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Abstract

A diffusion walk in Z? is a (random) walk with unit step vectors —, 1, «, and .
Particles from different sources with opposite charges cancel each other when they meet
in the lattice. This cancellation principle is applied to enumerate diffusion walks in shifted
half-planes, quadrants, and octants (a 3-D version is also considered). Summing over time
we calculate expected numbers of visits and first passage probabilities. Comparing those
quantities to analytically obtained expressions leads to interesting identities, many of them
involving integrals over products of Chebyshev polynomials of the first and second kind.
We also explore what the expected number of visits means when the diffusion in an octant
is bijectively mapped onto other combinatorial structures, like pairs of non-intersecting
Dyck paths, vicious walkers, bicolored Motzkin paths, staircase polygons in the second
octant, and {—1}-paths confined to the third hexadecant enumerated by left turns.

Keywords: Random walks, lattice path enumeration, first passage.
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1 Introduction

There are many applications and therefore many names for random walks in the square integer
lattice Z2? with unit step vectors —, 1, <—, and |; we will call them diffusion walks because
of the fruitful physical interpretation of the walkers as particles spreading out from a source
and being able to interact with particles coming from other sources. We find this “cancellation
principle” of particles of opposite charges a better model for enumeration than the frequently
applied “reflection principle”. For example, let us start two diffusion processes at the same
time, one from the source & at the origin, and a negatively charged synchronous diffusion from
the source © at the “mirror” location (—2[,0), where [ is a positive integer. The diagrams
in Table 1 show the location of the sources and the number of ways a particle can reach a
lattice point after k = 1,2, 3 steps. The walks from the (virtual) negative source are counted
as negative numbers; they annihilate the walks from the positive source when reaching the



boundary line x = —[. Thus the boundary is absorbing, and no particle that visits a point to
the right of it has ever been to the boundary.
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Table 1: Diffusion right of z = —r

Only eight such sources, four positive and four negative, are needed to keep the diffusion
inside a shifted octant, to the right of x = —[ and strictly above y = x — d (see Fig. 2). This
will explain why the expression for the number of such diffusion walks from the origin to (n, m)
in m + n + 2k steps in the second octant (when [ = d = 1) is so simple,

(n+1)(2+ﬂ”é)((£n++k3++17)‘b)(m—i—l—n) <n+rziik+2> (n—i—Tr]i—l—?k)/(n—l—m;—k—l—?))'

To show how the complexity increases if the cancellation principle is applied in three dimensions,
we solve a generalization of the above problem, the enumeration of 3-D diagonal diffusion with
eight step vectors (+1,+1,+1) when the walks stay in the cone z > y > x > 0. Instead of 8
we need 48 sources; the formula is given in Subsection 2.3.1, equation (12). A special case of
that formula is the number of walks returning to the origin in 2k steps,

200, Cro1Crrn/ ((k ; 5) (k ; 4)) (1)

where C} stands for the k-th Catalan numbers.

There are several statistics on walks in octants that lead to combinations of Catalan num-
bers, like C|(111)/2)Cl14k/2) in (8), the related CyCjyq in (10)), and CyClia—Cr,, in (11). Thus
diffusion in an octant is only one of several visualizations of the same (unnamed) underlying
combinatorial structure; they all deserve attention, but we will mention only a few in Section
4 on related structures,

- pairs (and triples) of non-intersecting Dyck paths (and three vicious walkers),
bicolored Motzkin paths,

- staircase polygons in the (augmented) second octant, and

- {—1}-paths in the (augmented) third hexadecant enumerated by left turns

(omitting Young tableaux [13], and skew Ferrer’s diagrams [6]).

The physical approach (diffusion of particles) has a long history; a wealth of results can be
found in Random paths in two and three dimensions by McCrea and Whipple [23, 1940]. Via
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the expected number E (n, m) of visits to (n, m) they found numerous first passage probabilities

for random walks in a rectangle by solving the difference equation E (n,m) = X(E (n — 1,m) +

E(n+1,m)+E(n,m —1)+E(n,m+1)). The cancellation principle providés easy proofs of
(hence) easy problems, using the enumeration of diffusion walks (with a given number of steps)
in a half-plane as a building block for more restricted regions like quarter planes, octants, infinite
strips, cylinders, rectangles and triangles, passing through formulae with increasing complexity.
On the other hand, the analytic method of McCrea and Whipple starts for uniqueness sake
with the diffusion in a bounded region like a rectangle, thus begins with the highest level of
complexity, simplifying when parts of the boundary are removed. In Section 3 we let the two

approaches meet, generating interesting identities. Here are a few examples:

I—1 m+14+2 m+i+1 m4i+1 m+l.
47m7l m + 4F3 2 ) 92 ) 2 y 9 1 (2)
m m+Il+1,l4+1,m+1

— % /07r cos ((m — 1) 6) cot"™™ <%29> d

T (m+1

_ %/gﬂcotmﬂ (#) <cos((m—l) gy — Snlm =1)9) 9)> d6

cos 6

l

_ %/Owcos(m)\) <2—cos)\—\/(2—cos)\)2—1> dA

(see (21), (22), (23), and (24)), and

i <2k+m—i—l> <2k+m+l+ 1) 472k=m=l] (4 1)
(

— k k+1+m k4+m4+1+1)2k+m+1)
2 s ) ) 5 m+1

= — [ 2 — —1/(2— -1 d
7T/o sin (lx) sin (z) ( COS T \/( CoS 1) ) x

(see (29)) for all integers m > 0,1 > 1, or
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(the case m = 0 in (31)).

We did not derive these identities for the purpose of actual computations. In the process of
numerically verifying the formulas, however, one notices that the sums are slowly converging.
Only if the number of oscillations in the integrands gets very large, the numerical algorithms
for evaluating the integrals can fail to produce a result.



A Few Historical Notes. It is the intention of this paper to show how far the cancellation
principle can carry us with just a finite number of sources, and how little effort is required to
obtain those beautiful results. However, an infinite number of sources is needed if we restrict the
diffusion to bands with parallel boundaries, and subsets thereof. Another example requiring
infinitely many sources is the {«,], 7}-walk in the first quadrant, representing the ballot
problem with three candidates where the winner () never falls behind the losers (+—, ]) during
the counting of the votes (Kreweras [19]). There is a wealth of approaches to the enumeration
of walks bounded by hyperplanes, some of them attacking the problem (including all those
with binomial results in this paper) from a very general angle [10],[2], or considering different
kinds of boundary conditions and step sets [28]. In a recent paper, Bousquet-Mélou (2002)
applies the kernel method to “Counting Walks in the Quarter Plane” [3]. Of course, these few
references cannot even scratch the surface of the mountain of literature that has accumulated
on the topic of planar walks; the situation gets worse when we discuss related structures in
Section 19. Some references can be found in Janse van Rensburg’s book [21], and a few others
are interspersed among the results in Section 19. Mohanty’s book on “Lattice Path Counting
and Applications” [25] is still a valuable resource for a first introduction to that topic.

Acknowledgement This work began with the quest for a simpler proof of a much harder
problem, the enumeration of diffusion walks in the second octant, conditioned on the
number of visits to the diagonal'. For an analytic approach to this question see Janse
van Rensburg [21]. T am also indebted to Y. Itoh for drawing my attention to the paper
by McCrea and Whipple [23], and for the interpretation of diffusion in an octant as a
gamblers’ ruin problem. M.E.H. Ismail pointed out the connection to Chebyshev poly-
nomials, which helps to “explain” some of the identities, and A.J. Guttmann showed me
how to enumerate polyominoes by gap size. Finally, most of the references have been
provided by one of the referees.

2 Restricted Diffusion

If the diffusion has only one source &, at the origin, say, and no restrictions, then the number
Uy, (n,m) of ways a particle can reach the point (n,m) in k steps is

0t = (oo ) (csnn ) )

2

This is of course well-known; for a proof by picture see Fig. 3. No particle can reach (n,m) in
k steps if k +n+m is odd, or |n|+ |m| > k; we must interpret the binomial coefficient (;) as 0
if ¢ or j are fractions or negative integers. Note the four axes of symmetry in diffusion walks:
the z-axis, y-axis, and the diagonals y = +x. Thus

Uk (n,m) = Uy (|n[, [m]) = Uk (Im], |n]) .

