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Partitions d’ensembles paires-impaires, méthode du col et
admissibilité au sens de Wyman

Résumé : L’inverse de la série génératrice des nombres de Bell compte la différence entre
le nombre de partitions d’ensembles & nombre de blocs impair et le nombre de celles dont le
nombre de blocs pair. Le comportement asymptotique de cette suite oscillante est obtenu
par une analyse de col faisant intervenir deux points cols conjugués. Les détails techniques
de ’analyse sont réglés en invoquant la classe des fonctions admissibles de Wyman.
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EVEN-ODD SET PARTITIONS, SADDLE-POINT METHOD AND
WYMAN ADMISSIBILITY

BRUNO SALVY

ABSTRACT. The reciprocal of the generating function of the Bell numbers enu-
merates the difference between numbers of set partitions with even and odd
number of blocks. The asymptotic behaviour of this oscillatory sequence is
obtained by a saddle-point analysis involving two conjugate saddle points.
Technical details of the analysis are dealt with by appealing to Wyman’s class
of admissible functions.

Wyman introduced in [19] a class of functions for which the saddle-point method
yields an asymptotic expansion of the Laurent coefficients when the index tends to
infinity. While less well-known to combinatorialists than Hayman’s or Harris &
Schoenfeld’s classes, Wyman admissibility applies to a larger class of functions.
The drawback is that its application is less straightforward. In this article, we give
a detailed application of Wyman’s method on a combinatorial problem posed to us
by N. Calkin who got it from H. Wilf.

The Bell number B,, counts the number of partitions of a set with n distinct
elements into nonempty subsets. The first ten elements of this sequence are

1,1,2,5,15,52, 203,877, 4140, 21147, 115975.

This classical sequence appears as A000110 in the EIS [17], where an extensive
bibliography can be found. From classical combinatorics (see for instance [2, 4]),
the exponential generating function of this sequence is

(1) B(z) =) Bn;—T: = exp(e® — 1).

n>0

The asymptotic expansion of the Bell numbers is a classical example for the saddle-
point method in combinatorics, treated in great detail by N. G. de Bruijn in [6].
The main steps of the method are recalled in Section 1 below.

The exponential in (1) stems from the classical translation of combinatorial sets.
If instead one is interested in numbers of partitions with even (resp. odd) numbers
of parts, the generating function becomes cosh(e? — 1) (resp. sinh(e® — 1)). The
extent to which these numbers differ is embodied by the generating function

z" .
S(z) = Z Snm := cosh(e® — 1) — sinh(e” — 1) = exp(l — €7).
n>0
The coefficient S,, in this series is the number of partitions of a set of size n in an

even number of parts minus the number of partitions with an odd number of parts.
The first few numbers are

1,-1,0,1,1,—2, -9, -9, 50, 267, 413, —2180.
1
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The question of the asymptotic behaviour of this sequence (and thus in particular
an explanation of its sign pattern) was raised by H. Wilf. We give an answer in
Theorem 1 below.

This sequence, with signs removed, appears as A000587 in the EIS, together with
a few references. In particular, Uppuluri and Carpenter derive in [18] the analogue
of Dobinsky’s formula and various other relations by either paralleling the classical
derivations for the Bell numbers or exploiting the fact that both series are reciprocal
of each other. Some of these results had been derived previously by Beard [1], in
the Journal of the Institute of Actuaries, where the asymptotic expansion of S, has
also been considered, “although of limited actuarial application”. His derivation
is very formal and he admits that his article “has been largely relieved of various
analytical considerations which arise at a number of points”. Our aim is to show
that a rigourous analytic derivation is now possible without too much work, thanks
to Wyman’s general results in [19] which were not available to Beard.

Our main result is the following.

