".");

pili mod omegal := add(var~(omegaxj + i)xcoeff(polyl, var, omega*j+i),
j= 0...ceil(cutoff/omega)+1);

p2[i mod omegal := add(var~(omega*j + i)*coeff(poly2, var, omega*j+i),

j=0...ceil(cutoff/omega)+1);

i from 0 to omega - 1 do
pli] := 0:

i from 0 to omega - 1 do
for j from O to omega - 1 do
userinfo(6,’MS’,"Dealing with p1[".i."], and p2[".j."1");
if nargs = 5 then
pL(i+j) mod omegal :=
pl(i+j) mod omegal +
convert (series(expand(p1[il*p2[j]),var,cutoff+1),polynom) ;
else
pl(i+j) mod omegal :=
pl(i+j) mod omegal + expand(pil[il*p2[jl);

fi;
od;
od;
userinfo(6,’MS’,"Adding back together"):
Poly := add(p[il,i=0..omega-1);
RETURN (Poly) :

end:

:= libname([3], libname[1..2]:
savelib(‘bottom/ms/naive‘, ‘bottom/ms/naive.m‘);
savelib(‘bottom/ms/linalg/fft‘, ‘bottom/ms/linalg/fft.m‘);
savelib(‘bottom/ms/linalg/sym‘, ‘bottom/ms/linalg/sym.m);

#libname

savelib(‘bottom/ms/result¢, ‘bottom/ms/result.m‘);

savelib(‘bottom/ms/linalg/fft2¢, ‘bottom/ms/linalg/fft2.m‘);

savelib(‘bottom/ms/linalg/fft2/expand®, ‘bottom/ms/linalg/fft2/expand.m®);

savelib(‘bottom/ms/factor‘, ‘bottom/ms/factor.m¢);

savelib(‘bottom/ms‘, ‘bottom/ms.m¢) ;

144

savelib(‘bottom/ms/linalg/fft2/factorial, ‘bottom/ms/linalg/fft2/factorial.m¢);

E.6 Numerator.

File name: Top.

Notation:

m.s. = multisection

r.p.e. = rational poly-exponential function
p.e. = poly-exponential function

e.g.f. = exponential generating function
macro(‘egf/clean‘ = readlib(‘egf/clean‘),

‘egf/result‘ = readlib(‘egf/result),

‘egf/scale’ = readlib(‘egf/scale’),

‘egf/init‘ = readlib(‘egf/init‘),
‘egf/ms/rec/multi‘ = readlib(‘egf/ms/rec/multi¢));

top/ms/naive
M.s. the top of the r.p.e. using the naive method.
Input: p.e. (top), p.e. (bottom), m, q
Output: e.g.f.
References: Lemma 3.1.
Appendix A.6.1.
‘top/ms/naive := proc(top, bot, f, var, m, q)
local omega, egf, pe_2, k;
userinfo(1,’MS’,"Using naive method to find exponential ".
"generating function");
Ref Lemma 3.1.
pe_2 := (top*product(subs(var=var*(-1)~(2*k/m),bot) ,k=1..m-1));
egf := ‘pe/ms/naive‘(pe_2, f, var, m, q);
RETURN (‘egf/clean (egf)) ;
end:
top/ms/linalg/fft
M.s. the top of a r.p.e. using a combination of
linear algebra and the \fft\ method of fast
polynomial multiplication. N is the size of
the recurrence (less gaps). So (exp(x)-1), x, x, 8
would use an N of 20.
Input: p.e. (top), p.e. (bottom), m, (optional) N
Output: e.g.f.
Reference: Section 5.2.
Appendix A.6.2.
‘top/ms/linalg/fft¢ := proc(top, bot, f, var, m, q, N)

local Poly, poly, FF, initial, i, rec, C, M, Zero;

Ref Lemma 3.6.
Zero := ‘pe/metric/d‘(top,var)+‘pe/metric/d‘ (bot,var)*(m-1)+1;
if nargs = 7 then

M := N#m;

else

M := mx(‘pe/metric/P‘(top,var)+1)*(‘pe/metric/P‘ (bot,var)+1)" (m-1)+Zero;

£i;

userinfo(1, ’MS’, "Finding polynomial approximation for the pe of size"

APPENDIX E. CODE

#
#
#
#
#
#
#
#
#

‘top/ms/linalg/syn‘

2+M+Zero) ;
Poly := (2%M+Zero) !*(convert (taylor (bot,var=0,2+M+Zero+1) ,polynom));

poly := (2*M+Zero) !*convert (taylor(top,var=0,2+M+Zero+1),polynom) ;
Ref: Section 5.2.
s,

userinfo(1, "Using £ft to find a poly approx for the "
"top for the given pe");
for i from 1 to m-1 do

poly

convert (series(expand(poly *
subs (var=varx*(-1) " (2*i/m) ,Poly)) ,var,2*M+Zero) ,polynom)/ (2*M+Zero) ! ;
poly

convert (series(expand(poly *
subs (var=varxexp(2*¥Pi*I*i/m),Poly)),var,2*M), polynom)/(2*M)!;
od;
poly := radnormal(poly / (2#M+Zero)!);
for i from g+m*ceil(Zero/m) to 2*M by m do
Cli/m-ceil(Zero/m)-q/m+1] :=
od;
for i from Zero to 2*M by m do
C[i-Zero+1] :=

coeff (poly,var,i)*i!;

coeff (poly,var,i)*i!;

od;

userinfo(1, ’MS’, "Using linear algebra to determine recurrence");
rec := ‘recurrence/solve/linalg‘(C, f, var, m);
FF := proc(i, m, q, poly)
if (i = @) mod m then
RETURN (coeff (poly,var,i)*i!)
else
RETURN(0) ;
£i
end;

initial := [seq(f(i)=FF(i, m, q, poly), i=0..M - 1 + q + Zero)l;

RETURN(‘egf/clean(rec, f, var, initial));

top/ms/linalg/sym
M.s. the top of a r.p.e. using a combination of
linear algebra and symbolic differentiation.
N is the size of the recurrence (less gaps).
So (exp(x)-1), x, x, 8 would use an N of 20.
Input: p.e., m, (optional) N
Output: e.g.f.
Reference: Section 4.3.

Appendix A.6.3.

proc(top, bot, f, var, m, q, N)
local i, egf, Pe;

Ref: Lemma 3.1.
userinfo(1,’MS’,"Taking the product of the poly-".

"exponential functions symbolically");

Pe := expand(product (subs(var=var*exp(2#Pi*I*i/m), bot),i=1..m-1)*top);
Pe := expand(product (subs(var=var*(-1)~(2*i/m), bot),i=1..m-1)*top);
if nargs = 7 then
egf := ‘pe/ms/linalg/syn‘(Pe, £, var, m, q, N);
else
egf := ‘pe/ms/linalg/sym‘(Pe, £, var, m, q);
£i;
RETURN(‘egf/clean‘ (egf));
end:
top/ms/result
M.s. the top of a r.p.e. using a resultant
methods on the recurrence polynomial
This will give a valid recurrence relation,
although not necessarily minimal

#
#

Input: p.e. (top), p.e. (bottom), m
Output: e.g.f.

