
UNIT�E DE RECHERCHE
INRIA-ROCQUENCOURT

Institut National
de Recherche

en Informatique
et en Automatique

Domaine de Voluceau
Rocquencourt

B.P. 105
78153 Le Chesnay Cedex

France
T�el.:(1)39 63 55 11

Rapports Techniques

N�143

Programme 2

Calcul symbolique, Programmation
et G�enie logiciel

GFUN: A MAPLE PACKAGE

FOR THE MANIPULATION OF

GENERATING AND

HOLONOMIC FUNCTIONS IN

ONE VARIABLE

Bruno SALVY
Paul ZIMMERMANN

Octobre 1992

Gfun: A Maple Package for the Manipulation of

Generating and Holonomic Functions in One Variable

Bruno Salvy Paul Zimmermann

Abstract

We describe the gfun package which contains functions for manipulating sequences,

linear recurrences or di�erential equations and generating functions of various types.

This document is intended both as an elementary introduction to the subject and as a

reference manual for the package.

Gfun: Un package Maple pour la manipulation de

fonctions g�en�eratrices et holonomes en une variable

R�esum�e

Nous d�ecrivons le package gfun qui contient des fonctions permettant de manipuler

des suites, des r�ecurrences ou des �equations di��erentielles lin�eaires ainsi que des fonctions

g�en�eratrices de types vari�es. Ce document est con�cu �a la fois comme une introduction

�el�ementaire au domaine et comme un manuel de r�ef�erence pour le package.

Gfun: A Maple Package for the Manipulation of

Generating and Holonomic Functions in One Variable

Bruno Salvy
Bruno.Salvy@inria.fr

Paul Zimmermann
Paul.Zimmermann@inria.fr

Algorithms Project,

INRIA,

78153 Le Chesnay Cedex,
France.

Abstract

We describe the gfun package which contains functions for manipulating sequences, linear
recurrences or di�erential equations and generating functions of various types. This document
is intended both as an elementary introduction to the subject and as a reference manual for the
package.

Introduction

Generating functions are a very important tool for the study of sequences. Given a sequence ffng,
one classically de�nes (among others) two generating functions f(z) and f̂ (z) by the following
formul�:

f(z) =
X
n�0

fnz
n; f̂ (z) =

X
n�0

fn
zn

n!
:

The �rst one is called the ordinary generating function of the sequence ffng, while the second
one is its exponential generating function. Thus the sequence consisting of ones has exp(z) as its
exponential generating function (e.g.f.) and 1=(1�z) as its ordinary generating function (o.g.f.).
When viewed as an e.g.f, the function 1=(1�z) corresponds to fn!g. Other elementary generating
functions include 1=(1� z)2 for f1; 2; 3; : : :g, or 1=(1� z � z2) for the Fibonacci sequence. Nice
examples can be found in many references, see for instance [7].

Many properties of a sequence are re
ected by analytical properties of its generating func-
tion. In particular, asymptotic properties of a sequence are usually more directly computable
from its generating function. Besides, the generating function is often more compact than the
\closed form" of the sequence, and generating functions are available even when no such closed
form exists. Another nice feature of these functions is that there is an obvious correspon-
dence (morphism) between operations performed on the sequences and operations performed on
the generating functions. An elementary introduction to this can be found in [11, 21].

The package gfun has been designed as an help for the manipulation and discovery of
generating functions. Given the �rst terms of the sequence, the package contains functions
that will help conjecture what the generating function is. In some cases, this answer will be
\explicit". In most cases though, such an explicit expression will not exist, and the answer will
be an equation (either di�erential or algebraic) satis�ed by the generating function. The gfun

1

package also provides tools to compute with generating functions de�ned by equations. For
instance, given two generating functions de�ned by linear di�erential equations with polynomial
coe�cients, there is a procedure to compute the di�erential equation satis�ed by their product.