'Since the completion of this paper, I have been able to prove by very different and much less elegant methods
[26] that the number of such walks from the origin to (n,n) in 2k steps making d contacts with the diagonal

2k42 \ (2k 5 L n . 5 §
cquts AL (1) (@=1) () + Rz () () (1)),



Stirling approximation shows that for large k& the walk ends at (n,m) after 2k + |n| + |m|
steps with probability approximately (7k) '. Hence the expected number of visits to (n,m) is
infinite.

We begin with a review of well known results in the enumeration of diffusion walks restricted
to half- and quarter-planes. The pictures we show are not proofs in the strict sense; they are a
suggestive “physical interpretation”, based on the cancellation principle. However, the answers
they suggest can be easily verified by checking the recursion and initial values. Another iteration
of the “method of images” or cancellation principle leads from walks in quadrants to octants
in Subsection 2.3. A more algebraic than geometric way of applying the cancellation principle
is shown in Subsection 2.3.1.

2.1 Half-planes

Suppose [ is a positive integer. As a prototype of diffusion restricted to half of the lattice
we count the walks strictly to the right of the left boundary ©+ = —[. We start two diffusion
processes at the same time, one from the source @ at the origin, and a synchronous negatively
charged diffusion from the source © at the mirror location (—2/,0). The diagrams in Table 1
show the location of the sources and the number of walks after £ = 1,2,3 steps. The walks
from the (virtual) negative source are counted as negative numbers; they annihilate the walks
from the positive source when reaching the boundary line x = —I. Thus the number H,lc‘ (n,m)
of walks in a Half plane to (n,m) from the origin in k > |n| + |m| steps strictly to the right of
the line x = —[ is

H (n,m) = Uy (n,m)— Uy (n+21,m) (4)

= (essim) (s ) ~ (s2gim o) (s )
k-l—g—l—m k-l—g—m k-l—g—l—m +1 k-l—g—m +1

The case [ = 1 shows that for n > 0

7 (n,m) = n+1 2k +n 4 |m|+ 1\ (2k +n+ |m| + 1
2ktntm| V0T T o L 4 m[ + 1 k k+ |m|

walks reach (n,m) in 2k + n + |m| steps staying strictly in the right half plane.

Denote the number of walks to (n,m) strictly left of x = r by H,': (n,m). By symmetry,

H) (n,m) = H} (—n,m). For more results on two-dimensional random walks in general see
Cséki [4]; for diffusion in a quadrant Guy, Krattenthaler and Sagan [15], and for planar walks
inside a rectangle [27].

2.2 Quadrants

If we want the diffusion to stay in the shifted first quadrant (a quadrant walk) strictly above
the bottom line y = —b and right of x = —[ we only have to study the scheme in Fig. 1.

One negative source $) of a virtual walk in the half-plane x > —[ is needed to cancel along
y = —b the same type of half-plane walk from the origin. Let n > —[ and m > —b. Thus

Ib (n,m) := H) (n,m) — H) (n,m + 2b)
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Figure 1: Diffusion in a shifted quadrant

is the number of Quadrant walks from the origin to (n,m) in k steps. Note that QI* (n,m) =

bl
k (_m7 _n)

The diagram also shows that QL (n,m) := H,i' (n,m) — H,i‘ (n,m — 2b) where Q'"° enumer-
ates fourth-quadrant walks strictly right of # = —[ and below y = b. Note that for m > 0

Lo (n,m —b) = H,i' (n,b—m) —H,ZJ (n,—m —b) = QL (n,b—m).
(n+1)(m+1) (2k+n+m) (2k+n+m+2

k+n+m+1)(k+n+m+2) k k+n+1
to (n,m) € N2 in 2k + n + m steps, applying (4)

For [ = b =1 we obtain the number ( ) of quadrant walks

1 1
H2lL+n+m (n7m) _H2I|c+n+m (n7m+2)
B n+1 2k +n+m+1\/2k+n+m+1
 2%k+n+m+1 k k+4+m

n+1 <2k—|—n+m+1><2k+n+m—|—1>

2k4+n+m+1 k—1 k+m+1
B (n+1)(m+1) 2k+n+m\ (2k+n+m+2
 (kt+n+m+1)(k+n+m+2) k kE+n+1

If Q- (n,m) are the paths staying in the shifted second quadrant strictly above the line
y = —b and left of x =1 then Q}* (n,m) = QI-* (—n, m).

2.3 Octants

Are there any more results on bounded diffusion that are as beautiful and surprisingly simple
as the diffusion in a quadrant, where the two positive sources exactly cancel the two negative
sources at the right places? The answer is yes, because diffusion has another axis of symmetry
that we can utilize, the first diagonal. Thus there is at least one more “nice” case, the diffusion
inside an octant. Diffusion walks in an octant may be seen as the difference of two quadrant

6



walks (originating at £ and -9 on the right side of Fig. 2), or as the sum of an array of
alternating unrestricted walks arranged along the corners of an octagon (left side of Fig. 2).
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u u m u
u u u u
-4 | D u n S n u -0
= | =
—i—d n —l-d | m
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:gz S) O 0 D 0
0 0 0
0 0 : 0
:;? 0 S 0 S o
Figure 2: Only 7 virtual sources are needed to keep the diffusion in an octant!
In order to respect the boundary x = —I[ and enable cancellation along y = = — d, the

positive Q must be Q¢ and the negative quadrant source must be Q'*4-,
Let n > —[ and m > n — d for two given positive integers [ and d. The number of paths
from the origin to (n, m) in k steps strictly to the right of z = —[ and strictly above y = 2 — d

equals O,lgl/d (n,m)

Ue(n,m) —Ug(n+2l,m) = Uy (n —d,m+d) + Uy (n+d+2l,m + d)
+Ur(n—d,m+d+2l) —Ug(n+d+2l,m+d+ 2l) (5)
—Ui (n,m +2d +210) + U (n+ 21, m + 2d + 21)

HY (n,m) — H (m + d,n — d) + HY (m + d,n+ d +21) — H (n,m + 2d + 2I)
Q%l‘kd (n,m) o 2Ll+d (m+d,n— d) )

If we extend formula (5) for O,lgl/d (n,m) to all lattice points (n, m) we note that
O,il/d (n—1,m)= —O,lﬂl/d (—n —1,m), and O,lﬂl/d(n,m) = —O,lﬂl/d(TrH— d,n —d).

Remark 1 Diffusion in the second octant is related to a ruin problem where two players called
E.W. and S.N. play, in random order against a bank. Player E.W. has a capital of | dollars,
and the bank holds d dollars; player S.N. is of unlimited wealth in this version, and cannot be
ruined. In every game the players either win or lose a dollar; the associated diffusion walk takes

a step



to the Fast, —, if E.W. wins, to the West, <, if E.W. loses,
to the South, |, if S.N. wins, and to the North, T, if S.N. loses.

Player E.W. is ruined when his capital is down to zero; the same holds for the bank. Thus
O,il/d (1 =1, m) is the number of ways gambler E.W. can get ruined in k +1 games when player
S.N. has a gain (or loss) of m dollars. The banker can get ruined in O,il/d (n,n—d+1) +
Oﬂ/d (n—1,n —d) ways in k+1 games when player S.N. has a loss (or gain) of n dollars, and
E.W. has a gain (or loss) of n — d dollars. Ruin probabilities can be obtained from the first
passage probabilities in Subsection 3.3.

If player S.N. has limited capital a we must restrict the walk to the right triangle —1 <
r < y—d,y < a. It needs an infinite array of virtual octant walks to keep the diffusion
inside that triangle. A more efficient approach starts with McCrea and Whipple’s formula
[23] for diffusion restricted to a rectangle, and views the triangle walks as the difference of to
rectangular diffusions; see [20] for the corresponding ruin problems.

