Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites

R.W. Grosse-Kunstleve \& G.O. Brunner
Laboratory of Crystallography, ETH Zentrum, CH-8092 Zurich, Switzerland
N.J.A. Sloane
Mathematical Sciences Research Center, AT\&T Bell Laboratories, Murray Hill, New Jersey 07974

Introduction

The coordination sequence (CS) is a number sequence, in which the k-th term is the number of atoms in "shell" k bonded to atoms of shell $k-1$. Shell 0 is a single atom, and the number of atoms in the first shell is the conventional coordination number.

The CS was introduced by Brunner \& Laves [1] to investigate the topological identity of frameworks and of atomic positions within a framework. It is now routinely used to characterize crystallographic structures and even higherdimensional sphere packings.

Although it was known that for many zeolites the terms of the CS grow quadratically with k, no systematic investigation had been carried out.

Up to 2000 terms have now been calculated for all the zeolites tabulated in [2] and for 11 selected dense SiO_{2} polymorphs, and the algebraic structure of these CS's has been analyzed.

In two dimensions the progression of the CS terms is linear with k. In analogy to the formula for the circumference of a circle

$$
c=2 \pi r
$$

the terms of the CS can be expressed by a periodic set of p linear equations

$$
\mathrm{N}_{k}=\mathrm{a}_{i} k+\mathrm{b}_{i} \text { for } k=i+p n
$$

for $i=1 \ldots p$.

2-Dimensional Example
Plane group p $4 g$
Node at $x=(1+\operatorname{sqrt}(3)) / 2, y=1 / 2-x$

First differences => period length $=3$
Fit of N_{k} to 3 linear equations for $k=1 \ldots 6$
$\mathrm{N}_{k}=16 / 3 k-1 / 3$ for $k=1+3 n$
$\mathrm{N}_{k}=16 / 3 k+1 / 3$ for $k=2+3 n$
$\mathrm{N}_{k}=16 / 3 k+0$ for $k=3+3 n$
=> Exact topological density $=16 / 3$
Recursive decomposition
$\begin{array}{llllll}\text { Initial terms } & 1 & 4 & 6 & 4 & 1\end{array}$
Period lengths 31

Two Algebraic Descriptions

Recursive decomposition

The terms of the CS are coded into a set of
$\mathrm{n}_{\text {it }}$ "initial terms" and a set of
$\mathrm{n}_{p 1}$ "period lengths".
The CS terms $\mathrm{N}_{0} \ldots \mathrm{~N}_{k_{-} \text {max }}$ are reconstructed with this simple algorithm:

Copy initial terms to $\mathbf{N}_{0} \ldots \mathbf{N}_{\mathbf{n}_{-} \text {it-1 }}$
$\mathbf{N}_{n_{\text {_ }} i t} \ldots \mathbf{N}_{k_{-} \text {max }}=\mathbf{0}$
For each period length p
For each $k=p \ldots k_{\text {max }}$

$$
\mathbf{N}_{k}=\mathbf{N}_{k}+\mathbf{N}_{k-p}
$$

The recursive decomposition was derived from the "Ordinary Generating Function" [3] description for integer sequences.

Periodic set of quadratic equations

The terms of the CS are expressed by a periodic set of p quadratic equations

$$
\mathrm{N}_{k}=\mathrm{a}_{i} k^{2}+\mathrm{b}_{i} k+\mathrm{c}_{i} \text { for } k=i+p n
$$

for $i=1 \ldots p$.
The "exact topological density", TD, is the mean of the a_{i}.

TD Determination Strategy

Computation of 100 ... 2000 terms of the CS with a straight-forward (but highly optimized) node-counting algorithm.

Investigation of the second differences => one "period length" for the recursive decomposition.

Determination of the recursive decomposition by means of a brute-force search algorithm.

Computation of a few million terms of the CS and search for periods
=> set of quadratic eqs.
=> TD.

3-Dimensional Example

Zeolite ABW

Space group I m a m (74)
Node at $x=0.368, y=0.379, z=1 / 4$

Shell \boldsymbol{k}	0	1	2	3	4	5	6	7	8	9

1. Diff. 361115182428303741
2. Diff. $\begin{array}{llllllll} & 5 & 4 & 3 & 6 & 4 & 2 & 7\end{array}$

Second differences not periodic $=>\mathrm{b}_{\boldsymbol{i}}<>0$
Fit of N_{k} to 3 quadratic eqs. for $k=1 \ldots 9$
$\mathrm{N}_{k}=19 / 9 k^{2}+1 / 9 k+16 / 9$ for $k=1+3 n$
$\mathrm{N}_{k}=19 / 9 k^{2}-1 / 9 k+16 / 9$ for $k=2+3 n$
$\mathrm{N}_{k}=19 / 9 k^{2}+0 k+2$ for $k=3+3 n$
=> Exact topological density $=19 / 9$
Recursive decomposition

$$
\begin{array}{llllllllll}
\text { Initial terms } & 1 & 3 & 6 & 9 & 9 & 6 & 3 & 1 \\
\text { Period lengths } & 3 & 3 & 1
\end{array}
$$

The Most Complex Structure

Zeolite EUO
Space Group C m m a (67)
10 nodes
Recursive decomposition
Number of initial terms: 224 ... 240
Number of period lengths: 12
Periodic set of quadratic equations
Period length: 140,900,760
TD: 2.619
RAM memory allocated [4]:
3.75 Giga bytes

References

[1] G.O. Brunner \& F. Laves; Zum Problem der Koordinationszahl; Wiss. Zeitschr. Techn. Univ. Dresden 20 (1971) 387-390
[2] W.M. Meier \& D.H. Olson; Atlas of Zeolite Structure Types, 1992
[3] N.J.A. Sloane \& S. Plouffe; The Encyclopedia of Integer Sequences; Academic Press 1995
[4] U. Hollerbach, University of Maryland, USA, private communication

