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1. Introduction

Since the 1960’s, relationships between algebraic K-theory and number
theory have been investigated. For number fields F and their rings of integers
OF , the K-groups K0(OF ) and K1(OF ) are related to classical objects in
number theory. From [25] we have

K0(OF ) ∼= Z× C(F )
where C(F ) is the ideal class group of F, and

K1(OF ) ∼= O∗F ,
the group of units of OF .

What can we say in general about K2(OF )? For a ring R with unity,
Milnor [25] defined K2(R) as the kernel of the natural surjection St(R) →
E(R) where St(R) is the Steinberg group of R and E(R) is the direct limit
of the group generated by elementary matrices. In particular, K2(R) is the
center of St(R), hence abelian. For a field F the group K2(F ) has been
computed by Matsumoto [24] as the universal symbol group:

K2(F ) = F ∗ ⊗Z F ∗� < u⊗ (1− u) : u 6= 1 >.
The kernel of the surjective homomorphism

K2(F ) →
⊕
p

(OF /p
)∗,

given by the “tame symbols” at all finite primes p of F , is called the tame
kernel of F and is known to be finite [13] and isomorphic to K2(OF ) [40].
For this reason, K2(OF ) is commonly referred to as the tame kernel of F.
In 1970, J. Birch [4] and J. Tate [44] conjectured for totally real number
fields F that the order of K2(OF ) is related to the value of the Dedekind
zeta-function of F at -1, i.e

#K2(OF ) = |w2(F ) · ζF (−1)|
where w2(F ) is a readily computable term (page 26 in [45]). The Birch-
Tate conjecture is a special case of the Lichtenbaum conjecture [22] which
attempts to generalize Dirichlet’s class number formula. The Birch-Tate
conjecture was confirmed up to powers of 2 by Wiles [49].

Determining the structure of K2(OF ) remains a difficult and intriguing
problem. Much research (e.g. [5], [7], [9], [11], [19], [20], [21], [36], [37],
[38], [39], [46], [47], [48]) has focused on the 2-Sylow subgroup of K2(OF ).
We say the 2j-rank, j ≥ 1, of K2(OF ) is the number of cyclic factors of
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K2(OF ) of order divisible by 2j . A formula of Tate [43] computes the 2-rank
of the tame kernel. If F is a quadratic number field, Browkin and Schinzel
[6] simplified the 2-rank formula. What about the 4-rank of K2(OF )?

2. results

In [36], [37], and [38], Qin determined the 4-rank of the tame kernel for
quadratic number fields F in terms of indefinite quadratic forms. Hurrelbrink
and Kolster [18] generalized Qin’s approach and obtained 4-rank results by
computing F2-ranks of certain matrices of local Hilbert symbols. This ap-
proach is an effective technique and has led to connections between densities
of certain sets of primes and 4-rank values. In [33], the author considered
the 4-rank of K2(O) for the fields Q(

√
pl), Q(

√
2pl), Q(

√−pl), Q(
√−2pl)

for primes p ≡ 7 mod 8, l ≡ 1 mod 8 with
(

l
p

)
= 1. In [10], it was shown

that for the fields E = Q(
√

pl), Q(
√

2pl) and F = Q(
√−pl), Q(

√−2pl),

4-rank K2(OE) = 1 or 2,

4-rank K2(OF ) = 0 or 1.

The idea in [33] was to fix a prime p ≡ 7 mod 8 and consider the set

Ω = {l rational prime : l ≡ 1 mod 8 and
( l

p

)
= 1}.

In [33], we proved the following:

Theorem 2.1. For the fields Q(
√

pl) and Q(
√

2pl), 4-rank 1 and 2 each
appear with natural density 1

2 in Ω. For the fields Q(
√−pl) and Q(

√−2pl),
4-rank 0 and 1 each appear with natural density 1

2 in Ω.

In [26], we extended the results in [33] by providing a complete densitiy
picture for the 4-ranks of tame kernels of the fields Q(

√
pl), Q(

√−pl) for
primes p, l. One can show that 0, 1, or 2 are the possible 4-rank values
for K2(OQ(

√
pl)) and K2(OQ(

√−pl)). Now, for squarefree, odd integers d,
consider the sets

X = {d : d = pl}
and

Y = {d : d = −pl}
for distinct primes p and l. As a consequence of Theorems 1.2 and 1.3 in
[26], we obtain

Corollary 2.2. For the fields Q(
√

pl), 4-rank 0, 1, and 2 appear with natural
density 13

64 ,
97
128 ,

5
128 respectively in X. For the fields Q(

√−pl), 4-rank 0, 1,
and 2 appear with natural density 37

64 ,
13
32 , and 1

64 respectively in Y .
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The rough idea behind Theorem 2.1 and Corollary 2.2 is to use the matri-
ces of local Hilbert symbols to get a correspondence bewteen 4-rank values
and characterizations of the primes p and l by positive definite binary qua-
dratic forms. This characterization then determines the splitting of p and l
in a certain normal extension of Q. Associating Artin symbols to p and l,
we then use the Cébotarev Density theorem.

