RESEARCH STATEMENT

ROBERT OSBURN

1. Introduction

Since the 1960's, relationships between algebraic K-theory and number theory have been investigated. For number fields F and their rings of integers \mathcal{O}_{F}, the K-groups $K_{0}\left(\mathcal{O}_{F}\right)$ and $K_{1}\left(\mathcal{O}_{F}\right)$ are related to classical objects in number theory. From [25] we have

$$
K_{0}\left(\mathcal{O}_{F}\right) \cong \mathbb{Z} \times C(F)
$$

where $C(F)$ is the ideal class group of F , and

$$
K_{1}\left(\mathcal{O}_{F}\right) \cong \mathcal{O}_{F}^{*},
$$

the group of units of \mathcal{O}_{F}.
What can we say in general about $K_{2}\left(\mathcal{O}_{F}\right)$? For a ring R with unity, Milnor [25] defined $K_{2}(R)$ as the kernel of the natural surjection $\operatorname{St}(R) \rightarrow$ $E(R)$ where $S t(R)$ is the Steinberg group of R and $E(R)$ is the direct limit of the group generated by elementary matrices. In particular, $K_{2}(R)$ is the center of $S t(R)$, hence abelian. For a field F the group $K_{2}(F)$ has been computed by Matsumoto [24] as the universal symbol group:

$$
K_{2}(F)=F^{*} \otimes_{\mathbb{Z}} F^{*} /<u \otimes(1-u): u \neq 1>.
$$

The kernel of the surjective homomorphism

$$
K_{2}(F) \rightarrow \bigoplus_{\mathfrak{p}}\left(\mathcal{O}_{F} / \mathfrak{p}\right)^{*}
$$

given by the "tame symbols" at all finite primes \mathfrak{p} of F, is called the tame kernel of F and is known to be finite [13] and isomorphic to $K_{2}\left(\mathcal{O}_{F}\right)$ [40]. For this reason, $K_{2}\left(\mathcal{O}_{F}\right)$ is commonly referred to as the tame kernel of F . In 1970, J. Birch [4] and J. Tate [44] conjectured for totally real number fields F that the order of $K_{2}\left(\mathcal{O}_{F}\right)$ is related to the value of the Dedekind zeta-function of F at -1 , i.e

$$
\# K_{2}\left(\mathcal{O}_{F}\right)=\left|w_{2}(F) \cdot \zeta_{F}(-1)\right|
$$

where $w_{2}(F)$ is a readily computable term (page 26 in [45]). The BirchTate conjecture is a special case of the Lichtenbaum conjecture [22] which attempts to generalize Dirichlet's class number formula. The Birch-Tate conjecture was confirmed up to powers of 2 by Wiles [49].

Determining the structure of $K_{2}\left(\mathcal{O}_{F}\right)$ remains a difficult and intriguing problem. Much research (e.g. [5], [7], [9], [11], [19], [20], [21], [36], [37], [38], [39], [46], [47], [48]) has focused on the 2-Sylow subgroup of $K_{2}\left(\mathcal{O}_{F}\right)$. We say the 2^{j}-rank, $j \geq 1$, of $K_{2}\left(\mathcal{O}_{F}\right)$ is the number of cyclic factors of
$K_{2}\left(\mathcal{O}_{F}\right)$ of order divisible by 2^{j}. A formula of Tate [43] computes the 2-rank of the tame kernel. If F is a quadratic number field, Browkin and Schinzel [6] simplified the 2-rank formula. What about the 4-rank of $K_{2}\left(\mathcal{O}_{F}\right)$?

