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De la robustesse des interconnexions

dans les graphes al�eatoires: une approche symbolique

R�esum�e : Les graphes constituent un mod�ele habituel de r�eseaux de communication.
Cet article applique des m�ethodes symboliques de combinatoire et de calcul formel a�n de
caract�eriser l'interd�ependance de deux param�etres d'un graphes al�eatoire: la densit�e (c'est-
�a-dire le nombre d'arêtes du graphe) et la robustesse �a des d�efaillances de connexions. Ici la
robustesse est quanti��ee par une connectivit�e multiple faisant appel �a des chemins courts.
Nous d�eterminons le nombre moyen de mani�eres de relier une source �a une destination par
une paire de chemins de longueur ` n'ayant pas d'arête commune dans le mod�ele classique de
graphe al�eatoire Gn;p. Nous donnons ensuite diverses bornes sur les e�ets de seuil associ�es.

Mots-cl�e : Combinatoire analytique, graphe al�eatoire, r�eseaux d'interconnection, calcul
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Abstract

Graphs are models of communication networks. This paper applies sym-
bolic combinatorial techniques in order to characterize the interplay be-
tween two parameters of a random graph, namely its density (the number
of edges in the graph) and its robustness to link failures. Here, robust-
ness means multiple connectivity by short disjoint paths: a triple (G; s; t),
where G is a graph and s; t are designated vertices, is called `{robust if s
and t are connected via at least two edge-disjoint paths of length at most
`. We determine the expected number of ways to get from s to t via two
edge-disjoint paths of length ` in the classical random graph model Gn;p
by means of \symbolic" combinatorial methods. We then derive bounds
on related threshold probabilities as functions of ` and n.

Introduction

In recent years the development and use of communication networks has in-
creased drastically. In such networks, basic physical architecture combined
with tra�c congestion or operating system decisions, result in a certain, dy-
namically changing geometry of the graph of interconnections. We adopt the
random graph model of Gn;p (see [6, 7]) to capture link availability in networks:
a graph of Gn;p has n nodes and any of the

�
n
2

�
edges is present with probability

p (independently for each edge). Even in such a simple network model, it is

�This work was partially supported by the EU Project Alcom-FT (project number IST-
1999-14186), and the Greek GSRT Project Pened-Alkad
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interesting to investigate the trade-o� between density (the number of edges,
which is p

�
n
2

�
in the mean and close to this value with high probability) and

robustness to link failures. Indeed, the existence of alternative paths in such
graphs may model desired reliability and e�ciency properties: an example is
the ability to use alternative routes to guide packet ow in ATM networks or
even improve the e�ciency of searching robots on the World Wide Web, in the
sense of an increased multiconnectivity of its hyperlink structure.

Given a triple (G; s; t), where G is a Gn;p random graph and s; t are two of
its nodes, a natural notion of robustness is to require at least two edge-disjoint
paths of short length (say, exactly ` or at most `) between s and t, so that
connectivity by short paths survives, even in the event of a link failure.

De�nition 1 (`{robustness) A triple (G; s; t) with G a graph and s; t two
nodes of G is `{robust when there exist two edge-disjoint paths of length at most
` between s; t in G.

In this work, we investigate the expected number N`(n; p) of such paths
between two vertices of the random graph, as well as lower and upper bounds
PL(n; `); PU (n; `) for the threshold probability of the existence of such paths in
the random graph G 2 Gn;p.

Although Gn;p has been extensively studied [2, 7, 22], some questions of
existence of multiple paths, which are vertex- or edge-disjoint between speci�c
vertices have not been investigated till recently. The theory of random graphs
began with the celebrated work of Erd�os and R�enyi [11] in 1959 and nowadays
researchers know a lot about the probable structure of these objects (see, e.g.,
the birth of the giant connected component in [18]). In this context we remark
that, the question of existence of many vertex-disjoint paths of small length
has been investigated by Nikoletseas et al in [20]; however the corresponding
problem of the existence of edge-disjoint paths (which is more di�cult to deal
with, from the technical point of view) has remained untouched. Even the
enumeration of paths among the vertices 1 and n that avoid all edges of the line
graph (1; 2 : : : ; n) but pass through all its vertices, is a non-trivial combinatorial
task. In fact, such an enumeration corresponds to enumerating permutations
(�1; �2; : : : ; �n) of (1; 2; : : : ; n) where certain gaps �i+1��i are forbidden. In our
case, �i+1��i must not be in the set f�1; 1g, and this basic problem resembles
the classical \m�enage problem" of combinatorial analysis [9, 25].

In this work, we provide a precise evaluation of the expected number of
unordered pairs of paths in a random graph that connect a common source to
a common destination, and have no edge in common, though they may share
some nodes. In order to achieve this, we devise a �nite-state mechanism that
describes classes of permutations with free places and exceptions. The �nite-
state description allows for a direct construction of a multivariate generating
function. The generating function is then subjected to an integral transform that
implements an inclusion-exclusion argument from which an explicit enumeration
derives; see Theorem 1 and Proposition 1. This enables us to quantify the
trade-o� between `{robustness (as de�ned above) and the density of the graph
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(i.e., the number of its edges). The originality of our approach consists in
introducing in this range of problems methods of analytic combinatorics [14, 21]
and recent research in automatic analysis based on symbolic computation [8, 13,
15, 23]. Additional threshold estimates regarding properties of multiple source-
destination pairs are discussed in the last section of the paper.

Summary of results. From earlier known results [7, 20] and this paper, a
picture of robustness under the Gn;p model emerges. (As is usual in random
graph theory, various regimes for p = p(n) are considered.) Start with an
initially totally disconnected graph, corresponding to p = 0. As p increases, the
graph becomes connected near the connectivity threshold PC(n) ' (logn)=n.
Any �xed s; t pair (or equivalently a random s; t pair, given the invariance
properties of Gn;p) is likely to become `{robust when p crosses the value

PM (n; `) = 2
1
2` n�1+

1
` :

Here \likely" signi�es that the mean number of edge-disjoint pairs is at least 1
when n grows to in�nity, cf. Theorem 2 and Equation (13). Then, as long as
p � PL(n; `), where

PL(n; `) = n�1+
1
`

�
log

n2

logn

� 1
`

we know, with high probability, the existence of s; t pairs that are not connected
by short (of length at most `) paths; see Theorem 3|the function PL(n) is in
fact a threshold for diameter. However, we can prove that one only needs a tiny
bit more edges, namely p � PU where

PU (n; `) = 2n�1+
1
`

�
log
�
n2log n

�� 1
`

to ensure that almost all s; t-pairs are `{robust; see Theorem 4. In summary,
interesting phase transitions take place when p is near to n�1+1=`, meaning that
the graph has about n1+1=` edges.

