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Combinatoire analytique des con�gurations sans

croisement

R�esum�e � Cet article d	ecrit une approche syst	ematique au d	enombrement de con�gu�
rations g	eom	etriques �sans croisements construites sur les sommets d�un n�gone convexe
plan� L�approche repose sur les fonctions g	en	eratrices� les m	ethodes symboliques� l�analyse
de singularit	es et la perturbation de singularit	es� On en d	eduit des r	esultats tant exacts
qu�asymptotiques pour arbres� for�ets� graphes connexes et g	en	eraux� dissections et parti�
tions� Des lois limites de formes gaussienne r	esultent 	egalement de cette m	ethode� elles
concernent le nombre de feuilles dans les arbres� le nombre de composantes ou d�ar�etes dans
les graphes� etc�
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Abstract

This paper describes a systematic approach to the enumeration of �non�crossing� geomet�
ric con�gurations built on vertices of a convex n�gon in the plane� It relies on generating
functions� symbolic methods� singularity analysis� and singularity perturbation� A con�
sequence is exact and asymptotic counting results for trees� forests� graphs� connected
graphs� dissections� and partitions� Limit laws of the Gaussian type are also established
in this framework� they concern a variety of parameters like number of leaves in trees�
number of components or edges in graphs� etc�

Introduction

The enumeration of planar con�gurations de�ned on vertices of a convex n�gon has a long and
digni�ed history� In ����� Euler and Segner counted triangulations �the well�known answer
involves the Catalan numbers� and on this occasion Euler invented combinatorial generat�
ing functions� Since then� many other con�gurations have been enumerated� see for instance
Comtet�s book ���� for an account of known results� The interest for such con�gurations comes
�rst and foremost from the combinatorics of classical structures ���� but also from computational
geometry� and even the interpretation of perturbative expansions in statistical physics ����

The purpose of this paper is to re�examine these problems in the light of recent general
methods of analytic combinatorics ��
� ���� First thanks to symbolic methods developed by
various schools �
� �
� ��� ��� ��� ��� ���� there is a systematic and purely formal correspondence
between combinatorial constructions and generating functions� In this way� speci�cations of
combinatorial structures can be translated automatically into generating function equations�
This approach is� as we propose to show� especially e�ective here� since planarity entails neat
decompositions for the planar con�gurations to be enumerated� Second� analytic methods based
on the analysis of singularities ���� give a transparent access to asymptotic counts that plainly
appear as morphic images of the local expansions of generating functions near a singularity�

This programme is carried out here on six of the most basic planar �non�crossing con�
�gurations� trees and forests� graphs and connected graphs� dissections and partitions� The
generating functions involved are all algebraic functions� a property to be somewhat expected
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given the context�free character of these objects� However� their forms are sometimes more com�
plicated than what is encountered in the Catalan domain comprehensively reviewed by Gould
in ����� Singularity analysis then makes it possible to derive precise estimates� see especially
our Theorem 
� In addition� a general approach of �singularity perturbation asymptotics ����
permits us to re�ne the counting estimates and derive limit laws for many parameters of interest�

Given the vast literature on the subject� we cannot expect to derive only new results� our
hope is that the uni�ed treatment presented here could be of methodological interest and that
the present paper could also serve as a partial survey of the the enumerative� asymptotic� and
probabilistic aspects of non�crossing con�gurations� The analytic approach followed here� when
contrasted to more classical combinatorial bijective proofs� proves especially e�ective when
exact formul� either become too intricate or fade away�

In the �rst sections of this paper� numbered ������ we make explicit the basic decompositions
of the six fundamental types of planar con�gurations considered� We characterize in each case
the counting generating functions by the minimal polynomial equation they satisfy� which serves
two goals� in some cases� this leads to explicit counting results� in all cases� the equations can
be fed into the asymptotic machinery of Section 
� leading eventually to the precise asymptotic
estimates of Theorem 
� In addition� many parameters of interest are easily taken into account
by bivariate generating functions� the corresponding equations serving as input to the bivariate
asymptotic process of Section �� A consequence� stated in Theorem �� is that all the parameters
discussed� e�g�� the number of edges or components in non�crossing graphs of a �xed size� have
distributions that are Gaussian in the asymptotic limit�

Combinatorial preliminaries� Let Pn � fv�� v�� � � � � vng be a �xed set of points� conventi�
nally ordered counter�clockwise� that are vertices of a convex polygon� for instance� the vertices
of a regular n�gon� De�ne a non�crossing graph as a graph with vertex set Pn whose edges are
straight line segments that do not cross� Several classical combinatorial objects can be viewed
as non�crossing graphs �we omit the quali�er non�crossing from now on�� For instance� trian�
gulations of a convex polygon are graphs with the maximum number of edges� dissections of
a convex polygon are graphs containing the edges v�v�� v�v�� � � � � vnv�� non�crossing partitions
are graphs whose components are points� edges or cycles�

We recall that a graph is connected if any two vertices can be joined by a path� A tree is
a connected acyclic graph and the number of edges in a tree is one less than the number of
vertices� A forest is an acyclic graph� or a graph whose components are trees�

Let A be a class of combinatorial objects and let jaj be the size of an object a � A� If An

denotes the objects in A of size n and an � jAnj� then the �ordinary� generating function� GF
for short� of the class A is

A�z� �
X
a�A

zjaj �
X
n��

anz
n�

Here� the size of a graph is its number of vertices and we consider various classes of non�crossing
graphs�

There is a direct correspondence between set�theoretic operations �or �constructions� on
combinatorial classes and algebraic operations on GF� For an exposition of the symbolic enu�
meration method� see for instance ��
� ���� Table � summarizes this correspondence for the
operations that are used in the paper� There �union means union of disjoint copies� �prod�
uct is the usual cartesian product� �sequence forms sequences� and �substitution A � B � C
corresponds to grafting objects of C on nodes of B�

Enumerations according to size and an auxiliary parameter � are described by bivariate
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Construction Operation on GF
Union A � B � C A�z� � B�z� � C�z�
Product A � B � C A�z� � B�z�C�z�
Sequence A � Seq�B� A�z� � �����B�z��
Substitution A � B � C A�z� � B�C�z��

Table �� The basic combinatorial constructions and their translation into generating functions�

generating functions� or BGFs�

A�z� w� �
X
��A

zj�jw���� �
X
n�k��

An�kz
nwk�

with An�k the number of objects of size n with ��parameter equal to k� Throughout the paper
the variable z is reserved for marking vertices of the di�erent kinds of graphs� and the variable
w for marking a secondary parameter� like leaves in trees or edges in graphs� Classes and their
GFs are consistently denoted by the same letters�

We will need repeatedly the Lagrange�B urmann inversion theorem in order to extract coef�
�cients of GF that satisfy functional equations of the implicit type ��� ��� ��� ����

Lagrange inversion� Let ��u� be a formal power series with �� �� �� and let Y �z�
be the unique formal power series solution of the equation Y � z��Y �� Then the
coe�cient of ��Y �� for an arbitrary series �� is given by

�zn���Y �z�� �
�

n
�un�����u�n���u��

In particular� for every k � � we have

�zn�Y �z�k �
k

n
�un�k���u�n�

Lagrange inversion obviously applies to bivariate generating functions upon treating the auxil�
iary variable as a parameter�

� Trees and forests

In this section a tree means a non�crossing tree� and a forest is a non�crossing forest� Basic
decompositions re!ect the geometric structure of trees and forests �Fig� � and ��� which leads
to algebraic generating functions that prove to be amenable to Lagrange expansion�

Theorem � �i� The number of non�crossing trees with n vertices equals

Tn �
�

�n� �

�
�n� �

n� �

�
�

and the number of non�crossing trees with n vertices and k leaves is equal to

Tn�k �
�

n� �

�
n� �

k

� k��X
j��

�
n� �

j

��
n � k � �

k � �� j

�
�n��k�j�

�
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Figure �� Butter!ies pending from vertex v��

�ii� The number of trees with degree partition �n�� n�� � � � � nr�� where
P

ni � n and
P

ini �
n� �� is equal to

�

n�n� ��

�
n

n�� n� � � � � nr

�
�n��n� � � � �r � ��nr

rX
i��

i

i� �
ni�

�iii� The number of forests of size n is

Fn �
nX

j��

�

�n� j

�
n

j � �

��
�n� �j � �

�n� j � �

�
� ���

and the number of forests with n nodes and k components is

Fn�k �
�

�n� k

�
n

k � �

��
�n� �k � �

�n� k � �

�
� ���

�iv� The GF of forests� the BGF of trees and leaves� and the BGF of forests and components�
are algebraic functions given by ����� ��� and �����

Trees were �rst enumerated by Dulucq and Penaud ���� and their result is summarized in
part �i� of the theorem� the enumeration of forests by GF in ���� below is due to Noy �����
We recover both results� as well as several new ones in the form of multivariate extensions�
In particular� the counting of trees according to the number of leaves as stated in �i� solves a
problem that was left open in ����� The explicit forms for the number of forests in part �iii��
formul� ��� and ���� provide explicit expansions for the GF computations of �����

Trees� We use the following basic decomposition for counting trees� Let d be the degree of
v� in a tree � � Then � can be viewed as a sequence attached to v� of d ordered pairs of trees
sharing a common vertex� This motivates the following de�nition� a butter	y is an ordered pair
of trees with a common vertex� The name aims to convey the idea that the pair of trees looks
like the two wings of a butter!y� If v� has degree d� then � can be identi�ed with a sequence of
d butter!ies pending from v� �see Figure ���

Hence we have the following equations� where T �z� is the GF for trees and B�z� is the GF
for butter!ies�

T �
z

�� B
� ���

B � T ��z�






The division by z in the second equation is because we identify two root vertices to form a
butter!y� From this it follows that T satis�es

T � � zT � z� � �� �
�

If we set z � ��� T � �U � the equation becomes U � U� � �� a direct case of application
of the Lagrange inversion theorem� As a consequence� we get the �rst assertion in part �i�
of the theorem� An alternative transformation that is useful for the sequel is as follows� Set
T � z � zy� and �solve for z in terms of y� this gives

z �
y

�� � y��
� y � z�� � y��� ���

which is amenable to Lagrange inversion� These derivations also show that Tn�� is the number
of ternary trees drawn in the plane �without reference to a �xed convex polygon� that have n
internal nodes�

In this paper we consider non�crossing trees as being rooted at vertex v�� The degree of a
vertex in a tree is then its out�degree� and leaves are vertices of degree zero� Let T �z� w� be a
bivariate generating function� where z marks vertices as before� and w marks leaves� Then we
have

T �z� w� �
z

��B
�

B�z� w� � T ��z � z � zw�

The �rst equation is the same as ���� since the number of leaves in � is just the sum of the
number of leaves in the sequence of butter!ies de�ning � � The second equation is because when
the two wings of a butter!y are empty we have a leave� Hence the term z in B�z� w� has to be
replaced with zw� Eliminating B we obtain