For walks in the second octant (I =d = 1) we drop the superscript [|/d from the notation.
The number of such walks from the origin to (n,m) in m + n + 2k steps is for m > n >0

Ontmear (n,m)

_ <<n+rz+2k>_<n+m+2k>> <<n+nTT/;2k> <nn++n]zt2lk>> (6)
() ) - ()
(n+1)2+m)(m+3+n)(m+1—n)/n+m+2k+2\ (n+m+2k

6 (n+k+1) ("TmEE) ( n+k ) < k )

(there is a printing error in the corresponding formula (4.186) in [21]).
The number of paths in the second octant ending on the y-azis at height m > 0 in m + 2k
steps is therefore

O (0.1m) = k_1|_1<m;-3> <m+i;k+2> <m4];2k>/<m+;€+3>. )

Summing over the end point gives the number of walks in the second octant ending on the
y-axis after k steps,

k/2

1 (k—2j+3\ (k+2\[(k\, (k—j+3
jz%j+1< 3 >< J ><j>/ < 3 > [(k+1)/2) & [1+k/2] (8)

(sequence A005817 in the On-Line Encyclopedia of Integer Sequences), where Cy, = (2:)/ (k+1)
is the k-th Catalan number. To the diagonal, at (n,n), will return

0 ( )= 1 2n 4+ 4\ (2n + 2k + 2\ (2n + 2k / 2n+k+3 )
2tk ) = Tk )\ 3 n+k k 3



paths after 2n + 2k steps. This time summing over the end point gives the number of walks in
the second octant ending on the diagonal after 2k steps,

j; ﬁ <2k - ?2)3' + 4) <2k N 2) (2]@) ) <2k - 3] + 3) s, o)

(sequence A005568). To the origin will return

(2k)! (2k + 1)!
k2 (k+3)! (k+2)!

Oa, (0,0) = 12 = CyCri2 — Cii (11)
walks after 2k steps. More on the Catalan and other connections in Section 4.

Best suited for numerical experiments with planar walks are spreadsheets, but matrices are
also a useful tool for displaying the effect of virtual sources. Start with a finite piece of the
double infinite matrix R = (R;j), ;, where R;; = 1if [i+j| = 1, and 0 else. This matrix
represents the recursion in the sense that Oy.; = ROy 4+ OxR. The initial matrix Oy has ones
and minus ones at the position of the sources. Table 2 shows an example for the case [ =d = 1.

o o0 o0 o o0 -10 1 0 0 0 0 O
o o0 o o -3 0 o o0 3 0 0 0 0
o o0 0 -2 0 -60 6 0 2 0 0 0
o o0 2 0 -5 0 o 0 5 0 -2 0 0
o 3 o0 5 0 -3 0 3 0 -5 0 =3 0
1 o 6 0O 3 0 0 O -3 0 -6 0 -1
o o0 o o o o0 o o o0 0 0o 0 0
-1 0 -6 0 -3 0 0 0 3 O 6 0 1
o -3 0 -5 0 3 O0-3 0 5 0 3 0
o 0 -20 5 0 OO0 -5 0 2 0 0
o 0 o 2 0 6 O0-6 0 -2 0 0 0
o o o o 3 0 o o0 -3 0 0 0 0

Table 2: A piece of the matrix O4, with boldface boundary values

2.3.1 Three dimensional diffusion

The same cancellation principle can be applied to solve 3-D diffusion problems. However, it is
much harder to place the sources in space just by geometrical intuition. For example, consider
the 3-D diagonal diffusion with eight step vectors (+1,41,+1), and require that the walks
(weakly) stay in the cone z > y > x > 0. Denote by Dy (n,m,[) the number of walks from
the origin to (n,m,l) in k steps. If n,m,l, and k are not of the same parity, this number
will be zero. Thus the bounding planes to be avoided by the walk are of the form » = —1,
y=x—2,and z = y — 2. We derive the location of the sources by an algebraic instead of a
visual argument.



Let S be the set of sources. If (a, b, ¢) is a source, then its effect on the boundaries z = —1,
y =x—2, and z = y — 2 must be canceled by the opposite sources at f (a,b,c) :== (—a — 2,b,¢),
g(a,b,¢) .= (b+2,a—2,¢), and h(a,b,c) := (a,c+ 2,b— 2), respectively. Denote by C' the
noncommutative group generated by the three reflections f, g, and h. Hence (a, b, ¢) € S implies
p(a,b,c) € Sforallp € C. In other words, S = {p(0,0,0) : p € C}. For a better understanding
of S and C' we temporarily move the origin into the intersection of the three planes, so that
(0,0,0) — (1,3,5). The three reflections are now f’(a,b,c) = (—a,b,¢), ¢’ (a,b,¢c) = (b,a,c),
and A’ (a,b,¢) = (a,c,b). Correspondingly, C’ is the group generated by f', ¢’ and A/, and

= {p'(1,3,5):p' € C'}. Note that ¢’ and h' are transpositions on three elements. In
cycle notation, ¢ = (a,b),(c) and ' = (a),(b,¢). The third transposition can be obtained
as h'g'h’ = (a,c) (b). Hence ¢' and h' generate the group of all 3-permutations, &3, which
implies that any permutation of (1,3,5) is in S’. The reflection f’ changes the sign of the first
coordinate, ¢'f’g" the sign of the second, and h'¢g'f'¢g’h’ the sign of the third. Hence the 48
elements of S are the permutations of (+1, £3, +5). The group C’ is well known as the group
generated by the symmetries of the cube (the hyperoctahedral group on signed 3-permutations).
Every element p’ of C' can be written as a composition of transpositions (¢, ', h'¢’h’) and some
sign changes induced by f’. The parity of the number of transpositions in p’ is an invariant,
and so is the parity of the number of sign changes f’. We call p' even or odd depending on the
parity of the number of transpositions plus sign changes. An even (odd) p’ can only be written
as a composition of an even (odd) number of reflections. Now we return to our set of sources,
S={p(1,3,5) —(1,3,5) : p' € C"}. A source s =p'(1,3,5) — (1,3,5) is positive iff p’ is even.
We have shown the following lemma.

Lemma 2 Let P := {(tu, tv, tw), where (u,v,w) is a permutation of (1,3,5)}. Then
{(=1,-3,=5) + (z,y,2) : (z,y,2) € P} is the set of sources. The sources (—1,—3, =5)+(z,y, 2)
and (—1,-3,-5) + <(—1)1x (1) y, (—1)* z) have the same sign iff i + j + k is even.

The 3-D version of Fig.3 would show that unrestricted diagonal diffusion in three dimensions
is generated by three independent random walks along the three coordinate axis. The number
of unrestricted walks to (n,m,[) in k steps is therefore Uy (n,m,l) := ((H];)/z) ((k+fn)/2) ((Hkl)ﬂ)
After adding up the 48 unrestricted walks starting at the 48 sources in S with the appropriate

signs we arrive at Dy (n,m,[). It follows from the above Lemma that
(Hnﬂ,g,l)ti/u) (Hnﬂ,g]z(,l)wzj) (k+n+1]:5( bi)
Dy (n,m, 1) = EZ:O (—1)Li/4JHi/2J+i (k+m+3—1§—1)W4J) (k+m+3—§(—1)WzJ) (lc+m+3k 5(— l)l)
(k+l+5—(2—1)ti/4i) (k+l+5—32(—1)ti/2J) (k+z+5 5(= 1)1)

To shorten the expansion, we define B! := ((k+kz')/2) - (t+(kii)/2) and find Dk (n,m,l) =

B (By'BL — BI*BLY?) + B (B BYY? — By ?BL) + BiY (By?BY? — BYT'BYY) (12)

The special case Dy (0,0,0) gives formula (1).
We chose the example of an eight-step diagonal diffusion in view of an application to counting
watermelons at the end of Section 4.1. The more common “nearest neighbor walks” with six
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steps (£1,0,0), (0,£1,0), and (0,0,+1) can be enumerated in the same way, with boundaries
x=-1,y=x—1,and z = y — 1, and corresponding sources at (a,b,c) — (1,2,3), where
(a,b,c) is a permutation of (£1,+2,43). The same approach solves the boundary problem
that restricts the walks to the region

r>—-b y>r—c, z2>y—d

where b, ¢, and d are positive integers. If the six nearest neighbor steps are reduced to the three
unit steps (1,0, 0), (0,1,0), and (0,0, 1), we obtain the more familiar “ballot problem with three
candidates”. The condition z > —b is automatic in this case, thus there are only six sources,
(0,0,0), (¢, —c,0), (¢,d,—c —d), (¢c+d,0,—c —d), (c+d,—c,—d), and (0,d, —d). In terms of

trinomial coefficients, the well known number of ballot paths to (n,m,[) is (Hn”:;m) - (;ff;f_?:c) +

(m—n+1)({+1—m)(l4+2—n) (l+n+m) if
(I+1)(1+2)(m+1) n,m

¢ =d = 1. In this “totally ordered” version of the ballot problem, the winner stays ahead of

the second winner, who himself remains ahead of the looser throughout the counting of votes.

