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Abstract� We give a recursive formula for the number of M �sequences �a�k�a�
f�vectors for multicomplexes or O�sequences� given the number of variables and
a maximum degree� In particular� it is shown that the number of M �sequences
for at most � variables is a power of two and for at most � variables is equal to
the Bell numbers� The recursive formula is generalized to the number of f�vectors
for general Clements�Lindstr�om complexes and then specialized to the number of
f�vectors for simplicial complexes� Keeping the maximum degree �xed we get the
number of M �sequences and the number of f�vectors for simplicial complexes as
polynomials in the number of variables and it is shown that these numbers are
asymptotically equal� A bijection is given fromM �sequences to iterated partitions
of sets�

�� Introduction

A multicomplex is a collectionM of �nite multisets satisfying B � M� A � B ��
A � M� It is often convenient to think of the underlying ground set as variables and
of the sets in M as monomials� Then a multicomplex is a collection of monomials
closed under division� Given a multicomplex M� let mi �� jfA � M � degA � igj�
The sequence m � �m��m��m�� � � � � is called the M �sequence of M� The purpose of
this paper is to study the number of M �sequences given the number of variables and
a maximum degree for the monomials and to give a bijection to iterated partitions�
The counting technique is generalized to f �vectors of Clements�Lindstr	om complexes
in Section 
 and then specialized to f �vectors of simplicial complexes in Section �� It
is also shown in Theorem ��� that the number of f �vectors for all these classes have
the same asymptotic growth for a �xed maximal degree�

M �sequences play an important role in the theories of polytopes� standard graded
algebras and shellable simplicial complexes� The theorem below is a summary of how
the cardinality of M �sequences can be interpreted in the di�erent areas� Theorem ���
is a consequence of deep theorems �such as Macaulays theorem� the g�theorem etc��
by Billera� Lee� Macaulay� McMullen and Stanley� We refer to Ziegler �Z� Chapter ��
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and Stanley �S�� for an account of the underlying de�nitions and theorems� for the
bijection between �v���vi� and �i� see also Bj	orner �B��� In this paper we will use �ii�
to do the counting�

Theorem ���� Fix n� p � �� Then the following are equal�

�i� The number of M�sequences with m� � p and mj � � for all j � n� not
counting ��� �� �� � � � ��

�ii� The number of non�empty compressed multicomplexes on at most p variables
and with no monomial of degree higher than n�

�iii� The number of f�vectors of n � � dimensional shellable simplicial complexes
on at most n � p vertices�

�iv� The number of f�vectors of n�� dimensional Cohen�Macaulay simplicial com�
plexes on at most n � p vertices�

�v� The number of f�vectors of simplicial �n�polytopes with at most p � �n � �
vertices�

�vi� The number of f�vectors of simplicial �n���polytopes with at most p��n��
vertices�

�vii� The number of Hilbert functions for standard graded k�algebras R � R��R��
� � ��Rd� with d � n and dimR� � p�

Let Mp�n�� � denote the common number in Theorem ����

Our basic result on the number of M �sequences� from which the other results will
follow� is the recursion in Theorem ���� Corollary ��� shows that when �xing p and
expressing Mp�n� in terms of n� we get the sequence of functions�

constant� linear� powers of �� Bell numbers� � � � �

for p � �� �� � and � respectively� This sequence is very suggestive� and in Section �
we give a bijection from M �sequences to what we call iterated partitions of sets�

From Theorem ��� we see that every enumerative result about Mp�n� can be inter�
preted in many ways� Corollary ��� implies for example that the number of f �vectors
for a simplicial d�polytope with at most d � � vertices is �bd��c�� � � and with at
most d� 
 vertices is B�bd��c � ��� �� where B�n� is the Bell�number� It would be
interesting if someone could give a direct proof of this� avoiding the g�theorem�

Looking at this sequence of functions� one might suspect combinatorial explosion�
However� at the end of Section � we give the general upper bound Mp�n� � �n� p�
��n�p���� for p � �� It is interesting to compare with known upper and lower bounds
for the number of polytopes�

We also prove that for each �xed n we get Mp�n� as a polynomial in p of de�

gree
�
n��
�

�
� Theorem ��
� This is also true for the number of f �vectors of simplicial
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complexes� see Theorem ���� In Theorem ��� we prove the perhaps somewhat sur�
prising result that the number of f �vectors for simplicial complexes and the number
of M �sequences for multicomplexes have asymptotically equal growth for each �xed
n� From this we can deduce� Theorem ���� that for a �xed dimension n � � and a
large number of vertices p� almost every f �vector of simplicial complexes is also an
f �vector for a shellable simplicial complex�

�� The Number of M�sequences

���� Basic recursion� After Theorem ��� we de�ned Mp�n� to be one more than
the number of M �sequences for non�empty multicomplexes� We think of this extra
one as coming from the sequence ��� �� �� �� � � � � for the empty multi complex� This
sequence does not have a proper non�empty counterpart when counting f �vectors of
simplicial polytopes� shellable simplicial complexes etc� in Theorem ���� We include
this extra sequence ��� �� �� � � � � in our count to obtain the nicest looking recursions�
Hence� we will have Mp��� � � for all p � �� We also de�ne Mp���� �� � for all
p � �� On the other boundary we have M��n� � � for all n � ��

Given two monomials xa�� � � � xapp and xb�� � � � xbpp we say that xa�� � � � xapp comes be�

fore xb�� � � � xbpp in reverse lexicographic order if either ap � bp or ap � bp� ap�� �
bp��� � � � � ai�� � bi��� but ai � bi�

A multicomplex M is said to be compressed if B � M� deg�A� � deg�B� and A
comes before B in reverse lexicographic order implies that A � M�

We also need to have a notation for the number of M �sequences corresponding to
multicomplexes that for a �xed number of variables have all the monomials up to a
�xed degree k� For n � k � ��� p � � de�ne

Lp�n� k� ��the number of M �sequences with at most p variables and degree at most n

that has maximal value for mi when i � k but not for mk��� i�e��mi �
�
p�i��

i

�
for i � k and mk�� �

�
k�p
k��

�
�

The boundary conditions are Lp�n� n� � Lp�n���� � � for all p � �� n � ��� For
consistency we de�ne L��n� n� �� L��n���� �� � and L��n� k� �� � for k �� ��� n� It
follows from these de�nitions that

Mp�n� �
nX

k���

Lp�n� k�����

for all n� p � ��

The numbers Lp�n� k� also have interesting interpretations along the lines of The�
orem ���� In polytope theory for example we get from the bijection between �i� and
�v���vi� of Theorem ��� that Lp�n� k� is the number of f �vectors for simplicial �n��or
�n � ���polytopes with p � �n � � �p � �n � �� vertices that are k�neighborly� i�e��
they have all possible r�sets as faces for r � k� but not k � ��neighborly�
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Figure �� All the M �sequences and the corresponding compressed com�
plexes when p � � and n��� The third column shows the partition of
f�� �� �� 
g according to the bijection described in Section ��

The basic theorem from which the other results will follow is the following�

Theorem ���� The number of M�sequences satis�es the following recursions for all
p� n � ��k � ��

Mp�n� � � �
nX

i��

Lp���n� i�Mp�i� �����

and

Lp�n� k� �
nX

i�k

Lp���n� i�Lp�i� �� k � ������

where the �rst recursion is implied by the second�
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Proof From Theorem ��� we have that when counting M �sequences we can count
compressed multicomplexes instead� See Figure ��

Let M be a compressed multicomplex on the p variables x�� � � � � xp of degree at
most n that is totally �lled exactly to level k� Partition the multisets in M into
two disjoint parts depending on whether the multiset contains xp or not� i�e�� M� ��
fA � M � xp �� Ag and M� �� fA � M � xp � Ag� See Figure ��

M M

xp

1 2

k

i

n

Figure �� The partition of a compressed multicomplexM as in the proof
of Theorem ����

Note that M� is a compressed multicomplex on at most p � � variables and that
dividing every monomial in M� by xp we get a compressed multicomplex on at most
p variables� Let i� i � k� be the largest level in M� that is totally �lled� Then there
are Lp���n� i� possibilities for M� and Lp�i � �� k � �� possibilities for M� and all
these possibilities occur for someM� Summing over i we get recursion ���� Recursion
��� follows from ��� and ����

Tables of Mp�n� and Lp�n� k� calculated with the recursions in Theorem ��� can
be found in the Appendix�

���� Keeping p �xed� Recall that the Stirling number of the second kind S�n� k� is
the number of ways to partition f�� �� � � � � ng into k blocks� and that the Bell number
B�n� �

Pn
k�� S�n� k� is the number of all possible partitions� For further details see

e�g� �S���

We get the following result when p � �� � and ��

Corollary ���� For n � k � ��� the number of M�sequences with at most ��� and
� variables are

M��n� �n� �� L��n� k� � �

M��n� ��n��� L��n� k� �

�
n� �

k � �

�

M��n� �B�n� ��� L��n� k� � S�n� �� k � ���



� SVANTE LINUSSON

where B�n� are the Bell numbers and S�n� k� are the Stirling numbers of the second
kind�

Proof The values for p � � follow directly from Theorem ��� and they are easily
seen to be correct�

When p � �� the recursion ��� becomes

L��n� k� �
nX

i�k

L��i� �� k � ���

Since
Pn

i�k

�
i
k

�
�
�
n��
k��

�
� the formulas follow by induction and from formula ����

When p � �� the recursion ��� is equivalent to the known formula

S�n� �� k � �� �
nX

i�k

�
n� �

i� �

�
S�i� �� k � ���

The result follows again by induction and from formula ����

Remark For p � � the results in Corollary ��� have been previously calculated by
Bj	orner �B���

Corollary ���� As special cases we get�

Lp�n� �� �Mp���n�� �

and Lp�n� n� �� �

�
p � n� �

n

�
�

Proof Follows directly from Theorem ���� Both formulas are also easily under�
standable directly from the de�nition of Lp�n� k��

���� Keeping n �xed� Next we calculate formulas for Mp�n� and Lp�n� k� in terms
of p while keeping n and k �xed� Surprisingly enough they turn out to be polynomials�

Theorem ���� Lp�n� k� is a polynomial in p of degree
�
n��
�

�
�
�
k��
�

�
and Mp�n� is a

polynomial in p of degree
�
n��
�

�
� for each pair n� k � ��

Proof We will prove the theorem by double induction using recursion ���� The
statement is trivially true for n � � and for n � k since Lp�n� n� � �� Given

n � k � �� assume that Lp�s� i� is a polynomial of degree
�
s��
�

�
�
�
i��
�

�
for all

s � n� � � i � s� As the second induction hypothesis we assume that Lp�n� i� is a

polynomial of degree
�
n��
�

�
�
�
i��
�

�
for all k � i � n� Now� write ��� as

Lp�n� k�� Lp���n� k� �
nX

i�k��

Lp���n� i�Lp�i� �� k � ���
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By induction we see that if k � �� then Lp�n� k��Lp���n� k� is a polynomial of degree

max

���
n� �

�

�
�

�
i� �

�

��
�

��
i

�

�
�

�
k

�

���n

i�k��

�

� max

��
n� �

�

�
� i�

�
k

�

��n

i�k��

�

�

�
n� �

�

�
�

�
k � �

�

�
� ��

Hence we get that Lp�n� k� is a polynomial of degree
�
n��
�

�
�
�
k��
�

�
� For k � �� we use

that Lp�i� ����� � � for all p � � and similar calculations� to get that Lp�n� �� is a

polynomial of degree
�
n��
�

�
� From Corollary ��� it follows that Mp�n� is a polynomial

of degree
�
n��
�

�
� The explicit polynomials in the theorem are easily calculated using

recursion ��� as above�

Remark A weaker formulation of the polynomial growth of Mp�n� appears without
proof in �B���

For small values of n we have the following polynomials for Mp�n��

Mp��� � ���
�

Mp��� � p� ��

Mp��� �

�
p� �

�

�
�

�
p � �

�

�
�

Mp��� � 


�
p � �

�

�
� �

�
p � �

�

�
� 


�
p � �




�
� �

�
p � �

�

�
�

�
p � �

�

�
�

Mp�
� � ���

�
p� �

��

�
� 
��

�
p� �

�

�
� ���

�
p� �

�

�
� ���

�
p � �

�

�
�

� ���

�
p � �

�

�
� ��

�
p� �

�

�
� ��

�
p � �




�
� �

�
p � �

�

�
�

�
p � �

�

�
�

I have chosen to express the polynomials in a base of binomial coe�cients since
this makes them easy to evaluate numerically for small values of p�

Proposition ���� For � � n � k � �� the coe�cient for the term of highest degree
in Lp�n� k� is
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Qn��
i�k

��n��
�

�
�
�
i��
�

�
� �

i

�
��

n� �

�

�
�

�
k � �

�

��
�

���

The coe�cient for the term of highest degree in Mp�n� is the same as in Lp�n� ���
i�e� take k � � in ����

Proof Let c�n� k� be the leading coe�cient of Lp�n� k�� We will again use double
induction over n and k� Since Lp��� �� � �� Lp��� �� � p and Lp�n� n� � �� the
statement is trivially true for n � � and n � k� Assume that the proposition is true
for all c�r� s� when r � n or r � n� s � k� From the proof of Theorem ��
 we see that

�
�
n��
�

�
�
�
k��
�

�
�c�n� k� � c�n� k � ��c�k� k � ��� From the induction assumptions we

get that

c�n� k � ��c�k� k � �� �

Qn��
i�k��

�
�n��� ���i��� ���

i

�
��

n��
�

�
�
�
k��
�

��
�

�

k�
�

Qn��
i�k

�
�n��� ���i��� ���

i

�
��

n��
�

�
�
�
k��
�

�
� �

�
�
�

The formula for c�n� k� follows� The result for Mp�n� is easily extracted from ���� ���
and Theorem ��
�

���� Keeping p and n� k �xed� Now we calculate formulas for Lp�n� k� in terms
of n while keeping p and n � k �xed� Once again we get polynomials�

Theorem ���� For �xed p � �� r � �� Lp�n� n � r� is a polynomial in n of degree
r�p � ��� with leading coe�cient ���p � ���rr��

Proof This time we write ��� as

Lp�n� n� r� � Lp�n � �� n � r � �� �
n��X

i�n�r

Lp���n� i�Lp�i� �� n � r � ���

Imitating the proof of Theorem ��
 we get by double induction that Lp�n� n � r�
is a polynomial in n of degree r�p � ��� The leading coe�cient is extracted as in
Proposition ����
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���� An upper bound� A general upper bound for Mp�n� can be given as follows�

For a given M �sequence with m� � p� we have that � � mi �
�
i�p��
p��

�
� Hence�

Mp�n� � � �
nY

i��

��
i� p� �

p � �

�
� �

�
� �n� p � ��n�p�������

for p � �� For �xed n and large p this bound is larger than the polynomials of

degree
�
n��
�

�
obtained in Theorem ��
� For �xed p and large n however� the bound

is helpful� From the sequence of functions obtained in Corollary ��� one might be
tempted to suspect combinatorial explosion� but this is not the case� It still remains
an interesting problem to give a good lower bound� We have a feeling that ��� is
reasonably close to the truth but have not been able to prove so�

To end this section we compare our results with known upper bounds for the
number of polytopes� Let cs�m�d� be the number of di�erent combinatorial types
of simplicial d�polytopes on m labelled vertices� Over the years� a lot of attention
has been given to the problem of estimating cs�m�d�� see �A��G� pp� ��������� Even
the asymptotic behavior was a big open question� until Goodman and Pollack �GP�

obtained the upper bound cs�m�d� � md�d���m� The lower bound
�
m�d
d

�dm��
�

cs�m�d� is due to Alon �A�� who also improved the upper bound and generalized to
arbitrary polytopes�

Comparing these bounds via Theorem ���� we see that for a �xed dimension d� the
number of f �vectors for simplicial d�polytopes on m vertices is much smaller than
the number of combinatorial types for large m� For �xed m� d and large d however�
we have not been able to �nd any good lower bound for polytopes in the literature
to compare with�

�� Bijection to iterated partitions of sets

Inspired by the sequence of functions for Mp�n�� constant� linear� powers of ��
Bell numbers����� for p � �� �� � and � respectively� we de�ne in this section a set of
objects called iterated partitions of sets that will have cardinality Mp�n� for certain
parameters n and p� The de�nition of iterated partitions will be an imitation of a
recursive way to get from subsets of a set to partitions of the set as is explained
at the end of Section ���� We will also for every n and p give a bijection between
M �sequences and the iterated partitions of sets in Section ����

���� Iterated partitions� We will use the term �rst order partitions for ordinary
set partitions of f�� � � � � ng� Call the blocks of a �rst order partition �rst order blocks�
Order the blocks increasingly by the smallest element in the block�

We will now de�ne the second order partitions of f�� � � � � ng by forming �rst order
partitions iteratively� see below for an example�
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�� Take a �rst order partition of f�� � � � � ng�
�� Let the �rst order block containing the smallest element form a second order

block�
�� Let k denote the number of �rst order blocks created in step �� If k � �� then

stop� If k � � repeat from step � with the set of the k � � �rst order blocks
that do not contain the smallest element as input�

Every possible outcome of steps �� � and � above is a second order partition�

Example �� An example of how a second order partition of f�� �� �� 
� �� �� �� �� �g is
constructed where � � denotes a �rst order block and � � denotes a second order block�

f�� �� �� 
� �� �� �� �� �g

step �

���y
�����������
�����

step �
���� �������

step � and �

���y
�������������
��

step �
���� �������������

step � and �

���y
���
���

step �
���� ����
����

step �

���y
STOP

The second order partition formed in this example is ������������������������
�����

Properties of second order partitions�
�a� The number of second order blocks is equal to the number of times the

steps are iterated�
�b� The order in which the second order blocks are constructed implies a

natural ordering of them�
�c� The second order block number i will have i levels of �rst order partitions

inside� where the outmost partition is trivial� i�e� consists of one block�
�d� The number of second order partitions of f�� � � � � ng with k blocks is

L��n� �� k � ���
�e� The number of second order partitions of f�� � � � � ng is M��n� ���

The �rst three properties are easy consequences of the de�nition� The last two
properties will follow from the bijection established below�
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Next we give a tableau for all the six second order partitions of f�� �� �g� Here we
use a shorter notation than in Example � above to describe how the second order
partitions in the last row are constructed�

Ground set � � � � � � � � � � � �
First Iteration ���� �� ��� ���� ������ ���� ������ �������� ��
Second Iteration ������� ������� ����� ����
Third Iteration
Partition ���� �� ��� ���� ���������� ���� ���������� ���������� ����

� � � � � �
����������� �����������

���������� ������������
���������

��������������� ���������������������

From properties �a���c� stated above we see that all the �rst order brackets around
the numbers � and � in ��������������������� are not necessary to distinguish between
di�erent second order partitions� see Convention below�

There are other ways to de�ne second order partitions� see Remark � in Section ��

Now we extend the de�nition of second order partitions and second order blocks
to general p�th order partitions of f�� � � � � ng and p�th order blocks with exactly the
same recursive steps�

�� Take a p � ��th order partition of f�� � � � � ng�
�� Let the p� ��th order block containing the smallest element form a p�th order

block�
�� Let k denote the number of p � ��th order blocks created in step �� If k � ��

then stop� If k � � repeat from step � with the k � � p � ��th order blocks
that do not contain the smallest element as input�

Every possible outcome of steps �� � and � above is a p�th order partition� The �ve
properties �a���e� stated above for second order partitions are true also for general
p�th order partitions for every p � � �with obvious changes��

Convention Looking at the second order partitions above with all the brackets
there� one quickly realizes that higher order partitions will be completely unreadable
if we do not do something about our notation� We can avoid this mess of brackets by
eliminating matching brackets that are directly inside a pair of matching brackets of
higher order� for example ��� � � �� is replaced by �� � � �� if �� are matching� By property
�c� stated above we know that there are always i levels of p � ��th order partitions
inside the i�th p�th order block� and which block is the i�th order block can be seen
from the integers in the block according to �b�� Hence we can reconstruct the original
bracketing�
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With this convention we can write the second order partition in Example � as
�����������������
� and the six second order partitions of f�� �� �g in the simpler forms�

��� �� ��� ��� ������ ��� ������ ������ ��� ����������� and ���������

Example �� To give the reader some feeling for the higher order partitions we
include also an example of a third order partition with n � �� The third order blocks
are embraced by � ��

Ground set � � � 
 � � �
First iteration � ��� � �������� ���� ���
�� ���
Second iteration � �������� � ������ ���
���������
Third iteration � ������ ���
��������� �
Partition � � �� ������ �� ����� ���
�������� �

In order to describe the bijection below we also need to extend the de�nition of
p�th order partitions to p � � as follows�

We let the ��th order partitions of f�� � � � � ng be the subsets containing �� The ��th
order blocks are the integers in the subset� From ��th order partitions to �rst order
partitions we get by using almost the same recursive steps �� � and �� but this time
we modify step � to

�� Let the smallest element �a ��th order block� form a �rst order block together
with the elements not in the ��th order partition �which is a subset� chosen in
step ��

Note that the change of step � does not in�uence the number of di�erent iterations
possible� but it helps to identify the �rst order partitions with ordinary set partitions
which we will use in the de�nition of the bijection below�

Example �� Using the same notation as above� the recursive steps to create all the
�ve �rst order partitions from ��th order partitions are for n � ��

Iteration � � � � � � � � � � � � � � �
First ��� ��� � ��� � ��� � � ��� � �
Second ��� ��� ��� ��� �
Third ���
Partition ��� �� �� ��� ����� ��� ����� ������ �� ���������

���� The bijection� We will now recursively de�ne for a given pair n � ��� p � �
a function �n�p from M �sequences with m� � p and mi � � for all i � n �including
��� �� �� � � � ��� to p � ��th order partitions of f�� �� � � � � n� �g�
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We will use the obvious bijection fromM �sequences to compressed multicomplexes
and thus de�ne �n�p on compressed multicomplexes�

Definition For p � � we de�ne the bijection by drawing a path of length n � �
along the contour of the compressed complex M and marking the segments with
�� �� � � � � n�� starting from the lower right corner� see Figure �� The bijection �n�� is
then de�ned to take the compressed complex to the subset of f�� � � � � n��g consisting
of � plus the numbers on horizontal segments� In particular� let �n���	� �� f�g� for
all n � ��

It is clear from this de�nition that the number of horizontal segments will be k��
where k is the largest integer such that xk� � M� Hence �n���M� will consist of k��
integers ���th order blocks��

5 4
3

22

2
1

3

Figure �� �������� �� �� ��� � f�� �� 
� �g�

For every p � �� de�ne ����p�	� to be the only p�th order partition of f�g�

Now �x n and p� with p � �� n � �� Assume that �r�q has been de�ned for
q � p� r � n and for q � p� n � r� Assume also that for these cases the number
of blocks in the partition �r�q�M� is k � �� where k is the largest integer such that
xkq � M�

Let M be a compressed multicomplex on at most the p variables x�� � � � � xp of
degree at most n� As in the proof of Theorem ���� we partition the monomials in M
into two disjoint parts depending on whether the monomial is divisible by xp or not�
i�e�� let M� � fA � M � xp �� Ag and M� � fA � M � xp � Ag� see Figure � and
Figure 
�

We apply �n�p�� to M�� which is a compressed multicomplex on at most p � �
variables� This corresponds to step � in the de�nition of iterated partitions and gives
a p � ��th order partition with k � � blocks� where k is the largest integer such that
xkp�� � M�� Order the blocks by the canonical order obtained in the de�nition� i�e��
by the smallest integer in the block�

Dividing every monomial in M� with xp gives a compressed multicomplexes M�
�

on at most p variables of degree at most k � �� As in step � we now turn the �rst
��rst�elements not in the block if p � �� p � ��th order block into a p � ��th order
block� Replace the integers �� � � � � k � � in the p � ��th order partition �k���p�M�

��
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with the last k�� blocks obtained in �n�p���M��� De�ne �n�p�M� to be the p� ��th
order partition obtained in this way�

See Figure � for an explicit description of ����� To illustrate how �n�p is de�ned
we take as an example n � p � 
 and the M �sequence ��� 
� �� ��� ��� To construct
�������� 
� �� ��� ���� a ��nd order partition of f�� �� �� 
� �� �g� we �rst decompose the
corresponding compressed complex as shown in Figure 
� We decompose until we
reach complexes for which we know the iterated partition� For this example we have
that �see Figure � and Figure ��

�������� ��� ����������

�������� �� �� ��� �f�� �� 
� �g

�
�� �������� �� �� ��� � ��������
�����

It is easy to verify that �������� �� �� 
� ��� � f�� �� �� 
� �� �g� We can conclude