A preliminary presentation of our results has been given at the IFIP In-
ternational Conference on Theoretical Computer Science; see [12]. Detailed
supporting computations done with the symbolic manipulation system Maple

are described in [8].

1 Avoiding permutations

The main problem treated in this paper is that of estimating the expected num-
ber of \avoiding pairs" of length ` between a random source and a random
destination in a random graph G obeying the Gn;p model. (An avoiding pair of
length ` means an unordered pair of paths, each of length `, that connect a com-
mon source to a common destination, and have no edge in common though they
may share some nodes). This problem necessitates the solution of enumeration
problems that involve two major steps:

3



| Enumerate \avoiding permutations" (de�ned below) of size n = `+1 that
can be viewed as hamiltonian paths on the set of nodes f1; : : : ; ` + 1g,
connecting the source 1 and the destination `+ 1, and having no edge of
type (i; i+ 1) or (i; i� 1).

| Enumerate \avoiding paths", that are simple paths allowed to contain
outer nodes taken from outside the integer segment [1; `+1] and otherwise
satisfy the constraints of avoiding permutations. This situation is close to
the random graph problem since it allows nodes drawn from the pool of
vertices available in the graph G 2 Gn;p.

The �rst problem is the object of this section. It is of independent combi-
natorial interest as it is equivalent to counting special cyclic permutations with
restrictions on adjacent values. It then serves, in the next section, as a way
to introduce the methods needed for the complete random graph problem that
builds upon the enumeration of avoiding pairs. Both problems rely heavily on
counting by generating functions (GF's) on which is grafted an analytic form of
the inclusion-exclusion principle, a familiar tool from combinatorial analysis.

1.1 Symbolic enumeration methods

We use here a symbolic approach to combinatorial enumeration, according to
which many general set-theoretic constructions have direct translations over
generating functions. A speci�cation language for elementary combinatorial
objects is de�ned for this purpose. The problem of enumerating a class of
combinatorial structures then simply reduces to �nding a proper speci�cation,
a sort of a formal grammar, for the class in terms of basic constructions. The
approach we take follows the exposition in [14, 21].

In this framework, classes of combinatorial structures are de�ned either it-
eratively or recursively in terms of simpler classes by means of a collection of
elementary combinatorial constructions. The approach followed resembles the
description of formal languages by means of context-free grammars, as well as
the construction of structured data types in classical programming languages.

A path often taken in the literature consists in decomposing the structures
to be enumerated into smaller structures either of the same type or of simpler
types and then in extracting, from such a decomposition, the corresponding
recurrence relations. The approach developed here is direct and \symbolic", as
it relies on a precise speci�cation language for combinatorial structures [13, 15].
It is based on so-called admissible constructions that have the important feature
of admitting direct translations into generating functions.

Let A be a class of combinatorial objects with an associated notion of size.
We let An denote1 the subset of objects in A that have size n and write An for

1Throughout the paper, we make use of the convention of denoting a combinatorial class
(A or simply A), its counting sequence (fAng), and its generating function (A(z)) by similar
groups of letters.
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the corresponding cardinality. The ordinary generating function (OGF) of the
sequence fAng (or equivalently of the class A) is then de�ned as

A(z) =
1X
n=0

Anz
n:

Next, consider a binary construction � that associates to two classes of combi-
natorial structures B and C a new class

A = �(B; C)

in some �nite way. The � is admissible i� the counting sequence fAng of A is
a function of the counting sequences fBng and fCng of B and C only :

fAng = �[fBng; fCng]:

In that case, there exists a well de�ned operator 	 relating the corresponding
ordinary generating functions.

A(z) = 	[B(z); C(z)]

(The notion generalizes to unary, ternary, etc, constructions in an obvious way.)
In this work, we will basically use three important constructions: union, product
and sequence, which we describe below.

(i) Union Construction. The disjoint union A of two classes B; C, written
A = B + C, is the union (in the standard set-theoretic sense) of two disjoint
copies, Bo and Co, of B and C. (Formally, we can introduce two distinct \mark-
ers" �1 and �2; each of size zero, and de�ne the (disjoint) union of B; C by
B + C = (f�1g � B) [ (f�2g � C).) Then one has An = Bn + Cn so that the
ordinary generating function is

A(z) = B(z) + C(z):

(ii) Product Construction. If A is the cartesian product of two classes B and
C ; writtenA = B�C, then, considering all possibilities, the counting sequences
corresponding to A;B; C are related by the convolution relation:

An =
nX

k=0

Bk � Cn�k

and the ordinary generating function satis�es accordingly

A(z) = B(z) � C(z):

(iii) Sequence Construction. If C is a class of combinatorial structures then
the sequence class A = SfCg is de�ned as the in�nite sum

SfCg = f�g+ C + (C � C) + (C � C � C) + � � �
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with � being a \null structure", meaning a structure of size 0. (The null structure
plays a rôle similar to that of the empty word in formal language theory while
the sequence construction is analogous to the Kleene star operation, C?.) By the
two previous rules, the ordinary generating function of the sequences is given
by

A(z) = 1 + C(z) + C2(z) + C3(z) + � � � =
1

1� C(z)
;

where the geometric sum converges in the sense of formal power series provided2

[z0]C(z) = 0.

In the sequel, we represent the constructions of disjoint union, product, and
sequence by

Union, Prod, Sequence.

Various combinatorial objects are speci�ed in terms of them, and by the discus-
sion above, each such speci�cation is automatically translated into generating
function equations. Our naming conventions are consistent with those of the
Maple library Combstruct, that itself implements the ideas of [13, 15]. As a
matter of fact, Combstruct is used heavily in order to support and check the
necessary calculations; see [8].

