
IS
S

N
 0

24
9-

63
99

appor t  
de  r echerche

1995

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET AUTOMATIQUE

Computer Algebra Libraries for

Combinatorial Structures

Philippe FLAJOLET

Bruno SALVY

N� 2497

Mars 1995

PROGRAMME 2



Computer Algebra Libraries

for Combinatorial Structures
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Abstract

This paper introduces the framework of decomposable combinatorial struc-
tures and their traversal algorithms. A combinatorial type is decomposable if it
admits a speci�cation in terms of unions, products, sequences, sets, and cycles,
either in the labelled or in the unlabelled context. Many properties of decompos-
able structures are decidable. Generating function equations, counting sequences,
and random generation algorithms can be compiled from speci�cations. Asymp-
totic properties can be determined automatically for a reasonably large subclass.
Maple libraries that implement such decision procedures are brie
y surveyed
(LUO, combstruct, equivalent). In addition, libraries for manipulating holo-
nomic sequences and functions are presented (gfun, Mgfun).

Programmes de calcul formel

pour les structures combinatoires

R�esum�e

Cet article pr�esente le cadre des structures combinatoires d�ecomposables et de
leurs algorithmes de travers�ee. Un type combinatoire est d�ecomposable lorsqu'il
admet une sp�eci�cation en termes d'unions, de produits, de suites, d'ensembles
et de cycles, que ce soit dans l'univers �etiquet�e ou non-�etiquet�e. De nombreuses
propri�et�es des structures d�ecomposables sont d�ecidables. �Equations de fonctions
g�en�eratrices, suites de d�enombrement et algorithmes de g�en�eration al�eatoire peu-
vent être compil�es �a partir des sp�eci�cations. Les propri�et�es asymptotiques peu-
vent être d�etermin�ees automatiquement pour une sous-classe assez �etendue. Des
programmes Maple mettant en �uvre de telles proc�edures de d�ecision sont bri�eve-
ment d�ecrits (LUO, combstruct, equivalent). En outre, des programmes pour
la manipulation de suites et fonctions holonomes sont pr�esent�es (gfun, Mgfun).
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Computer Algebra Libraries
for Combinatorial Structures

PHILIPPE FLAJOLET AND BRUNO SALVY

Algorithms Project, INRIA, 78153 Le Chesnay, France

This paper introduces the framework of decomposable combinatorial structures and their
traversal algorithms.A combinatorial type is decomposable if it admits a speci�cation in
terms of unions, products, sequences, sets, and cycles, either in the labelled or in the un-
labelled context. Many properties of decomposable structures are decidable. Generating
function equations, counting sequences, and random generation algorithms can be com-
piled from speci�cations. Asymptotic properties can be determined automatically for a
reasonably large subclass. Maple libraries that implement such decision procedures are
brie
y surveyed (LUO, combstruct, equivalent). In addition, libraries for manipulating
holonomic sequences and functions are presented (gfun, Mgfun).

This report is a short account of researchy concerning enumerative combinatorics and
computer algebra with applications to the average case analysis of algorithms. It is a
summary of invited lectures given by P. Flajolet and B. Salvy at the Workshop on
Combinatorics and Computer Algebra held at Cornell University in September 1993. We
describe here the major principles and functionalities of a collection of libraries aimed
at the manipulation of combinatorial generating functions. All programmes are being
developed within the computer algebra system Maple. At the moment, they are available
on the server ftp.inria.fr (under the directory lang/maple/INRIA).
The present paper o�ers a concise perspective on an approach developed in detail in

previous works (Flajolet, Salvy, & Zimmermann 1991; Flajolet, Zimmerman, & Van Cut-
sem 1994; Zimmermann 1994) as well as on the logic underlying recent developments.
Our presentation is principally based on the following work.

| A general framework for the automatic analysis of so-called \decomposable" com-
binatorial structures and its extension to traversal procedures as described in (Fla-
jolet, Salvy, & Zimmermann 1991). Two major components are needed: one deals
with the algebraic manipulation of combinatorial generating functions (Zimmer-
mann 1991), the other one with the asymptotic analysis of coe�cients of such
generating functions (Salvy 1991a). This theory has given rise to the integrated
system LUO (Lambda-Upsilon-Omega, ��
) for the analysis of traversal procedures
on decomposable structures.

y The main participants in the research programme described are B. Salvy and P. Zimmermann with
additional developments due to X. Gourdon, F. Chyzak, E. Murray, and with supporting theoretical
research contributed by P. Flajolet.
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| A matching collection of random generation algorithms for selecting amongst a
decomposable combinatorial class uniformly at random an element of given size.
The principles are described in (Flajolet, Zimmerman, & Van Cutsem 1994), with
a �rst implementation, called Gaia, presented in (Zimmermann 1994). The current
version of Gaia, called combstruct, will be the basis of further developments and
should be merged with LUO.

| A library called equivalent for extracting the asymptotic form of coe�cients of
generating functions that covers a large subset of generating functions arising from
decomposable classes and forms the basis of the analytic engine of LUO.

| A library called gfun for the algebraic manipulation of generating functions, espe-
cially of the so-called \holonomic" type.