Reference: Section 5.1.
Appendix 6.6.
‘top/ms/result‘ := proc(top, bot, f, var, m, q)
local RecurB, recur,
p, d, poly, FF, init, i, rec, C, InitB, size, egf, egfB,
recurB, initB, Size;
d H
userinfo(1, ’MS’, "Finding recurrision of the top and bottom")
egfB [convert_egf (bot, £, var)l;
egf := [convert_egf(top, f, var)]l;
recur := egf[1];
init := egf[4];
RecurB := egfB[1];
InitB := egfB[4];
Size := ‘egf/metric/P‘(op(egfB));
Ref: Section 5.1.
userinfo(1, ’MS’, "Using resultant to find a recursion for the ".
"top for the given poly-exponential functions");
for d from 1 to m-1 do
size := ‘egf/metric/P‘(recur, f, var, init) * Size;
init := ‘egf/init‘(recur, f, var, init, size, 1, 0);
recurB := ‘egf/scale‘(RecurB, f, var, InitB, (-1)"(2*d/m));
initB := recurB[4];
recurB := recurB[1];
initB := ‘egf/init‘(recurB, f, var, initB, size, 1, 0);
initB := radnormal(initB);
recur := ‘egf/result‘(recurB, f, var, initB, recur, f, var, init);
init := recur([4];
recur := recur[1];
init := map(radnormal,init);
od;
size := ‘egf/metric/P‘(recur, f, var, init);
init ‘egf/init‘(recur, f, var, init, size, 1, 0);
egf := ‘egf/ms/rec‘(recur, f, var, init, m, q);
egf := op(radnormal([egfl));
RETURN (‘egf/clean‘ (egf));
end:
top/ms/linalg/know
M.s. the top of a r.p.e. using a combination of
linear algebra and knowledge about the bottom, and actual
Tecurrence
N is the size of the recurrence (less gaps).
zero is the number of bad initial values to skip (defaults to 2)
Input: proc (bot), proc (actual), m, N, (optional) zero
Output: e.g.f.
Reference: Section 5.3.

‘top/ms/linalg/know‘

Appendix A.6.5.
:= proc(botP, actP, f, var, m, q, N, zero, shift)

local i, egf, Pe, Zero, j, temp, C, rec, initial, Shift;

if nargs >= 9 then
Shift := shift;
else
Shift := 0;
fi;

if nargs >= 8 then

Zero := zero;
else

Zero := 2;
£i;
initial := [seq(£(i)=0,i=0..Shift-1)];
userinfo(1l, ’MS’, "Determining top values");

for i from Shift to 2 * N *m + Zero do

145

APPENDIX E. CODE

j =g
if (i = q+Shift) mod m then
temp := add(binomial(i, gq+j*m)*actP(m*j+q)*botP(i-q-j*m),
j=0..(i-q)/m);
else
temp := 0;
£i
if (i = 0) mod 10 then
userinfo(2, ’MS’, "Determining value ".i);
£i;
if i > Zero and (i = q+Shift) mod m then
C[(i-q-Shift-ceil((Zero-q-Shift+1)/m)*m)/m+1] := temp;
fi;
initial := [op(initial),f(i)=temp];
od;

userinfo(1, ’MS’, "Using linear algebra to determine recurrence");

rec := ‘recurrence/solve/linalg‘(C, f, var, m);#, "toeplitzf");

egf := rec, f, var, initial;

RETURN (‘egf/clean‘ (egf));

end:

#
#
#
#
#

top/ms/factor
M.s. the top using any method mentioned, but factors out
any polynomials first, which it returns as a last argument
Input: p.e. (top), p.e. (bot), m, g, method[methodarg]
Output: e.g.f., scale

‘top/ms/factor¢ := proc(top, bot, f, var, m, g, opt)

local i, method, methodarg, egf, Pe, Poly, j, Top, PolyT, Bot,
PolyB, T, g, B, newq;

userinfo(1,’MS’,"Removing common polynomials before determining ".
"exponential generating function");
if nargs = 7 then
if type(opt, indexed) then
method := ‘top/ms/‘.(op(0, opt));

methodarg := op(1, opt);

else
method := ‘top/ms/¢.opt;
£i;
else
method := ‘top/ms/linalg/fft‘;

£i;

Top := factor(top);
if type(Top, ‘*) then
PolyT := select(x->(type(x,polynom(anything,var))), [op(Top)1);
PolyT := mul(j,j=PolyT);
else
if type(Top,polynom(anything,var)) then
PolyT := Top;
else

PolyT :

1;
fi
£i

Bot := factor(bot);

if type(Bot, *‘) then
PolyB := select (x->(type (x,polynom(anything,var))), [op(Bot)1);
PolyB := mul(j,j=PolyB);
else
if type(Bot,polynom(anything,var)) then
PolyB := Bot;
else

PolyB :

£i;
£i

T := product (subs (var=var*(-1)~(2+i/m) ,PolyB),i=1..(m-1))*PolyT;
T := simplify(T)
PolyT := simplify(PolyT):

PolyB := simplify(PolyB):
g:=T;
for i from 1 to m-1 do

g := ged(g, simplify(subs(var=var+(-1)"(2+i/m), T)));

g simplify(g):

if degree(g,var) = 0 then
g =1
break;

od;

PolyT := gcd(PolyT, g);

T := ‘egf/ms/rec/multi(PolyB,var,m,1);
T := ged(T,g):

PolyB := quo(T, simplify(g/PolyT), var):

Bot := Bot/PolyB;
Top := Top/PolyT;

if type(g, ‘+¢) then

146

if nops({op(map(x->x mod m, map(degree, [op(randpoly(x))1)))}) = 1 then

newq := (q-degree(g,var)) mod m;

else
newq "all";
£i;
else
newq := (q-degree(g,var)) mod m;

£i;

if assigned(methodarg) then

egf := method(Top,Bot,f,var,m,newq,methodarg) ;
else

egf := method(Top,Bot,f,var,m,newq);
£i;

RETURN(‘egf/clean‘ (egf) , g);

end:
top/ms
M.s. the top of the r.p.e. by m

Input: p.e. (top), p.e. (bot) m, method[methodarg]
Output: e.g.f.
‘top/ms‘ := proc(top, bot, f, var, m, q, opt)

local i, method, methodarg, egf;

userinfo(1, ’MS’, "Dealing with the bottom of the rational ".