1.2 Enumeration of avoiding permutations

In this subsection, we discuss a toy problem of intrinsic combinatorial interest
that shows in the small all the essential features of what is needed for the
complete random graph problem: In how many ways can a kangaroo jump
from 1 to n by visiting all the nodes f1; : : : ; ng once and only once, while making
jumps (in number ` = n � 1) that always avoid nearest neighbours? A more
serious de�nition is as follows:

De�nition 2 An avoiding permutation of size n is a sequence � = [�1; �2; : : : ; �n]
that is a permutation of [1; : : : ; n] satisfying the conditions: �1 = 1, �n = n, and
�i+1 � �i 6= �1 for all i such that 1 � i < n.

Clearly, such a permutation encodes a simple path from node 1 to node n ,

1 = �1 ! �2 ! � � � ! �n�1 ! �n = n;

that has no edge in common with the line graph 1 ! 2 ! � � � ! n. We shall
principally operate with such a graphical interpretation of arrays [�1; : : : �n]. In
this graphical representation, for a path, we reserve the term size for its number
of distinct nodes and the term length for the number of its edges. Naturally, in
the case of a simple path (i.e., there are no repeated nodes) the length ` and
the size n are related by ` = n� 1.

2We use the well-established notation [zn]f(z) to represent the coe�cient of zn in the
power series f(z).
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There are no avoiding permutations for sizes 2; 3; 4; 5. Surprisingly, the
�rst nontrivial con�gurations occur at size 6, where the 2 possibilities are
[1; 4; 2; 5; 3; 6] and [1; 3; 5; 2; 4; 6]; while for size 7, there appear to be 10 pos-
sibilities:

[1; 3; 5; 2; 6; 4; 7]; [1; 3; 6; 4; 2; 5; 7]; [1; 4; 2; 6; 3; 5; 7]; [1; 4; 6; 2; 5; 3; 7]; [1; 4; 6; 3; 5; 2; 7];

[1; 5; 2; 4; 6; 3; 7]; [1; 5; 3; 6; 2; 4; 7]; [1; 5; 3; 6; 4; 2; 7]; [1; 6; 3; 5; 2; 4; 7]; [1; 6; 4; 2; 5; 3; 7]:

The goal in this subsection is to determine the number Qn of avoiding permu-
tations of size n. The generating function to be obtained is expressible in terms
of the basic quantity

F(z) :=
1X
n=0

n! zn;

that is the (divergent) OGF of permutations and factorial numbers. This di-
vergent series is actually a particular hypergeometric series (corresponding to

2F0[1; 1; z]; see [10]) that was studied analytically already by Euler, and in the
Maple language it is expressed as `hypergeom ([1; 1]; [ ]; z)'.

Theorem 1 Avoiding permutations have ordinary generating function

Q(z) :=
X
n

Qnz
n =

z

1 + z
+

z

(1 + z)2
F

�
z
1� z

1 + z

�
;

where F is the divergent OGF of all permutations. Equivalently, the number of
avoiding permutations Qn is a double binomial sum:

Qn+2 = (�1)n�1 +
nX

k2=0

n�k2X
k1=0

(�1)k1+k2 �

�(n� k1 � k2)!

�
n� k1 � k2

k1

��
n+ 1� k1

k2

�
:

Proof. By the inclusion-exclusion principle (see, e.g., the formulation in [16]),
we need to determine the number of permutations with \at least" j excep-
tions, where an exception is de�ned as a succession of values of the form

�i+1 � �i = �1. More precisely, we let P
hji
n be the number of permutations

[�1 = 1; �2; : : : ; �n�1; �n = n] with j exceptions distinguished. The number of
permutations with no exception is then, by inclusion-exclusion:

Qn =
n�1X
j=0

(�1)jP hji
n : (1)

Under the graphical interpretation, a permutation with distinguished excep-
tions can itself be regarded as including a subcollection of \exceptional" edges
that belong to the graph 1 ! 2 ! � � � ! n. For instance, one of the elements

counted by P
h7i
13 is (only some of the exceptions need be distinguished)

1! 2! 3 ! 4! 5! 6 ! 7! 11! 10! 9! 8 ! 12! 13 :

7



If we scan the integer line from left to right and group such exceptions into
maximal contiguous blocks, we obtain a template. A template thus represents
a possible pattern of exceptional edges and in general it describes many permu-
tations. For instance, the template of the example permutation is

1! 2! 3 ; 4; 5! 6 ; 7; 8 9 10 11 ; 12! 13 :

and it will correspond to any permutation that has exceptional edges (in the
cycle traversal order)

(1; 2) ; (2; 3) ; (5; 6) ; (9; 8) ; (10; 9) ; (11; 10) ; (12; 13):

At this stage, the proof strategy can be enunciated: (A) describe symbol-
ically templates; (B) e�ect the enumeration by GF's of templates from their
symbolic description; (C) relate the counting problems for templates and for
permutations with distinguished exceptions (this is achieved by a speci�c trans-
form over GF's); (D) conclude about the enumeration of avoiding permutations.
We now carry out this programme.

A. Symbolic description of templates. From the de�nition, a template
can be de�ned directly as made of blocks that are either: (i) isolated points
(P ); (ii) maximal blocks of contiguous unit intervals oriented left to right (LR);
(iii) maximal blocks of contiguous unit intervals oriented right to left (RL).
There is the additional constraint that the �rst and last blocks cannot be of
type RL (one starts from 1 \pointing East" and arrives at n \from the West").

First, the three types of blocks in a template are described by the following
rules3,

P = Z;

LR = Prod(�LR; Z; Sequence(Prod(�; Z); card � 1));

RL = Prod(�RL; Z; Sequence(Prod(�; Z); card � 1));

corresponding to isolated points (P ), LR blocks and RL blocks respectively.
By convention, Z represents an \atom" of size 1 meant to specify an arbitrary
node in the graphical representation of templates and permutations. The sym-
bols �LR; �RL mark the beginning of each LR or RL block; � serves as an
additional marker for measuring length (i.e., the number of edges) of LR=RL-
blocks. (Clearly, LR and RL are combinatorially isomorphic.) Here, the mark-
ers are taken to have size 0 and they will serve in the later application of the
inclusion-exclusion argument.