Roughly speaking, the development related to LUO has enabled us to validate a general
theory and a global system architecture. In a second phase, attention focusses on the
design of a complete set of algorithms and libraries for the basic functions whose need
was revealed by the LUO design. A later phase will be dedicated to the integration of
these algorithms and libraries into a successor to LUO.

1. Decomposable structures

1.1. Decomposable structures

Research conducted by several combinatorialists like Chomsky& Sch�utzenberger (1963),
Foata & Sch�utzenberger (1970), Rota (1975), Foata (1974), Joyal (1981) and a few others
in the course of the last three decades have led to a considerable change of perspective
regarding combinatorial enumerations. While combinatorial enumeration was previously
conceived largely as a collection of techniques for solving recurrences, several frameworks
developed with the aim of relating directly combinatorial structures and their associ-
ated generating functions. See the accounts given in (Bergeron, Labelle, & Leroux 1994;
Goulden & Jackson 1983; Stanley 1978; Stanley 1986).
A remarkable fact is that a collection of basic set-theoretic constructions acting on

combinatorial classes like

(disjoint) union, product, formation of sequences, of sets, of cycles (1:1)

have translations into operators on associated generating functions in the rough form of

sum, product, quasi-inverse, exponential, logarithm. (1:2)

Technically, two \universes" exist: in the labelled universe, all \atoms" (nodes, letters,
etc) composing a structure are distinguishable, being for instance labelled by distinct
integers of f1; : : : ; ng for a structure of size n; in the unlabelled universe, nodes are
indistinguishable.
From there, one introduces a speci�cation language for combinatorial structures. A

speci�cation is a formal grammar of generalized context-free type involving the combi-
natorial constructions of (1.1). A speci�cation thus resembles a type description in a
classical programming language. A combinatorial class is said to be decomposable if
it admits such a speci�cation. The basic framework is detailed in (Flajolet, Salvy, &
Zimmermann 1991).
Simple examples of decomposable classes in the unlabelled universe are (atoms are

indicated on the right):
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Binary words: Word = Sequence(Union(a,b)); (letters a, b)
Binary plane trees: B = Union(N,Prod(B,B)); (external nodes N)
General nonplane trees: G = Prod(Z,Set(G)); (nodes Z)

Here, Set means a set whose elements may be replicated, i.e., a multiset. (Another con-
struction called Powerset takes care of the case where duplicates are forbidden.)
Examples in the labelled universe are

Permutations: Perm = Set(Cycle(Z)); (Z is a labelled atom)
Set partitions: SP = Set(Set(Z, card>=1)); (Z is a labelled atom)

Like in a context-free grammar, auxiliary nonterminals may be used. For instance, a
functional graph (FG) is de�ned as a labelled digraph in which nodes all have outdegree 1;
any such graph decomposes into connected components, each in the form of a cycle of
Cayley trees (labelled nonplane trees). Hence, the speci�cation:

Functional Graphs: FG = Set(K); K = Cycle(T); T = Prod(Z,Set(T)); (1:3)

1.2. Generating functions

Let C be a combinatorial class of some kind, with Cn the number of objects in C having
size n. Then, the ordinary generating function (OGF) and the exponential generating
function (EGF) of C are de�ned by

C(z) =
X
n

Cnz
n and bC(z) =X

n

Cn
zn

n !
:

A general convention proves particularly useful: we constantly represent a class like C,
its enumeration sequence fCng, and the corresponding generating functions C(z); bC(z)
by the same group of letters.

Principle 1.1. Generating function equations can be compiled automatically for any
decomposable class.

The translations a�ect OGF's in the unlabelled case, and EGF's in the labelled case.
They are summarized in Fig. 1.
Thus, the generating function of any combinatorial class that is decomposable is im-

plicitly de�ned by a system of equations derived fromFig. 1. In many practical situations,
these generating functions can be solved explicitly. Within LUO, a dedicated solver (Fla-
jolet, Salvy, & Zimmermann 1991; Zimmermann 1991) was developed, based on the
capabilities of Maple's solve function. For instance, binary trees lead to an algebraic
equation for the OGF of a simple form

B(z) = z +B2(z) =) B(z) =
1�p1� 4z

2
;

and the speci�cation of functional graphs (1.3) yields for EGF's

dFG(z) = exp( bK(z)); bK(z) = log
1

1� bT (z) ; bT (z) = zebT (z): (1:4)
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Construction Translation (OGF)

F = G ]H F (z) = G(z) +H(z)
F = G �H F (z) = G(z) �H(z)
F = Sequence(G) F (z) = [1� G(z)]�1

F = Set(G) F (z) = exp[G(z) + G(z2)=2 +G(z3)=3 + � � �]
F = Powerset(G) F (z) = exp[G(z)� G(z2)=2 +G(z3)=3� � � �]
F = Cycle(G) F (z) = log(1�G(z))�1 + � � �

Construction Translation (EGF)

F = G ]H bF (z) = bG(z) + bH(z)

F = G �H bF (z) = bG(z) � bH(z)

F = Sequence(G) bF (z) = [1� bG(z)]�1
F = Set(G) bF (z) = exp(bG(z))
F = Cycle(G) bF (z) = log(1� bG(z))�1

Figure 1. Translation tables for basic combinatorial constructions in the unlabelled and
in the labelled universe.