T � � �z�w � z� � z�T � z� � �� ���

Expansion of T �z� w� can be carried out by the same process as in ���� Set T � z� zy� and
solve for z� which gives

z �
y

�y � ���y� � �y �w�
� y � z�y � ���y� � �y �w��

Then� by Lagrange� one has

�zn�T �z� w� � �zn���y �
�

n� �
�un���

�
�u � ���u� � �u� w�

�n��
�

and upon extracting �wk��

�znwk�T �z� w� �
�

n� �
�un��wk�

�
�u � ���u� � �u�w�

�n��
�

�

n� �

�
n� �

k

�
�un����u� ��n���u� � �u�n���k�

This last form yields directly the expression of Tn�k stated in part �i� of the theorem�
Given a tree � of size n and maximum degree r� the �degree� partition p�� � is the sequence

�n�� n�� � � � � nr�� where ni is the number of vertices of degree i in � � for i � �� � � � � r� Clearly

�



P
ni � n and� since the number of edges is n � ��

P
ini � n � �� Given a sequence of non�

negative integers �n�� n�� � � � � nr� with
P

ni � n and
P

ini � n � �� we consider the problem
of determining the number of trees of size n having partition �n�� n�� � � � � nr��

To solve this problem we have to look again at butter!ies� A butter!y 	 has a left and a
right tree with a common vertex v� If d is the degree of v� then 	 can be seen in turn as a
sequence of d butter!ies attached to v�� There are d� � ways of distributing them among the
left and right trees� hence we have B � z����B��B�� � � ��� Let now u�� u�� � � � be a sequence
of variables� where ui marks a vertex of degree i� either in trees or in butter!ies� Then the
equation becomes

B � z�u� � �u�B � �u�B
� � � � �� �r � ��urB

r � � � ��� ���

where B � B�z� u�� u�� � � �� is a GF in an in�nite number of variables� On the other hand� the
basic equation ��� becomes

T � z�u� � u�B � u�B
� � � � �� urB

r � � � ��� ���

Using Lagrange inversion in ��� we �nd that

�un�� un�� � � �unrr zn��zukB
k� �

k

n� �

�
n� �

n�� � � � � nk � �� � � � � nk

�
�n��n� � � � �k � ��nk�� � � � �r � ��nr �

Now we use ��� to express the coe"cient of �un�� un�� � � �unrr zn� in T as the sum of the above
expression for k � �� � � � � r� A straightforward manipulation gives the �nal compact solution
stated in part �ii� of the theorem�

Forests� A forest is an acyclic graph� i�e�� a graph whose connected components are trees�
Let � be a forest and let r be the number of vertices in the component � containing v� �see
Figure ��� Then � has to be completed with r additional forests �some of them possibly empty��
one to the right of every vertex of � � Thus the class of forests is obtained from the class of trees
by substituting a vertex by a pair �vertex� forest�� Let F be the GF of forests� then

F � � � T �zF �� ���

where T is the GF of trees as before� and � is the GF of the empty forest of size �� Since T
satis�es �
� one can eliminate T and recover a result from ���� �the equation here is marginally
di�erent since we are taking the constant term of F to be ���

F � � �z� � z � ��F � � �z � ��F � � � �� ����

In order to expand� we set F � � � y� then �solve for z� which yields�

y � z�� � y�

�
��p�� 
y

�y

�
�

an equation of the Lagrange type that also suggests a Catalan tree decomposition for non�
crossing forests� Formula ��� then results from the Lagrange expansion of powers of the Catalan
GF�

Let now F �z� w� be the bivariate GF for forests� where w marks components� We only have
to add a factor w in ��� to take into account the component of v� that was singled out� to
obtain F �z� w� � � � wT �zF �� Eliminating T as before we get

F � � �w�z� �w�z � ��F � � �w�z � ��F � � � �� ����

�
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Figure �� A forest�

This equation also admits a Lagrange form� upon setting F � � �wy�

y � z�� � wy�

�
��p�� 
y

�y

�
�

hence again the explicit formula for Fn�k in part �iii�� We remark that counting counting edges
instead of components is an equivalent problem� since the number of edges in a forest is equal
to the number of vertices minus the number of components�

� Connected graphs and general graphs

Like before� a graph means a non�crossing graph� Planarity once more entails strong decompo�
sition properties �Fig� �� re!ected by algebraic generating functions and Lagrange expansions�

Theorem � �i� The number of connected graphs of size n is given by

Cn �
�

n� �

n��X
j��

�
n� j

n

��
�n� 
� j

n � �

�
�n���j�

The number of connected graphs of size n with k edges is given by

Cn�k �
�

n� �

n��X
j��

�
n� j

n

��
�n� 
� j

n� �

��
n� �� j

k � n� �

�
�

�ii� The number of graphs of size n � � is expressible in terms of Schr
oder numbers�

Gn � �ncn��� cn ��
X

�����n��	
����� � � � � � � ��n� �
 � ��


# �n� �
�#
�n��������� ����

the number of graphs of size n with k edges is

Gn�k �
�

n� �

n��X
j��

�
n� �

k � j

��
n � �

j � �

��
n� � � j

n� �

�
� ����

�



and the number of graphs of size n with k connected components is

bGn�k �
�

n

�
n

k � �

�n�kX
j��

�
n� j � �

j

��
�n� �k � j

n� k

�
j�n�k�j

�n� �k � j
� ��
�

�iii� The BGFs of connected graphs and the BGF of graphs counted according to edges are
algebraic functions given by ���� and ����� The BGF of graphs and number of connected
components is an algebraic function given by ����

The univariate generating functions of connected graphs and general graphs were obtained
by Domb and Barrett ��� after considerable e�ort� In both cases� these authors also obtained
the bivariate GF according to the number of edges� building upon the work of the Rev� T� P�
Kirkman in ����� see ��� for a thorough historical discussion� We recover all the results of ���
plus two new ones� namely the enumeration of graphs according to the number of components
by GF �part �iii�� and an explicit formula for the number of connected graphs �part �i���
The result concerning Gn�k is roughly equivalent to Kirkman�s results in view of Eq� ������

of ���� while the one concerning bGn�k seems to be new� Our approach in this problem is a
direct adaptation of the scheme we used for counting trees and forests� and as such it is purely
�algebraic� in contrast� in ���� recourse had to be made to a combination of algebraic and
di�erential arguments� The Schr oder numbers� cn count generalized bracketings �equivalently�
plane trees with n leaves and internal nodes of degree � ��� and they are de�ned in ��� p� ����

Connected graphs� We use a decomposition technique analogous to that for counting
trees� Let d be the degree of vertex v� in a connected graph $� and let vi and vj be two
consecutive neighbours of v� in $� Then the subgraph induced on the vertex set fvi� vi��� � � � � vjg
is either a connected graph �not reduced to a point�� or two disjoint connected graphs containing
vi and vj � respectively� The two possibilities are exempli�ed in Figure �� If we let C be the GF
for connected graphs� the �rst possibility is counted by C � z� and the second one by C�� If
vi is the �rst neighbour of v� then one has a connected graph on fv�� � � � � vig� whereas if vj is
the last neighbour one has a connected graph on fvj��� � � � � vng� Taking into account that the
d neighbours of v� are counted twice� we obtain

C � z � z
C�

z
� z

C��C � z � C��

z�
� � � �� z

C��C � z � C��d��

zd
� � � �

� z

�
� �

C�

z � �C � z �C��

�
�

Simpli�cation gives
C� � C� � �zC � �z� � �� ����

It is perhaps not immediately clear how to derive a simple expression for the coe"cients of �����
However� the equation involves monomials of only two di�erent total degrees� � and �� and as
such it can be parametrized rationally� The cubic has a double point at the origin� so that we
set C � tz and adopt the slope t as the basic parameter� Then� one has

z � � �t � ���t� ��

t�
� C � � �t� ���t� ��

t�
� ����

�Stanley observes in a vivid account ���� that the ��th Schr�oder number ������� was already known to
Hipparchus in the second century b�c� and to Plutarch in the 	rst century a�d�

�
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v

w

Figure �� The basic decomposition of graphs with two disjoint graphs between u and v and
only one graph between v and w�

The parametrization becomes a polynomial one� upon setting t � ��v� and since the branch of
interest C � z � z� � 
z� � � � � has slope � at the origin �where the expansion of C is sought��
it is convenient to set v � �� x� with x near �� Then� the parametrization becomes

z � x��� x���� �x�� C �
z

�� x
� ����

The �rst relation in ���� de�nes implicitly x as a function of z� while the second one expresses C
as a function of x�z�� The expansions can then be obtained by the Lagrange inversion theorem�
and one �nds

�zn�C � �zn���
�

�� x
�

�

n� �
�zn���

x�

��� x��
�

which entails

�zn�C �
�

n� �
�xn���

�

��� x�n����� �x�n��
�

This last form� suggestive of interesting bijective combinatorics� is equivalent to the one stated
in part �i�� it does not appear in ��� since the Cardano solution of the cubic equation for C�z�
found there does not allow for a simple expansion�

Let now C�z� w� be the GF for connected graphs� where w marks edges� If v� has degree
d we have to introduce a factor wd in the corresponding summand before ����� and a simple
computation gives

wC� � wC� � z�� � �w�C � z��� � w� � �� ����

This is equation �
�� of ���� To obtain the numbers Cn�k we can do the same parametrization
as in the univariate case� Put C � tz to obtain

zw � x��� x���� x�� � w���

and from here

�zn�C�z� w� �
�

n� �
�xn���

wn��

��� x�n����� x�� �w��n��
�

This expression is equivalent to the formula stated in part �i��

�



Graphs� Let $ be a graph and let r be the number of vertices in the component $�

containing v�� Then $ has to be completed with r additional graphs �some of them possibly
empty�� one to the right of every vertex of $�� Let G be the GF of graphs and C the GF of
connected graphs as above� then

G � � �C�zG�� ����

Taking into account that C satis�es ����� we can eliminate C and obtain �after cancelling a
factor G��

G� � ��z� � �z � ��G� �z � � � �� ����

This equation appears in ���� but in a slightly di�erent form since we are taking the constant
term of G to be �� Solving the quadratic yields

G�z� � �� �

�
z � z� � z

�

p
�� ��z � 
z�� ����

which is a recognizable variant of the GF of Schr oder numbers ����
Using this scheme we can easily enumerate graphs according to the number of edges� Let

w marks edges� and let C�z� w� be the bivariate GF for connected graphs� Then ���� becomes
G�z� w� � ��C�zG�z� w�� w�� because the number of edges in a graph is simply the sum of the
number of edges in its components� Eliminating C in ���� we arrive at

wG� � ��� � w�z� � �� � �w�z � �w�G� w � z�� � �w� � �� ����

This equation becomes amenable to Lagrange inversion� upon the change of variables G �
� � z � zy that transforms it into

y � z�� � w�

�
� � y

�� wy

�
�

Similarly� let now w mark components� Then ���� becomes G�z� w� � � � wC�zG�z� w���
where C�z� is the univariate GF for connected graphs� and the factor w takes into account the
component containing v�� Eliminating C in ���� we arrive at

G� � ��w�z� � �w�z �w � ��G� � ��w�z � �w � ��G� w � � � �� ����

The explicit expansion obeys principles similar to what has been done before� Set G � ��wy�
solve for z� and obtain the Lagrange form�

y � 
z�� � yw�
�
� �

p
�� �y

���
�

What is required now is an expansion of the negative powers of q�u� � � �
p
�� �u� A change

of variables similar to the one that underlies Lagrange inversion in Cauchy coe"cient integrals�
namely q�u� � 
� 
t� then shows that