“"poly-exponential function");

if nargs = 7 then

if type(opt, indexed) then

method := ‘top/ms/‘.(op(0, opt));
methodarg := op(1, opt);
else
method := ‘top/ms/‘.opt;
£i;
else
method := ‘top/ms/linalg/fft‘;

f£i;

if assigned(methodarg) then

egf := method(top, bot, f, var, m, q, methodarg);
else

egf := method(top, bot, f, var, m, q);
fi;

RETURN (‘egf/clean‘ (egf));

end:

top/ms/know

M.s. the top of a r.p.e. using knowledge about the bottom, and actual
values, and the recurrence
N is the size of the recurrence (less gaps).

APPENDIX E. CODE

Input: recurrence, proc (bot), proc (actual), m, N
Output: e.g.f.

Reference: Section 5.3.

Appendix A.6.6.

‘top/ms/know ¢

= proc(rec, botP, actP, f, var, m, g, N)
local C, init, egf, i, ml, qi, j:

C := (i, ml, q1) -> add(binomial(i, ql+j*m1)*actP(mi*j+ql)*botP(i-qi-j*m1),

3=0..(i-q1)/m1);

userinfo(2, ’MS’, "Getting initial values");

init := [seq(f(i) = C(i, m, @), i = 0 .. N*m)];
egf := ‘egf/clean‘(rec, f, var, init);

RETURN (egf) ;

end:

#libname := libname([3], libname[1..2]:
savelib(‘top/ms/naive‘, ‘top/ms/naive.m‘);
savelib(‘top/ms/linalg/fft‘, ‘top/ms/linalg/fft.m‘);
savelib(‘top/ms/linalg/syn‘, ‘top/ms/linalg/sym.m‘);
savelib(‘top/ms/result‘, ‘top/ms/result.m‘);
savelib(‘top/ms/linalg/know‘, ‘top/ms/linalg/know.m);
savelib(‘top/ms/factor, ‘top/ms/factor.m‘);
savelib(‘top/ms‘, ‘top/ms.m‘);

savelib(‘top/ms/know‘, ‘top/ms/know.m‘):

E.7 Linear Algebra.

File name: Linalg.

macro(linsolve = readlib(linalg) [linsolve],
rDot = readlib(‘recurrence/solve/toeplitz/rdot‘),

HankelSolver = readlib(‘recurrence/solve/hankel/solver),

Rev = readlib(‘recurrence/solve/toeplitz/rev‘));
recurrence/solve/linalg
Solves the recurrence relationship given the first
few initial values. The recurrence relationship returned
will be using the function and variable given.
Input: Value, fun, var, m
Output: Recurrence relationship
References: Section 4.3

‘recurrence/solve/linalg‘ := proc(Value, fun, var, m, toe)

local i, j, N, C, b, ans, rec;

save Value, "Value".m."Problem";

if true then #nargs=5 and toe = "hankel" then

RETURN (readlib(‘recurrence/solve/hankel) (Value, fun, var, m));
elif nargs=5 and toe = "toeplitz" then

RETURN (readlib(‘recurrence/solve/toeplitz‘) (Value, fun, var, m));
elif nargs=5 and toe = "toeplitzf" then

RETURN (readlib(‘recurrence/solve/toeplitzs ‘) (Value, fun, var, m));
£i;

userinfo(3, ’MS’, "Using linear algebra to determine the recurrence");
if type(Value,table) then
N := floor(nops(op([1,2],Value))/2);
elif type(Value,list) then
N := floor(nops(Value)/2);
£i;

userinfo(4, ’MS’, "Finding matrix of size ". N. " X ". N.".");

C := matrix(N,N):

for i from 1 to N do
for j from 1 to N do
Cli,j] := Value[i+j-11;

od;
od;

userinfo(4, ’MS’, "Finding vector of size ". N.".");

b := vector([seq(Value[i+N],i=1..N)1);

linsolve(C,b);

ans := convert(ans,list);

i:=1;
do
if has(ans, _t[i]) then
for j from 1 to N do
if has(ans[j] , _t[i]) then

ans := subs(_t[i] = solve(ans[j], _t[il),ans)
break;
£i;
od;
else
break
fi;
i=do+ 1
od;
rec := fun(var) = add(ans[il*fun(var-(N+1)#*m+i*m),i=1..N);
userinfo(5, ’MS’, "Returing recurrsion"):
RETURN (rec) ;
end:
‘recurrence/solve/hankel® := proc(Value, fun, var, m)

local N, H, X, i, rec;

userinfo(3, ’MS’, "Using George’s methods algebra to".
" determine the recurrence");

if type(Value,table) then
N := floor((nops(op([1,2],Value))-1)/2);

elif type(Value,list) then

= floor((nops(Value)-1)/2);

fi;
H := matrix(N,N+1, [seq(seq(Value[i+j],i=1..N+1),j=1..M)]1):

userinfo(4, ’MS’, "Finding matrix of size ". N. " X ". (N+1).".")

X := HankelSolver(H):

if abs(X[N+1,1]) <> 1 then print("Something is horribly wrong".
" 2+N needs to be bigger than ". (2*N));
RETURN ("ERROR") ;

fi;

rec := fun(var) = add(-X[N+1,11*X[i,1]*fun(var-(N+1)*m+i*m),i=1..N);

userinfo(5, ’MS’, "Returing recurrsion"):
RETURN (rec) ;

end:

‘recurrence/solve/hankel/solver := proc(A)

local i, z, C, F, n;

n := linalg[rowdim] (A);

C :=series(add(A[1,i]*z"(i-1),i=1..n)+add(A[n,i]*z" (n+i-2),i=2..n+1),z,
2#n+1) ;

F := denom(convert(C, ratpoly, n-1,n));

matrix(n+1,1, [seq(coeff (F,z,n-1i) ,i=

L)1)

Examples which I ran it on just as a check:

APPENDIX E. CODE

‘recurrence/solve/toeplitz/rdot‘ := proc(a,b)
local i, ans, n;
if a = 0 then RETURN(0); fi;
n := nops(a);

0;

for i from 1 to nops(a) do

ans

ans := a[i] * b[1+n-i] + ans;
od;

end:

‘recurrence/solve/toeplitz/rev‘ := proc(a)
local i, n, ans;
if a = 0 then RETURN(0); fi;
ans := [seq(alnops(a)+1-il,i=1..nops(a))];
RETURN (ans) ;

end:

‘recurrence/solve/toeplitz‘ := proc(Value, fun, var, m)

local r, s, y, £, g, delta, gamma, N, rp, sp, C, i, j, t, OLdN, 0ldN2,

ans, rec, Vvalue;

save Value, ToeplitzValue.m;

if type(Value,table) then
N := nops(op([1,2],Value));
Vvalue := NULL;
for i from 1 to N do

Vvalue

Vvalue, Value[il;
od;
Vvalue := [Vvalue];
Vvalue := convert(Value, list);
£i;

N := floor(nops(Vvalue)/2);
#print ("Original N", N);