This last example involves the implicitly de�ned function bT (z) which in Maple reduces
to �W (�z), with W the inverse function of yey , so that

dFG(z) = 1

1 +W (�z) :

Incidentally, this demonstrates that the capabilities of the solver are tightly coupled with
the design of the underlying computer algebra system.
The automatic computation of generating function equations is the basis of all fur-

ther developments. In particular, it provides the basis for the computation of counting
sequences.

1.3. Counting sequences and random generation

Once generating function equations have been determined, coe�cients can sometimes
be obtained by direct Taylor series expansions. However, such an approach presents some
di�culties since series solutions for general enough systems of equations are not available
in computer algebra systems.
A general result (Flajolet, Zimmerman, & Van Cutsem 1994; Zimmermann 1991) is

the following.

Principle 1.2. The �rst n elements of the counting sequence of any decomposable class
can be determined in O(n2) arithmetic operations.

The method consists in reducing speci�cations to a binary normal form (that generalizes
Chomsky's normal form for context-free grammars) at the expense of introducing the
di�erential operator � = z d

dz . For instance, a speci�cation for the class G of general
nonplane trees is only one line in combstruct,

g := [G, G=Prod(Z,Set(G)), unlabelled];

which is to be interpreted as follows: the \axiom" is G, the grammar itself consists of one
equation, and the speci�cation is to be taken in the unlabelled universe; Z is implicitly



Computer Algebra Libraries for Combinatorial Structures 5

de�ned as \atomic". Correspondingly, the generating function obeys

G(z) = z exp[G(z) +
1

2
G(z2) +

1

3
G(z3) + � � �]:

Applying � on both sides yields

�G(z) = G(z)[1 + (�G)(z) + (�G)(z2) + (�G)(z3) + � � �];
itself equivalent to a recurrence on coe�cients Gn = [zn]G(z), namely

nGn = Gn +
nX

k=1

(kGk)Gn�k +
bn=2cX
k=1

(kGk)Gn�2k + � � � :

Given the speci�cation of any decomposable class, the combstruct package automati-
cally produces procedures to compute the counting sequences. These counting procedures
can then be executed at will. Here, the corresponding count is simply obtained by

count(g,size=100);

51384328351659326880337136395054298255277970

It takes about 3 seconds on our reference machine (100 MIPS) to determine this number
G100 |this is Sequence #454 of (Sloane 1973)| and 4 seconds in the corresponding
labelled case of T100 |known otherwise to equal 10099.
Random generation is another major function provided by combstruct. This makes

it possible to write simulation routines to study various parameters of combinatorial
structures. The draw command will generate uniformly at random an object amongst all
elements of size n, for example,

draw(g,size=5);

Prod(Z,Set(Prod(Z,Set(Prod(Z,Eps),Prod(Z,Eps),Prod(Z,Eps)))))

and the returned object is a Maple structure fully consistent with the speci�cation (here
Eps represents the empty set).

Principle 1.3. Any decomposable structure has a random generation algorithm of worst-
case arithmetic complexity O(n logn) that is e�ectively computable.

The random generation procedures are compiled from the speci�cation and they make
full use of the counting tables. The algorithmic design combines the reduction of speci-
�cations to binary form, a top-down recursive algorithm, and a general so-called bous-
trophedonic search. The principles, in the labelled case at least, are given in (Flajolet,
Zimmerman, & Van Cutsem 1994) and an earlier implementation of combstruct, called
Gaia, is described in (Zimmermann 1994). The algorithms only require O(n logn) arith-
metic operations, and it takes of the order of 0:5 seconds to generate a random tree in
G of size 100. In this particular case, the system automatically compiles an optimized
version of the algorithm Ranrut of Nijenhuis & Wilf (1978).

2. Asymptotic analysis

Coe�cients of generating functions associated to decomposable structures do not gen-
erally have explicit expressions. However, for large classes of combinatorial structures, it
is possible to deduce asymptotic expansions of the combinatorial sequences directly from
the equations they satisfy.
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The mathematical principles are based on Cauchy's coe�cient formula which relates
the nth Taylor coe�cient of a series to the function itself:

[zn]f(z) =
1

2i�

I
f(z)

zn+1
dz: (2:1)

This makes it possible to relate the asymptotic behaviour of the coe�cients of f(z) to
the location of the dominant singularities of f (those of smallest modulus) and to the
singular behaviour of f at those points.

Principle 2.1. For a large subclass of generating functions associated to decomposable
structures, the asymptotic form of coe�cients is computable automatically.