2. RESULTS

In [36], [37], and [38], Qin determined the 4-rank of the tame kernel for quadratic number fields F in terms of indefinite quadratic forms. Hurrelbrink and Kolster [18] generalized Qin's approach and obtained 4 -rank results by computing \mathbb{F}_{2}-ranks of certain matrices of local Hilbert symbols. This approach is an effective technique and has led to connections between densities of certain sets of primes and 4 -rank values. In [33], the author considered the 4 -rank of $K_{2}(\mathcal{O})$ for the fields $\mathbb{Q}(\sqrt{p l}), \mathbb{Q}(\sqrt{2 p l}), \mathbb{Q}(\sqrt{-p l}), \mathbb{Q}(\sqrt{-2 p l})$ for primes $p \equiv 7 \bmod 8, l \equiv 1 \bmod 8$ with $\left(\frac{l}{p}\right)=1$. In [10], it was shown that for the fields $E=\mathbb{Q}(\sqrt{p l}), \mathbb{Q}(\sqrt{2 p l})$ and $F=\mathbb{Q}(\sqrt{-p l}), \mathbb{Q}(\sqrt{-2 p l})$,

$$
\begin{aligned}
& \text { 4-rank } K_{2}\left(\mathcal{O}_{E}\right)=1 \text { or } 2, \\
& \text { 4-rank } K_{2}\left(\mathcal{O}_{F}\right)=0 \text { or } 1 .
\end{aligned}
$$

The idea in [33] was to fix a prime $p \equiv 7 \bmod 8$ and consider the set

$$
\Omega=\left\{l \text { rational prime }: l \equiv 1 \bmod 8 \text { and }\left(\frac{l}{p}\right)=1\right\} .
$$

In [33], we proved the following:
Theorem 2.1. For the fields $\mathbb{Q}(\sqrt{p l})$ and $\mathbb{Q}(\sqrt{2 p l})$, 4 -rank 1 and 2 each appear with natural density $\frac{1}{2}$ in Ω. For the fields $\mathbb{Q}(\sqrt{-p l})$ and $\mathbb{Q}(\sqrt{-2 p l})$, 4 -rank 0 and 1 each appear with natural density $\frac{1}{2}$ in Ω.

In [26], we extended the results in [33] by providing a complete densitiy picture for the 4 -ranks of tame kernels of the fields $\mathbb{Q}(\sqrt{p l}), \mathbb{Q}(\sqrt{-p l})$ for primes p, l. One can show that 0,1 , or 2 are the possible 4 -rank values for $K_{2}\left(\mathcal{O}_{\mathbb{Q}(\sqrt{p l})}\right)$ and $K_{2}\left(\mathcal{O}_{\mathbb{Q}(\sqrt{-p l})}\right)$. Now, for squarefree, odd integers d, consider the sets

$$
X=\{d: d=p l\}
$$

and

$$
Y=\{d: d=-p l\}
$$

for distinct primes p and l. As a consequence of Theorems 1.2 and 1.3 in [26], we obtain

Corollary 2.2. For the fields $\mathbb{Q}(\sqrt{p l})$, 4-rank 0, 1, and 2 appear with natural density $\frac{13}{64}, \frac{97}{128}, \frac{5}{128}$ respectively in X. For the fields $\mathbb{Q}(\sqrt{-p l})$, 4-rank 0, 1, and 2 appear with natural density $\frac{37}{64}, \frac{13}{32}$, and $\frac{1}{64}$ respectively in Y.

The rough idea behind Theorem 2.1 and Corollary 2.2 is to use the matrices of local Hilbert symbols to get a correspondence bewteen 4-rank values and characterizations of the primes p and l by positive definite binary quadratic forms. This characterization then determines the splitting of p and l in a certain normal extension of \mathbb{Q}. Associating Artin symbols to p and l, we then use the Cébotarev Density theorem.