�������� �� �� ��� ���������
����

�������� �� �� 
� ��� �f�� �� �� 
� �� �g�

�
�� �������� �� �� ��� ��� � �����
�����������

Finally we use that �see Figure ��

�������� �� ��� � ��������
� �� �������� �� ��� � ���������
��

to get
�������� 
� �� ��� ��� � ������
��������������

Theorem ���� For every pair n � ��� p � �� we have that �n�p is a bijection� Hence

Mp�n� � number of p � ��th order partitions of f�� �� � � � � n� �g

and

Lp�n� k� �number of p� ��th order partitions of f�� �� � � � � n � �g

with k � � blocks�

Proof We easily see that �n�� is a bijection� It is also easy to see that each
pair of compressed complexes M��M�

� as de�ned above corresponds to a unique
compressed complex M� Hence �n�p is an injection for every pair n � ��� p � � by
induction� From the de�nition of iterated partitions� it is clear that step � corresponds
to choosing M�� Removing one block in step � corresponds to the necessary decrease
in degree by one resulting from the division with xp to create M�

�� An inductive
assumption that �n�p�� and �s�p are surjective for every s � n implies that �n�p is also
surjective�

The enumerative results follow from Theorem ����

The test for the reader is now to �nd the M �sequence that is mapped by �	�	 to
the third order partition in Example � above� �Answer����������
��������
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[1][(24)(5)][(3)(6)]

(1)(24)(3)(5)(6)

[13][(2)(4)]

(13)(2)(4)(5)

{1,2,4,5}{1,2,3,4,5,6}

(1)(2)(3)

Figure �� Example of a decomposition of a compressed complex as in
the de�nition of the bijection�


� A generalization of Clements�Lindstr�om type

Assume we are given an integer p � � and n�� n�� � � � � np � f�� �� �� � � � g 
 f�g�
Denote the set of all monomials xa�� � � � xapp such that � � ai � ni for all i � �� � � � � p
with G�n�� � � � � np�� A set of monomials CL � G�n�� � � � � np� closed under division will
be called a Clements�Lindstr	om complex 
CL�complex for short� of type n�� � � � � np�

When ni � � for i � �� � � � � p we have multicomplexes on p variables and when ni �
� for i � �� � � � � p we have simplicial complexes on p vertices� Simplicial complexes
will be treated in Section ��

Given a complex CL� let fi � jfA � CL � degA � igj� The sequence f �
�f�� f�� f�� � � � � is called the f �vector of CL� We will count the number of possible
f �vectors given n� � � � � � np � � and a maximal degree n � ��� Let

F �n� � � � � � np�n� ��the number of f �vectors for Clements�Lindstr	om complexes
of type n� � � � � � np with monomials of degree at most n�

We will include both the f �vector ��� �� �� �� � � � � for the empty complex and the
f �vector ��� �� �� �� � � � � for the complex consisting of only a constant� Hence� we will
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have F �n� � � � � � np���� � � and F �n� � � � � � np� �� � � for all n� � � � � � np�
p � �� On the other boundary we have F �	�n� � � for all n � ��

Remark Note that the number of f �vectors for a CL�complex is the same for
any permutation of n�� � � � � np� The condition n� � � � � � np is needed to use the
compressing technique �Theorem 
����

The following theorem of Clements and Lindstr	om �CL� is essential to our presen�
tation�

Theorem ��� 	Clements�Lindstr
om�� Fix p� n and n� � � � � � np � �� For every
Clements�Lindstr	om complex of type n� � � � � � np there is a compressed complex of
the same type having the same f�vector�

Since the f �vector is di�erent for di�erent compressed complexes� Theorem 
��
allows us to count the number of compressed complexes instead of the number of
f �vectors�

A facet in a CL�complex CL is a maximal monomial in the complex� i�e�� it does not
divide any other monomial in the complex� Let vi �� jfA � CL � A a facet� degA �
igj� We call the sequence v � �v�� v�� v�� � � � � the facet�vector of CL� It follows from
a theorem by Clements �C� that the number of facet�vectors will be the same as
the number of f �vectors� Hence� the number of facet�vectors is also enumerated by
F �n� � � � � � np�n�� We state a reformulated version of Clements Theorem�

Theorem ��� 	Clements�� Fix p� n and n� � � � � � np� For every Clements�
Lindstr	om complex of type n� � � � � � np there is a compressed complex of the
same type having the same facet�vector�

We need the following re�nement of F �n� � � � � � np�n�� Given n� � � � � � np � �
and n� k � ��� let

E�n� � � � � � np�n� k� ��the number of f �vectors for Clements�Lindstr	om complexes
of type n� � � � � � np with monomials of degree at most n that
contains all the monomials in G�n�� � � � � np� of degree less than
or equal to k� but not all of degree k � ��

From the de�nition we have for every p � �� n � ��� n� � � � � � np � �� that
E�n� � � � � � np�n���� � �� E�n� � � � � � np�n�minfn�

Pp
i�� nig� � � and E�n� �

� � � � np�n� k� � � for k � minfn�
Pp

i�� nig�
With these boundary conditions we get that

F �n� � � � � � np�n� �
nX

k���

E�n� � � � � � np�n� k�����

for all n� p � �� n� � � � � � np�
The next theorem is the natural generalization of Theorem ����
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Theorem ���� For p� n � �� k � � and n� � � � � � np � � we have the recursions