01dN2

while Vvalue[N] = 0 do N := N-1 od;
01dN := N:
#B := matrix(N,N, [seq(seq(A(j-i+N-1),i=0..N-1),j=0..N-1)1);

t[0] := Vvalue[N];

userinfo(3, ’MS’, "Using toeplitz method to determine the recurrence");

for j from 1 to N-1 do
userinfo(4, ’MS’, "Setting up ".j."-th term of ".(N-1).".");
r[(N-j)] := Rev(Vvalue[j .. N-11);
s[(N-3)] := Vvalue[N+1 .. 2+N-j;
rplj] := Vvalue[N-j;
splj] := Vvalue[N+jl;
od:

ylol := 1/t[0];
£[0] 0;
glol :=0;

for i from 0 to N-2 do

userinfo(4, ’MS’, "Solving up "

."-th problem of ".(N-2).".");
gamma[i] := y[i] * rp[i+1] + rDot(£[il, r[il);
delta[i] := y[i] = spl[i+1] + rDot(glil, s[il);
if (delta[il * gamma[i] = 1) then
N =i+ 1;
break;
£i
yli+1] y[il / (1-deltalil * gamma[il);
if i = 0 then
fli+1]
gli+1]

else

y[i+11/y[i] * [-gamma[i] * y[il];
y[i+11/y[i]l * [-deltalil * y[ill;

£Li+1] := y[i+11/y[i] * [op(£[i] - gammalil * Rev(glil)),
-gamma[i] * y[ill;

gli+1] := y[i+11/y[i] * [op(gli] - deltalil * Rev(£[il)),
-deltal[il * y[ill;
£i;
od:

C := matrix(N,N);

Cl1,1] := yIN-11;

for i from 1 to N-1 do
C[1,i+1] := £[N-1][i];
Cli+1,1] := gIN-11[il;

od:

for i from 1 to (N-2) do
C[N,i+1] := g[N-1] [N-1-i];
Cli+1,N] := £[N-1]1[N-1-i];

od:

CIN,N] := y[N-1]:

print(C);

for i from 1 to N-2 do
for j from 1 to N-2 do

userinfo(4, ’MS’, "Finding value for ("

",".j.")-th entry");
Cli+1,j+1] := C[i,j] + 1/C[1,1] * (Cli+1,1]1*C[1,j+1] -
C[1,N-i+1] * C[N-j+1,11);
od;
od;

150,

i
print (matrix(V,1, [seq(Vvalue [01dN+i],i=1..N)1));
ans := evalm(C &+ matrix(N,1,[seq(Vvalue[01dN2+i],i=1..M)1));

#print ("N, 01dN, Ol1dN2", N, 0ldN, O1dN2, "ans", ans);

rec := fun(var) = add(ans[N+1-i,1]*fun(var-((01dN2-01dN)+N+1)*m+i*m),
i=1..N);
RETURN (rec) ;

‘recurrence/solve/toeplitzf‘ := proc(Value, fun, var, m)

local 1, s, y, £, g, delta, gamma, N, rp, sp, C, i, j, t, OldN,

ans, rec, Vvalue;
save Value, ToeplitzfValue.m;

if type(Value,table) then
N := nops(op([1,2],Value));
Vvalue := NULL;
for i from 1 to N do
Vvalue := Vvalue, Value[il;
od;
Vvalue := [Vvaluel;
£i;
N := floor(nops(Vvalue)/2);

01dN :

N;

while Vvalue[N] = 0 do N := N-1 od;

Digits := ceil(sqrt(N)*max(op(map(x->log[10] (abs(x)), Vvalue))));

Vvalue := map(evalf, Vvalue);

#B := matrix(V,N, [seq(seq(A(j-i+N-1),i=0..N-1),3j=0..N-1)1);

t[0] := Vvalue[N];

userinfo(3, ’MS’, "Using toeplitz method to determine the recurrence,".

" with ".Digits." digits accuracy.");
for j from 1 to N-1 do
userinfo(4, ’MS’, "Setting up ".j."-th term of ".(N-1).".")
r[(N-j)1 := Rev(Vvalue[j .. N-11);
s[(N-j)] := Vvalue[N+1 .. 2*N-jl;
rpl[j] := Vvalue[N-j];
sp[j] := Vvalue[N+j1;

od:

148

APPENDIX E. CODE

y[ol := 1/¢[0];
£[0] := 0;
glol := 0;

for i from 0 to N-2 do

userinfo(4, ’MS’, "Solving up ".i."-th problem of ".(N-2).".");

gamma[i] := y[i]l * rp[i+1] + rDot(£[i], r[il);
delta[i] := y[i] * sp[i+1] + rDot(glil, s[il);
#print (evalf (deltalil*gamma[i], 100));

if (evalf(deltal[il * gammalil, ceil(Digits/sqrt(N))) = 1.0) then

N =i+ 1

break;
£i;
y[i+1] := y[i] / (1-deltali] * gamma[il);
if i = 0 then

fli+1] := y[i+1]/y[i] * [-gamma[i] * y[il];
gli+1] y[i+11/y[i]l * [-deltalil * y[ill;
else
fli+1] y[i+11/y[i] * [op(£f[i] - gamma[i] * Rev(gl[il)),

-gamma[i] * y[il];

gli+1] := y[i+11/y[i] * [op(gli] - deltalil * Rev(£[il)),

-deltalil * y[ill;
£i;
od:

C := matrix(N,N);
c[1,1] := y[N-11;
for i from 1 to N-1 do
cl1,i+1] := £[N-1]1[i];
Cli+1,1] := gIN-11[i];
od:
for i from 1 to (N-2) do
CIN,i+1] := g[N-1][N-1-i];
Cli+1,N] := £[N-1][N-1-i];
od:
CN,N] := y[N-1]:
print(C);
for i from 1 to N-2 do
for j from 1 to N-2 do
userinfo(4, ’MS’, "Finding value for (".i.",".
Cli+1,j+1] := C[i,j] + 1/C[1,1] * (CLi+1,1]1*C[1,j+1] -
C[1,N-i+1] * C[N-j+1,11);

od;
od;

by,
print (matrix(N,1, [seq(Vvalue [01dN+i],i=1..N)1));
ans := evalm(C &* matrix(N,1,[seq(Vvalue[01dN+i],i=1..M)1));

#print (ans) ;
ans := map(round,ans);

#print (ans);
rec := fun(var) = add(ans[N+1-i,1]*fun(var-(N+1)*m+i*m),i=1..N);
RETURN (rec) ;

end:

savelib(‘recurrence/solve/linalg‘, ‘recurrence/solve/linalg.m‘);

savelib(‘recurrence/solve/toeplitz/rev, ‘recurrence/solve/toeplitz/rev.m‘);
savelib(‘recurrence/solve/toeplitz/rdot‘, ‘recurrence/solve/toeplitz/rdot.m‘)

savelib(‘recurrence/solve/toeplitz‘, ‘recurrence/solve/toeplitz.m‘);

savelib(‘recurrence/solve/hankel‘, ‘recurrence/solve/hankel.m‘);

savelib(‘recurrence/solve/hankel/solver’, ‘recurrence/solve/hankel/solver.m‘);

savelib(‘recurrence/solve/toeplitzf, ‘recurrence/solve/toeplitzf.m);

.")-th entry");

149

E.8 Performing the calcula-

tions.