Even with only three candidates the ballot problem becomes much more difficult if the boundary

z >y > x is replaced by z > max (z,y), which is the version mentioned in the Introduction

(see [19],[18], and for the latest proof [3]). Lemma 2 is easily generalized to any dimension d. If

(nemza) = GleZam) + Gl = G

)Which simplifies to

we require that the walk stays in the chamber x; > 2; 1 —¢; foralli =1,...,d (with z_; =0,
¢; > 1), then the sources must be placed at p — ¢, where ¢ = (¢1,¢1 + ¢, ..., 1 + o + - -+ ¢q),
and p € P := {(fuy, Lus,...,+uy), where (uy, us, ..., uq) is a permutation of the components

of c}. The source is positive if the permutation is even, and negative else. Note that the
location of sources is independent of the step set of the walk. Of course, the admissible step
sets must be symmetric with respect to all the bounding hyperplanes. The resulting solution
to the totally ordered ballot problem was first solved by Frobenius and MacMahon [24]. For
general ¢;s see [31]. For more on the general problem see [9],[10], and [14].

3 Expected Number of Visits and First Passage

Diffusion is not only a physical concept, modeled in combinatorics by discrete time and a lattice
of discrete states, it is also an intensively studied area of probability theory. We compare in this
section some probabilistic results on the long term behavior of diffusion to the corresponding
expressions obtained from combinatorial enumeration. Most of the identities that are obtained
this way seem to be hard to prove by other methods.

Denote by V,,,, the random variable that reports the number of visits a random diffusion
walk makes to (n,m) before being absorbed at some boundary, thus the expected number of
visits to (n, m) equals

E [Vn,m] = Z Pr (Vn,m > ]) = Z4ika (na m) (13)

>0 k>0

if Dy, (n,m) is the number of paths to (n,m) in k steps under the same restrictions. Without
any restrictions on the paths, the expectation is infinite. The enumeration results of Section
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2 enable us to express the expected number of visits in half planes, quadrants and octants
as sums; for half-planes and quadrants they also have been expressed as integrals in a paper
by McCrea and Whipple [23] as limiting cases of planar walks in a rectangle. However, those
integrals look different from the obvious integrals (16) obtained from the combinatorial sums!

3.1 Half-planes

Denote by Elllf [Vm] the expected number of visits to the point (n,m) of a random diffusion

walk in the half-plane x > —[. Because of symmetry, E% Vam] = E| [Vi,—m], and the same
holds for the first passage probability. All formulae in this subsection will be written for m > 0;
every occurrence of m can be replaced by |m|. We find four formulas for EH Vam]: (14), (16),

(19), and (20). We begin with an expression for EI|{ [Vam] derived from (13) and (4)

[Vam] = 24 (Ug (n,m) — Uy (n + 21, m)) (14)

k>0

This sum can be written as an integral using the identities

i sy ifn>m>0and n—m i
0 0 else

= (20 + x)

> @ = e (L VImE)

— < n 1 —4¢
We get for all integers n

b (" k
—2k—|n|—-m n|+m-+2
A ok (n,m) = W /0 cos ((m — |n|) x) cos™Tm+2k (1) dx
n|+m
1 (" —
S (T U () = [ cos7) coslbm o),
k>0 o\ 14 4/1 = €cos (2)? 1 — Ecos (z)?
This expansion converges for || < 1, diverges for £ = 1, but converges for { = —1. The power
series
Zk>0 (5/4)]c (Uk (na m) - Uk (n + 217 m))
N |n|+m n+2l4+m
(““) cos((m—|n|)z)— (“”)) cos((m—n—20)z)
— f7r 1+4/1-¢ cos(x)2 1+4/1-¢ cos(z)2 da’,‘
0 n\/lfgcos(m)2
converges for £ =1, thus E| Vam] =
x (cot (”2“")' " cos ((m — |n|)x) — cot (”+2“")n+2l+m cos ((m —n — 21) x))
/ dx (16)
0 7sin (z)

for n > —I.
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Remark 3 From Uy, (n,m) = Uy (m,n) follows
Ey Vi) = Yoo 47 Uk (nym) — Uy (n+20,m)) = Y00 47 (Ug (m,n) — Uy (m,n + 21)).

McCrea and Whipple [23] determined El; [V;,,,] from the recursion

1
B Vol = 7 (ES Va-tam) + By Vasin] + B V-] + B Vo] (17)

when (n,m) # (0,0), n > —[, and (because all walks start at the origin)

1
Bl Vool = 1+ 7 (B V10l + Ely Vil + Ely Vo, 1] + E}f Vo] (18)

The recursion has a unique solution if the paths are restricted to the inside of a rectangle.
Removing all but one side of the rectangle by limit processes, McCrea and Whipple found

E?{ [Vn,m] =

™

9 /w COS ()\m) (€f|n\u o 67(n+21)u) { 4 pm cos(Am)e ! sinh((n+1)p) d\ if —1<n<0
‘ ) = ==
0

L cosme (19)
sinh (M) 4 7 cos(dm)e M sinh(lp) d)\ ifn >0

m J0 sinh(p)

where 2 = cos (A) + cosh (). Denote by Ty, and U, the Chebyshev polynomials of the first and
second kind, respectively, of degree k, i.e., Ty () = cos (kA) and Uy_; (x) = sin (kA) /sin (A) if
x = cos (A). It is easy to check that we can write (19) in this notation as

4 rl e kdg :
= 12— £ o qf [ <n<
El[‘{ [V ] _ 7r4f_i Tm (ZL‘) z/{nJrl 1 ( xz_((lnjf)z);: 1 - [ SN 0 (20)
;f_le(l')Z/{l_l (2—$)W lf’I’LZO
Note that et = earecosh=cosN)) — /(2 — 2)* — 1 42 — 1.

[r

Remark 4 Denote by Ey; [V the expected number of visits at (n,m) of walks to the left of

[r r| |r

x=1. From Ey [Vam] = Ey [Vonm follows By [Vim] =

9 /71' COoS ()\m) (67|n\,u _ 6(n72r);¢) { 4 7 cos(Am)e”"# sinh((r—n)u) d\ if0<n<r
- i) = snsro
0

w JO sinh(p)
sinh (M) 4 [ cos(Am)e(™ ")k sinh(rpu) d\ Zf n<0

™ 2
m JO sinh(u)

3.1.1 First Passage

As before in this subsection about half-planes we assume that m > 0 and [ > 1. A particle
makes its “first passage” to the boundary point (—[,m) at time £ if it stayed away from x = —[
and reached (1 — 1, m) at time k£ — 1. By formula (5) there are

Hllc|—1 (1=0,m)=U,1(1=1,m)—=U, 1 (1+1,m)
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ways for the first passage at time k, and the probability of first passage (summed over time)

at height m > 0 is Pﬁ (=l,m) = Elflf [Vi—im]. We begin with a direct determination, using only

formula (5), and find Pll} (=1, m)

= 2k +m+1\ [2k +m +1 I
_ Z 4ka]i‘_1 (1 —l,m) — Z42kml< >< )7
o prt k k+1 2k +m + 1
— 4—m—l m+l_1 4F3 1+mT+l7% mT—H’% mT—H’mT—H; 1. (21)
m m+Il+1,1+0,1+m

Applying (15) together with the identity

~(2n+z\ 1 _ 2%
Z( n >2n+x§ TV m)

n=0
we obtain Pl (—1,m) =

2 22k+m+l T
Z4‘2k_m_l < b +l:n * l) 5% +l 7 / cos ((m — 1) 0) (cos )%™ dp
— m m 0

_ l /” (m —1)6) cos 6 m+ld9
o m+1) S, costim 1 +sin@ '

Hence

Pl (=1, m) = ﬁ /0 cos ((m — 1) ) cot™! (ﬂ> . (22)

m + 1 4
for all integers m > 0. With = = cos# and dz/df = — sinf we get

I /1 Ty () (1 = VT = 22)""

U (1 m) —
P (=hm) = i

dz.