Theorem 1. Let S, /n! be the coefficient of z™ in the Taylor series of exp(l — e*)
at the origin. Then there exist sequences Ay, ¢, and u, such that, as n — 0o,

Sp = Ay cos(dn) + O(uy),
where log(uy,/Ay) = o(n/log" n), for all k > 0,

A logl 1 log1 2
logﬁ =n (—loglogn+ ogogn+ 1, (loglog n)

logn 2log®n
2(loglogn)® — 3(loglogn)? — 672 loglogn + 372 L0 ((loglog n)4>>
6log®n log*n

1 logl loglogn)? — loglogn — 73/3 loelogn)?
bn =7 ( L log ggn+(og ogn) oglogn m/ +O<(0g 04gn) ))
logn log”n log®n log™ n

In particular, log B, /log A, — 1 and B, /A, — co.

Figure 1 shows the values of log(B,/n!) (all values are negative since B,, <
n!), of log|Sy,/n!|sign(S,) (of larger absolute value than the previous one) and
| |sign(T,,) where T), is obtained by multiplying the first four terms of the as-
ymptotic expansion of log(4, /n!) above by the cosine of the first 5 terms of the
expansion of ¢,. This latter sequence appears to have a slightly larger absolute
value than the previous one and a very similar sign pattern.

1. SADDLE-POINT METHOD

We first recall the main steps of the calculations performed during the saddle-
point method. The starting point is Cauchy’s integral formula giving the nth Taylor
coefficient f,, of an analytic function f(z) at the orlgln as:

(2) F 2@7r7{f z”“’

where the contour is for instance a circle enclosing the origin and no other singularity
of f. A nice heuristic explanation of the saddle-point method for the asymptotics
of integrals can be found in [16]. On Figure 2, the function |B(z)/2""1| is displayed
for n = 10. (Colours indicate the argument and values higher than 1 have been
removed to keep the picture finite.) The idea of the method is to choose a contour



EVEN-ODD SET PARTITIONS, SADDLE-POINT METHOD AND WYMAN ADMISSIBILITY 3

200

100

—100

—200

| +++++
m #+++
+++++
++++
| A
ey
_ w
f e
+
4
| / + +
fa
L/ 4+++
3+
L—— L — L—— L — L——
120 140

......... | 100

+~++++
+++++
AR
s
FIGURE 1. Actual values vs. asymptotic estimates:

log(B,,/n!) (dots), its asymptotic estimate (continuous curve),
log|S,, /n!|sign(Sy) (crosses), its asymptotic estimate (discontin-
uous curve)

passing through the saddle point. As n becomes large, a small portion of the circle
on both sides of the saddle point contributes most of the integral. Locally, the
integrand behaves as a Gaussian function and the error made in approximating it
by an actual Gaussian function becomes exponentially small as n increases. This
leads to a three-step formal process:
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FIGURE 2. |B(z)/2'

1. Locate the saddle point. This point is given as a zero of the derivative (or more
conveniently the logarithmic derivative) of the integrand. The equation to be solved
has the form
!
r

(3) T () =n+1.

f(r)
In all cases the left-hand side does not depend on n. In general, this equation
does not have a closed-form solution. This introduces technicalities that involve
computing an asymptotic expansion of r as n tends to infinity;

2. Change the variables locally to make the function Gaussian. Introducing a new
variable u, this is achieved by the change of variables

@ L

The integral (2) then becomes
1 f(r) % 2y 42
n = —— —u”)— du.
) / exp(~u?) % du

T 24 prtl

The expansion of the derivative dz/du is obtained from (4). Letting h(z) denote
log(f(2)/2™"1), this equation rewrites

(6) h(z) = h(r) — —.

In view of the definition of the saddle point by A'(r) = 0, this leads to
K3 (r) (z—r)2

w=+h"("r(z—-71)+ —L " 7 4...
M=)+ sty
Inverting this expansion and differentiating with respect to w leads to
dz i R (r)u  6AH (r)A" (1) — 10h3) (r)? ju?

(7) du \/h”—(r) + AGE 3 B (r)7/2 48 +
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3. Approximate the integral locally by an integral from —oo to co. Injecting the
expansion above in (5) and using the classical value of

/ ue 2 gy = /2w - 13-+ (2k — 1), keN

thus leads to the approximation

£(r) ( L B @R () —10hP () ) .