��� F �n� � � � � � np�n� �

� �
nX
i��

E�n� � � � � � np���n� i�F �n� � � � � � np�� � np � �� i� ��

and

��� E�n� � � � � � np�n� k� �
nX

i�k

E�n� � � � � � np���n� i�E�n� � � � � � np�� � np � �� i� �� k � ���

where the �rst recursion is implied by the second�

Proof The theorem is� once discovered� easy to prove� Using the theorem by
Clements�Lindstr	om we can compute the number of compressed complexes instead
of the number of f �vectors� We can therefore apply exactly the same decomposition
technique as in the proof of Theorem ��� to prove the theorem�

If np � �� we will obtain types that ends with a zero in ��� and ���� Note that
the values for F and E for these types can also be calculated recursively from the
theorem� since F �n� � � � � � np�� � ��n� � F �n� � � � � � np���n�� and similarly for
E�

�� The number of f�vectors for simplicial complexes

A simplicial complex is a collection F of �nite sets satisfying B � F � A � B ��
A � F � A set in F is called a simplex or a face� A set in F of cardinality one is
called a vertex� A face that is not contained in any other face is called a facet� A
simplicial complex on p vertices is a CL�complex of type � � � � � � � �p �s�� Given a
simplicial complex F � we have fi �� jfA � F � jAj � igj� Note that fis are indexed
by cardinality and not by dimension�

In this section we will study the number of f �vectors given a maximal number of
vertices p � � and a maximal cardinality n � � for the simplices� We will also prove
that the number of f �vectors for simplicial complexes and the number of M �sequences
for multicomplexes have the same asymptotic growth� We may assume that n � p
without loss of generality�

Let

F p�n� ��the number of f �vectors of simplicial complexes with f� � p and fj � � for
all j � n�
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so F p�n� � F �� � � � � � ��n�� Just as in the de�nition of F �n� � � � � � np�n�� we in�
clude both ��� �� � � � �� the f �vector of the empty simplicial complex� and ��� �� �� � � � ��
the f �vector for the simplicial complex containing only the empty set� when comput�
ing F p�n��

Hence we get F p���� � �� F p��� � � for all p � � and F ��n� � � for all n � �� see
Table ��

The specialization of the results by Clements and Lindstr	om to simplicial complexes
looks as follows�

Theorem ���� Fix � � n � p� Then the following are equal to F p�n��

�i� The number of f�vectors for simplicial complexes on at most p vertices and
with no set of cardinality higher than n�

�ii� The number of compressed simplicial complexes on at most p vertices and with
no set of cardinality higher than n�

�iii� The number of facet�vectors for simplicial complexes on at most p vertices and
with no set of cardinality higher than n�

For the de�nition of �compressed� and �facet�vector� see Section � and Section 

respectively�

We also need a notation for E�� � � � � � ��n� k�� Let

Ep�n� k� ��the number of f �vectors for simplicial complexes with f� � p and fj � �
for all j � n and with maximal value for fj when j � k but not for fk��� i�e��

fi �
�
p
i

�
for i � k but fk�� �

�
p

k��

�
�

From the de�nition we have for every pair p � �� n � ��� that Ep�n���� � ��
Ep�n� n� � � and Ep�n� k� � � for k � n�

We have the simplicial equivalent of ����

F p�n� �
nX

k���

Ep�n� k������

for all p � n � ��

Theorem ���� For � � k� � � n � p we have the recursions

F p�n� �

�
� �

Pn
i�� E

p���n� i�F p���i� �� � if n � p
� � F p�p � �� � if n � p

����

and

Ep�n� k� �

	
�

�
Pn

i�k E
p���n� i�Ep���i� �� k � �� � if k � n � p

Ep�p � �� k� � if k � n � p
� � if k � n � p�

����
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where the �rst recursion is implied by the second�

Proof Follows from Theorem 
���

As the careful reader has noticed Theorem ��� and Theorem ��� are remarkably
similar� The small di�erence that exists makes a big di�erence when keeping p �xed
to get expressions in n and k� When keeping n and k �xed the di�erence between the
theorems gives a smaller impact� After a careful study of the proofs of Theorem ��

and Proposition ��� we see that they are not a�ected by the slight di�erence between
recursions ��� and �����

Theorem ���� Ep�n� k� is a polynomial in p of degree
�
n��
�

�
�
�
k��
�

�
and F p�n� is a

polynomial in p of degree
�
n��
�

�
� for each �xed n� k � ��

Proof Identical to the proof of Theorem ��
�

Proposition ���� The coe�cient for the term of highest degree in Ep�n� k� is

Qn��
i�k

��
n��
�

�
�
�
i��
�

�
� �

i

�
��

n� �

�

�
�

�
k � �

�

��
�

����

If k � n � �� then the empty product in the numerator should be interpreted as ��
The coe�cient for the term of highest degree in F p�n� is the same as in Ep�n� ��� so
take k � � in �����

Proof Identical to the proof of Proposition ����

For small values of n the polynomials are



�� SVANTE LINUSSON

F p��� � ����
�

F p��� � p� ��

F p��� �

�
p � �

�

�
�

�
p � �

�

�
� �

�
p � �

�

�
� ��

F p��� � 


�
p� �

�

�
�

�
p� �




�
�

�
p � �

�

�
�

F p�
� � ���

�
p� �

��

�
� ���

�
p� �

�

�
� ��

�
p � �

�

�
� ��

�
p� �

�

�
�

� �

�
p � �

�

�
�

�
p � �




�
�

�
p� �

�

�
�

The polynomials are expressed in the same base as �
� to make comparisons easier�

Combining the results for f �vectors and M �sequences we get that they have the
same asymptotic growth�

Theorem ���� Fix n � �� When p is large enough� the number of f�vectors for
CL�complexes becomes almost independent of the type n� � � � � � np� More precisely
Mp�n� � F �n� � � � � � np�n� � F p�n� for all n� � � � � � np� and

lim
p��

Mp�n�

F p�n�
� ��

for each n � ��

Proof Immediate from Theorem ��
� Proposition ���� Theorem ��� and Proposition
��
�

Finally we will use that by Theorem ��� �iii�� the number of f �vectors of n � ��
dimensional shellable simplicial complexes on at most p vertices is equal to Mp�n�n��
��

Theorem ���� Fix n � �� When the number of vertices increases� almost every
f�vector for an n���dimensional simplicial complex is also an f�vector for an n���
dimensional shellable simplicial complex�
The same is true when replacing shellable by Cohen�Macaulay� partitionable� pure

or other weaker conditions on simplicial complexes�

Proof We have the following chain of inequalities�

Mp�n�n� � F p�n�� F p�n� �� � F p�n� �Mp�n��
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The result follows� since for a �xed n� all four are polynomials in p of degree
�
n��
�

�
by Theorem ��
 and Theorem ����

Note that in this paper �shellable� complexes are always pure� If we use �shellable�
in the generalized nonpure sense� then something much stronger is true� It follows
from Theorem ��� in �B�� that every f �vector of a simplicial complex is the f �vector
of a nonpure shellable complex�

�� Remarks and open Problems

Remark �� The total number of possible f �vectors of a simplicial complex with at
most p vertices� i�e� F p�p�� gives rise to an interesting sequence� This sequence starts
�� �� �� ��� ��� ��� ���� �
��� ������� � � � � see Table � in the Appendix� We found the
reference to �C� in �SP�� where this sequence appear as the number of facet�vectors for
simplicial complexes on p vertices� However� neither the sequence nor the recurrence
can be found in �C�� It seems as if the sequence has been calculated by Knuth and it
is said to appear in �K�� We are waiting impatiently�

Remark �� There are at least two more ways to describe the second order partitions
of f�� � � � � ng de�ned in Section �� We state them here without proof of the equivalence
with the original de�nition�

The �rst of the alternative de�nitions is more explicit and is in terms of multichains
in the partition lattice� Let �n be the partition lattice of all ordinary partitions of
f�� � � � � ng ordered by re�nement� Given a partition �� order the blocks increasingly
by smallest element and let B�

j denote block number j in ��

� Let C�n� k� be the set of all multichains �� � �� � � � � � �k� �i � �n for
i � �� � � � � k such that B�i

j � B
�i��
j � for j � �� � � � � i and such that �k has

k blocks� The choice of �i is equivalent to the i�th iteration in the original
de�nition of second order partitions and hence there is an easy bijection from
the multichains in C�n� k� to the second order partitions of f�� � � � � ng with k
blocks�

The second alternative de�nition is an algorithmic de�nition�

� Start by forming an ordinary partition and enclose the blocks with second
order brackets � �� Order the blocks increasingly by smallest element� Leave
the �rst block as it is� Partition the elements of the second block with an
ordinary partition� this time using ��� Partition the elements of the third
block and then for each block created� partition its elements with an ordinary
partition� Continue in the same manner and form i� � consecutive partitions
of the elements in block i� Now place an extra pair of brackets �� in every
block enclosing all the elements�
This algorithm will construct precisely all second order partitions �with the
�rst notation used in Section ���
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Problem �� It is unclear whether any of the two de�nitions of second order partitions
given in Remark � above can be generalized to p�th order partitions�

Problem �� Does there exist some poset structure for p�th order partitions that
naturally generalizes �n and that makes it possible to generalize the description in
Remark � of second order partitions as multichains in �n to p�th order partitions 

Problem �� More generally� Is there a way to describe p�th order partitions that is
not of a recursive nature 

Problem �� We have obtained a good knowledge of the asymptotic behavior of
Mp�n� when n is �xed� It still remains an interesting problem to give such results
when keeping p �xed� p � 
� The best upper bound obtained here is ���� see the end
of Section �� Is this close to the truth 

Acknowledgement I thank my research adviser Anders Bj	orner for suggesting the
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Appendix� Tables
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Table �� Table of Mp�n�� the number of M �sequences with m� � p
and mi � � for i � n�
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Table �� Table of F p�n�� the number of f �vectors for simplicial com�
plexes of dimension at most n� � and with at most p vertices�
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