3. Further Research

3.1. 4-rank densities. These matrices of local Hilbert symbols are analogous to Rédei matrices [41] which were used in the 1930's to study the structure of ideal class groups. In [34], this analogy is discussed along with density results of Gerth [15]. In the appendix of [34], we give a product formula for a local Hilbert symbol. Do Gerth's methods [15] coupled with this product formula yield, for any quadratic number field, asymptotic formulas for 4-rank densities of tame kernels?
3.2. Higher 2-power ranks. Is it possible to classify higher 2-power ranks of tame kernels of quadratic number fields in terms of positive definite binary quadratic forms? Do density results exist for higher 2-power ranks? Little is known about 8-ranks of tame kernels. Recent results in [18], [39], and [48] still need to be studied in order to provide a more unified approach.
3.3. Question of Erdös. During a conference in honor of D.H Lemher [16], Ron Graham posed the following question of Erdös: Are there infinitely many n such that the middle binomial coefficient $\binom{2 n}{n}$ is relatively prime to 105 ? Lucas knew [23] that for a prime $p,\left(\binom{2 n}{n}, p\right)=1$ if and only if every coefficient in the base p expansion of n is $<\frac{p}{2}$. This implies that there are infinitely many n such that $\left(\binom{2 n}{n}, p\right)=1$ for a given prime p. Erdös, Graham, Ruzsa, and Straus [12] proved that for any two primes p and q, there exist infinitely many n for which $\left(\binom{2 n}{n}, p q\right)=1$. By Lucas' theorem, Erdös' question can be rephrased: Are there infinitely many n that have the digits 0,1 or $0,1,2$ or $0,1,2,3$ when written in bases 3,5 , or 7 respectively? A list of known n 's is given by sequence $\# A 030979$ [42].
3.4. t-cores. A partition of a positive integer n is a non-increasing sequence of positive integers whose sum is n. The number of such partitions is denoted by $p(n)$. If $\Lambda=\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{s}$ is a partition of n, then the Ferrers-Young diagram of Λ is the s-row collection of nodes:

Label the nodes as if it were a martix. Let $\lambda_{j}{ }^{\prime}$ denote the number of nodes in column j. Define the hook number $H(i, j)$ of the (i, j) node to be $H(i, j):=\lambda_{i}+\lambda_{j}{ }^{\prime}-j-i+1$. If t is a positive integer, then a partition
of n is called a t-core of n if none of the hook numbers of its associated Ferrers-Young diagram are multiples of t. Let $C_{t}(n)$ denote the number of t-core partitions of n. In [32], Ono and Sze made the following remarkable discovery: If $8 n+5$ is square-free, then $C_{4}(n)=\frac{1}{2} h(-32 n-20)$ where $h(N)$ is the order of the class group of discriminant N binary quadratic forms. There are two proofs of this theorem. One proof uses the generating function for $C_{4}(n)[14]$ and properties of class numbers. The second proof relies on an explicit map from the set of 4 -core partitions of n to the class group of binary quadratic forms of discriminant $-32 n-20$. Does such an explicit map exist between other t-cores and class numbers? Between t-cores and orders of K-groups?
3.5. Partition congruences. There has been recent exciting work [1], [2], [31] on congruence properties of the partition function $p(n)$. There are still many interesting open questions concerning the distribution of $p(n)$ modulo integers M, see [3] or [8]. The "folklore conjecture" [35] states that the values of $p(n)$ are distributed evenly modulo 2 . Of the first 10000 values of $p(n), 4996$ are even and 5004 are odd. The pattern seems to continue with 2 replaced by 3 . Namely, the values of $p(n)$ seem to be evenly distributed modulo 3. Currently, there is no known explanation for this behavoir. In fact it is not known whether there are infinitely many n for which $p(n) \equiv 0 \bmod 3$.
3.6. Sign Ambiguities. Gauss, Jacobi, Stern, E. Lehmer, Whiteman, and others have obtained congruences for binomial coefficients in terms of parameters coming from representations of primes by quadratic forms. In [17], many other beautiful binomial coefficient congruences are proved. In certain cases, the key step is the resolution of a sign ambiguity. These sign ambiguities are counterexamples to Hasse's conjecture that all multiplicative relations between Gauss sums follow from the Davenport-Hasse product formula and the norm relation for Gauss sums. Very few ([28], [29], [30], [50]) sign ambiguities have been given. Recently, Brian Murray [27] has proved a remarkable product formula which yields an infinite class of new sign ambiguities. Can these new resolutions of sign ambiguities be used to obtain new congruences for binomial coefficients?