Next, let fa; bg be a binary alphabet. The collection of strings beginning
and ending with a letter a is speci�ed as follows:

S0 = Prod(Sequence(Prod(a; Sequence(b))); a) (2)

3Sequence(A; card � k0) is a \macro" that denotes sequences with at least k0 components.
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(It su�ces to decompose according to each occurrence of the letter a). Then,
the grammar of templates is completed by substituting into S0

a = Union(P;LR); b = RL:

B. Template enumeration. Let Tn;k;j be the number of templates with
size n (the number of nodes), k blocks of type either LR or RL in total, and
j exceptional edges (that is, the cumulated lengths of the LR and RL blocks).
Here, we determine the trivariate GF,

T (z; u; v) =
X
n;k;`

Tn;k;` z
nukvl:

The generating function equations for templates can be obtained mechani-
cally from the translation rules from constructions to GF's, as detailed in Sec-
tion 1.1. (We briey sketch the translation as a pedagogical aside.) First, the
set of words made of a's and b's that start and end with an a is described
symbolically by S0 above and the GF is

S0(a; b) =
1

1� a � 1
1�b

� a :

This is because (1 � f)�1 = 1 + f + f2 + f3 + � � � generates symbolically all
sequences of objects of type f . Thus, S0(a; b) enumerates sequences of objects
of type a

1�b that end with an a. On the other hand, a=1� b represents an a
prepended to a sequence of objects of type b. Therefore, globally, S0(a; b) rep-
resents all sequences described by the combinatorial type S0 of (2).

Take next the three types of blocks: isolated (P ), LR, and RL. The GF's
are, respectively, z, LR(z) = z2=(1� z), RL(z) = z2=(1� z). This is because
isolated points are always of size 1 (and the speci�cation Z translates to the
GF z), while LR and RL objects must be of size at least 2 (we have thus to
multiply with z2). Since the �rst and the last blocks can only be isolated points
or LR blocks, the univariate GF for blocks is obtained by substituting a by
z + LR (isolated point or LR block) and b by RL in S0. This gives here

T (z; 1; 1) =
1

1� z
1�z �

1

1� z2

1�z

�
z

1� z
= z

1� z � z2

(1� z)(1� 2z � z2)

= z + 2z2 + 4z3 + 9z4 + 21z5 + 50z6 + 120z7 + 289z8 + � � � :

(Strangely enough, this is already listed as sequence A024537 in Sloane's En-
cyclopedia of Integer Sequences [24].)

Finally, we make use of markers. These have size 0 (hence they do not a�ect
the total size measured by the main variable z) and they can be replaced by
variables that record useful additional information. The total number of blocks
is translated into the variable u, which corresponds to the translation

�LR 7! u; �RL = u:

9



The variable v keeps track of the total length of LR and RL blocks where
the marker � had been purposely introduced so as to record all the relevant
exceptional edges; thus the substitution

� 7! v

is also e�ected. In this way, we get the following trivariate GF for templates:

T (z; u; v) =

0
@1� u

�
z + z2v

1�vz

�
1� uz2v

1�vz

1
A
�1

� u

�
z +

vz2

1� vz

�

=
uz(1� vz � uz2v)

1� (2v + u)z + v2z2 + uv2z3
:

(3)

C. The inclusion-exclusion transform. By �xing the way blocks of a
template are chained together, one obtains a permutation with a distinguished
set of exceptions to the rule de�ning avoiding permutations. Counting the
number of ways to do so yields the relation

P hji
n =

X
k

Tn;k;j (k) (4)

where (k) is the modi�ed factorial:

(1) = 1; (k) = (k � 2)! for k � 2: (5)

The reason for the factorial is that any such chaining is determined by an arbi-
trary permutation of the k � 2 intermediate blocks when k � 2.

We have obtained above an explicit rational expression (3) for the trivariate
GF T (z; u; v) of the Tn;k;j . In terms of this GF, one can express the OGF Q(z)
of the Qn as an integral transform of T (z; u; v). The starting point is the simple
combination of (1) and (4) into

Qn =
X
k;j

(�1)j(k)Tn;k;j ; (6)

with (k) as de�ned in (5). The usual Eulerian integral,Z 1

0

e�uukdu = k! ;

provides a way to transform a monomial uk into a factorial k! by integrating
against the exponential kernel e�u. It then su�ces to introduce the operator L:

L (h(u)) =

Z 1

0

e�u
�
h(u)� (u� u2)

�
@

@u
h(u)

�
u=0

�
du

u2
: (7)
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It is easily recognized that this is a linear transformation (akin to the Laplace
transform) whose e�ect is precisely to transform a series in u into a number
according to the rule

uk 7! (k):

Finally, the sign alternation in (6) is taken care of by the substitution v 7! �1.
Thus, the OGF Q(z) =

P
Qnz

n satis�es the main equation

Q(z) = L(T(z; u;�1)): (8)

D. Final evaluations. Application of the L-transformation (that counts
the number of ways to connect the blocks) requires a mildly amended form of T
(where terms of degrees 1 and 2 only are adjusted).From (3) used in conjunc-
tion with (7) and (8), there derives an integral representation of the ordinary
generating function of avoiding permutations,

Q(z) = z

Z 1

0

(uz2 + (2� u)z + 1)

(1 + z)(uz2 + (1� u)z + 1)
� e�u du;

that calls for evaluation.