(8) fn= L2 () 48h" (r)?

The rest of this section is devoted to working out these formal manipulations for
the cases of the numbers B,, and S,, from the introduction. These computations
motivate the result of Theorem 1, which is proved by the study and validation of
this formal process from an analytic point of view in Section 2. Of course, the
results we obtain for B,, are not new, but the sequence S, is so intimately related
to B, that the derivations cannot be separated.

1.1. Location of the Saddle Point. In the case of the Bell numbers, using the
saddle-point equation (3), the saddle-point p satisfies

(9) pexp(p) =n+ 1.

This equation can be solved explicitly in terms of the Lambert W function [5].
It has one root of smallest modulus, which is real positive and whose asymptotic
behaviour can be found by rewriting the equation as

p = log(n + 1) — log(p)
and iterating [6]. This leads to

loglogn  loglogn(loglogn — 2) N

10 =logn —loglogn +
(10) p = log glog logn 2o n

A nice observation of Comtet’s [3] is that the coefficients in the polynomials in
loglogn appearing in the numerators of this expansion are Stirling numbers of the
first kind. This observation can be generalized and has consequences on the efficient
computation of a family of asymptotic expansions, see [14].

For the sequence S,,, the corresponding saddle-point equation reads

(11) —rexp(r) =n+1,

so that there are two solutions of smallest modulus R, (with e = £1), close to p+ein
(see Figure 3). Again, these solutions can be expressed using different branches
of the Lambert W function. The asymptotic expansions of these solutions are
obtained by setting R. = p + eim + u. Injecting this into the saddle-point equation
and rewriting in view of (9) leads to

pl= e —1
u+ eim’
Power series reversion then yields the asymptotic expansion of the saddle points R,
as n — o0o:

(12) R. = p+eim —eimp ' + (eim — 772/2),0*2 N
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1.2. Local Expansion and Termwise Integration. In the case of the Bell num-
bers the function h(z) from Equation (6) satisfies
(k —1)!

h(k) (Z) = 6Z + (_l)k(n + I)W,

E=1,2,....

Further simplification occurs when z = p in view of (9) and thus the final resulting
approximation (8) becomes

(13) B, _ exp(e’ —£-1) (1 20 = 3p* —20p° —18p + 2 )
24p(p +1)3 '

nt o prtly/2n(1+ p71)
That this approximation provides an asymptotic expansion of the Bell numbers is
proved in Section 2.

We also note that this expansion in terms of p cannot be easily converted into
an expansion in terms of n. Indeed, from the saddle-point equation (9) we get
that exp(p) = (n+1)/p so that all the terms in the asymptotic expansion of exp(p)
tend to infinity. It is therefore impossible to compute another level of exponential
from this result. However, an expansion for log(B, /n!) is available from (13). In
terms of p first, this is

B 1
(14) log—? :e”(—plogp+1)—g—1—510g27r+0(p_1).
n!
When replacing p by its expansion, only the first term remains and we get
B log 1 1
n! logn
log 1 2 log1 2(21ogl -3 log 1 4
, (log ogn) . (loglogn)( oglogn )10 ((og clgn) ))
2log”n 6log” n log™ n

where we have used the fact that differences between n and n + 1 are absorbed
by the O() term. This is exactly the classical result as given for instance in [6,
Eq. (6.2.7) p. 108].

The computation for S, is very similar to the previous one: the corresponding
function h now satisfies

W9 (@) = —e + (-1t + 1) B

W, k:1,2,

When z = R., simplifications are induced by (11) and thus application to each
saddle point of the formal process described above yields

(16)

R Re eim 4 3 2
—ete — 1+ 85 2R; — -2 -1 2
C. = exp(—e =+ 1498 (1+e_R€ R —3R? — 20R? — 18R, + +>