The next formula follows from (16), Pll} (=l,m) =

1 /” (cot!"1Hm (2228 cos ((m — [ + 1) ) — cot' ™ (T£2) cos ((m — 1 — 1) ) "
ar J sin f

1 FcomH T+ 20 cos ((m — _sin((m —1)0)

= = /0 ¢ <74 ) ( (m—pyg) - 200 ) do. (23)

Finally, we know from (19) or [23] that Pll} (=l,m) =

1 WCOS m) e 1 1 Tim| (z) dx _
/0 e /1<(2x)21+2x>lm

m m
Thus (21), (22), (23), and (24) are the combinatorial /probabilistic reason for the identities (2).

(24)
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3.2 Quadrants

We saw that the number Q!° (n,m) of planar walks in the quadrant — < z, —b < y can be

written in terms of half-plane walks as Q'° (n,m) = H,i‘ (n,m) — H,i‘ (n, m + 2b). Hence

EG" Vi) = Ejy [Vam] = Ejy [Vem 1]
can be calculated from any of the formulas for Elf‘l [Vam]. In the following proposition we apply
(19) because of an interesting and useful overlap in the domain of the two expressions for
ES” [Vam] (being identical for —[m| < n < |m]).

Proposition 5 Let 2 = cos (\) + cosh (i), & = cos \, thus e = \/(2—2)° =1+ 2 —z. For
n > —l, and m > —b holds E5" [Vi.m)

8 (7 sin(bX) sin((mAb)A) sinh (D) 1y 4 (1 (Tim|=Tomgn) (@)W1 1(2—2) .

™ Jo sinh d\ = ™ f—l elu 1_952)1/2 dx an < |m|
8 [ sin(bA) sin((m+b)A) sinh(lp) d\ = 4 fl (7—\m|*7—m+2b3($)u171(2*$)
T JO e(n+Dr sinh gy T rnd-1 e(ntDu(1—g2)1/2

dx if n > —|m)|

Proof. Formula (19) implies

8 [ sin(bA)sin((m+b)\) sinh((n+1)u)e t# d\ ifn <0

b _ 7 Jo inh
EQ [Vn,m] - { 7% Oﬂ' s]n(b)\) s]n((m+§}}}zlsljlnh(lu)e—(n-H)M d)\ lf n Z 0

(see also [23]). The two integrals do not only agree for n = 0; if m > —b; they are the same for
all —|m| < n <|m|, as shown in Proposition 7 below. m

Lemma 6 Let cos A + cosh yu = 2.

/ cos (m)\) sinh (nu)d)\
0 sinh p

=0 for|n| < |m)|

Proof. (By M.E.H. Ismail) Let 0 < n < m, x = cos \, and z = cos (ip) = cosh (u), thus
z = 2 — x. Denote by T; and U the Chebyshev polynomials of the first and second kind,
respectively, of degree £k,

Te (x) = cos (kX)) and Uy 4 (2) = S;?n(é%) - S;?nhh((k:))'

From dz/d\ = — sin A follows

- . 1 1 _
/ cos (mA) sinh (n:u) d\ = / Tm (x)-Un—l (Z) dr = / Tm (1‘) Un—l (2 1‘) dx
0 sinh p 1 sin A 1 V19— 22

The Chebyshev polynomials are orthogonal on [—1, 1] with respect to (1 — x2)_1/2, and U, (2 — x)

is of degree less than m, hence the integral is zero. The integral vanishes for all 0 < n < |m)|
because it is even in m, and it is odd in n. =m
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Proposition 7 For max {— |m|,—|m + 2b|} < n < min {|m|, |m + 2b[}

dA

/%muwmwum+mam«wﬂnmﬂgA:/%mummmum+wmmuwn<MW

sinh p sinh p

Proof. From — |m| < n < |m| follows [ (cos (mA)sinh (nu) /sinh ) dA = 0, and in the
same way [ (cos (|m + 2b] A) sinh (nj) / sinh y1) dX = 0. Hence

[T (cos (mA) — cos ((m + 2b) A))sinh (np) . (7 sin (Ab) sin (A (m + b)) sinh (np)
0= /0 sinh g dr= 2/0 sinh p ax

and [7 (sin (Ab) sin (A (m 4 b)) €™/ sinh p) dX = [ (sin (Ab) sin (A (i + b)) e ™/ sinh ) dA. Sub-
tract
o7 (sin (Ab) sin (A (m + b)) e~ F20% / sinh 1) d from both sides and get

dA.

/7r sin (Ab) sin (A (m + b)) (e — e (nF20m) I\ — /7r sin (Ab) sin (A (m + b)) (e " — e~ ("F20k)

sinh p sinh p

3.2.1 First passage

The first passage probability Pégd’ (=l,m) to the boundary x = —[ at height m > —b equals
Pl (=1,m) — P (=1, m + 2b) =

I epm) (T 2X sin ((|m| —1) \)
- rrA A — 2
o ), <c0t 1 cos ((|m| = 1) A) p—Y (25)
2\ i 2b—1) A
ottt (T2 (0 (m+20—10)A) — sin ((m + ) d\
4 cos A
2 (" . : 1)
= — [ sin(Ab)sin(A(m+1Db))[2—cosA— \/(2 —cosA) —1) dA (26)
T Jo
[ (" —)A 2b—1) A
.y (1@T$ﬂl)) ___cosllme 2D )M_ )
Th NG (ml D (B553)" (m+20+10)
using (23), (24), and (22) (remember that cot (T52) = ;22A)  Note that P§®(n,—b) =
Pyt (=b,n). Written as sums, P5" (=l,m) = P}, (=1, m) — Py (=1, m +2b) =

B Iiw’”’” 2k +m+1\ (2k+m+1\ 1 (28)
N pre kE+m+1 E+m )2k+m+1

izl—?’“—m—ll 2k +m A1\ (2k+m+1\  (2k+m+1\(2k+m+I
k:b2k+m+l k k+m k—0b kE+b+m
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For example, if b =1 we get P5' (—I,m) =

(]

- <2k+m+l> <2k+m+l+ 1) 4=2k=m=l] (m 4 1)
(

. k k+1+m k+m+1+1)2k+m+1)

m+1

!Agmﬂﬂﬁn@)@—m%x—wﬂ2—aﬁ@?—g . (29)

Ao

If | =b =1 we find the following five expressions for the first passage probability in the first
quadrant to the y-axis at height m > 0,

L 00 —2k—m— m+1 2k+m\ (2k+m+2
from (28): Pé H=Lm) =304 2 l(k-i-r(n-}-l)()k-i-l)( ﬁ )( +k ! )7

m+1
from (29): = 2 ["sin®()\) <2 —CcoS A\ — \/(2 —cos \)” — 1) dA,

from (26): = 2 ["sin (A)sin (A (m + 1)) (2 — COS\ — \/(2 —cos \)? — 1> d\,

cos A 2COS m
from (27): = L [ (ZLesd )y (cosAmo1) _ (15m25) cos(A( +1>>> i,

1+4sin A m+1 m+3
. 2
from (26): = 1 [T (15525)" cos (m)sin (3) e do

3.3 Shifted Octants

The number O,il/d (n,m) of planar walks in the shifted octant — < z, y > z — d can be
written in terms of quadrant walks as O} ( Wird (nom) — Q™ (n —d,m + d) =
L (nom) — QI (m 4 d, n — d). Hence

n,m) =

Eg/d [Vn,m] - Egl—i—d [Vn,m] - Eg—dLl [and,m+d] - Egl—i—d [Vn,m] - Egl+d [Vm+d,nfd] (30)

for =1 —d < n —d < m. We can calculate the probability P(l)l/d (=1, m) of first passage to the
line x = —[ from the first passage probabilities in shifted quadrants. This is not the case for
the first passage to the diagonal line y = x — d, thus we need to know Eloyd [Vim]. Formula (30)
shows that any of the expressions for Ef5” [V;, ] can be used to find El(l)/d [Vim]- An example is
worked out in the following proposition.