�ua�
bq�u��b � �ta���� t��b��� �t��a����� 
t��

The rest of the computation is routine�

��



� Dissections and Partitions

A dissection of a convex polygon Pn � fv�� v�� � � � � vng is a partition of the polygon into polyg�
onal regions by means of non�crossing diagonals� that is� a non�crossing graph containing the
edges v�v�� v�v�� � � � � vnv�� A non�crossing partition of size n is a partition of �n� � f�� �� � � � � ng
such that if a � b � c � d and a block contains a and c� then no block contains b and d�
One can draw such a partition on a circle by representing each block as a convex polygon on
the points belonging to the block� Then non�crossing partitions are the same as non�crossing
graphs whose connected components are points� edges and cycles� �We do not consider here
triangulations as they have been investigated so extensively since Euler�s time� see ������

Theorem � �i� The number of dissections of size n is a Schr
oder number de�ned in ���� that
admits the alternative form�

Dn �
�

n

n��X
i��

����i
�
n

i

��
�n� �� i

n � �� i

�
�n���i�

The number of dissections of size n with k regions satis�es

Dn�k �
�

k

�
n� �

k � �

��
n� k � �

k � �

�
�

�ii� The number of �noncrossing� partitions of size n is a Catalan number�

Pn �
�

n � �

�
�n

n

�
�

and the number of partitions of size n with k parts is a Narayana number

Pn�k �
�

n

�
n

k

��
n

k � �

�
�

The results in the above theorem are all classical and can be found in many references� We
include them in order to show how the general methodology allows easy derivations� Kreweras
�rst discussed noncrossing partitions in ���� while results for dissections are summarized in ���
p� �
��

Dissections of a convex polygon� Let � be a dissection of Pn and let  be the region
containing the edge v�v�� If  has r�� sides� then � is identi�ed with a sequence of r dissections
�some of them possibly reduced to a single edge�� If we mark with z� the dissection consisting
of a single edge� then

D � z� �
D�

z
� � � �� Dr

zr��
� � � � ��
�

where the denominator zr�� means that r�� pairs of vertices have been identi�ed� Summation
and simpli�cation gives

�D� � z�� � z�D � z� � ��

Solving the quadratic equation yields again a GF that is a variant of the GF of Schr oder
numbers�

There is an alternative way to expand the GF� not to be found in Comtet�s book ���� Set
D � zy� Then y satis�es an equation similar to ��
��

y � z �
y�

�� y
or z � y

� � �y

�� y
�

��



This equation is of the Lagrange type and it can be subjected to inversion�

�zn�y�z� �
�

n
�un���

�
�� u

�� �u

�n

�

which gives the �rst relation of part �i�� This relation also reveals a combinatorial curiosity�
the quantity ncn � n�zn�y�z� equals the number of n�tuples of integer compositions with grand
total sum equal to n� ��

Let now z mark vertices and w mark regions� Then ��
� becomes

D � z� � w�D��z �D��z� � � � ���
where the factor w marks the region containing v�v�� This is equivalent to

�� � w�D� � z�� � z�D � z� � ��

Like before� we set y�z� w� � D�z� w��z and get

y � z � w
y�

�� y
� y � z

�
�� w

y

�� y

���
�

This is again an equation of the Lagrange type and inversion gives

�zn�y�z� w� �
�

n
�un���

�
�� w

u

�� u

��n
�

From there� the explicit form stated in part �i� results by extracting the coe"cient of wk� We
remark that Dn�k is also the number of plane trees of the Schr oder type� built on n�� external
nodes that have k internal nodes� each of degree � ��

Let us also remark that once we know how to enumerate dissections we can enumerate
general graphs� Indeed� a graph is the set of internal diagonals of a dissection plus any set of
boundary edges� As a consequence� the number of graphs of size n is Gn � �nDn� If the graph
has k edges� j of them are internal diagonals and k � j are boundary edges� Hence we obtain
Gn�k �

Pk
j��

�
n
j

�
Dn�j�� as an alternative to the formula stated in Theorem ��

Non�crossing partitions� Let � be any non�crossing partition and let r be the size of the
part �� containing vertex v�� Then � can be encoded as a sequence of r partitions �some of
them possibly empty�� one for every point in ��� If P is the GF of non�crossing partitions and
� denotes the empty partition� then

P �
�

�� zP
�

and of course we recover the GF for the Catalan numbers �see ������

zP � � P � � � ��

with the corresponding Lagrange form for y � zP that reads y � z��� y����
If z marks vertices and w marks parts� then

P � � � wzP � wz�P � � � � � � � �
wzP

�� zP
�

and we get
zP � � �wz � z � ��P � � � ��

��



With y � zP � this can be written as y � z�� � wy��� � y��� and Lagrange inversion gives the
classical Narayana numbers�

�znwk�P �z� w� �
�

n

�
n

k

��
n

k � �

�
�

that also enumerate general plane trees of size n� � that have k leaves�

� Asymptotic counting

In this section� we prove that each class of non�crossing con�gurations leads to an asymptotic
estimate of the form

fn � �
�np
�n���

� ����

where fn is the number of objects of size n� and �� � are context�dependent algebraic numbers�
Such estimates are for instance familiar in the theory of tree enumerations ��� ��� �
� ����

Roughly� each of the six counting generating functions is an algebraic function� as seen
in Sections ������ It is known that the singularities of GFs determine the asymptotics of
their coe"cients� Here� we a priori expect local singular expansions in the form of Puiseux
expansions� that is to say expansions involving fractional exponents� Generically� singularities
of the square�root type are expected� like in many implicitly de�ned functions ��� ���� All our
GFs appear to be of this type� with a local expansion near the dominant singularity  being

f�z� � c� � c�
p
�� z�� ����

Then singularity analysis ���� is used to achieve the transfer of ���� to coe"cients leading to
estimates of the form �����

Rather than examining each case separately� we develop here a common strategy that is
adequate for treating all classes discussed in previous sections �in one case� the argument needs
to be mildly amended� and is systematic to be amenable to treatment by a computer algebra
system� while paving the way for the distributional analyses of the next section�

Theorem � Consider the con�gurations of trees� forests� connected graphs� graphs� dissections�
and partitions� The corresponding counts each satisfy an asymptotic estimate of the form

fn � �
�np
�n���

�
� � O�

�

n
�

�
�

where �� � are algebraic numbers given in Table ��

The asymptotic counting of graphs was obtained by Domb and Barrett ��� using Darboux�s
method� the asymptotic form of Schr oder numbers is certainly known to many and is close to
the framework of simple families of trees introduced by Meir and Moon ��
�� The asymptotics of
trees and partitions can be directly obtained from explicit formul� and Stirling�s approximation�
The present approach is introduced because it has the merit of providing a global approach while
lending itself naturally to a perturbation analysis that leads to Gaussian laws�

Proof� The generating functions considered so far are algebraic functions� meaning that they
satisfy a system of polynomial equations� From classical elimination theory� any system can be
reduced to a single polynomial equation�

P �z� y� � �� P � Q�z� y�� ����

��



Class � Num� value �

�T � Trees
��



�������

p
�

��

�F � Forests
�

�
����
�� ����
��

�C� Connected graphs �
p
� ��������

p
�

�
�
p
�

�

�G� Graphs � � 

p
� ��������

�




q
��
� � ��

p
�

�D� Dissections � � �
p
� �����
�

�




q
��
� � ��

p
�

�P � Partitions 
 
������ �

Table �� The constants appearing in the statement of Theorem 
� There� � denotes the root
of the polynomial 
 � ��x � �x� � �x� that is near ������ and ����
�� represents the explicit
algebraic number of degree � equal to 	��� with 	 given in the text�

and reduction to such a form may be achieved systematically by either resultant or Groebner
basis elimination ����� Here� our combinatorial speci�cations being simple enough� elimination
is immediate� so that the form ���� is directly available from previous sections�

Consider a polynomial equation

P �z� y� 	
dX

j��

aj�z�y
j � �� ����

It has in general �that is� except for a �nite set of exceptional values� d distinct solutions that
are then analytic branches of a complex algebraic curve� see for instance the discussion of the
Weierstrass Preparation Theorem in ��� or �����

A �nite set % of candidate singularities can be determined systematically by a general process
explained below� The problem is then to determine which of the elements of % are dominant
singularities �that is� singularities of smallest modulus� of the branch that coincides with the
counting generating function under study and is thereby identi�ed by its expansion at �� In
all generality� such a determination implies solving a so�called connection problem between
branches ���� However� the problems under consideration are once more simple enough� so that
% can be ��ltered and reduced� in each case� to a single element by means of elementary
arguments� We �nd that each generating function f�z� has a unique dominant and positive
real singularity at some  � � near which it satis�es an expansion of the square�root type�

f�z� � c� � c���� z����� � c���� z�� � O���� z������� ����

Then� by Darboux�s method ��� ��� or singularity analysis ����� transfer from the singular
expansion ���� to coe"cients is permissible and

�zn�f�z� �
c�

$������
�np
n�

�
� �O�

�

n
�

�
� ����

a form that matches ���� with � � �� and � � �c����
The last phase of asymptotic transfer is a standard one� We thus concentrate on the prob�

lem of singularity localization and singular expansion and refer to the papers by Klarner and
Woodworth ���� as well as by Can�eld ��� for background�

�




A partial algorithm� The polynomial equation P �z� y� � � has in general d roots or
branches for a �xed value of z� When the leading coe"cient ad�z� vanishes� some of these
branches escape to in�nity and are thus potential singularities� Singularities may otherwise
only arise at points z such that the two equations

P �z� y� � ��
�

�y
P �z� y� � �

have a common root y� In this case� two branches meet and there is possibly a branch point�
Such places where branches meet are thus zeros of the resultant polynomial�

R�z� �� Resulty

�
P �z� y��

�

�y
P �z� y�

�
� ����

At all other points� there are d distinct branches that are each analytic by Weierstrass prepa�
ration� Then� a superset of the set of singularities is

% �
�
z
�� R�z� � ad�z� � �

�
� ����

The generating functions of noncrossing con�gurations all have a radius of convergence in
the interval ��� �� since their coe"cients satisfy combinatorial bounds of the formAn � fn � Bn�
for some A�B with � � A � B �
� Thus� one needs only consider

%� � % � �z �� jzj � �
�
�

which must contain at least one positive element � �Pringsheim�s theorem asserts that a
function with nonnegative coe"cients is singular at its radius of convergence ������ If %� has
cardinality �� a unique dominant singularity has been found� We thus assume the uniqueness
condition to be satis�ed�

In all cases under consideration� the function f�z� remains �nite at its singularity since
ad�� �� �� We set

� �� lim
z���

f�z��

so that � also equals the quantity c� in ����� The quantity � is a double root of P �� y� � �
and it has to be positive� It is thus a root of the resultant polynomial

S�y� �� Resultz

�
P �z� y��

�

�y
P �z� y�

�
� ����

�If these conditions are not su"cient� at least � could be isolated by carefully controlled nu�
merical analysis of f�z� for z � ��� ���

By the general theory of algebraic functions ����� a Puiseux expansion �an expansion into
fractional powers� that is� into powers of ��� z����r� holds locally at z � � for some integer
r � �� Such an expansion derives explicitly from the bivariate expansion of P �z� y� at �� � ��

P �z� y� � p�� � p��Z � p��Y � p��Z
� � p��ZY � p��Y

� � � � � � ��
�

�This situation covers 	ve out of our six cases
 The exception is the case of connected graphs where �� �n
����

p
��� ���

p
��
o
� but for which the parametrization ������ permits us to eliminate the negative value

from the set of candidate singularities by simply following the branch at the origin that corresponds to the
combinatorial GF
 Domb and Barrett ��� do not adress this issue explicitly
� Alternatively� one could appeal to
the powerful theorems of Drmota ���


��



pij ��
�

i# j#

�i�j

�zi�yj
P �z� y�

����
����	

� Z � z � � Y � y � ��

By assumption� p�� � p�� � �� Provided the condition�

p�� �� �� ����

holds� then the dependency between Y and Z is locally quadratic� and as z � �

f�z� � c� � c���� z����� � O���� z���� c� � �� c� � �
�
� p��
p��

����

����

�The minus sign in c� must be adopted here since the generating function increases with its
argument��

In summary� if the condition ���� is satis�ed� then the singular expansion ���� holds� and the
asymptotic forms of coe"cients ������� have been established� Condition ���� is itself satis�ed
generically and is easily checked numerically in each individual case� The coe"cients in the
expansions are then all explicitly computable algebraic numbers� �

The above programme has been carried out for all non�crossing con�gurations de�ned in
previous sections� Computations have been performed under the Maple system for symbolic
manipulations� together with the Gfun extension due to Salvy and Zimmermann ����� In par�
ticular� the Gfun package provides automatically Puiseux expansions of algebraic functions� a
great help here�

Here is an outline of the computation for the case of forests� where y�z� � T �z� is de�ned
by ����� There� some care is needed in selecting correct algebraic conjugates amongst various
possibilities� The basic GF equation is ����� The resultant polynomial R�z� de�ned in ���� is
found mechanically to be

R�z� � �z��
� ��z � �z� � �z���

whose roots are the four algebraic numbers�

% � f�� ��������� �������� ��
����g

�approximately�� Therefore� a unique dominant singularity of F �z� has been isolated�

%� � f� �
� �������� 
� ��� � ��� � ��� � �g�

The three branches of the cubic give rise at z �  to one branch that is analytic when z � ��
with value numerically close to �������� and two conjugate branches with value ����
�� at
z � � The expansion of the two conjugate branches starts as

� 	
p
�� z�� � � � � �

where

� �

�

��
�

��

��
� � ��

�

��

�
� ����
��� 	 �

�

��

p
���� ���� � ������

�
� ���
��� �

and the determination with the minus sign must be taken for the combinatorial GF� The
computation can be conveniently based upon Gfun�s ability to determine Puiseux expansions�
The data for our six families are summarized in Table ��

��



� Limit laws

The six basic combinatorial types of Sections ��� give rise to seven basic parameters for which
BGFs f�z� w� have been found to satisfy polynomial equations of the form

P �z� w� f�z� w� � ��

These equations� together with a few initial conditions provided by the combinatorics of the
problems� fully determine the BGFs� The problem of estimating the coe"cients

fn�k � �znuk�f�z� w�

is then a bivariate asymptotic problem�
The quantities

�n�k �
fn�k
fn

�

represent discrete probability distributions� Let �n and ��n be the mean and variance of such
a distribution �n�k� Classically� the distribution �n�k is said to be asymptotically normal �or
Gaussian� if� pointwise for each x � R�

lim
n��

X
k��n�x�n

�n�k �
�p
��

Z x

��
e�t

��� dt� ����

In other words� the distribution of the random variable Xn representing parameter � taken on
non�crossing con�gurations of size n� has a distribution function that� after normalization� tends
to the Gaussian distribution function� We establish now that our seven reference parameters
all have laws that are asymptotically normal� For background information on these analytic
techniques� we refer globally to ��� �� �� ��� and the exposition in ���� or ��
� Ch� ���

Theorem � Consider the following parameters� number of leaves in trees� components in
forests� edges in connected graphs� components in graphs� edges in graphs� regions in dissec�
tions� parts in partitions� The corresponding distributions over objects of size n each have
mean �n and variance ��n that satisfy

�n � �n� ��n � �n�

where �� � are algebraic numbers given in Table � The laws are in each case asymptotically
normal�

Proof� As seen in the proof of Theorem 
� each of the counting GF f�z� has a unique dominant
singularity  that is of the square�root type� see �������� This in turn entails� by singularity
analysis� that the various types of non�crossing con�gurations all obey an asymptotic formula
of the form �����

Consider a parameter � like the number of leaves� edges� components� etc� and let f�z� w�
be the corresponding bivariate GF� Our goal is to establish a lifted form of the singular expan�
sion �����

f�z� w� � c��w� � c��w�
p
�� z��w� �O��� z��w��� ����

��



Class� Parameter � �mean� � �variance�

Trees� leaves



�
��




��

�
�
�����

Forests� components
�

��
� ��

��
� �

��

�

�� �����

���

����
�

�

����
� � 
�

����
�� ���
�

Connected graphs� edges
�

�
�

p
�

�
�����

�



�����

Graphs� edges
�

�
�

p
�

�
�����

�



�

p
�

�
��
��

Graphs� components
�

�
� �

�

p
� �����

��

�
��
�

���


���

p
� �����

Dissections� parts

p
�

�
�����

p
�

�
�����

Partitions� parts
�

�
�����

�

�
�����

Table �� The constants appearing in the statement of Theorem �� There� � denotes the root
near ����� of the polynomial 
� ��z � �z� � �z��

uniformly with respect to w for w in a small neighbourhood of �� and with �w�� c��w�� c��w�
analytic at w � �� There� �w� is the dominant singularity �assumed to be unique� of f�z� w��
where w is treated as a parameter� If ���� is granted� then� by singularity analysis�

fn�w� �� �zn�f�z� w� � ��w�

�
�

�w�

�n�
� �O�

�

n���
�

�
� ����

for some analytic function ��w�� with an error term that is uniform with respect to w� Unifor�
mity is crucial and is granted in all generality by the constructive character of the singularity
analysis method� �See the discussion in ������

The probability generating function of � satis�es

qn�w� ��
fn�w�

fn
�

��w�

����

�
���

�w�

�n�
� � O�

�p
n
�

�
� �
��

This means that qn�w� is a so�called �quasi�power� In particular� the mean �n � q�n��� and
the variance ��n � q��n��� � q�n���� q�n���� result by di�erentiation of �
��� so that

� � �����
���

� � � ������
���

� ����
���

�

�
����
���

��

� �
��

Then� by extensions due to Bender� Richmond and Hwang of the central limit theorem� a
limiting Gaussian law for the distribution of � results from �
��� Basically� from the quasi�
powers form� the normalized characteristic functions �n�t� � e�it�n��nqn�eit��n � converge to

the characteristic function of a standard normal� namely e�t
���� The limit law then derives as

a consequence of the continuity theorem for characteristic functions�
At this stage� the proof of the theorem is completed as soon as one can establish the lifted

expansion ���� for each of the seven parameters under consideration� The proof relies on the

��



permanence of analytic relations under �perturbation by an auxiliary parameter� a property
that is technically granted by the Weierstrass preparation theorem�

Consider the lifted version of the resultant of �����

R�z� w� � Resulty

�
P �z� y� w��

�

�y
P �z� y� w�

�
� �
��

This is a polynomial whose restriction P �z� �� has� by the developments of the proof of The�
orem 
 and the companion computations� a unique isolated root at z � � By the implicit
function theorem and the Weierstrass preparation theorem ��� ���� this root lifts to a unique
root near  that is an analytic branch �w� of an algebraic function� for w in a small neigh�
bourhood of ��

R��w�� w� � �� ��� � �� �
��

Then� by Weierstrass preparation again� the analytic factorization

P �z� y� � �y� �m��z�y �m��z�� �H�z� y��

with H�� � � �� �� that corresponds to a square root singularity� lifts to

P �z� y� w� � �y� �m��z� w�y �m��z� w�� �H�z� y� w��

with H�� �� �� �� �� Then� the quadratic formula yields

f�z� w� �
�

�

�
�m��z� w��

p
m��z� w�� � 
m��z� w�

�
�

It then su"ces to expand f�z� w� near ��w�� w� in order to get the uniform family of singular
expansions ����� hence eventually� the Gaussian limit law�� �

Globally� the process discussed here is one of �singularity perturbation where one has to
establish that the singular expansion of a BGF has a smooth analytic behaviour when the
auxiliary parameter w varies in a small neighbourhood of �� Computationally� the process is
simple� The algebraic function �w� is determined by Eq� �
��� The regular expansion of the
branch that coincides with  at w � � provides the �rst two moments�

For instance� for edges in connected graphs� the algebraic equation is ����� The resultant
polynomial is found to be

R�z� w� � w�z�
�
��w�w � ���z� � ��w � ����w � ���w � ��z � w

�
�

The expansion of �w� at w � � is determined by the implicit function theorem� and its
coe"cients are simply rational functions of  as �w� is analytic� The computation is again
conveniently handled by the Gfun package of Maple�
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�
�w � ��� � O��w � �����

The result found is then best expressed under logarithmic�exponential form� where the mean
and variance coe"cients of �
�� read directly�

log
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This gives � � �
�
�
p
�
�

and � � �


� The data for the seven parameters under consideration are

all obtained in this way and summarized in Table ��

�In addition� by the Berry�Esseen inequalities ����� the speed of convergence to the Gaussian limit is On�����
uniformly


��
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Figure 
� Noncrossing connected graphs �top� left� a random instance of size ���� have a
combinatorial decomposition of the �cubic type� re!ected by cubic generating functions� The
counting generating function �bottom left� a ��dimensional plot of �C�z� for complex z� has
an algebraic branch point of the square�root type that induces an asymptotic count of type
�n�n����� The family of generating functions fC�z� w�gw where w records the number of edges
�bottom right� plot of C�z� w� for real z� when w varies in between ��� and ���� exhibit a
common square�root singularity that moves analytically with w� a fact that induces a limit law
of the Gaussian type for the number of edges �top right� histograms of the distribution for
n � � � � ��� with x�axis scaled to n��

��



� Conclusion

Symbolic methods in combinatorial enumerations lead in many cases to easy derivations of gen�
erating function equations� This observation applies with special strength here since planarity
constraints and the distinguishable character of vertices entail strong decomposition properties�
As a result� the generating functions are all algebraic� Singularity analysis and singularity per�
turbation methods then allow for a transparent treatment that is also computationally e�ective�
A graphical illustration of the chain is presented in Fig� 
�

It is clear that a large number of similar problems are amenable to this chain� Instances are
leaves in forests and isolated points or vertices in graphs for which Gaussian laws can be proved
to hold by the methods employed here� Trees whoses degrees are bounded by some �xed integer b
can be enumerated for each �xed b� their generating functions remain algebraic� and similarly
for ��regular and ��regular graphs� In all these cases� symbolic methods in conjunction with
complex asymptotics allow for a concise and uni�ed characterization of properties of random
structures� a distinctive feature of analytic combinatorics�
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