3
The final result is simply C1 +C_;. Modulus and phase are calculated by considering
the real and imaginary parts of log C.. An asymptotic expansion of these is obtained

using the expansion (12) of R, in terms of p. The computation requires only the
first part of (16), namely

log C. = —e®(~R.log R. + 1) + O(R.),

where again we have used the saddle-point equation (11) to rewrite n+1. Expressing
the right-hand side in terms of p, we finally get the following expansions which
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should be compared to that of log B,,/n! in (14)

w2 w2 74 — 272
logC. = e?(—pl 1— —+ — p— == —4
RlogC. = e?(—plogp + 2p+2p2+ 17 +0(p™ 7)),
3 573 1573 — 278

— -5
%IOgCE—GGP(—W-f-g—pz—@‘FT O(p ))

We finally get the approximation

Sn
P exp(Rlog C) cos(Slog C.).

The “asymptotic amplitude” of the numbers S, is A,, = n!exp(RlogC,). We get
the asymptotic behaviour in Theorem 1 by injecting the expansion of p from (10).
The same computations for the “asymptotic phase” ¢, := log(C; conclude the
computational part of the proof of Theorem 1.

As one can see in this section, computations in this area are usually tedious and
better done using a computer algebra system. However, this requires a system that
can handle complicated asymptotic scales as well as asymptotic functional inversion.
Computer algebra algorithms for this purpose are described in [15], together with
a combinatorial example.

2. WYMAN ADMISSIBILITY

The computations performed in the saddle-point method require analytic justi-
fication. It is well known that an asymptotic expansion obtained formally can be
badly wrong, and Olver gives a striking example in [13, p. 76-79]. In particular,
the saddle-point method requires the function to have exponential increase in the
neighbourhood of its smallest singularity (or at infinity if it is entire). In other
cases, one should use Darboux’s method or singularity analysis [7]; see [11] for a
survey of available methods.

Three approximations are performed that may introduce error terms of an order
larger than the terms of the final expansion (8): an expansion (7) which is valid
only locally; approximation of the integral by a full Gaussian integral; termwise
integration.

The first two approximations are usually legitimated by cutting the contour in
several pieces: it is necessary to determine a neighbourhood of the saddle point(s)
sufficiently large for the rest of the integral to be negligible compared to the terms
in (8) and sufficiently small for the local expansion of dz/du to be convergent. Then,
in the integrals on neighbourhoods of the saddle points, replacing the endpoints by
infinity introduces an error which has to be bounded. Finally, termwise integration
is usually justified by bounding the integral of the remainder series (and not of the
first neglected term only!).

Fortunately, in many combinatorial applications, it is not difficult to validate the
formal process thanks to so-called “admissibility theorems”. The most famous of
these is Hayman’s theorem [10] which proves the first order approximation in (8) in
many cases. A great advantage of Hayman’s result is that the class of functions for
which it applies is closed under many operations (sum, product, exponential) and
contains exp(z). This makes it easy to implement this method in computer algebra
systems (see [8] for applications in combinatorics). Hayman’s result only covers
the first order approximation, but Harris and Schoenfeld [9] gave stricter sufficient
conditions that validate the full asymptotic expansion (8). A result of Odlyzko and
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Richmond [12] shows that the exponential of a function from Hayman’s class belongs
to Harris and Schoenfeld’s class. Thus in particular, the generating function B(z) of
the Bell numbers is admissible in their sense, which proves that (13) is an asymptotic
expansion of the Bell numbers.

However, Hayman admissible functions have positive coefficients, so that S(z)
does not belong to this class. It turns out that a less well-known result due to
Wyman [19] applies in this case. This article contains a careful analysis of a general
procedure to set up a path of integration adapted to a wide class of functions.
This path captures the contributions of an arbitrary (but finite) number of saddle
points. The legitimation of all three approximations of the saddle-point method
are reduced to checking a small set of sufficient conditions. The reason why this
method is less popular than Hayman’s is that testing the sufficient conditions is not
as straightforward. At present, no simple closure properties have been studied that
would give systematic syntactic checking easier. Using the notations of Wyman’s
article, we now prove that S(z) is admissible in his sense, thereby concluding the
proof of Theorem 1.