Proposition 8 Let cosA + coshp = 2, = cos )\, thus e* = \/(2—x)> =1+ 2 — . For
—l—d<n—d<m holds EY * [V.m]

7 (sin(A(I+d))—sin(Al)e= % ) sin(A(m-+14d)) sinh((n-41)u) .
_ %fo ( e“‘)sinhu g dA an < |’ITL|
- in in in —nH—sin in —d .
% Oﬂ sin(A(m+1+d)) (s (A(l+d))se§1lfls/:31i#” sin(\) sinh((n+0)p)e #)d)\ ifn > — m|

4 fl (ﬁm\*Tm+2(l+d))(I) . (7—|m+d|*7—m+d+21)($) Un+l—1(2—f’3)d
-1

T eln e(+d)u (1—:1:2)1/2 xr an < |m|

N 4 f,ll (Tim) = Tont2(14ay ) Ui—1 (2—2) _ (Tm+d—Tm+d+2z)($)un+z—1(2—$)> du ifn>—|m|

T e(n+n e(+d)n N
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The proof is a straight forward application of Proposition 5 to Eloyd Vo] = Eg”d Vo] —

Eg ™ [Va—gm+d], noting that n — d < |m + d| inside the shifted octant — —d <n—d <m. A

different looking formula for El(l)/d [Vi.m] can be derived in the same way if we write El(l)/d Vo] =

Elc;H_d [Vn,m] - EléH_d [Vm-l-d,n—d]-

3.3.1 First passage to x = —I[

The probability Pél/d (=1, m) of first passage strictly inside the shifted octant x > —I, y > x —d
to the vertical boundary x = —[ can be obtained in different variations from (25) - (28) because

1
Py (<t,m) = 7EG Vi) = P5"* (<1m) = P (<1 = d,m + d)

If d=1=1, we write Py instead of Pél/l, and we get from (7) that Po (—1,m) =

+3\ o= 4% (m 42k +2\ [(m+ 2k m+k+3
gom-t (M P 31

s m+1 2
1/ cos (( 1) 2) CoS T 1 CoS T 2 J
= — m-—1)z)| ——— — = T
T Jo 1+sinz m + 1 l+sinz) m+3

1 /0 <&>m+5 <Cos ((m+3)x) — 2cos ((m+ 1) x)) .

T 1+sinx m+5

For some numerical examples see Table 3.

3.3.2 First passage toy =2 —d

Let n > 1 — . There are two ways to get to the boundary point (n,n —d) , from above at
(n,n—d+1) and from the left at (n — 1,n — d). Thus Péyd (n,n—d) = %Eloyd [Van—at1] +
iEg/d [(Va—1,n—d]. We apply Proposition 8, noting that n > —|n —d+1|and n—1> — |n —d|
for all n. Hence Pél/d (n,n—d) =
2 ™
— / e " [sin (A (I + d)) sinh (Ip) e ™ (sin (A (n + 1 +1)) + e”sin (A (n +1)))
0

™

dA

—sin (Al) e ™ (sinh ((n + 1) p) sin (A (n 4+ 1 4+1)) + sinh ((n + 1 — 1) p) sin (A (n +1)))] S

In terms of Chebyshev polynomials, Pél/d (n,n —d)

l /1 [(Tn—dH — Tny 142144 +€* (ﬁn—d\ - 7;L+2l+d)) U_1(2—x)
-1

T e(l"‘n)ﬂ

(7\—n+1| - 7;z+1+2l) (17) Unii1 (2 - ﬁ) + (7\—n| - 7;7,-}-2[) (17) Un 12 (2 - ﬁ) dx
N el+d)p Vi-22
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Again, cos A + cosh p = 2, x = cos A, thus e# = /(2 —x)2 —14+2—=x.

For n = 1 — [, the boundary point (1 —[,1 —1 — d) below the corner of the shifted oc-
tant can only be reached from above. Hence P(l)yd(l —lL1-1-d) = E”/d Vicio—i—d] =
P(l)yd (=1,2 — I — d), the probability of passage to the vertical boundary = = —I.

If the walk is restricted to the second octant (I = b = 1), first passage below the diagonal
to (n,n — 1) happens with probability

PO (TL, n — 1) = Z (472k72(n71)7102(n_1)+2k (n — 1, n— 1) + 472k72n7102n+2k (n, n)) (32)
k=0
00 472k72n (TL + 1) (2n+2k) (2n+2k72)
n+k—1 k
= n+1)(n(2n+1)+2k(n+1))+k
Y g ey (DD F 2k (1) 4 8)
2 ™
= — / e # [sin (2X) e ™ (sin (A (n + 2)) + € sin (A (n + 1)))
T Jo
sin (A)e™* . : . :
by (sinh ((n + 1) p) sin (A (n 4 2)) + sinh (nu) sin (A (n + 1))) | d.
sinh p
j=10 1 2 3 4 5 6 7 8 20
Po (—1,7) = | .27005 | .08018 | .02658 | .00991 | .00416 | .00194 | .0°99 | .0°54 | .0°32 | .0°6
Po (] +1 ;) 29414 | .02935 | .00691 | .00229 | .00093 | .00044 | .0%23 | .0°13 | .0*7 | .0°15

Table 3: Some examples of first passage proabilities in the second octant

4 Related structures

Certain subsets of the diffusion walks in an octant can be visualized by structures that may look
quite different. We list non-crossing pairs of Dyck paths, bicolored Motzkin paths, staircase
polygons in the second octant, and {—1}-paths enumerated by left turns. Of course, other
aspects of such structures may not be efficiently represented by diffusion walks. A thorough
discussion of these and other structures and their applications can be found in The Statistical
Mechanics of Interacting Walks, Polygons, Animals and Vesicles, by Janse van Rensburg [21].

4.1 Pairs of Non-crossing Dyck paths

The diagonal diffusion, with step set { 7, /", \,"\\}, is easily mapped onto the ordinary diffu-
sion by the matrix % (1 ) ) The matrix maps the diagonal steps 7, ", N\, \ onto T, ], —,
(in this order). If we draw two independent random walks with steps +1 on the integers, a
vertical walk V' along the y-axis (marked by : in Fig. 3) and a horizontal walk H along the
x-axis (---), then the diagonal diffusion (e) is the vector sum of the two integer walks, i.e., if
H and V are at the positions (hy,0) and (0,vx) at time k, then (hg,vy) is the position of the

diagonal diffusion walk (this proves formula (3)).
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Figure 3: Diagonal diffusion generated by two perpendicular integer walks. The subscripts and
superscripts indicate the position at step k of the vertical and horizontal walks, respectively.