File name: Normal.

calcul/normal

Perform the calculation using normal methods
Input: Recurrence

Output: Values

% Refence: Theorem 3.1.

“calcul/normal® := proc(Largest, Top, Bot, m, q, feq, File, Info)

local i, B, info, Value, j, s, work;

if nargs = 8 then
B := copy(Info);
for i from q to Largest by m do
if has(B[i] , B) then

work := ij
break;
£i;
od;
else
work := q:
£i;

for i from 0 to infinity do
if Bot(i) <> O then
s = i;
break;
£i;
od;

for i from work to Largest by m do

if not has(B[il , B) then
userinfo(3, ’MS’, "Knew the ". i. "th value already.");
next;

fi;

Value := Top(i+s);
userinfo(2, ’MS’, "Working on problem", i);

for j from q to i-m by m do
Value := Value - Bot(s+i-j)*B[jl*binomial(i+s,j);

od;
Value := Value / binomial(i+s,s)/Bot(s);
userinfo(3, ’MS’, "Determined ". i. "th value.");

B[i] := Value;

if nargs >= 7 then
if (i = 0) mod feq then
save B, File.i.‘.m‘;
fi;
f£i;
od;

RETURN (copy (B)) ;
end:

#libname := libname[3], libname[1..2]:

savelib(‘calcul/normal‘, ‘calcul/normal.m‘);

File name: Multi.

macro(binomial = readlib(binomial),
readpipe = readlib(‘calcul/readpipe‘),

writepipe = readlib(‘calcul/writepipe®));

APPENDIX E. CODE

#
#
#
#
#
#
#

calcul/balanced/worker
The slave that does all the work

Input: Recurrences

Output: NOTHING

Reads:

Values of other calculations.

Writes: Value to calculations performed

Reference:

Section 6.2.

‘calcul/balanced/worker® :=

proc(Largest, N, work, ReadPipe, WritePipe, Top, Bot, m, q, Info)

local i, B, info, Value, j, s, start, tt;

tt
B :

=t

ime():

copy (Info);

for i from work to Largest by mN do
if has(B[i], B) then

od;

od;

£i

start := i

break;

i from 0 to infinity do

if

Bot(i) <> 0 then

i from start to Largest by N+m do

Value :

Top(i+s);

userinfo(2, ’MS’, "Slave", work, "working on problem", i);

for j from q to max(q-m,i - N*m) by m do

od;

Value := Value - Bot(s+i-j)*B[jl*binomial(i+s,j);

for j from 0 to min(i-m, m*N-2%m) by m do

od;

userinfo(3, ’MS’,
info := NULL:
while info = NULL do

“"Slave", work, "getting needed info from Master");

info := readpipe(ReadPipe [work]);
od;

Blinfo[1]] := info[2];

userinfo(3, ’MS’, "Slave", work, "finishing calculation");

for j from max(q,i - Nm+m) to i-m by m do

od;

Value

userinfo(3,

Value := Value - Bot(s+i-j)*B[jl*binomial(i+s,j);

Value / binomial(i+s,s)/Bot(s);

’MS’, "Slave", work, "Reporting to Master");

writepipe (WritePipe [work], [i,Value]);

B[i]

:= Value;

print("Slave ".work." took",(time() - tt), "seconds."):

RETURNQ) ;
end:
calcul/balanced
The form of communication between the workers.
Input: Recurrences
Output: Values
Reads: Values of calculations.
Writes: Value to calculations.
‘calcul/balanced‘ := proc(N, Largest, Top, Bot, m, q, feq, File, Info)

local Slaves, Master, i, j, pid, work, info, 1, B, start, i2, k;

if nargs = 9 then

B

:= copy(Info);

for i from q to Largest by m do
if has(B[il, B) then

start := i;
break;
£i;
od;
else
start := q;
fi;
work q;

for i from q to (N-1)*m+q by m do
Slaves[i] := pipe();
Master[i] := pipe();

od;

for i from 1 to N do

pid := fork();
if pid = O then # Slaves
userinfo(1, ’MS’, "Starting up slave", work);

readlib(‘calcul/balanced/worker ‘)

(Largest, N, work, Slaves, Master, Top, Bot, m, q, B);

system("sleep 1");

userinfo(1, ’MS’, "Stopping slave", work);
quit;
elif i = N then # Master
if start <> q then
k := 1;
i := start mod N*m;
for i from (start mod N*m) to
(start mod Nxm) + (N-1)*m by m do
for j from i - (N-1)#m to i - m¥k by m do

userinfo(3, ’MS’, "Sending info to slave", i)

info := convert([j,B[jl],string);
writepipe(Slaves[(i mod N*m)1,[j, B[j11);
od;
k =k + 1;
od;
fi;

for j from start to Largest by m do

Get the info from the slaves.

userinfo(3, ’MS’, "Getting information from slave",
(§) mod N#m);

info := NULL;

while info = NULL do

info readpipe (Master [(j) mod Nxm 1);
od;
Blinfo[1]] := info[2];
info := convert(info,string);

Send info to next slaves.
if (j+m <= Largest) then
for i2 from (j-(N-2)*m) to j by m do
if i2 < O then next; fi ;
userinfo(3, ’MS’,

mod N*m) ;

"Sending info to slave", (j+m)

info := convert([i2, B[i2]],string);
writepipe(Slaves[(j+m) mod N*m],[i2, B[i2]1);
od;
fi;

if nargs >= 7 and ((j = 0) mod feq) then
userinfo(3, ’MS’, "Saving results so far")
save B, File.j.‘.n‘;

fi;

od;

150

APPENDIX E. CODE

fi

work := work + m;
od;

Wait for all the slaves to finish
for i from 1 to N do
wait();

od;

for i from q to (m-1)*N+g by m do
close(Slaves[il[11);
close(Slaves[il[2]);
close(Master [i][1]);
close(Master[i][2]);

od;

RETURN (copy (B)) ;

end:

savelib(‘calcul/balanced/worker‘, ‘calcul/balanced/worker.m‘);

savelib(‘calcul/balanced‘, ‘calcul/balanced.m);

File name: Multi2.

macro(binomial = readlib(binomial),
ceil = readlib(ceil),
frac = readlib(frac),
printf = readlib(printf),

#
#
#
#
#

readpipe = readlib(‘calcul/readpipe‘),
writepipe = readlib(‘calcul/writepipe),
readfile = readlib(‘calcul/readfile‘),

writefile = readlib(‘calcul/writefile®));

calcul/readpipe

Performs the reading of information from pipe
Input: pipe
Output: informaton read