References

[1] S. Ahlgren, The partition function modulo composite integers M, Math. Ann. 318 (2000), 795-803.
[2] S. Ahlgren, K. Ono, Congruence properties for the partition function, Proc. Nat. Acad. Sci. U.S.A., 98 (2001), no. 23, 12882-12884.
[3] S. Ahlgren, K. Ono, Congruences and conjectures for the partition function, Contemp. Math., 291 (2001), 1-10.
[4] B. J. Birch, K_{2} of global fields, Proc. Symp. Pure Math. 20, Amer. Math. Soc. 1970.
[5] B. Brauckmann, The 2-Sylow subgroup of the tame kernel of number fields, Can. J. Math, 43 (1991), 255-264.
[6] J. Browkin, A. Schinzel, On 2-Sylow subgroups of $K_{2}\left(\mathcal{O}_{F}\right)$ for quadratic fields, J. reine angew. Math. 331 (1982), 104-113.
[7] A. Candiotti, K. Kramer, On the 2-Sylow subroup of the Hilbert kernel of K_{2} of number fields, Acta Arith. 52 (1989), 49-65.
[8] Clemson University, Computational Number Theory and Combinatorics, REU, May 25-July 21, 2002.
[9] P. E. Conner, J. Hurrelbrink, On elementary abelian 2-Sylow K_{2} of rings of integers of certain quadratic number fields, Acta Arith. 73 (1995), 59-65.
[10] P. E. Conner, J. Hurrelbrink, On the 4-rank of the tame kernel $K_{2}(\mathcal{O})$ in positive definite terms, J. Number Th. 88 (2001), 263-282.
[11] P.E. Conner, J. Hurrelbrink, The 4-rank of $K_{2}(\mathcal{O})$, Can. J. Math. 41 (1989), 932-960.
[12] P. Erdös, R.L. Graham, I.Z. Ruzsa, E.G. Straus, On the prime factors of $\binom{2 n}{n}$, Math. Comp. 29 (1975), 83-92.
[13] H. Garland, A finiteness theorem for K_{2} of a number field, Ann. of Math. 94 (1971), 534-548.
[14] F. Garvan, D. Kim, and D. Stanton, Cranks and t-cores, Invent. Math. 101 (1990), 1-17.
[15] F. Gerth, The 4-class ranks of quadratic fields, Invent. Math. 77 (1984), 489-515.
[16] R. Graham, "Number theory, the Lehmers and me", Friday, August 25, 10:30-11:00 am, Lehmer Conference, U.C. Berkeley, 2000.
[17] R. Hudson, K. Williams, Binomial coefficients and Jacobi sums, Trans. Amer. Math. Soc. 281 (1984), no. 2, 431-505.
[18] J. Hurrelbrink, M. Kolster, Tame kernels under relative quadratic extensions and Hilbert symbols, J. reine angew. Math. 499 (1998), 145-188.
[19] F. Keune, On the structure of the K_{2} of the Rings of Integers in a Number Field, K-Theory 2 (1989), 625-645.
[20] M. Kolster, K K_{2} of Rings of Algebraic Integers, J. Number Th. 42 (1992), 103-122.
[21] M. Kolster, The structure of the 2-Sylow-subgroup of $K_{2}(\mathcal{O})$, I, Comment. Math. Helv. 61 (1986), 376-388.
[22] S. Lichtenbaum, Values of zeta functions, étale cohomology, and algebraic K-theory, Lecture Notes in Math., Vol. 342, Springer Verlag, 1973, 489-501.
[23] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240, 289-321.
[24] H. Matsumoto, Sur les sous-groups arithmétiques des groups semi-simples déployés, Ann. Sci. Éc. Norm. Sup. 4^{e} serie, 2 (1969), 1-62.
[25] J. Milnor, An Introduction to Algebraic K-Theory, Ann. Math. Studies. Vol. 72, Princeton Univ. Press, Princeton, 1971.