In such a situation, we can always perform a partial fraction expansion with
respect to the variable u (here this is trivial as the denominator has a u-degree
of 1). This reduces the integral to a canonical form that now involves the
exponential integral [1, Ch. 5],

E1(x) :=

Z 1

x

e�t

t
dt:

The following closed form is then easily obtained:

Q(z) = z

�
1

z + 1
+

1

z2 � 1
e

z+1
z(z�1) E1

�
z + 1

z(z � 1)

��
:

Since one deals with ordinary generating functions, the last expression is to
be taken as a formal (asymptotic) series as z ! 0. Indeed, we have from the
classical expansion of the exponential integral at in�nity

e1=yE1

�
1

y

�
�
�
y � 1!y2 + 2!y3 � 3!y4 + 4!y5 � � � �

�
(y ! 0):

Thus, everything can be re-expressed in terms of the hypergeometric function
F, i.e., the OGF of factorial numbers (set y = z(z � 1)=(z + 1)). One gets the
expression for Q(z) as stated. Finally this form of Q(z) is expanded using the
binomial theorem, and double combinatorial sums result for the coe�cients. 2

Though they have no immediate bearing on the graph problem at hand, we
mention two interesting consequences of this theorem.
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Corollary 1 The quantities Qn satisfy the recurrence

(n+ 1)Qn +Qn+1 � 2nQn+2 + 4Qn+3 + (n+ 3)Qn+4 �Qn+5 = 0; (9)

where Q0 = 0; Q1 = 1; Q2 = Q3 = Q4 = Q5 = 0. Asymptotically, one has

Qn

(n� 2)!
= e�2

�
1 +O

�
1

n

��
: (10)

Proof. First, the generating function Q(z) is obtained from classical special
functions (the exponential integral or the hypergeometric functions) by rational
operations and substitutions. Many such functions fall into what Zeilberger [26]
has named the \holonomic class": a function (or a power series) is holonomic
if it satis�es a linear di�erential equation with coe�cients that are rational
(equivalently polynomial) functions. Holonomic functions enjoy a rich set of
closure properties, including closure under sums and products, integration and
di�erentiation, as well as algebraic substitutions. TheMaple package Gfun due
to Salvy and Zimmermann [23] actually implements these closure properties.

Here, since the exponential integral (also, its hypergeometric cognate) is
clearly holonomic, we may take advantage of the Gfun package and build up
automatically a di�erential equation satis�ed by Q(z):

(z4+z5+4z3�1�z+4z2)Q(z)+(�2z4+z2+z6)
@Q(z)

@z
�2z4�4z3�z5+z = 0:

From this the recurrence follows by elementary properties of generating func-
tions: multiplication by z corresponds to a shift of coe�cient indices, while
di�erentiation essentially multiplies coe�cients by n. In this way, the recur-
rence (9) is established (it is also conveniently obtained in an automatic fashion
by the Gfun package).

Regarding asymptotics, we may take advantage of the expression involving
the divergent series F. The following general principle proves especially useful:
One has

[zn]F
�
z + dz2 +O

�
z3
��

= n! ed(1 + o(1))

provided that the argument of the hypergeometric F is analytic at the origin, so
that its coe�cients grow at worst exponentially. (Elementary coe�cient manip-
ulations in the style of [5, Sec. 5] establish this.) But, given this principle, the
expression already obtained for Q(z), and the fact that

z(1� z)

1 + z
= z � 2z2 + 2z3 � 2z4 + 2z5 +O(z6);

the main asymptotic estimate of (10) immediately results. 2

The recurrence above implies the non-obvious fact that each number of
avoiding permutations Qn is computable in a constant number of arithmetic
operations|a contrast with the quadratic cost of the double combinatorial sum.
The GF found in this way starts as

z+2 z6+10 z7+68 z8+500 z9+4174 z10+38774 z11+397584 z12+4462848 z13+� � � :
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The asymptotic estimate extends properties known for permutations with ex-
cluded patterns (e.g., derangements have asymptotic density e�1; see [3, Sec. 4.3]
for a more general result). Consequently, a nonzero proportion (about 13.53%)
of all cyclic permutations that start with 1 and end with n are avoiding. Sim-
ilar techniques can be employed to analyse more general avoidance rules (e.g.,
excluding any �xed �nite set of jumps); see [8, 25]. The net result is that the cor-
responding divergent OGF's are compositions of the F function with algebraic
functions themselves determined by �nite-state models and their associated ra-
tional functions.

2 The random graph model

We now turn to the analysis of robustness in the random graph model Gn;p.
A crucial step consists in enumerating what we call \avoiding paths" (Sub-
section 2.1) where we build upon the methods already developed for avoiding
permutations. The transfer to the random graph model Gn;p is then easy (Sub-
section 2.2).

2.1 Avoiding paths

De�ne an avoiding path of type (n; j) by the fact that it satis�es the basic
constraints of avoiding permutations regarding the base line (1; 2; : : : ; n), but
contains j \outer nodes" taken to be indistinguishable and anonymously repre-
sented by the symbol `?'. Precisely, an avoiding path of type (n; j) is a sequence
[�1; : : : ; �n] such that each �i is in f1; : : : ; ng [ f?g satisfying the conditions:
�1 = 1 and �n = n; no numeric value amongst the �i's is repeated; �i+1��i 6= �1
if �i+1 and �i are both numeric; the number of �i's that equal ? is exactly j. For
instance, for types (n; j) = (3; 1); (4; 1); (4; 2), the listings are respectively

f[1; ?; 3]g f[1; 3; ?; 4]; [1; ?; 2; 4]g f[1; ?; ?; 4]g :

We consider now the problem of counting the number Qn;j of avoiding paths of
type (n; j), where n is the size (the number of nodes) and j is the number of
\outer nodes".

Proposition 1 The number of avoiding paths of type (n; j) with j � 1 is ex-
pressible as

Qn+2;j =

n�jX
k2=0

n�j�k2X
k1=0

(�1)k1+k2(n� k1 � k2)!�
n� j � k1 � k2

k1

��
n� j + 1� k1

k2

��
n� k1 � k2

j

�2

:

Note that the combinatorial sum on the right hand side extends the one for
avoiding permutations in the sense that Qn = (�1)n�1 +Qn;0.
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Proof. It appears convenient to relax the constraints a bit and not to impose
a priori the number of outernodes. In so doing, we enumerate ordered pairs of
paths � = (�1; �2), called \relaxed pairs", where �1; �2 may or may not be of
the same length. The �rst path will be called the \ground path" and its nodes
are assumed to be labelled in the canonical order 1; 2; : : : ; j�1j. The second path
(i.e., the \avoiding path") is not allowed to have any edge of type (i; i + 1)
or (i; i � 1) (nor to contain any repeated label, evidently); in addition, it may
contain outside nodes written as ? that represent nodes not in the ground path.
We let Q�;m1;m2

be the number of relaxed pairs that comprise a total of � nodes
and are such that the nodes of �2n�1 (with �1; �2 taken here as sets of nodes) are
in number m1 while there are m2 nodes in �1 n �2. This sequence extrapolates
the sought sequence Qn;j in the sense that Qn;j = Q2n;j;j .