Read: Informaiton

‘calcul/readpipe‘ := proc(pipeName, tries)

local info, check;

userinfo(5, ’MS’, "Reading information from pipe", pipeName);
if nargs = 2 then
userinfo(6, ’MS’, "Waiting", tries, "for pipe");
if FAIL = block(tries, pipeName[1]) then
userinfo(5,’MS’,"Failed to read from pipe");
RETURNQ) ;
£i
else
userinfo(6, ’'MS’, "Waiting forever for pipe", pipeName);
if FAIL = block(5,pipeName[1]) then
userinfo(5,’MS’,"Failed to read from pipe", pipeName);
RETURNQ) ;
£i;
£i;
userinfo(6, ’MS’, "Actually getting around to reading from pipe");
info := readline(pipeName[1]);
do
check := traperror(parse(info));
if check = lasterror then
info := cat(info, readline(pipeName[1]));
else
break;
£i
od;
info := check;

RETURN (info) ;

end:

#

calcul/writepipe

Performs the writing of information to pipe

Input: pipe, information

Output: Error messages

Write: Information

‘calcul/writepipe‘ := proc(pipeName, info)
local LineTolWrite, Length, Subline, LARCGE, k, t;
userinfo(5, ’MS’, "Writing information to pipe", pipeName);
LARGE 1078:

LineToWrite := convert(info,string);
Length := length(LineToWrite);
for k from 1 to ceil(Length/LARGE) do
SubLine := cat(LineToWrite[((k-1)*LARGE+1)
min(Length,k*LARGE)], "\n");
if FAIL = block(10,pipeName[2]) then
print("Couldn’t write to pipe");

RETURN(-1);
fi;
t := fprintf(pipeName[2],SubLine);
od;
RETURN(t) ;
end:

calcul/readpipe

Performs the reading of information from pipe
Input: pipe

Output: informaton read

Read: Information

‘calcul/readfile‘ := proc(fileName, tries)

local info, check, fd, maxTries, good, i, 11;

good := false;

if nargs = 2 then maxTries := tries else maxTries := infinity fi

userinfo(5, ’MS’, "Reading information from file", fileName)
for i from 1 to maxTries do

f£d := traperror (open(fileName,READ));

if fd = lasterror then
traperror (close(fileName));
next;

fi;

info := traperror(readline(fd));
if info = lasterror then
next;

fi;

check := traperror(parse(info));
if check = lasterror then
next;

f£i;

11 := traperror(close(fd));

do
11 := system("rm -f ".fileName);
if 11 = -1 then
print("It is not removing ".fileName." properly");
print("Giving up");
quit;
£i;
break;
od;

good := true;

break;
od;
if good then
info := check;
RETURN (info) ;
else
RETURN (NULL) ;

151

APPENDIX E. CODE 152

£i

end: userinfo(5,’MS’,"Got ", info, "from pipe");

calcul/writefile # If has some info. Now it has to figure out what it means

Performs the writing of information to file

Input: file, information # If it is a calculation request.

Output: Error messages if info[1] = "Work" then

Write: Information userinfo(1,’MS’,"Slave ".slaveNumber." is working on determining".

‘calcul/writefile®

proc(fileName, info, tries) " the value for ". (info[2]));

local fd, t, maxTries, i;

if nargs = 3 then j info[2];
maxTries tries;
else Value := Top(j+s):
maxTries := infinity;
£i; for i from q to largest by m do
Value := Value - Bot(s+j-i)*Info[i]*binomial(j+s,i);
t o= -1 od;
userinfo(5, ’MS’, "Writing information to file", fileName);
for i from 1 to maxTries do userinfo(5,’MS’,"Value, before asking master for help", Value);
£d := traperror (open(fileName,WRITE)) ;
if fd = lasterror then while largest+m < j do
userinfo(5,’MS’,£d);
traperror (close(fileName)); userinfo(3,’MS’,"Asking for data of ", largest+m)
if maxTries <> i then system("sleep 1"); fi; writepipe(writePipe, ["Need Data", largest+m])
userinfo(6, ’MS’, "Trying to write again");
next; do
£i; info := readpipe(readPipe);

if info <> NULL then break; fij;
t := writeline(fd, convert(info,string)); od;

traperror(close(fd)) ;

break; if info[1] = "Data" then
od; userinfo(3,’MS’,"Got some data ".(info[2])." from "
userinfo(6, ’MS’, "Finished writing information to file", fileName); .slaveNumber)
RETURN () ; userinfo(5,’MS’,"Using this new data")
end: Infol[info[2]] := info[3];

largest := info[2];

calcul/balancing/slave Value := Value - Bot(s+j-largest)*Info[largest]*
The slave that does all the work binomial (j+s,largest);
Input: Recurrences userinfo(5,’MS’,"Value, after asking master for help"
Output: - Value) ;
Read: What work to do, and other infomration
Write: Information discovered, and what info is needed. # Don’t know what the hell it is doing
‘calcul/balancing/slave‘ := proc(Known, readPipe, writePipe, Top, Bot, m, Q, else

slaveNumber) print("What the hell is going on, waiting for data", info);

local Info, info, largest, j, i, s, Value, q; quit
fi;
= Q mod m;
od;

Info := copy(Known);

Value

Value / binomial(j+s,s)/Bot(s);
userinfo(5,’MS’,"Figuring out how much info is known", slaveNumber);

for i from q to infinity by m do userinfo(2,’MS’,"Telling the overseer about the new value for ". j);
if has(Info[il, ‘Info‘) then break; fi; writepipe(writePipe, ["Data", j, Valuel);

od;

largest := i - m; elif info[1] = "Data" then

userinfo(5,’MS’,"Got new data", slaveNumber);
userinfo(5,’MS’, " "Knows info", seq(Infolm*it+ql,i=0..(largest-q)/m));
userinfo(5,’MS’,"Largest known is", largest, slaveNumber); Info[info[2]] := info[3];
largest := infol[2];

userinfo(5,’MS’,"Figuring out s value");

for i from O to infinity do # Just quit
if Bot(i) <> 0 then elif info[1] = "Quit" then
s i userinfo(2, ’MS’, "Slave Quitting", slaveNumber)
break; close(readPipe[1]);
£i; close(readPipe[2]);
od; close(writePipe[1]);

close(writePipe[2]);
. RETURNQ) ;

userinfo(3,’MS’,"Slave ".slaveNumber." is waiting for instructions");

do # Don’t know what the hell it is doing.
info := readpipe(readPipe); else
if info <> NULL then break; fi; print("What the hell is going on got", info, slaveNumber)

od; quit;

APPENDIX E. CODE

fi
od;

end:

calcul/balancing/overseerer

The communication on one machine

Input: Recurrences

Output: -

Read: What work to do, and other information

Write: Information discovered, and what info is needed.