[26] B. Murray, R. Osburn, Tame kernels and further 4-rank densities, J. Number Th. 98 (2003), 390-406.
[27] B. Murray, Explicit multiplicative relations between Gauss sums, preprint 2002.
[28] J.B. Muskat, On Jacobi sums of certain composite orders, Trans. Amer. Math. Soc. 134 (1969), 483-502.
[29] J.B. Muskat, A.L. Whiteman, The cyclotomic numbers of order twenty, Acta Arith. 17 (1970), 185-216.
[30] J.B. Muskat, Y.C. Zee, Sign ambiguities of Jacobi sums, Duke Math J. 40 (1973), 313-334.
[31] K. Ono, Distribution of the partition function modulo m, Ann. of Math. 151 (2000), 293-307.
[32] K. Ono, L. Sze, 4-core partitions and class numbers, Acta Arith. 80 (1997), 249-272.
[33] R. Osburn, Densities of 4-ranks of $K_{2}(\mathcal{O})$, Acta Arith. 102 (2002), 45-54.
[34] R. Osburn, A note on 4 -rank densities, accepted for publication in the Canadian Mathematical Bulletin.
[35] T.R. Parkin, D. Shanks, On the distribution of parity in the partition function, Math. Comp. 21 (1967), 466-480.
[36] H. Qin, 2-Sylow subgroups of $K_{2}\left(\mathcal{O}_{F}\right)$ for real quadratic fields F, Sc. China (A) 37, No. 11 (1994), 1302-1313.
[37] H. Qin, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith. 69 (1995), 153-169.
[38] H. Qin, The 4-ranks of $K_{2}\left(\mathcal{O}_{F}\right)$ for real quadratic fields, Acta Arith. 72 (1995), 323333.
[39] H. Qin, Tame kernels and Tate kernels of quadratic number fields, J. reine angew. Math. 530 (2001), 105-144.
[40] D. Quillen, Higher algebraic K-theory, Algebraic K-Theory I, Lecture Notes in Mathematics, Vol. 341, Springer-Verlag, New York, 1973, 85-147.
[41] L. Rédei, Arithmetischer Beweis des Satzes über die Anzahl der durch 4 reilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper, J. reine angew. Math. 171 (1934), 55-60.
[42] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at www.research.att.com/ ~njas/sequences.
[43] J. Tate, Relations between K_{2} and Galois cohomology, Invent. Math. 36 (1976), 257274.
[44] J. Tate, Symbols in arithmetic, Actes du Congrès International des Mathématiciens, Tome 1, Nice, 1970, 201-211.
[45] J. Urbanowicz, K. Williams, Congruences for L-Functions, Mathematics and its Applications. Vol. 511, Kluwer Academic Publishers, 2000.
[46] A. Vazzana, Elementary abelian 2-primary parts of $K_{2}(\mathcal{O})$ and related graphs in certain quadratic number fields, Acta Arith. 81 (1997), 253-264.
[47] A. Vazzana, On the 2-primary part of K_{2} of rings of integers in certain quadratic number fields, Acta Arith. 80 (1997), 225-235.
[48] A. Vazanna, 8 -ranks of K_{2} of rings of integers in quadratic number fields, J. Number Th. 76 (1999), no.2, 248-264.
[49] A. Wiles, The Iwasawa conjecture for totally real fields, Ann. Math. 131 (1990), 493-540.
[50] K. Yamamoto, On a conjecture of Hasse concerning multiplicative relations of Gaussian sums, J. Combinatorial Theory 1 (1966), 476-489.