The counting is achieved by modifying the templates introduced in Section 1.
We omit the somewhat lengthy details as they are conceptually very similar (see
also [8] where detailed speci�cations are spelled out with ample con�rmation
of the formula above by exhaustive combinatorial listings). The idea is now
to distinguish \inner nodes" that are in �1 n �2, \outer nodes" belonging to
�2 n �1, and \joint" nodes from �1 \ �2. The constraints are seen to remain of
the �nite-state type, corresponding to regular expressions that only involve the
combinatorial constructions `Union, Prod, Sequence'.

We can then proceed with the enumeration of modi�ed templates. Let
T (z; u; v; w1; w2) be the generating function in �ve variables, where z records
the total number of nodes, v records the total length of LR and RL blocks
(needed for inclusion-exclusion as it gives the number of exceptions), u records
the number of such blocks (needed to apply the integral transform); the vari-
ables w1; w2 record the number of points on each one of the two paths that
does not belong to its companion. The generating function T (z; u; v; w1; w2)
then mechanically results (details omitted). For inclusion-exclusion, we must
set v = �1, then modify T to make it comply with the form needed to apply
the transform (7) and de�ne

T
�
(z; u; w1; w2) = T (z; u;�1; w1; w2)� (u� u2)

�
@

@u
T (z; u;�1; w1; w2)

�
u=0

:

Then the integral transform technique applies via relation (8). Let Q(z; w1; w2)
be the GF of the Qn;m1;m2

de�ned at the beginning of the proof as counting
relaxed pairs of type (n;m1;m2). One obtains in this way

Q(z; w1; w2) =

Z 1

0

T
�
(z; u; w1; w2)e

�u du; (11)

where

T
�

=
z2

1 + z2

�
1 +

z2

D

�
D = 1� z(w1 + w2) + z2(1� u+ w1w2)� z3(w1 + w2) + z4(u+ w1w2):
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(It is comforting to note that the expression is symmetric in w1; w2!)

An exponential integral form is obtained which is eventually reduced to the
�nal hypergeometric form that involves the GF of factorials:

Q(z;w1; w2) =
z2

1 + z2
+

z4

(1 + z2)2(1 � zw1)(1 � zw2)
F

�
z2(1 � z2)

(1 + z2)(1 � zw1)(1 � zw2)

�
:

(12)

This is our main formula and it reduces to Q(z2), as it should, upon setting
w1 = w2 = 0. From there, the expansion in terms of binomials is straightforward
and Qn;j is determined as the coe�cient [z2nwj

1w
j
2]Q(z; w1; w2). 2

2.2 Average-case analysis of the random graph model

We discuss now how to estimate the robustness to link failures in a random
graph that obeys the Gn;p model. An avoiding pair of length ` in a graph is an
unordered pair of paths, each of length `, with a common source and a common
destination, that may share some nodes, but are totally edge-disjoint. We have
an exact characterization of the non-asymptotic regime:

Theorem 2 The mean number of avoiding pairs of length ` between a random
source and a random destination in a random graph obeying the Gn;p model is

N`(n; p) :=
p2`

2n(n� 1)

X̀
j=0

Q`+1;j

�
n

l + 1 + j

�
(l + 1 + j)!

where the coe�cients Qn;j are given by Proposition 1.

Since the Gn;p model implies isotropy, the quantity N`(n; p) is also the mean
number of avoiding pairs between any �xed source and destination s; t.

Proof. The coe�cient 1=2 corresponds to the fact that one takes unordered
pairs of paths; the coe�cient 1=(n(n�1)) averages over all possible sources and
destinations; the factor p2` provides the edge weighting corresponding to Gn;p;
the arrangement numbers

�
n

l+1+j

�
(l+1+ j)! account for the number of ways to

embed an avoiding path into a graph by choosing certain nodes and assigning
them in some order to an avoiding path; the coe�cients Q`+1;j provide the basic
counting of avoiding paths that build up avoiding pairs. 2

Robustness. A short table of initial values of N`(n; p) follows:

N2 =
1
2 (n� 2)(n� 3)p4; N3 =

1
2 (n� 2)(n� 3)2(n� 4)p6;

N4 =
1
2 (n� 1)(n� 2)(n� 3)(n� 4)(n� 5)2p8;

N5 =
1
2 (n� 2)(n� 3)(n� 4)(n� 5)2(n3 � 11n2 + 25n+ 32)p10:

15



From developments in the previous section, the formul� are computable in
low polynomial time (as a function of `) and they describe exactly the non-
asymptotic regime. This makes it possible to determine the mean number of
avoiding pairs in graphs of a given size for all reasonable values of n; p; `. Take
for instance a graph with n = 105 nodes and an edge probability p = 5 � 10�5.
This corresponds to a mean node degree that is extremely close to 5, so that,
on average, each node has 5 neighbours. Then the mean values are

N2 = 3:1 � 10�8; N3 = 7:8 � 10�7; N4 = 1:9 � 10�5; N5 = 4:8 � 10�4; N6 = 1:2 � 10�2;

N7 = 0:30; N8 = 7:6; N9 = 190; N10 = 4763; N11 = 119052; N12 = 2:9 � 106:

Thus, in this example, one expects to have short and multiple connections
between source and destination provided paths of length 8 are allowed. This
numerical example also shows that there are rather sharp transitions. The
formula of Theorem 2, that entails the following rough approximation

N`(n; p) �
1

2
n2`�2p2` (13)

precisely accounts for such a sharpness phenomenon.

In the introduction, we have de�ned `{robustness as multiple connectivity
by edge-disjoint paths of length at most `. In fact, Equation (12) gives access to
explicit expressions for relaxed pairs of type (`1; `2) that are made of two paths,
of lengths `1, `2. It can then be seen that the bottleneck for existence of pairs
(`1; `2) with `1; `2 at most ` is in fact the case (`; `). Thus, since N`(n; p) ! 0
when p

PM (n;`) ! 0, the function

PM (n; `) = 2
1
2`n�1+

1
`

is a \cut-o�" point for `{robustness (in a mean value sense) and an (� `;� `)-
avoiding pair is expected or not depending on whether p=PM tends to 0 or
to 1.