In the following sections we shall review the functions of the package, giving an idea of what
they may be used for, and a short description of the algorithm being used. In Section 1 we
review the procedures that can be used to discover a generating function. Section 2 describes
the procedures related to the manipulation of linear di�erential or recurrence equations as well
as algebraic equations. Finally Section 3 contains an overview of the package from the Maple
point of view.

1 Guessing the generating function

From the �rst terms of a sequence, it is very tempting to try guessing the next ones. Many
so-called intelligence tests include such an exercise. Of course, from the mathematical point
of view no unique solution exists to such a question, unless extra constraints are added. For
instance, Bergeron and Plou�e [1] have studied the problem of trying to get a rational generating
function, or a function whose logarithmic derivative is rational, and several variations of these.
The idea is that although nothing general can be found, it is very useful to �nd empirically
some generating function which can be the basis of a conjecture. In most cases, the generating
function which is found by gfun is the right one. For instance, among the approximately 4500
sequences contained in the next edition of Sloane's book [16], about 22% of the generating
functions can be found automatically without error.

From the algorithmic point of view, the procedures in this part of the gfun package are very
simple: they form the speci�ed generating series from the given �rst terms of the sequence, they
form a candidate equation for it and apply an indeterminate coe�cient method, which reduces
to Gaussian elimination.

Several types of generating functions are of interest. Apart from the ordinary and expo-
nential generating functions that have already been mentioned, the package also considers their
logarithmic derivatives (lgdogf and lgdegf) as well as their compositional inverses (revogf and
revegf). For instance, the procedure listtoratpoly, which looks for a rational generating func-
tion, takes as its last argument a list of types of generating functions to consider. Besides the
prede�ned types (ogf, egf, lgdogf, lgdegf, revogf, revegf), new types can be created by the user
and then be used like the prede�ned ones. For more information about this, see ?listtolist

once the package has been loaded under Maple.

listtoseries Given a list of terms (numbers or polynomials or any algebraic expressions), the
simplest operation is to build the series one wishes to study. This is performed by the procedure
listtoseries. For instance,

> S1:=listtoseries([1,2*t,3*t^2,4*t^3,5*t^4],z,revogf);

2 2 3 3 4 4 5 6

S1 := z - 2 t z + 5 t z - 14 t z + 42 t z + O(z)

constructs the compositional inverse of the following formal power series
> listtoseries([0,1,2*t,3*t^2,4*t^3,5*t^4],z,ogf);

2 2 3 3 4 4 5 6

z + 2 t z + 3 t z + 4 t z + 5 t z + O(z)

The convention with the revogf and revegf options is that the list starts with the index 1, so
that the series is invertible.

2

seriestolist is the reciprocal of the operation above: its input is a series and a type of
generating function, it performs the same conversion as above but returns the output as a list.

While these two operations are useful from the computational point of view, they do not
perform any mathematical operation. Thanks to them however, the procedures described from
now on come in twins, one of them acting on a list and the other one on a series.

listtoratpoly and seriestoratpoly These functions are an interface to Maple's con-
vert/ratpoly function which computes Pad�e approximants. Given the �rst terms of a list (or the
initial part of a series) they compute a rational generating function. This function is output as
a result when the sum of the degrees of its numerator and denominator is less than the number
of terms given in the input. Nothing is output otherwise. This heuristically insures that the
generating function which is found is not an accident.

Example: This is the Fibonacci sequence:
> listtoratpoly([1,1,2,3,5,8,13],z);

1

[- ------------, ogf]

2

- 1 + z + z

Example: The \probl�eme des rencontres" (see [7, pp. 180{183]) consists in studying the number
of permutations of size n with no �x points. From the table [7, p. 182], we get the 13 �rst values,
and our program does the rest:
> listtoratpoly([1,0,1,2,9,44,265,1854,14833,133496,1334961,14684570,176214841],

> t,[ogf,egf,lgdogf,lgdegf]);

t

[- -------, lgdegf]