2.1. Rational functions

In the case of rational functions, the approach consists in computing a partial fraction
decomposition and then extracting the coe�cients of the terms corresponding to the
poles of smallest modulus.
Bronstein & Salvy (1993) showed how to compute a partial fraction decomposition over

the algebraic closure of the ground �eld by simple gcd computations, without resorting
to polynomial factorization. This leads to a fast decomposition as a sum of terms of the
form

c�
(z � �)k�

;

where � is de�ned by Q(�) = 0 for some polynomialQ. Extracting the coe�cients of the
terms corresponding to the poles of minimal modulus and maximal order gives the �rst
order asymptotic behaviour of the coe�cients. To determine more terms of the expan-
sion, it is necessary to determine how many poles lie on successive circles of increasing
modulus. This can be done algebraically using resultants and Sturm sequences, albeit
with an exponential complexity. A better approach is based on guaranteed numerical
approximations and leads to a polynomial time algorithm (Gourdon & Salvy 1993). This
uses a polynomial root-�nding algorithm from Sch�onhage (1982, 1987) which has been
implemented by Gourdon (1993).

Example. The following combinatorial problem was considered by Conway (1987).
Starting with 1, write down a sequence of words by counting the number of contiguous
identical digits in the previous word. Thus the second word is 11 because there is one 1
in \1". Then the third word is 21, and so on. The �rst few words are: 1, 11, 21, 1211,
111221, 312211, 13112221,: : :It turns out that the sequence of lengths of these words: 1,
2, 2, 4, 6, 6, 6, 8,: : :has a rational generating function whose denominator has degree 72.
From the table in Conway (pp. 177{178), it is possible to compute this fraction by solving
a linear system. One of the nice theorems of Conway's states that the denominator is
actually independent of the starting string, provided it is di�erent from \22". Thus in
the leading term of the asymptotic expansion, only the constant factor depends on the
initial string.
Despite the large degree of this denominator, the asymptotic expansion is not too

di�cult to �nd. The partial fraction decomposition is

R(z) +
X

Q(�)=0

F (�)

z � �
;
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where R is a polynomial induced by the �rst terms. This means that all the singularities
are simple poles. Here, F is a polynomial of degree 71 with 250-digit rational coe�cients.
If one is only interested in the �rst order estimate, it then remains to determine the
number of roots of smallest modulus. As expected since the coe�cients of the generating
function are positive, one of these roots is a positive real number. Using Gourdon's pro-
gram, we get the two smallest moduli, approximately 0:767 and 0:861, with error bounds
of the order 10�40, which shows that there is a unique root of smallest modulus (which is
necessarily real). Thus, [zn]f(z) � F (�1)�

�n�1
1 , with �1 ' 0:767119 and F (�1) ' 1:566.

All the 72 moduli belong to the interval (0.767,1.151), showing the need for a carefully
designed polynomial solver.

2.2. Singularity analysis

The computation of the asymptotic behaviour of coe�cients of rational functions obeys
a pattern which is actually much more general.

Principle 2.2. For generating functions of moderate growth at dominant singularities,
there is a systematic correspondence between singular expansion of the function and
asymptotic expansion of coe�cients.

The method can be outlined as follows (see (Flajolet & Odlyzko 1990) for a rigourous
description):

1 Locate the dominant singularities (the ones of smallest modulus);
2 Check that the function is analytically continuable in a small region outside of its
circle of convergence;

3 Compute the local expansion of the function in the neighbourhood of its dominant
singularities;

4 Translate these singular expansions into corresponding expansions of the coe�-
cients.

In practice, step 2 above is always insured by the fact that singularities of large classes
of functions are isolated. The property holds a priori for most generating functions
associated to decomposable structures | for instance all functions presented by their
closed-form in terms of exp, log and rational functions. The last step is the basis of the
method. It asserts that under mild conditions, the nth coe�cient of

f(z) = f1(z) + f2(z) + : : :+ fk(z) + O(g(z)); z ! �;

where � is the dominant singularity of f , behaves asymptotically like

[zn]f1(z) + [zn]f2(z) + : : :+ [zn]fk(z) + O([zn]g(z)); n!1:

Growth orders for standard functions are represented in Fig. 2. Actually, Flajolet &
Odlyzko (1990) give full expansions for the whole class of algebraic-logarithmic singular-
ities.
This method has been implemented in Maple by Salvy (1991a). The program, called

equivalent, starts from an explicit (exp-log) generating function. It looks for the domi-
nant singularities by a simple iterative procedure which reduces singularity �nding to root
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Behaviour of the function Growth of its coe�cients

c (1� z=�)� � 62N c��nn���1=�(��)
c (1� z=�)� log� [1=(1� z=�)] � 62N c��nn���1 log� n=�(��)
c (1� z=�)k log� [1=(1� z=�)] k 2 N c(�1)k�k!��nn�k�1 log��1 n

Figure 2. The correspondence between asymptotic growth of the coe�cients and singular
growth of the function

�nding. Then a local asymptotic expansion is computed. Translating these expansions to
expansions of the coe�cients is then an easy matter.