Corollary 2 Any �xed pair in a Gn;p graph is almost surely not `{robust if
p=PM (n; `)! 0.

Proof. When p
PM (n;`) ! 0; then the expected number N`(n; p) of the desired

pairs of paths tends to 0 and so does the probability of existence of at least one
such pair of paths (by Markov's inequality or by direct reasoning). Thus, with
probability tending to 1, there is no pair of edge-disjoint paths between the two
vertices and these two vertices are, almost certainly, not `{robust. 2

3 Thresholds in the random graph model

In this section, we examine properties that hold \almost surely" (a.s.), a term
synonymous to \with probability tending to 1 as n!1". We provide bounds
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for the probability (and thus the threshold) of existence, between pairs of ver-
tices, of two edge-disjoint paths of length at most `, by proving the following:

| We give an estimation of the \lower threshold" value PL � PL(n; `) such
that Gn;p graphs with p � PL do not satisfy the desired property of the
existence, between all pairs of nodes, of two edge-disjoint paths with prob-
ability tending to 1 as n goes to in�nity.

| We present an \upper threshold" value PU � PU (n; `) such that almost
every Gn;p graph with p � PU has almost all its (source-destination) pairs
of vertices connected by at least two edge-disjoint paths of length at most
`.

Theorem 3 De�ne

PL(n; `) =

�
log

n2

logn

� 1
`

n�1+
1
` :

Then, for p � PL(n; `), almost surely, there exists a pair of vertices in the Gn;p
graph that does not have the `{robustness property.

Proof. Use the threshold function for diameter ` (see [7], Theorem 10, p. 233),
and the fact that the property of having diameter at most ` is a monotone
increasing property for random graphs. 2

Theorem 4 De�ne

PU (n; `) = 2
�
log
�
n2 logn

�� 1
` n�1+

1
` :

Then, for p � PU (n; `), almost surely, almost all pairs of vertices of a Gn;p graph
have the `{robustness property.

Proof. Consider two independent distributions Gn;p1 and Gn;p2 on the same set
of vertices. Let Ei (i = 1; 2) be the events \Gn;pi has diameter ` ".

Consider the graph eG obtained when we superimpose an instance G0 2 Gn;p1
and an instance G00 2 Gn;p2 and OR them (i.e., eG has an edge joining u; v i� at

least one of G0, G00 has). Clearly eG is a Gn;p object with

p = p1(1� p2) + p2(1� p1) + p1p2 = p1 + p2 � p1p2:

In fact, if u; v are joined in G0 by a path �1 and in G00 by a path �2, then these
two paths both exist in eG. For p equal to the threshold for constant diameter
` of Gn;p, the number of pairs u; v of eG for which the paths of G0; G00 overlap
in some edge is o(n2); thus the vast majority of pairs of vertices (there are

n2 � o(n2) of them) in eG are connected via two edge-disjoint paths of length at
most `.
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If su�ces to take p = p1+ p2� p1p2 with p1 = p2 = p
(`)
0 and p

(`)
0 a threshold

for diameter `, so that

p � 2p
(`)
0 �

�
p
(`)
0

�2
:

Precisely, we can then adopt for p the value

PU = 2(2 logn� log c)
1
` n

1
`
�1

where c is adjusted to 1= log n (see [7], Corollary 12, p. 237), so that the diameter
is almost surely `. 2

Finally, we show how to transfer results relative to the probability of ro-
bustness of a �xed pair to an all{pairs property. This starts with an easy
combinatorial lemma.

Lemma 1 For every graph G(V;E), if vertices u; v are each connected to a
speci�c vertex x 2 V via two edge-disjoint paths each of length `, then u; v are
connected in G via two edge-disjoint paths, each of length at most 3`.

Proof. For simplicity, let the two (edge-disjoint) paths from u to x be coloured
blue and the two (edge-disjoint) paths from v to x be coloured red. Take one of
the two red paths and mark the �rst red-blue intersection vertex x1 of it (there
always exists such a vertex since at worst one may take x1 = x). Now take the
other red path and mark the �rst red{blue intersection vertex x2 (again this
vertex can be x). There are two cases:

Case 1. Vertices x1; x2 are in di�erent blue paths. Then the lemma is easily
proved by simply following the two di�erent blue parts and then continuing with
the two di�erent red ones. Note that the two blue parts are edge-disjoint, the
two red continuations are also edge-disjoint and there is no red-blue edge.

Case 2. Both x1; x2 are on the same blue path. Let x1 the closest to u on
this blue path. Take the �rst u� v path to be from u (on this blue path) to x1
and then from x1 to v (by the same red path which de�ned x1) and the second
u� v path be composed by the other red path from v to x2, then the blue part
from x2 to x and then the unused other blue path returning to u. Again, there
is obviously no edge intersection.

With respect to length, the worst case is clearly Case 2, where the second
constructed path has pieces from three of the four initial paths, leading to length
at most 3`. 2

Lemma 1 can be restated as follows: For every graph G(V;E) if there exists
a vertex x 2 V such that for all vertices u; v 2 V (u; v 6= x) each of u; v connects
to x via two edge-disjoint paths of length at most `, then the diameter of G is
at most 3` and each u; v 2 V is connected via two edge-disjoint paths of length
at most 3`. We use this in our last result:

Theorem 5 Given Gn;p, if p(n; `) is such that the probability that two speci�c
nodes of G are connected via two edge-disjoint paths of length at most ` is at
least 1� � (where � = o

�
1
n

�
), then all pairs of nodes u; v of G are connected via

two edge-disjoint paths of length at most 3` with probability at least 1� n�.
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Proof. Consider a speci�c vertex x 2 V and let Y (u; x) be the indicator random
variable of the event \u is connected to x via two edge-disjoint paths". Let also
Z(x) be the sum of Y (u; x) for all u 6= x. Then:

Prf9u : Z(x) < n� 1g �
X
8u6=x

PrfY (u; x) = 0g

= (n� 1)PrfY (u; x) = 0g

= (n� 1)(1� PrfY (u; x) = 1g):

If PrfY (u; x) = 1g � 1� � (where � = o
�
1
n

�
), then

Prf9u : Z(x) < n� 1g � (n� 1)�

and all pairs of nodes u; v of G are each connected via two edge-disjoint paths
of length at most 3` with probability at least 1� n�. 2

Theorem 5 potentially provides an upper bound for the all pairs problem,
by way of a bound � such that for p � �, in an instance of Gn;p, any �xed
(or random) pair has the `{robustness property with probability tending to
1 as n tends to in�nity. The derivation of such a bound could conceivably
be approached by a determination of the Second Moment of the `{robustness
distribution, a computation that seems to represent a major technical di�culty.