- 1 + t

> expand(exp(int(op(1,"),t=0..z)));

1

exp(z) (1 - z)

This is precisely the generating function in [7, p. 182, Theorem B]. The problem of enumerating
clouds [7, pp. 273{277] falls into the same class, with a less trivial rational function.

listtodi�eq and seriestodi�eq The rational generating functions treated by the proce-
dures above can be viewed as solutions of linear di�erential equations of order 0 with polynomial
coe�cients (the numerator and denominator). We now turn to the more general problem of �nd-
ing a linear di�erential equation with polynomial coe�cients satis�ed by the generating function.
Several parameters can be used to modify the order of the equation and the degree of the coef-
�cients one is looking for. By default, these procedures look for an equation of order less than
3 with coe�cients of degree less or equal to 3.

Example: Numerators of convergents to e. It is known since Euler that the continued fraction
expansion of e is very simple, the elements being 2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8,: : :By reducing
the fractions obtained by truncating this expansion, one gets convergents to e. Doing this only
at elements of index 3k + 1 yields

3;
19

7
;
193

71
;
2721

1001
;
49171

18089
;
1084483

398959
;
28245729

10391023
;
848456353

312129649
;
28875761731

10622799089
; : : :

We input the sequence of numerators of this to listtodi�eq:

3

> listtodiffeq([3,19,193,2721,49171,1084483,28245729,848456353,28875761731],y(z));

[

/ 2 \

/ d \ | d |

{D(y)(0) = 19, y(0) = 3, 1/4 y(z) + 5/2 |---- y(z)| + (- 1/4 + z) |----- y(z)|}

\ dz / | 2 |

\ dz /

, egf]

In Maple V, this equation cannot be solved directly with dsolve, but with a little help, Maple
�nds:

y(z) =

p
e1�

p
1�4z

1� 4z

�
1 +

2p
1� 4z

�
: (1)

As in the case of rational functions, extra care is taken so that the equation is over-constrained
by the given terms of the list or series. In other words, the last few terms are not taken into
account for the computation of the di�erential equation and are used at the end to check that
the equation is \really" satis�ed by the series.

listtorec and seriestorec It is well known that power series solutions of a linear di�erential
equation with polynomial coe�cients (the class of di�erential equations found by listtodi�eq
and seriestodi�eq) are precisely those power series whose coe�cients satisfy a linear recurrence
with polynomial coe�cients. The procedures listtorec and seriestorec search for this recurrence
directly.

Example: We take the same sequence as above
> listtorec([3,19,193,2721,49171,1084483,28245729,848456353,28875761731],u(n));

[{- u(n) + (- 6 - 4 n) u(n + 1) + u(n + 2), u(2) = 19, u(1) = 3}, ogf]

listtoalgeq and seriestoalgeq Algebraic generating functions are a very important special
case of the solutions of linear di�erential equations. While procedures exist to �nd an algebraic
solution of a linear di�erential equation [19], these have never been incorporated in computer
algebra systems for an order larger than 2. It is thus very important to have a tool that will
look for the minimal polynomial directly.

Example: Convex polyominoes of perimeter 2n. It has been shown by M. Delest and X. Vi-
ennot [8] that the number of such polyominoes has an algebraic generating function of de-
gree 2 (with large degree coe�cients). To �nd out the minimal polynomial without their article,
one can enumerate the number of such polyominoes for n = 0; : : : ; 34 (with a program) and use
gfun:
> l:=[0,0,1,2,7,28,120,528,2344,10416,46160,203680,894312,3907056,16986352,

73512288,316786960,1359763168,5815457184,24788842304,105340982248,446389242480,

1886695382192,7955156287456,33468262290096,140516110684832,588832418973280,

2463133441338048,10286493304041104,42892130604098656,178592047539343200,

742609229473744320,3083957343567791392,12792021060576424896,53000868925259947840]:

> gfun['maxdegcoeff']:=20: gfun['maxdegeqn']:=2:

> listtoalgeq(l,y(x));

4 5 6 7 8 9 10

[x - 12 x + 58 x - 140 x + 153 x - 24 x + 16 x

2 3 4 5 6 7

+ (- 2 x + 28 x - 150 x + 376 x - 416 x + 128 x) y(x)

4

2 3 4 2

+ (1 - 16 x + 96 x - 256 x + 256 x) y(x) , ogf]

This type of method is used in real life by physicists, see e.g., [12] and by combinatorists [23].
Apart from their intrinsic interest, these formul� enable one to compute as many terms of the
sequences as desired (see below), or to derive easily asymptotic expansions for the nth term.

listtohypergeom and seriestohypergeom Hypergeometric sequences are those se-
quences such that the ratio of two successive terms is a �xed rational function of the index.
Of special interest are the 2F1 hypergeometric functions, special cases of which are the expo-
nential function, log(1 + x), (1 + x)a. The procedures listtohypergeom and seriestohypergeom
look for a 2F1 by indeterminate coe�cients, and then call Maple's hypergeom procedure which
sometimes simpli�es the result.

Example: The sequence
�2n+12

n

�
:

> listtohypergeom([1,14,120,816,4845,26334],z);

4096

[---------------------------------, ogf]

1/2 1/2 12

(1 - 4 z) (1 + (1 - 4 z))

guessgf This function is the top-level routine for the cases when one has no intuition about
the type of generating function to look for. It will �rst look for a rational function then a 2F1,
then an algebraic generating function and then a linear di�erential equation. Then it tries to
solve the equation and returns a result only when Maple can �nd a solution. Since it tries all the
possible types of generating functions, it is very time consuming and should be used only when
one does not have any hint as to what the generating function can be. We give two examples
which also demonstrate that the procedures above can handle sequences of polynomials.

Example: Hermite polynomials.
> alias(H=orthopoly[H]):

> l:=[seq(H(n,t),n=0..10)]:

> guessgf(l,z);

[y(z) = exp(z (- z + 2 t)), egf]

Example: Jacobi polynomials.
> l:=[seq(orthopoly[P](n,t),n=0..10)]:

> guessgf(l,z);

1

[y(z) = ---------------------, ogf]

2 1/2

(1 - 2 t z + z)

2 Manipulation of holonomic functions

A function of one variable is said to be holonomic (or D-�nite) when it satis�es an ordinary
linear di�erential equation with polynomial coe�cients (we will say here a holonomic equation).
Similarly, a sequence is called holonomic (or P-recursive) when it satis�es a linear recurrence
with polynomial coe�cients (a holonomic recurrence).

It can be shown that the generating function (either ordinary or exponential) of a holonomic
sequence is holonomic and that reciprocally the sequence of Taylor coe�cients of a holonomic

5

function is holonomic [17]. This correspondence is implemented in the procedures di�eqtorec
and rectodi�eq:

di�eqtorec This procedure translates a holonomic equation ck(z)y(k)(z)+ � � �+ c1(z)y0(z)+
c0(z)y(z) + b(z) = 0 for the function y(z) into a holonomic recurrence for the coe�cients un of

its Taylor series. The algorithm consists in translating each zky(j)(z) into (n�k+j)!
(n�k)! un+j�k, the

inhomogeneous terms yielding the initial conditions of the recurrence.