Example. The generalized bracketing problem of Schr�oder (Comtet 1974, p. 56). The
problem is to determine the number of bracketings of n symbols such that pairs of
brackets always enclose at least two terms. For instance, here are the 11 bracketings of
4 symbols:

(ab)(cd); ((ab)c)d; (a(bc))d; a((bc)d); a(b(cd)); abcd; (abc)d; a(bcd); (ab)cd; a(bc)d; ab(cd):

The corresponding speci�cation is
Bracketing=Union(Symbol,Sequence(Bracketing,card>=2));

By the methods described in Section 1, the generating function Y (z) of these bracket-
ings satis�es

Y = z +
Y 2

1� Y
;

from which the solver deduces that the relevant solution is

Y (z) =
1

4
(1 + z �

p
1� 6z + z2):

From this explicit form, equivalent will deduce that the dominant singularity is at 3�
2
p
2 and a local analysis at this point leads to the result:

equivalent((1+z-sqrt(1-6*z+z^2))/4,z,n);p
12
p
2� 16

�
3� 2

p
2
��n

8
p
�n3=2

+O

 
1

n5=2
�
3� 2

p
2
�n
!

Example. Stanley's children rounds (Stanley 1978). Children group in circles with one
child at the center of each circle. The problem is to compute the number of ways this
can be done with n children. Using the language of Section 1, the speci�cation is

Rounds=Set(Product(Child,Cycle(Child)));

leading to the generating function

bR(z) = exp

�
z log

�
1

1� z

��
:

The dominant singularity is at 1 where R has a logarithmic behaviour. Hence the �rst
four terms of the expansion:

equivalent(exp(z*log(1/(1-z))),z,n,4);

1� 1

n
� lnn

n2
+
1� 


n2
+ O

�
ln(n)2

n3

�
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Here 
 is Euler's constant.

The di�cult part in this computation comes from the frequent need for algebraic-
logarithmic asymptotic scales, which are not provided by computer algebra systems. A
program called gdev was developed for that purpose (Salvy 1991a, 1991b). This program
does not completely solve the problem of �nding local expansions for the class of exp-
log functions. A general algorithm for doing so was given by Shackell (1990), but no
implementation of this algorithm is yet available. An approach similar to Shackell's has
been developed by Gonnet & Gruntz (1992). This may soon provide Maple with the best
asymptotic expander of all existing computer algebra systems (Gruntz 1995).

2.3. Saddle-point method

Not all combinatorial generating functions have an algebraic-logarithmic singularity.
In many cases, the function is entire or has an essential singularity at a �nite distance.
A large class of such functions is handled by the saddle-point method.

Principle 2.3. A decidable subclass of functions with fast growing singular behaviour
have coe�cients that are approximated by saddle-point integrals.

The idea is to choose a circle of integration in Cauchy's formula (2.1) such that the
integral is concentrated in the neighbourhood of a special point (the saddle-point), where
the integral can be approximated by a Gaussian integral. The point is determined by

Rn
f 0(Rn)

f(Rn)
= n+ 1; (2:2)

and the asymptotic approximation furnished by the method is

[zn]f(z) � f(Rn)

Rn
n

p
2�h00(Rn)

; (2:3)

where h = log(f) � (n + 1) log z. Su�cient conditions for this method to be valid were
given by Hayman (1956) and they can be checked by a computer. In some cases, a full
expansion is available (Wyman 1959) and e�ective criteria for deciding this are avail-
able (Harris & Schoenfeld 1968; Odlyzko & Richmond 1985). These were also imple-
mented in equivalent.

Example. The number of increasing subsequences in permutations was considered
by Lifschitz & Pittel (1981). For instance, the permutation 524361 has 15 increasing
subsequences, namely the empty sequence, each single element and

56; 24; 246; 23;236; 26; 46; 36:

Determining the mean number of increasing subsequences in a random permutation is
equivalent to counting \marked permutations" which are permutations with a distin-
guished increasing subsequence. Such a marked permutation decomposes as a regular
permutation followed by a sequence of fragments with the additional condition that ini-
tial elements of the fragments run in increasing order, for instance

� = 362415728 � (36)(241)(572)(8)

� (36)f(572); (241); (8)g:
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The speci�cation of marked permutations is therefore
Perm = Sequence(Z); Fragment = Sequence(Z, card>=1);

MarkedPerm = Product(Perm,Set(Fragment));

From this the generating function is found to be

1

1� z
exp

�
z

1� z

�
:

The asymptotic behaviour of its coe�cients is then determined automatically:

equivalent(1/(1-z)*exp(z/(1-z)),z,n);

e2
p
n

2
p
e
p
�n1=4

+ O

 
e2

p
n

n3=4

!

In an example like this, Equation (2.2) admits a simple closed-form solution. In general
though, no such closed-form exists and it is necessary to �nd an asymptotic expansion of
the saddle-point location in terms of n. A general procedure for doing so when f is any
exp-log function was given by Salvy & Shackell (1992) and a fast algorithm in a special
but frequent case was given in (Salvy 1994). Knowing the asymptotic expansion of the
location of the saddle-point is not always su�cient to complete the asymptotic expansion
of the coe�cients, since in some cases substituting the expansion of Rn in (2.3) does not
lead to a genuine asymptotic expansion of Poincar�e type.