Wyman’s admissibility proceeds in three steps to construct a contour of inte-
gration that captures the dominant parts of the integral. The first two steps are
related to locating these parts and the last one deals with local expansion and
approximation. We now review these steps.

2.1. Stationary Paths and Assumption 1. The first step of Wyman’s method
is an analysis of the modulus function

M(r,0) = |S(r exp(i0))|.

The extrema of this function on a circle are solutions of

oM _

00
In general, this equation defines a number of stationary paths with polar equa-
tions 0y (r), k = 1,..., N; this number N may change when §>M/86? = 0 along a
path. In the special case we are considering, the stationary paths have equation

(17) tan(#) + tan(rsinf) = 0,
or in cartesian coordinates
y+zxtany = 0.

The corresponding curves are displayed in Figure 4. Thus, this example displays
a number of stationary paths that tends to infinity with r. However, since

(18) |S(z + iy)| = exp(1 — €® cosy), z,y € R,
the values of the moduli M}, := M(r,0;(r)) are all bounded by M; = M(r,0:(r))

where 61 (r) is the smallest positive solution of (17). This implies Assumption 1 of
Wyman’s which reads:

Assumption 1. Forr sufficiently close to b [the radius of convergence] there exists
a continuous stationary path, with polar equation 8 = 61(r), by means of which we
can reach the boundary r = b. Further, M(r,0)/M; is bounded uniformly in 6.

We now prove this together with more precise information on the Mj’s corre-
sponding to maxima. We concentrate on those maxima for which x; > 0 since
the amplitude of |S| is relatively small in the left half-plane. By symmetry, it
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is then sufficient to consider y; > 0. We number the stationary paths counter-
clockwise so that the successive maxima are given by 6;,05,.... The maxima being
on the same circle, this numbering implies that z;42 < zj at least when z; > 0.
Since —y/tan(y) is an increasing function on each interval (km, (k+ 1)x) for k € N,
we deduce that yii2 < 2m + y, and therefore the ordinates of successive maxima
satisfy 0 > cosygpt2 > cosyg. Finally, we have obtained

(19) Myyo < My, when z; > 0, y; > 0.

2.2. Relevant Paths and Assumption 2. Eventually, the information provided
by the stationary paths will be used to construct a contour of integration. In
this perspective, it is necessary to concentrate on those paths that correspond to
local maxima, and among those, to select those whose contribution will not be
negligible compared to the final expansion. Wyman proves that the final expansion
is in descending powers of a function comparable to log M;. Therefore stationary
paths 0y (r) such that when r tends to the radius of convergence,

Mk,(’l‘)
Ml(T‘)

= o((log M;(r))?), for alla <0

need not be considered. The remaining ones are called relevant paths.

From the inequality (19), if we show that 03 (r) is not a relevant path, then we can
conclude that the only relevant paths are +6; (r). Using the defining equation (17),
we see that the first 6;’s obey

sinOk o 1

k?T—@k, _T"

By the implicit function theorem, 6 is then an analytic function of 1/r, and power
series reversion shows that

O =k= —k—+..., 100
r r
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Simple manipulations then lead to

M. 2
log 3(r) ~ —3le’".
M (r) 2r
Since
(20) log My ~ e",

this is sufficient to conclude.
We now have all the elements to check whether Wyman’s Assumption 2 is sat-
isfied.

Assumption 2. The relevant paths can be identified in such a way that the follow-
ing properties are true for r sufficiently close to b.
(a) The relevant paths are all continuous curves by means of which we may reach
the boundary r = b.
(b) If 6 = Bk(r) is a relevant path then a constant Kj > 0 and a nonnegative
integer m exist such that My /M; > Ky (log My)~™.
(c) The number N of relevant paths is fized and independent of .
(d) For every relevant path 8 = 6y(r) the lim,_,;, 0)(r) exists. Further if & = 0y (r)
and 0 = 04(r) are distinct relevant paths then

lim 6y,(r) # lim 6,(r).
r—b r—b
(e) Along every relevant path the function M (r,0) has the property
?M
W < 0.