Example: The following di�erential equation came up in a \real" problem in the news-
group sci.math:
> eq := (335*t^2+1290)*diff(f(t),t,t)+1540*t*diff(f(t),t)+468720*f(t)=544;

/ 2 \

2 | d | / d \

eq := (335 t + 1290) |----- f(t)| + 1540 t |---- f(t)| + 468720 f(t) = 544

| 2 | \ dt /

\ dt /

This falls into our class of ordinary linear di�erential equations with polynomial coe�cients.
Using di�eqtorec, we convert it into a holonomic recurrence:
> diffeqtorec(eq,f(t),u(n));

2 2

{(- 241 n - 67 n - 93744) u(n) + (- 516 - 258 n - 774 n) u(n + 2),

7812 136

u(2) = - ---- u(0) + ---, u(1) = D(f)(0)}

43 645

Therefore the Taylor coe�cients un of f satisfy the recurrence

un+2 = �
�
241n+ 67n2 + 93744

�
516 + 258n2 + 774n

un for n � 1;

and thus the even and odd parts of f , (f(t) + f(�t))=2 and (f(t) � f(�t))=2, are hypergeo-
metric. Since a particular solution of the inhomogeneous equation is 34=29295, this gives a full
description of the sought solution.

rectodi�eq This procedure is the inverse of the procedure di�eqtorec: given a holonomic
recurrence ap(n)un+p + � � �+ a1(n)un+1 + a0(n)un + bn = 0, it computes a holonomic equation
satis�ed by its o.g.f. y(z). This is done by translating each nkun+i into �k[y(z)z�i] where
� = z d

dz
and recovering the initial conditions from the inhomogeneous terms.

Example: The sequence of general term uk = 1=(k2 + 1) is holonomic because it satis�es
the inhomogeneous recurrence (k2 + 1)uk = 1, or the homogeneous recurrence (k2 + 1)uk =
(k2 + 2k + 2)uk+1. The corresponding di�erential equation is
> rectodiffeq((k^2+1)*u(k)=1,u(k),y(z));

/ 2 \

2 / d \ 2 3 | d |

(z - z) |---- y(z)| + (z - z) |----- y(z)| + (1 - z) y(z) - 1

\ dz / | 2 |

\ dz /

6

2.1 Building up equations

The class of holonomic functions and sequences enjoys nice closure properties. In particular we
have the following theorem.
Theorem 1 (Closure) [6, 13, 17, 22]
(a) algebraic functions are holonomic;
(b) the sum of two holonomic functions is holonomic;
(c) the Cauchy product of two holonomic functions is holonomic (convolution of the sequences);
(d) the Hadamard product of two holonomic functions is holonomic (term-wise product of the
sequences);
(e) if f is holonomic and g is algebraic, then f � g is holonomic;
(f) the class of holonomic functions is closed under di�erentiation, integration, direct and inverse
Laplace-Borel transform.
Most of these closure properties are implemented in the gfun package. We now give a review of
these, in the same order as the properties presented in the theorem. The algorithms described
in this section can be found between the lines in [17] or [22].

algfuntodi�eq [Property (a)] Given an irreducible polynomial P in two variables, this pro-
cedure computes a holonomic equation satis�ed by any function y(z) solution of P (z; y(z)) = 0.
The algorithm used by gfun was pointed out by Comtet [6], it can also be found in [4, pp. 276{
278]:

(�) Di�erentiating P (z; y(z)) with respect to z yields y0(z) = A(y; z)=B(y; z), with A and B
two polynomials.

(�) Since P and B are relatively prime (P is irreducible), the extended gcd algorithm yields
three polynomials u(y; z), v(y; z) and g(z) such that uB+vP = g. From this we de�ne C =
Au mod P and deduce

y0(z) =
C(y; z)

g(z)
: (2)

(
) Di�erentiating repetitively equation (2) and reducing the right-hand side by means of (2)
to suppress y0 and modulo P to eliminate large powers of y, we obtain after a number of
steps bounded by degy(P) su�ciently many linear equations to eliminate the powers of y
by Gaussian elimination. This yields the desired equation.

Note: if P is not irreducible, a recursive splitting can be used as is now usual in computer
algebra [9], and algfuntodi�eq applied to each factor. After making the resulting di�erential
equations homogeneous, the procedure di�eq+di�eq (see below) gives a holonomic equation for
the roots of P (z; y(z)) = 0.