3. Further Research

3.1. 4-rank densities. These matrices of local Hilbert symbols are anal-
ogous to Rédei matrices [41] which were used in the 1930’s to study the
structure of ideal class groups. In [34], this analogy is discussed along with
density results of Gerth [15]. In the appendix of [34], we give a product for-
mula for a local Hilbert symbol. Do Gerth’s methods [15] coupled with this
product formula yield, for any quadratic number field, asymptotic formulas
for 4-rank densities of tame kernels?

3.2. Higher 2-power ranks. Is it possible to classify higher 2-power ranks
of tame kernels of quadratic number fields in terms of positive definite binary
quadratic forms? Do density results exist for higher 2-power ranks? Little
is known about 8-ranks of tame kernels. Recent results in [18], [39], and [48]
still need to be studied in order to provide a more unified approach.

3.3. Question of Erdös. During a conference in honor of D.H Lemher [16],
Ron Graham posed the following question of Erdös: Are there infinitely
many n such that the middle binomial coefficient

(
2n
n

)
is relatively prime

to 105? Lucas knew [23] that for a prime p, (
(
2n
n

)
, p) = 1 if and only if

every coefficient in the base p expansion of n is < p
2 . This implies that there

are infinitely many n such that (
(
2n
n

)
, p) = 1 for a given prime p. Erdös,

Graham, Ruzsa, and Straus [12] proved that for any two primes p and q,
there exist infinitely many n for which (

(
2n
n

)
, pq) = 1. By Lucas’ theorem,

Erdös’ question can be rephrased: Are there infinitely many n that have the
digits 0, 1 or 0, 1, 2 or 0, 1, 2, 3 when written in bases 3, 5, or 7 respectively?
A list of known n’s is given by sequence #A030979 [42].

3.4. t-cores. A partition of a positive integer n is a non-increasing se-
quence of positive integers whose sum is n. The number of such partitions
is denoted by p(n). If Λ = λ1 ≥ λ2 ≥ . . . λs is a partition of n, then the
Ferrers-Young diagram of Λ is the s-row collection of nodes:

• • . . . • • λ1 nodes
• • . . . • λ2 nodes
...
• . . . • λs nodes

Label the nodes as if it were a martix. Let λj
′ denote the number of

nodes in column j. Define the hook number H(i, j) of the (i, j) node to
be H(i, j) := λi + λj

′ − j − i + 1. If t is a positive integer, then a partition
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of n is called a t-core of n if none of the hook numbers of its associated
Ferrers-Young diagram are multiples of t. Let Ct(n) denote the number of
t-core partitions of n. In [32], Ono and Sze made the following remarkable
discovery: If 8n + 5 is square-free, then C4(n) = 1

2h(−32n − 20) where
h(N) is the order of the class group of discriminant N binary quadratic
forms. There are two proofs of this theorem. One proof uses the generating
function for C4(n) [14] and properties of class numbers. The second proof
relies on an explicit map from the set of 4-core partitions of n to the class
group of binary quadratic forms of discriminant −32n − 20. Does such an
explicit map exist between other t-cores and class numbers? Between t-cores
and orders of K-groups?

3.5. Partition congruences. There has been recent exciting work [1], [2],
[31] on congruence properties of the partition function p(n). There are
still many interesting open questions concerning the distribution of p(n)
modulo integers M , see [3] or [8]. The “folklore conjecture” [35] states
that the values of p(n) are distributed evenly modulo 2. Of the first 10000
values of p(n), 4996 are even and 5004 are odd. The pattern seems to
continue with 2 replaced by 3. Namely, the values of p(n) seem to be evenly
distributed modulo 3. Currently, there is no known explanation for this
behavoir. In fact it is not known whether there are infinitely many n for
which p(n) ≡ 0 mod 3.

3.6. Sign Ambiguities. Gauss, Jacobi, Stern, E. Lehmer, Whiteman, and
others have obtained congruences for binomial coefficients in terms of pa-
rameters coming from representations of primes by quadratic forms. In [17],
many other beautiful binomial coefficient congruences are proved. In cer-
tain cases, the key step is the resolution of a sign ambiguity. These sign
ambiguities are counterexamples to Hasse’s conjecture that all multiplica-
tive relations between Gauss sums follow from the Davenport-Hasse product
formula and the norm relation for Gauss sums. Very few ([28], [29], [30],
[50]) sign ambiguities have been given. Recently, Brian Murray [27] has
proved a remarkable product formula which yields an infinite class of new
sign ambiguities. Can these new resolutions of sign ambiguities be used to
obtain new congruences for binomial coefficients?
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