In our case, the relevant paths are £6,(r), from which (c) follows. We have seen
that 6, is analytic in 1/r, this implies (a). Since M; = M_;, (b) is obvious. A
straightforward calculation shows that

02 M,
06?
which proves (e). It is slightly unfortunate that (d) is not satisfied in our example.
Indeed,

rcos 67
_ _el+e cos 0 el cos 017, (T’ cos 91 + 1) ,

g, ) = g, =) =0

However, we shall proceed with Wyman’s argument and check that this assumption
is unnecessary in our case.

2.3. Behaviour Along Relevant Paths and Assumption 3. The saddle-point
analysis is concluded by locating the saddle points of the Cauchy integral (2) on the
relevant paths and devising an appropriate contour of integration. For n sufficiently
large, the saddle-point equation (3) has exactly one solution along each relevant
path. Thus these paths can be parameterized by Z(n) instead of 65 (r). Conversely,
denoting by zx(r) the point of modulus r on the path 0 (r), the equation z1(r) =
Z1(n) defines a function n(r).
In our case, Z1(n) is nothing but Ry (n) from equation (11), which shows that

21(r) = Z1(n) =logn +im +---

and n(r) ~ re’.
Wyman’s Assumption 3 gives control over the local expansions in the neighbour-
hood of the saddle points.
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Assumption 3. For r sufficiently close to b each of the following are true.
(a) There exist positive constants p, P1, P» such that
P1 IOng S TL(T‘) S P2(10gM1)1+p.
(b) Zi(n)/zx(r) =14 O(1/n).
(c) In the complex w plane there exists a fized neighbourhood |w| < h for which

the functions log S(Zy(n(r)) exp(log Mi(r)w/n(r))) are all regular functions
of w. Further,
iy 1083 (Z(n(r)) exp(log M (r)w/n(r))) — log S(Zu(n(r)))

1
s log M1 (r)

exists, uniformly in w, for all w within and on the boundary of |w| < h. This
limit g, (w) satisfies Rgj/ (0) # 0.

In view of our previous estimates, parts (a) and (b) are satisfied. Since S is an
entire function with no zero, the first part of (c) is granted for any A > 0.
The previous estimates imply that

Lo Za(n(r)) log M (1)

=1.
r—00 n(r)

Therefore, for any fixed A > 0 and w with |w| < h, the argument of the exponential
in part (c) of the assumption tends to 0 when r tends to infinity. Using the above
limit several times, we finally get that

g(w) =ev -1
and the limit is uniform for any fixed A > 0.

2.4. Integration. Had Assumption 2 (d) been satisfied, the proof of Theorem 1
would end here by Wyman’s result. We now proceed to follow some of the steps
of Wyman’s proof and check that the failure of Assumption 2 (d) is benign in our
case. This illustrates that beyond his admissibility, Wyman has actually developed
a general method to devise the proper contour of integration for a large class of
saddle-point analyses.

In general, this contour consists of arcs of circle |z| = |Zi| joining Zj, exp(—ie)
to Zj exp(i€) (see below for the choice of €), segments of lines from Z exp(tie)
to zp, exp(tie) and arcs of circle |z| = |zi| = r(n) from z; exp(i€) to zjy1 exp(—ie).
This contour is sufficient to concentrate all terms of the asymptotic behaviour of
the integral on the first type of arcs.

The infinitesimal angle € is defined by

e=10%logS(Z1)| “,
where © denotes the differential operator z d/dz and « is chosen such that
6p + 2
6(2p+1)
with p from part (a) of Assumption 3.
The purpose of part (d) of Assumption 2 is to ensure that the contour described

above does not have self-intersections. In our example, the contour is a circle,
1/3<a<1/2and

<a<1/2,

_
(nlogn)e’

€ ~v
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In view of the location of Z; from (12) and (10), this value of € is indeed sufficient to
prevent intersections of the arcs containing Z; and Z; for n sufficiently large. From
there the rest of Wyman’s proof applies and concludes the proof of Theorem 1.
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