Example. Bell numbers are the number of partitions of a set into non-empty sets.
From Section 1, it follows that their exponential generating function is exp(ez � 1).
Here the saddle-point expansion must not be substituted into the expansion, and we get
automatically (compare with De Bruijn (1981))

equivalent(exp(exp(z)-1),z,n);

The saddle-point is W (n+ 1)
Saddle point's expansion:

� = lnn� ln lnn+
ln lnn

lnn
+ O

�
ln2 lnn

ln2 n

�
p
2��n�1e�

�

2 ee
�

2e
p
��n

+ O

 
ee

�

(�n)
2
�2
p
e�

!

3. Procedures

Like combinatorial enumeration, the average-case analysis of algorithms is often treated
by recurrences. Steyaert and Flajolet �rst recognized that several general algorithmic
schemas admit a direct translation into generating functions; see (Flajolet & Steyaert
1987; Steyaert 1984) for the particular case of tree algorithms. This approach was later
extended to a coherent collection of traversal mechanisms that applies to all decomposable
combinatorial structures (Flajolet, Salvy, & Zimmermann 1991; Zimmermann 1991). The
LUO system implements these ideas.
A procedure is speci�able in LUO if it involves only data types that are decomposable



Computer Algebra Libraries for Combinatorial Structures 11

structures in the sense of Section 1 and simple traversal procedures of a purely functional
form. The allowed procedures can test cases (for types de�ned by unions), descend into
components (of products), and iterate on components (of sequences, sets, or cycles).
A cost measure is speci�ed in terms of the number of times a designated procedure is
executed.
Internally, the LUO system comprises three parts: an \algebraic analyzer" systematically

determines generating function equations from speci�cations of types and procedures
(according to principles extending those of Section 1), a \solver" (brie
y mentioned in
Section 1) is dedicated to �nding closed-form solutions of generating function equations
whenever available, and �nally an \asymptotic analyzer" uses as a basic engine the
equivalent programme of Section 2. In LUO, the algebraic analyzer has been implemented
as a special set of CAML procedures since the speci�cations are of a Pascal-like format. In
the future, the descendant of LUO should be entirely Maple-based with a syntax extending
that of combstruct.
Given a data type C which is a decomposable class, a LUO-admissible procedure P

of signature P (c : C) and a �xed cost measure, the cost of executing P on c 2 C is
well-de�ned and is denoted by �P [c]. The total costs are then

�Pn =
X

c2C;jcj=n
�P [c];

and the corresponding generating function is called the complexity descriptor of P . Nat-
urally, EGF's or OGF's are taken according to whether the universe is labelled or not.

Principle 3.1. Complexity descriptors of traversal procedures over decomposable types
are automatically computable. Their coe�cients are amenable to singularity analysis or
saddle-point methods.

A noteworthy fact is that complexity descriptors in the labelled case lie in the same
class as the counting generating functions of the basic data types, and in the unlabelled
case, in a class that is only marginally larger. In particular, the exact values of f�Png can
be determined in O(n2) arithmetic operations and the asymptotic values can be obtained
by the same methods as discussed in Section 2.

Example. Symbolic di�erentiation. Figure 3 displays the LUO speci�cation of a sym-
bolic di�erentiation algorithm diff that operates on expression (trees) built of symbols
0; 1; x;+;�; exp; the cost here is measured by the number of nodes of the di�erentiated
expression tree (see Flajolet, Salvy, & Zimmermann (1989) for details). Counting gener-
ating functions and cost descriptors are determined automatically and the solver �nds
that they are all of the form

R(z;
p
1� 2z � 23z2) with R(z; y) a rational function in C (z; y) :

From here, the asymptotic analyzer equivalent obtains the expected cost from its built-
in singularity analysis mechanism,

�diffn =
(126+

p
6)
p
�

(�1 + 2
p
6)3=263=4231=2

n3=2 +O(n) ' 0:80421n3=2+ O(n):

Thus the cost grows super-linearly but subquadratically on average. A variant algorithm
based on subexpression sharing is also within the capabilities of the system which �nds
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type expression = zero j one j x
j product(plus,expression,expression)
j product(times,expression,expression)
j product(expo,expression);

plus,times,expo,zero,one,x = atom(1);

function di�(e:expression):expression;
case e of
plus(e1,e2) : plus(di�(e1),di�(e2));
times(e1,e2) : plus(times(di�(e1),copy(e2)),

times(copy(e1),di�(e2)));
expo(e1) : times(di�(e1),copy(e));
zero : zero;
one : zero;
x : one

end;

function copy (e:expression):expression;
case e of
plus(e1,e2) : plus(copy(e1),copy(e2));
times(e1,e2) : times(copy(e1),copy(e2));
expo(e1) : expo(copy(e1));
zero : zero;
one : one;
x : x

end;

measure plus,times,expo,zero,one,x : 1;

Figure 3. Symbolic di�erentiation: the LUO speci�cation.

for the a priori linear complexity a precise form that evaluates to

1:41523957n+ O(n1=2):

The \Cookbook" (Flajolet, Salvy, & Zimmermann 1989) provides about twenty such
analysis reports in such diverse areas as addition chains, concurrent access problems,
planar bipartite graphs, di�erentiation algorithms, tree rewriting, random trains, random
functional graphs, etc.
The method specializes to parameters of combinatorial structures de�ned by the num-

ber of occurrences of a given construction. In such a case, one can always design a
traversal procedure whose cost will record the number of occurrences of the construction
in question. In addition, it becomes possible to automatically derive bivariate generating
functions giving the distribution of the parameter in question, by extending the approach
described in Section 1. This makes it possible, at least in principle, to approach such
problems as automatic computations of variance and (in some cases) limit distributions,
see (Soria-Cousineau 1990). This idea should be explored further in future works.