If we restrict the one-dimensional walks to nonnegative integers and require that the i-th
term v; in the vertical walk is not larger than the i-th term h; in the horizontal walk (making
them dependent!), i.e., h; > v; > 0 for all 4, then the diagonal diffusion stays in the first octant
as in Fig. 4. Note that these restricted one-dimensional walks along the axes become Dyck
paths (i.e., weakly above the x-axis) if we replace the steps 1,—1 by * and \, respectively.
In the pair Py, Py of paths we write the horizontal walk (Py) first ; if the Dyck pair Py, Py
ends at (k,h), (k,v) the diagonal diffusion ends at (h,v) after k steps (k, h and v are of the
same parity). The image under % (} _11) (ordinary diffusion) of the diagonal diffusion stays in
the second octant.

o0
./‘g /10
y 3 e Zsu
o\ . o\12 i
@/‘1 ./‘5 ./‘13
A diagonal walk in the first octant, with step counters
[ ]
e
N e
o\ -]\ /e
. .f/ e
e /e o/ e
s <. o/ e i
e/ o/ o/

The corresponding pair of noncrossing Dyck paths

Figure 4: The correspondence between diagonal diffusion and Dyck pairs

Hence the number of pairs of noncrossing Dyck paths from the origin to (k, k), (k,v) equals
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the number of diagonal diffusion walks to (h,v) in k steps staying in the first octant, which in
turn equals the number of ordinary diffusion walks in the second octant reaching % (} 711) (';)
= ((h =) /2,(h+v) /2) after k steps,

O ((h—v) /2, (h +v) /2) = 2+h—v)(d+h+v)(h+3)(v+1) <k+2>< k >/<h_+2rk+3>

12(k — v+ 2) A 3

(see (6)). The pairs that end at a common point are equivalent to staircase polygons (parallel
polyominoes); we discuss them in Subsection 4.3 in more detail.

It follows from the bijection between pairs of noncrossing Dyck paths and diffusion walks
that

- the expected number of pairs of noncrossing paths Py, Py where the bottom path Py
falls below the z-axis for the first time when the top path Py is at height h, equals
4Po (h/2,(h —2) /2) (see (32)).

- the number of noncrossing Dyck pairs ending on the line x = 2k with the bottom path
on the z-axis equals CyCry1 (see (10)).

Remark 9 There is also a connection between single Dyck paths and “short” walks in an
octant. If any diffusion walk reaches the point (n,m) in the first quadrant in n + m steps, all
steps must be either — or 1. The number of {—1}-paths reaching (n,m) in n 4+ m steps while
staying in the second octant is

1- 1
Oty R4

n+m+1 n

Mapping — to \, and T to  shows that this is also the number of (single) Dyck paths to
(n+m,m —n). If m = n, the Dyck paths end on their boundary, the z-axis, and their number
is Cp, = (*)/ (n+1), the n-th Catalan number. These results are familiar from the classical
ballot problem (with two candidates), first solved in 1887 by André [1].

Mapping diffusion walks to pairs of noncrossing Dyck paths goes back at least to Feller
[8]. The method can be extended to n-tuples of Dyck paths. We only want to discuss triples.
For this purpose we consider 3-D diagonal diffusion as in Subsection 2.3.1, generated by three
independent random walks with steps +1 on the integers, a vertical walk V' along the y-axis,
a horizontal walk H along the x-axis as before, and an additional up-down walk U along
the z-axis. We map the walks H,V,U into a triple Py, Py, Py of Dyck paths (1 — 7 and
—1 =), requiring that v; > 0, h; > 0, and u; > 0 for all 7. Formula (12) tells us how many
diagonal diffusion walks reach (n,m,[) in k steps, restricted to lattice points (h;, v;, u;), where
0<h; <wv;,<w;foralli=0,....k (and hg = vy = ug =0, hy = n, vy = m, u, = [). This
number, Dy (n,m,[), is therefore the same as the number of noncrossing Dyck triples from (0, 0)
to (k,n), (k,m), and (k,[). Suppose we separate the triples by shifting the top path upwards
two units, and then the upper pair again upwards two units, resulting in an unchanged bottom
path from (0,0) to (k,n), a shifted middle path from (0,2) to (k,m + 2), and a shifted top
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Figure 5: Three vicious walkers

path from (0,4) to (k,l + 4). The three paths never occupy the same lattice point; the particles
moving along those paths are called vicious walkers (Fig. 5).

If n =m =1 = 0 such a configuration of nontouching Dyck paths is called a watermelon
with three ribs. Note that & must be even in this case, &k = 2r, say. Thus Ds, (0,0,0) =
() CCri1Cria/ ((73) (’;“4)) (see (1)) is the number of water melons. The number of wa-
termelons with many ribs can be found by restricting the diagonal diffusion walk in many
dimensions to the appropriate cone ([9],[14]). For more on this topic and additional references
see [17]. The determinant enumerating several non-intersecting lattice paths (now called the
Lindstrom-Gessel-Viennot formula) goes back to the work of Lindstrém [22], and Gessel and

Viennot [12], [11].

4.2 Bicolored Motzkin paths

A Motzkin path has step set { 7, \, —} and stays weakly above the z-axis. Map the step
vectors of the diffusion walks onto { 7, N\, —, --»} according to Table 4.

Diffusion: | — | «— T 4
Bicolored Motzkin: | o /| e\, | — | 0 —
color: | white | black | black | white

Table 4: The bijection

Diffusion in the right half plane is in one-to-one correspondence to bicolored Motzkin paths.
We say that the Motzkin path has excess m if it ends with m more black —-steps than white
--+-steps. Diffusion in the first quadrant is bijectively mapped onto bicolored Motzkin paths
that reach any point in the first octant with at least as many black —-steps as white --+-steps,
i.e., the excess is never negative along the path. The diffusion will stay in the second octant
iff the corresponding bicolored Motzkin paths reach any point in the first octant with a total
number of white steps (,* or --»+) not exceeding the total number of black steps (N, or —).
We call them saturated. Let m > n. The number O (n, m) of octant walks to (n,m) in k steps
(see ((6))) equals the number of saturated Motzkin paths to (k,n) with excess m.

First passage through the z-axis at height m of the diffusion walk corresponds to the satu-
rated path with excess m, crossing through the z-axis for the first time. First passage of the
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Figure 6: Diffusion in octant <— bicolored Motzkin

diffusion walk through the diagonal to (n,n — 1) corresponds to the bicolored Motzkin path of
height n and excess n — 1, having for the first time more white than black steps. See (31) and
(32) for the first passage probabilities. Expression in terms of Catalan numbers are obtained if
we enumerate all saturated paths ending at (k,0) with any excess (see (8)), and if we count all
saturated paths ending on the line x = 2k with an equal number of black and white steps (see
(10)). For recent work on Motzkin paths see [30] and [29].

4.3 Staircase polygons in the augmented second octant

A staircase polygon (parallelogram polyomino) is a polygon bounded by two {—7}-paths (stair-
cases) that have only the beginning and the endpoint in common. Because staircase polygons
are considered invariant under vertical and horizontal shifts, we can assume that the pair of
bounding paths starts at the origin.

diffusion: - = = | = o« = | o« = o« 1 o« | o«

Figure 7: Staircase polygons and dotted diagonal gaps

If we look at a staircase polygon from the Northeast, we see (diagonal) gaps between the
paths. We map the polygon into a diffusion according to the change of gaps. An increase
(decrease) in gap width is mapped to a —-step («—-step). If the gap is just shifted to the
right (diagonally shifted upwards) we map it onto a J-step (1-step). Thus a staircase polygon
corresponds to a {—7T<—]}-planar walk (see also [7],[21]). Among the first k steps let I, be the
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number of <—-steps, and rj the number of —-steps. Because there cannot be less (expanding)
—-steps than (shrinking) <—-steps in any beginning part of the walk, we find r > I;; the path
stays in the right half-plane z > 0, and returns to the x-axis at the end. The vertical steps
do not change the gap width of the polygon; there can be any number (u; up, and dj down)
of them, at any location. Vice versa, any diffusion walk in the right half plane ending at (0, 7)
after k steps can be mapped onto a staircase polygon with lower left corner (0,0) and upper
right corner (n + 1, m + 1) where j = m —n and £k = m + n. We can thus use equation (4) to
find the number of all staircase polygons from (0,0) to (n,m),

n+m-—2\[(n+m-—2 n+m-—2\[(n+m-—1
e e N S [
a Narayana number. The enumeration by gap width allows for much deeper results than the
above application (see [5]). A bijection between staircase polygons and bicolored Motzkin paths
is described in [21]; for an approach via skew Ferrer’s diagrams see [6].