‘calcul/balancing/overseer® := proc(Host, Me, Top, Bot, m, q, Known,
numProcs, maxPipes)

local readPipe, writePipe, info, numSlave, Info, slaveWait, slaveWork,

Quit, slaveQuit, pid, i, j, workOn, messageSender, numProc, maxPipe, 11;

workOn := []:
if nargs >= 7 then

Info := copy(Known);

£i;
if nargs = 9 then
maxPipe := maxPipes;
else
maxPipe := 6;
£i;
if nargs >= 8 then
numProc := numProcs;
else
numProc := 1;
£i;
numSlave := 0:

writefile(cat(Me,2,Host), ["Need Work"]);

do
userinfo(3,’MS’, "Waiting for instructions");

info := NULL;

do
nessageSender := 0:
info := readfile(cat(Host,2,Me),1);
if info <> NULL then break; fi;
for messageSender from 1 to numSlave do
info := readpipe(readPipe[messageSender],0);
if info <> NULL then break; fi;
od;
if info <> NULL then break; fi;
od;

". numSlave. " slaves ".

userinfo(1, ’MS’, "Has
(numboccur ([seq(slaveWork([i],i=1..numSlave)],true))

." running ". (numSlave - numboccur([seq(slaveWait[i],

i=1..numSlave)],false)) ." waiting and the message is "
(info[11));

userinfo(5, ’MS’, "Got info", info, "from ", messageSender);

userinfo(3, ’MS’, "Got info from slave/master ". messageSender);

Need to figure out what the message is

Find or create somebody to do the work
if info[1] = "Work" then
userinfo(1,’MS’,"Told to do work on ".(info[2])." from "

nessageSender) ;

if not has(Infolinfo[2]],’Info’) then
userinfo(2, ’MS’, "Already know the info");

writefile(cat(Me,2,Host), ["Data",info[2], Infol[info[2]1]1);

Top(info[2]);
Bot (info[2]);
if workOn = [] then
writefile(cat(Me,2,Host), ["Need Work"]);
£i;
next;
£i;

for i from 1 to numSlave do

153

if slaveWork[i] = false then break; fi;
od;

if i > maxPipe then

workOn := [op(workOn),info[2]];

Create a new slave
elif i > numSlave then

userinfo(5,’MS’,"Creating new slave",i,"to work on ",info[2]);

numSlave i;
slaveWork[i] true;
slaveQuit[il false;
slaveWait[i] := false;
readPipe[i] := pipe();
writePipe[i] := pipe();
Top(info[2]);
Bot(info[2]);

pid := fork();

The Slave
if pid = 0 then
‘calcul/balancing/slave (Info, writePipe[i], readPipe[i],
Top, Bot, m, q, i);
quit;
f£i;

writepipe (writePipe[il,info);

Use an old slave
else
userinfo(5,’MS’,"Telling old slave ". i. " to work on ".
info[2]);
slaveWork[i] := true;
writepipe(writePipe[il,info);
£i;

Check to see if the data is known
If it is, return it to the slave

If it isn’t, put that slave in pending, and send off a need work
elif info[1] = "Need Data" then

userinfo(1,’MS’, "Asked for data", info[2], "from", messageSender);

Doesn’t know the information
if has(Info[info[2]],Info) then
userinfo(1,’MS’,"Doesn’t know the info", infol[2], "for",
messageSender) ;

slaveWait [messageSender] := info[2];

if (numboccur([seq(slaveWork([1],1=1..numSlave)],true) -
(nunSlave - numboccur ([seq(slaveWait[1],
1=1..numSlave)], false))) < numProc and workOn = []
then
writefile(cat(Me,2,Host), ["Need Work"]);
system("./sleepsm");
fi;

It knows the information
else
userinfo(5,’MS’,"Does know the info");
writepipe (writePipe [messageSender],
["Data",info[2],Info[info[2]]]);
fi;

Deal with the data give overseer

Check to see if any slaves are waiting on it

If they are, make sure they get the information
elif info[1] = "Data" then

userinfo(1,’MS’, "Given some new data ".(info[2])." from "
messageSender) ;

Infol[info[2]] := info[3];

for j from 1 to numSlave do

if slaveWait[j] = info[2] then

APPENDIX E. CODE

userinfo(3, ’MS’, "Telling waiting slave ". j. " about

"this data");

11 := writepipe(writePipe(j],
["Data",info[2],Infolinfo[2]11);
slaveWait[j] := false:
£i
od;

If this data came from a slave, then we might need more
work for the slave to do, and tell the master.
if messageSender <> 0 then
slaveWork [messageSender] := false;
writefile(cat(Me,2,Host), ["Data",info[2],info[3]11);
if workOn = [] then
userinfo(2,’MS’,"Slave ". messageSender.

" is no longer working");

if (numboccur([seq(slaveWork[1],1=1..numSlave)], true) -

(numSlave - numboccur([seq(slaveWait[1],
1=1..numSlave)], false))) <
numProc then
userinfo(2,’MS’,"Ask for more work");
writefile(cat(Me,2,Host), ["Need Work"]);
fi;
else
userinfo(2,’MS’,"Slave", messageSender,
"is no longer working, ",
"so give it outstanding work");
writepipe (writePipe [messageSender],
["Work",workOn[1]]);
workOn := workOn[2..-1];
slavelork [messageSender] := true;
fi
fi;

Doesn’t want to give any more work.
elif info[1] = "Quit" then
for i from 1 to numSlave do
if slaveWork[i] = false and slaveQuit[i] = false then
userinfo(2,’MS’,"Telling the ".i."th slaves to quit");
slaveQuit[i] := true;
writepipe (writePipe[il, ["Quit"]);
£i
od;
for i from 1 to numSlave do
if slaveQuit[i] = false then break; fi;
userinfo(2,’MS’,"The ".i."th slave has quit");
od;
if i > numSlave then

userinfo(1,’MS’,"Everyones quit, time to go home

for i from 1 to numSlave do
close(uritePipe[i][11);
close(writePipe[i][2]);
close(readPipe[il [11);
close(readPipe[il[2]);

od;

RETURNQ) ;

fi;

Don’t know what the hell happened
else
RETURN ("What the hell just happened");
quit;
£i
od;
end:

calcul/balancing/master

The main controller of all things good.

Input: Nothing of importance

Output: -

Read: Just about everything (the master knows all)

Write: Just about anything (the master can order around all)

Reference: Section 6.1.

“calcul/balancing/master*

154

proc(Host, Mach, Largest, m, q, fileName,
interval, Known)

local Info, info, i, j, k, maxKnown, needToWrite, writeThis, mach, 1, fn,

pid;

Info := copy(Known);
-1

maxKnown

mach

Mach;

for i in Mach do
needToWrite[i] := []:
od;

i=gq
while Largest > maxKnown do

info := NULL;

userinfo(3,’MS’,"Waiting for imstructions");

do
for 1 from 1 to nops(mach) do
j := mach[1];
info := readfile(cat(j,2,Host), 1);
userinfo(4,’MS’,"Checking to see if there are outstanding ".
"messages for", j);
if needToWrite[j] <> [1 then
writeThis := needToWrite[jl[1];
userinfo(5,’MS’,"Sending information ".
"again to", j);
if (writefile(cat(Host,2,j),
writeThis, 1) <> -1) then
needToWrite[j] needToWrite[j][2..-1];
£i
£i
if info <> NULL then
mach := [seq(mach[k],k=1+1..nops(mach)),
seq(mach[k],k=1..1)];
break;
£i
od;
if info <> NULL then break; fi;
system("./sleepsn");
od;

userinfo(5,’MS’, "Got information", info, "from", j);
We have info from one of the over seers, we have to

now figure out what it is.