Conclusions. We have estimated here tightly and also asymptotically the
mean number of ways to get at least two edge-disjoint paths between any two
speci�c nodes of Gn;p graphs. We pose as an open problem the calculation
of the second moment (this would provide bounds for the all-pairs problem).
Another question of interest is the extension of the analysis to the existence of
k simultaneously edge-disjoint paths.

References

[1] M. Abramowitz and I. A. Stegun, \Handbook of Mathematical Functions", Dover,
1973.

[2] N. Alon and J. Spencer, \The Probabilistic Method", John Wiley & Sons, 1992.

[3] A. D. Barbour, L. Holst, and S. Janson, \Poisson Approximation", Oxford Science
Publications, New York, 1992.

[4] D. Bauer, F. Boesch, C. Su�el and R. Tindell, \Connectivity Extremal Problems
and the Design of Reliable Probabilistic Networks", in The Theory of Applications
of Graphs, John Wiley and Sons, 1981.

[5] E. A. Bender, \Asymptotic Methods in Enumeration", SIAM Review 16(4),
pp. 485{515, 1974.

[6] F. T. Boesch, F. Harary and J. A. Cabell, \Graphs and Models of Communication
Networks Vulnerability: Connectivity and Persistence", Networks 11, pp. 57{63,
1981.

19



[7] B. Bollob�as, \Random Graphs", Academic Press, 1985.

[8] F. Chyzak, Ph. Flajolet and B. Salvy (Editors), \Studies in au-
tomatic Combinatorics", INRIA 1998. Published electronically at
http://algo.inria.fr/libraries/autocomb/autocomb.html

[9] L. Comtet, \Advanced Combinatorics", Reidel, Dordrecht, 1974.

[10] A. Erd�elyi, \Higher Transcendental Functions", 3 volumes, R. E. Krieger pub-
lishing Company, Malabar, Florida, 1981.

[11] P. Erd�os and A. R�enyi, \On the Evolution of Random Graphs", Magyar Tud.
Akad. Math. Kut. Int. Kozl. 5, pp. 17{61, 1960.

[12] Ph. Flajolet, K. Hatzis, S. Nikoletseas, and P. Spirakis, \Trade-o�s Between Den-
sity and Robustness in Random Interconnection Graphs", In IFIP International
Conference on Theoretical Computer Science, Lecture Notes in Computer Science
vol. 1872, pp. 152{168, 2000.

[13] Ph. Flajolet, B. Salvy, and P. Zimmermann, \Automatic Average{case Analysis
of Algorithms", Theoretical Computer Science 79(1), pp. 37{109, 1991.

[14] Ph. Flajolet and R. Sedgewick, \Analytic Combinatorics", book in preparation,
2000 (Individual chapters are available as INRIA Research Reports 1888, 2026,
2376, 2956, 3162).

[15] Ph. Flajolet, P. Zimmerman, and B. Van Cutsem, \A Calculus for the Random
Generation of Labelled Combinatorial Structures", Theoretical Computer Science
132(1-2), pp. 1{35, 1994.

[16] I. P. Goulden and D. M. Jackson, \Combinatorial Enumeration", John Wiley,
New York, 1983.

[17] J. Hromkovic, R. Klasing, E. Stoehr and H. Wagener, \Gossiping in Vertex-
Disjoint Paths Mode in d{dimensional Grids and Planar Graphs", In Proceedings
of the 1st European Symposium on Algorithms (ESA), pp. 200{211, LNCS vol.
726, 1993.

[18] S. Janson, D. Knuth, T.  Luczak and B. Pittel, \The Birth of the Giant Compo-
nent", Random Structures and Algorithms, vol. 4, pp. 232{355, 1993.

[19] Z. Kedem, K. Palem, P. Spirakis and M. Yung, \Faulty Random Graphs: Reliable
E�cient-on-the-average Network Computing", Computer Technology Institute
(CTI) Technical Report, 1993.

[20] S. Nikoletseas, K. Palem, P. Spirakis and M. Yung, \Connectivity Properties in
Random Regular Graphs with Edge Faults", International Journal of Foundations
of Computer Science (IJFCS), 11(2), pp. 247{262, 2000. A preliminary version
has appeared in the 21st International Colloquium on Automata, Languages and
Programming (ICALP), Lecture Notes in Computer Science, pp. 508{515, 1994.

[21] R. Sedgewick and Ph. Flajolet, \An Introduction to the Analysis of Algorithms",
Addison Wesley, 1996.

[22] J. Spencer, \Ten Lectures on the Probabilistic Method", SIAM Press, Philadel-
phia, 1987.

[23] B. Salvy and P. Zimmermann, \GFUN: a Maple Package for the Manipulation
of Generating and Holonomic Functions in One Variable", ACM Transactions on
Mathematical Software 20(2), pp. 163{167, 1994.

20



[24] N. J. A. Sloane, \The On-Line Encyclopedia of Integer Sequences", 2000. Pub-
lished electronically at http://www.research.att.com/ njas/sequences/.

[25] R. P. Stanley, \Enumerative Combinatorics" vol. I, Wadsworth & Brooks/Cole,
1986.

[26] D. Zeilberger, \A Holonomic Approach to Special Functions Identities", Journal
of Computational and Applied Mathematics 32, pp. 321{368, 1990.

21



Unit�e de recherche INRIA Lorraine, Technopôle de Nancy-Brabois, Campus scienti�que,
615 rue du Jardin Botanique, BP 101, 54600 VILLERS L�ES NANCY

Unit�e de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
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