4. Combinatorial sequences and generating functions

Many combinatorial sequences are amenable to the asymptotic analysis of Section 2,
provided a \nice" generating function can be found. In particular, it is our aim in the
long term to automate the asymptotic analysis of Zeilberger's holonomic sequences.
Meanwhile, a set of tools dealing with holonomic sequences and functions have been
developed.
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4.1. Guessing a generating function

Sequences occurring in practice tend to have simple generating functions. Pad�e ap-
proximants can be used to check whether various kinds of generating functions derived
from a particular sequence are rational. In this way Plou�e (1992) estimates that about
13% of the table (Sloane 1973) have a rational generating function; Bergeron & Plou�e
(1992) found that about 23% of the sequences in Sloane's table had a generating func-
tion which could be guessed. Similar ideas are incorporated into gfun which looks for
holonomic generating functions. It was then found that about 18% of Sloane's sequences
are holonomic. The �rst version of gfun (Salvy & Zimmermann 1994) used a method of
indeterminate coe�cients; the algorithm has been recently changed to use a technique
of Hermite Pad�e approximants due to Harm Derksen (see also Beckermann & Labahn
(1992)), which leads to an appreciable speed-up.

Example. Numerators of convergents to e. It is known since Euler that the continued
fraction expansion of e has the regular quotient sequence 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1,
8,: : :The fractions obtained by truncating this expansion de�ne the convergents to e, and
restricting attention to elements of index 3k + 1 yields

3;
19

7
;
193

71
;
2721

1001
;
49171

18089
;
1084483

398959
;
28245729

10391023
;
848456353

312129649
;
28875761731

10622799089
; : : :

We input the sequence of numerators of this to the procedure listtodi�eq of the gfun

package:

l:=[3,19,193,2721,49171,1084483,28245729,848456353,28875761731]:

listtodiffeq(l,y(z));��
y(0) = 3;D(y)(0) = 19;

y(z)

4
+
5

2

d

dz
y(z) + (z � 1=4)

d2

dz2
y(z)

�
; egf

�
The \egf" term means that this is the equation satis�ed by the exponential generat-
ing function (this is user-settable). Then the Maple di�erential equation solver �nds a
solution to this equation, which after simpli�cation reduces to

y(z) =

p
e1�

p
1�4z

1� 4z

�
1 +

2p
1� 4z

�
: (4:1)

Of course, this does not constitute a proof, but consistency with the next values
strongly militates in favour of its validity. The result can then be proved formally by
the methods of next section.
This part of gfun has been incorporated into a mail server created by N. Sloane

(superseeker@research.att.com).

4.2. Holonomy in one variable

Order constraints on the labels of decomposable structures lead to generating func-
tions obeying di�erential equations. A function is called holonomic when it satis�es a
linear di�erential equation with polynomial coe�cients. Similarly, holonomic sequences
are sequences that satisfy a linear recurrence with polynomial coe�cients.
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Principle 4.1. (Zeilberger, Lipschitz, Stanley) Closure properties of holonomic
functions and sequences are e�ectively computable. Consequently, identities between holo-
nomic functions and sequences are decidable.

Another part of gfun implements the numerous closure properties of holonomic func-
tions and sequences (Lipshitz 1989; Stanley 1980; Zeilberger 1990). In particular, it is
known that

{ a sequence is holonomic (P-recursive) if and only if its generating function is holo-
nomic (D-�nite);

{ the sum and product of two holonomic functions or sequences are holonomic;

{ algebraic functions are holonomic;

{ the composition of a holonomic function with an algebraic function is holonomic.

Example. We compute the linear recurrence satis�ed by

fn =
nX

k=0

�
n

k

�
(�1)k
k2 + 1

: (4:2)

The existence of such a recurrence is ensured by the closure properties mentioned above,
the summation being provided by Euler's transform

[zn]
1

1� z
g

�
z

z � 1

�
=

nX
k=0

�
n

k

�
(�1)kgk: (4:3)

A simple heuristic approach consists in computing su�ciently many terms of the sequence
and then letting the guessing mechanism of gfun �nd the recurrence. Since the summand
is hypergeometric in both variables, it is also possible to use Zeilberger's fast algorithm
to get the recurrence (see e.g., Paule & Schorn 1995). We detail here how the equation
is rigourously constructed via the univariate closure properties. We start from the trivial
order 0 recurrence satis�ed by 1=(k2 + 1)

rec:=(k^2+1)*u(k)=1:

from which we deduce the di�erential equation satis�ed by its generating function:

rectodiffeq(rec,u(k),y(z));

f(1� z)z2y00(z) + (1� z)zy0(z) + (1� z)y(z) � 1; y(0) = 1; y0(0) = 1=2g
Then we perform the algebraic substitution z 7! z=(z � 1):

algebraicsubs(",y*(z-1)-z,y(z));

z2(z � 1)2y00(z) + z(�1 + 2z)(z � 1)y0(z) + y(z) � 1 + z

Now we have to multiply y(z) by 1=(1 � z). Although this can be done directly, we
illustrate the more general mechanism of multiplication of holonomic functions:

`diffeq*diffeq`(",(1-z)*y(z)-1,y(z));

fz2(z�1)2y00(z)+z(4z�1)(z�1)y0(z)+(2z2�z+1)y(z)�1; y(0) = 1; y0(0) = 1=2g (4:4)

We then just have to translate this into a recurrence for the coe�cients:
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diffeqtorec(",y(z),f(n));

f(n2+3n+2)f(n)� (7n+6+2n2)f(n+1)+(5+4n+n2 )f(n+2); f(0) = 1; f(1) = 1=2g

Finding such equations serves various purposes.

1. Identity proving

To prove a combinatorial identity a = b, the technique promoted by Zeilberger (1990),
Wilf & Zeilberger (1992) consists in building up the equation satis�ed by a� b as exem-
pli�ed above. The identity is then proved by checking su�ciently many initial conditions.
Zeilberger published numerous examples of uses of this method, a detailed example based
on gfun being given in Flajolet & Salvy (1993).

2. Fast computation

A linear recurrence makes it possible to compute n terms of a sequence in O(n) arith-
metic operations. In particular, the fastest known algorithm to compute the series ex-
pansion of an algebraic function consists in �rst computing the di�erential equation it
satis�es (the procedure algeqtodi�eq in gfun), then using the recurrence on its Taylor
coe�cients (Chudnovsky & Chudnovsky 1986).

3. Finding closed-forms

Several algorithms are known to �nd closed-form solutions of linear di�erential or
di�erence equations. Abramov (1989) gave fast algorithms to �nd rational solutions of
such equations. Algorithms for �nding Liouvillian solutions of linear di�erential equation
are now implemented in most computer algebra systems (see Singer (1990) for a survey
of the algorithms). Petkov�sek (1992) gave an algorithm to �nd hypergeometric solutions
of linear recurrences with polynomial coe�cients. This in turn gives an algorithm to
�nd generalized hypergeometric solutions of linear di�erential equations with polynomial
coe�cients (Petkov�sek & Salvy 1993). Our prototype implementations should soon make
their way into Maple's library.

4. Asymptotics

The area of computer algebra needed to compute expansions of solutions of linear di�er-
ential equations has undergone extensive research (Tournier 1987; Duval 1987; Thomann
1990). Completely solving the problem requires a mixture of formal computation with
algebraic numbers and numerical resummation of divergent series. There are partial im-
plementations of this in most computer algebra systems. Using the local expansion of
solutions at their singularities makes it possible to compute asymptotics of linear recur-
rences via singularity analysis.

Principle 4.2. The asymptotic form of a univariate holonomic sequence is computable.

An alternative approach based on Birkho�'s work can be found in (Wimp & Zeilberger
1985).
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Example. We describe the main steps of the method on the sequence (4.2). Singularities
of holonomic functions can be read o� the corresponding di�erential equation: they are
located at the roots of the leading coe�cient. Here the generating function satis�es (4.4),
hence the dominant singularity is at 1. This is a regular singular point and a local analysis
(e.g., using Maple's dsolve/series) shows that the local behaviour at 1 is of the form

c1(1� z)�1�i�1(z) + c2(1� z)�1+i�2(z) + c3�3(z);

where i =
p�1, the ck are undetermined constants and the �k(z) are formal series

in 1� z, with �k(1) = 1. Singularity analysis then shows that the asymptotic behaviour
of the sequence fn is

fn � C cos(logn+ #)

for constants C and # that could be determined numerically from the series �k. In this
particular example, Rice's method (see Flajolet & Sedgewick (1994), Knuth (1973)) also
applies and yields the more precise result that C = j�(i)j and an explicit form for #.

4.3. Multivariate holonomy

Holonomy extends to multivariate functions or sequences and to mixed cases like or-
thogonal polynomials that satisfy both a linear recurrence with respect to the index and
a linear di�erential equation with respect to the argument (Zeilberger 1990). One is then
led to consider systems of linear operators and algebras of such operators. Under mild
conditions, the left ideals of these algebras are �nitely generated and a non-commutative
variant of Buchberger's algorithm works in this context (Chyzak 1994). Many of the
closure properties of the univariate case still hold and some of them have been imple-
mented by Chyzak in the Mgfun package. Identities satis�ed by combinatorial sequences
like Ap�ery's sequence (see Van der Poorten (1979)) can be obtained almost routinely
by elimination using Zeilberger's (1991) creative telescoping (more details will be given
in Chyzak & Salvy (1995)).

Acknowledgement. This work was supported in part by the Esprit III Basic Research
Action of the EEC under contract ALCOM II (#7141).
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