Check to see if it is a request for work
if info[1] = "Need Work" then

userinfo(1,’MS’, "Working on requested for work from ". j);

if i > Largest then
userinfo(2,’MS’, "Tell ".j." to quit");

if writefile(cat(Host,2,j),["Quit"],1) = -1 then
needToWrite[j] := [op(needToWrite[j]), ["Quit"]]:
£i
else
userinfo(2,’MS’, "Tell ".j." to work on the value of ". i);

Here I HAVE to make sure that they have had all
previous messages first.
if needToWrite[j] = [] then

if writefile(cat(Host,2,j), ["Work",i],1) = -1 then
needToWrite[j] := [op(needToWrite[j]), ["Work",i]]:
system("sleep 1");
£i;
else
needToWrite[j] := [op(needToWrite[jl), ["Work",i]]:
£i;
£i;
i=di+m;

APPENDIX E. CODE 155

Check to see if it is new info
elif info[1] = "Data" then
userinfo(1,’MS’, "Got some data for the value of ".(info[2]).

" from . 3);

Infolinfo[2]] := info[3];
maxKnown := max(maxKnown, info[2]);

for k in Mach do
if j = k then next; fi;
userinfo(3,’MS’, "Telling ". k. " about information");
if writefile(cat(Host,2,k),
['Data",info[2],info[3]],1) = -1 then
needToWrite[k] := [op(needToWrite[k]),
["Data",info[2],info[311];

system("sleep 1");
£i;
od;

if (info[2] = 0) mod interval then
fn := fileName.(info[2]).‘.m*;
pid := fork();
if pid = O then
save Info, fn;
quit;
fi
£i

Don’t know what it is, make an error
else
print("What the hell is going on II got", info);
quit;
£i
od;
for k in Mach do
userinfo(1,’MS’, "Telling ". k. " to quit")
writefile(cat (Host,2,k), ["Quit"],1);
od;

RETURN (op(Info)) ;
Need to tell people to quit still.
end:

#libname := libname[3], libname[1..2]:

savelib(‘calcul/readpipe‘, ‘calcul/readpipe.m‘);
savelib(‘calcul/writepipe‘, ‘calcul/writepipe.m);
savelib(‘calcul/readfile, ‘calcul/readfile.m‘);
savelib(‘calcul/writefile‘, ‘calcul/writefile.m‘);
savelib(‘calcul/balancing/slave‘, ‘calcul/balancing/slave.m‘);
savelib(‘calcul/balancing/overseer‘, ‘calcul/balancing/overseer.m‘);

savelib(‘calcul/balancing/master?, ‘calcul/balancing/master.m‘);

Bibliography

[10]

[11]

[12]

Cecm research projects, http://www.cecm.sfu.ca/projects, 1999.

Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with for-
mulas, graphs, and mathematical tables, Dover Publications Inc., New York, 1992, Reprint of
the 1972 edition.

J. L. Adams, Conceptual blockbusting: A guide to better ideas, Freeman, San Francisco, 1974.
Bruce C. Berndt, Ramanujan’s notebooks, Springer-Verlag, New York, 1994.

Jonathan Borwein, Peter Borwein, and Lennart Berggren, Pi: A source book, Springer, New
York, 1997.

Jonathan M. Borwein, David M. Bradley, and Richard E. Crandall, Computational strategies
for the Riemann zeta function, (unpublished), 1996.

Carl B. Boyer, A history of mathematics, John Wiley & Sons, Inc., 1968.

L Carlitz, Some arithmetic properties of the oliver functions., Mathematische Annalen 128
(1955), 412 — 419.

Mustapha Chellali, Accélération de calcul de nombres de Bernoulli, Journal of Number Theory
(1988), 347-362.

Louis Comtet, Advanced combinatorics, the art of finite and infinite expansions, D. Reidel

Publishing Company, Boston, 1974.

F. N. David, M. G. Kendall, and D. E. Barton, Symmetric function and allied tables, Cambridge,
Cambridge, 1966.

K.O. Geddes, S.R. Czapor, and G. Labahn, Algorithms for computer algebra, Kluwer Academic
Publishers, 1996.

156

BIBLIOGRAPHY 157

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[28]
[29]

[30]

K.O. Geddes, G. Labahn, M. B. Monagan, and S. Vorketter, The Maple programming guide,
Springer-Verlag, New York, 1996.

J. W. L. Glaisher, On Eulerian numbers, Quarterly Journal of Mathematics 45 (1914).

Gene H. Golub and Charles F. van Loan, Matrixz computations, second ed., The Johns Hopkins
University Press, Baltimore, 1989.

R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete mathematics, second ed., Addison-
Wesley Publishing Company, Reading, MA, 1994, A foundation for computer science.

G. H. Hardy and W. M Wright, An introduction to the theory of numbers, fourth ed., Clarendon
Press, Oxford, 1960.

I. N. Herstein, Topics in algebra, second ed., Xerox College Publishing, Lexington, Mass., 1975.

D.H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals of
Mathematics 36 (1935), no. 3, 637-649.

Maurice Mignotte, Mathematics for computer algebra, Springer-Verlag, New York, 1992, Trans-
lated from the French by Catherine Mignotte.

J. Miller, N. J. A. Sloane, and N. E. Young, A new operation on sequences: the boustrophedon
transform, J. Combn Theory 17A (1996), 44-54.

S Ramanujan, Some properties of Bernoulli’s numbers, Indian Mathematical Journal (1911).
J. Riordan, An introduction to combinatorial analysis, Wiley, 1958.

John Riordan, Combinatorial identities, Wiley Series in Probability and Mathematical Statistics,
John Wiley & Sons, New York, 1968.

N. J. A. Sloane and Simon Plouffe, The encyclopedia of integer sequences, Academic Press,
Toronto, 1995.

Neil J. A. Sloane, Sloane’s on-line encyclopedia of integer sequences,

http://akpublic.research.att.com/~njas/sequences/index.html, 1998.

C. R. Snow, Concurrent programming, Cambridge Computer Science Texts, no. 26, Cambridge
University Press, New York, 1992.

I Steward, Math. rec., Scientific American (1996).
W. A. Whitworth, Dcc exercises in choice and chance, Stechert, New York, 1945.

Herbert S Wilf, Generating functionology, Academic Press, Inc., Toronto, 1990.