We say that a staircase polygon stays in the augmented second octant if it stays weakly
above y = x — 1. Any staircase polygon is bounded by two {—7}-paths, starting with a
lower left corner L at (0,0),and ending with an upper right corner " at (n + 1, m + 1), say. If
we remove those two corners from a staircase polygon in the augmented second octant, then
shift both paths so that they start at the origin and end at (n,m), and turn the shifted pair
downwards by 45°, we obtain a pair of non-crossing Dyck paths from the origin to the common

endpoint (n +m,m —n). We enumerated such pairs in Section 4.1; if we denote by S (n,m)
the number of staircase polygons to (n,m) in the augmented second octant, we find for m > n

Sn+1,m+1)=0Opin(0,m—n)=6 (m+n)!(m+n+2)! <m—n+3>

n!(n+ 1) (m+2)! (m+ 3)! 3
(or use formula (7)). Some special cases of staircase polygons in the augmented second octant:
- If m = n the polygon ends at (n+1,n+ 1), and by (11) there are

(2n)! (2n + 2)!
n!(n+ 1) (n+2)! (n+3)!

= Cncn+2 - Ci+1

such staircase polygons.

- From O(nqk)4x (0,n) = S (k + 1,n 4+ k + 1) follows that the expected number of polygons
ending n vertical steps above the diagonal equals 4Py (—1,n) (see (31)).

- The number of polygons ending on the line n + m = k for given integer k > 2 equals
Clik-1)/21Clis2) (see (8))-

- The number of polygons ending on the diagonal at (n,n) equals Oy, 5 (0,0) = C,, 1Cp 1 —
C? (see (11)).

24



4.4 {—1}-paths in the augmented third hexadecant enumerated by
left turns

Denote by [u,v] the discrete interval v < 2 < v, where z € Z, and by ([“,;”]) set set of all k-
element subsets [u, v]. Several interesting combinatorial problems can be bijectively mapped to
([“];”}) X ([pl’q]) (or subsets thereof) for certain choices of the parameters. The following examples

are connected with diffusion walks in the second octant.

Lemma 10 Let n,, n, and m be nonnegative integers. There exists a bijection between
([Oam'i'np_l}) X ([Oam'i'nq_l}) and
1. pairs p,q of {—=1}-paths, starting at the origin and ending at the point (n,, m) and (n,, m),
respectively.

2. {—=1}-paths, starting at the origin and ending at (m + ny, m +n,), taking m left turns

(1)

3. {—=1}-paths, starting at the origin and ending at (m + n,, m + ny,), taking m right turns

(27 )

Proof. Consecutively label the m+n, steps of the path p with the numbers 0, ..., m+n,—1.
Let z; be the label of the i-th vertical step, thus 0 < 2y < --- < z,, < m+mn, — 1, and
{z; - ie[l,m]} € ([O’mtfp_ﬂ). In the same way, the labels {y; : i € [1,m]} of the m vertical
steps in the path ¢ are elements of ([O’W;:q*”). Vice versa, the m-subsets of [0, m + n, — 1] and
[0, m 4 n, — 1] correspond to a unique pair of paths p, q.

If we interpret the sequence (z; + 1,y;), 7 = 1,..., m as the sequence of left turn coordinates
we obtain a unique lattice path from the origin to (m + n,, m + n,) with m left turns; vice versa,

the left turn sequence of any such path defines a unique element from ([U’mt:?*”) X ([U’mf:‘f”).
|

Corollary 11 There exists a bijection between ([O;Z:FI"}) X ([1’"5;’11“]) and

1. pairs of {—1}-paths, both starting at the origin and ending at the common point (n, m + 1).

2. pairs u,b of {—1}-paths, both starting at the origin and ending at the common point
(n+1,m+ 1) such that u ends and b begins with a horizontal step (in the case of nonin-
tersecting pairs, u would be the upper and b the bottom path).

3. diagonal diffusion walks from (0,0) to (n —m —1,n —m — 1) in n+m+1 steps, weakly
staying inside the rectangle —m —1 < x <n and —m —1 <y <n.

4. {—=1}-paths, starting at the origin and ending at (m +n+1,m+n+ 1), taking m + 1
right turns (27 ).

5. {—=1}-paths, starting at the origin and ending at (m +n+ 1,m +n+ 1), taking m + 1
left turns ( , 1 ).
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Proof. For the terminology we refer to the proof of Lemma 10. Take any pair u’, b’ of
{—1}-paths from the origin to the common endpoint (n,m + 1). By Lemma 10 such pairs can
be bijectively mapped onto ([0;;’3:“1”]) X ([U;r’;’i”]). Make b’ into the “bottom” path b by inserting
a — step at the beginning of b, and u' into the upper path u by appending a — step at the
end of u (the paths may still intersect; they end at (n + 1, m + 1)). The vertical label subsets
are now in ([07’7’;’3:“1”]) X (“’%J;";“”), which shows parts 1 and 2. For part 3, interpret u’ as the
vertical, and b' as the horizontal walk defining a diagonal diffusion as in Fig. 3. The horizontal
(vertical) walk moves m + 1 steps to the left (downwards) and n steps to the right (upwards),
which defines the boundary for the resulting diagonal diffusion. Parts 4 and 5 follow directly
from Lemma 10 m

In a staircase polygon to (n + 1,m + 1) the upper and bottom paths make a pair u,b
as in the above bijection, with the additional condition of no common points except at the
beginning and end. The m + 1 positions z; and y; of the vertical steps in the sequence of
all steps determine the whole pair u,b. Note that z; = 0, z,,01 < m +n and y; > 1,

Yms1 = m + n + 1 in every such staircase polygon. Therefore we disregard z; and y,,.1,
and consider only {z;;1 |1 <i<m} € ([1’";:”]) and {y; | 1<i<m} € ([1’"7?"]). When the
bottom path takes the i-th vertical step, it has taken y; —i+ 1 horizontal steps; the i-th vertical
step leads from the vertex (y; —i+ 1,7 — 1) to the vertex (y; —i+1,7), fori =1,...,m+ 1.
Exchange x with y and the same holds for the upper path u. The pair u,b is nontouching;
when the bottom path b moves upwards, to (y; — 4+ 1,i), it must stay below the upper path,
hence ;11 — (1 + 1)+ 1<y, —i+1,ie.,

Tit1 < Y (33)

for all i =1, ..., m. This condition (together with x; = 0 and y,,, 41 = m + n + 1) characterizes
the staircase polygons. We now map them bijectively onto lattice paths enumerated by left turns
in the augmented third hexadecant, where  — 1 < y < 2z. Instead of creating m + 1 turns at
(i, yi) as described in the proof of Lemma 10, we place only m left turns at (zi41,vi — 1),y ,,

€ ([1’";:“”}) X ([U’m:;”*l]), because 1 and ¥,,,1 are fixed in any staircase polygon. The image

path runs from (0, 0) to (n + m,n + m) and stays weakly above y = £ —1 because this condition
holds at the end point and at all left turns, y; —1 > ;11 — 1 (see (33)).

We said in the previous subsection that a staircase polygon to (n+1,m + 1) is in the
augmented second octant iff the bottom path b stays weakly above y = x — 1. To keep b
weakly above y = x — 1 we need ¢t — 1 > y; — 4, ie., y; +1 < 2i fores = 1,....,m + 1.
In the corresponding lattice path the sequence (s;,t;) of left turns must satisfy the condition
i>14+t/2fori=1,...,m.

The condition i > ¢;,1/2 is equivalent to the restriction that every point (v, w) on the path
is reached with at least w/2 left turns; equivalently, the path stays weakly below y = 2z. From
x — 1 <y < 2z for all points (x,y) on the path follows that the path stays in the augmented
third hexadecant. Denote by h (v, w;4) the number of {—, 1}-paths from the origin to (v, w) in
the augmented third hexadecant with ¢ left turns. We have shown that h (n + m,n + m;m) =
Sn+1,m+1) = Opyn (0,m —n) = 6 mtrtlmini2)! (™ 2*%) for all m > n. It is also easy

n!(n+1)Y(m+2)!(m+3)! 3
to verify that h (i,24;1) = C;, the i-th Catalan number. From h (k,k;k —n) = O (0,k — 2n)

26



and (8) follows that C|(441)/2/C|14k/2) ordinary {—71}-paths stay in the augmented third hex-
adecant and end at (k, k) (independent of the number of left turns).
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