Example: Motzkin numbers. These numbers count the number of unary-binary trees of size n.
Their generating function satis�es y = 1 + zy + z2y2 and is analytic at zero, so that M (z) =
(1� z�p1� 2z � 3z2)=(2z2). This expression translates into the following explicit formula for
the nth Motzkin number:

Mn = �1

2

n+2X
k=dn+2

2
e
(�1)k

�
1=2

k

��
k

n+ 2� k

�
22k�n�23n+2�k: (3)

The generating function of Motzkin numbers also satis�es the following di�erential equation
> algfuntodiffeq(y=1+z*y+z^2*y^2,y(z));

3 2 / d \ 2

(3 z + 2 z - z) |---- y(z)| + (3 z + 3 z - 2) y(z) + 2

\ dz /

7

This holonomic equation enables one, using the procedures di�eqtorec and rectoproc (see below)
to compute e�ciently the nth Motzkin number. In fact, the fastest known method to compute
coe�cients of an algebraic function [4, 5] is to use successively algfuntodi�eq, di�eqtorec and
rectoproc.

di�eq+di�eq and rec+rec [Property (b)] The procedure di�eq+di�eq, given two holo-
nomic equations L1(f; f 0; : : : ; f (d1)) = 0 and L2(g; g0; : : : ; g(d2)) = 0, returns a holonomic equa-
tion satis�ed by the sum h = f + g, using the following algorithm:

(�) Di�erentiate repetitively both sides of the equation h = f+g, reducing derivatives of order
d1 of f and d2 of g according to L1 and L2.

(�) After d1+d2+1 equations have been found, Gaussian elimination yields a linear dependency
between h; h0; : : : ; h(d1+d2).

The procedure rec+rec is the companion of di�eq+di�eq for recurrences.

di�eq*di�eq and cauchyproduct [Property (c)] These procedures are similar to dif-
feq+di�eq and rec+rec except that they compute the product of two holonomic functions, that
is the Cauchy product (convolution) of two sequences. The algorithm starts from h = fg,
then computes d1d2+1 equations and Gaussian elimination yields a linear dependency between
h; h0; : : : ; h(d1d2).

Example: The functions f = 1=
p
1� z and g = cos(z) are holonomic because f is algebraic,

thus holonomic, and g00 + g = 0. Thus the function 1=(1 � z) + cos(z)=
p
1� z = f(f + g) is

holonomic by closure under sum and product:
> eq_f := algfuntodiffeq(y^2*(1-z)=1,y(z)): eq_g := diff(y(z),z,z)+y(z):

> `diffeq*diffeq`(eq_f,`diffeq+diffeq`(eq_f,eq_g,y(z)),y(z));

4 3 2

(16 z - 64 z + 136 z - 144 z + 53) y(z)

5 4 3 2

+ (16 z - 80 z + 168 z - 184 z + 125 z - 45) D(y)(z)

4 3 2 (2)

+ (32 z - 128 z + 240 z - 224 z + 80) D (y)(z)

5 4 3 2 (3)

+ (16 z - 80 z + 172 z - 196 z + 116 z - 28) D (y)(z)

Example: To prove that sin2+cos2 = 1, it is su�cient to compute the di�erential equation of
order 3 satis�ed by the left-hand side, f 000 + 4f 0 = 0, check the �rst three Taylor coe�cients,
and then use an argument of analytic continuation.

hadamardproduct and rec*rec [Property (d)] Given two holonomic equations de�ning
respectively f and g, the procedure hadamardproduct computes the Hadamard product of f
and g, that is the o.g.f. of fngn. The algorithm used by gfun is:

(�) Using di�eqtorec, convert the equations into two linear recurrences L1(fn; : : : ; fn+p) = 0
and L2(gn; : : : ; gn+q) = 0.

(�) De�ne hn = fngn.

(
) Shift repetitively this equation (n 7! n+ 1), reducing fn+p and gn+q according to L1 and
L2.

(�) Once pq + 1 equations have been built, Gaussian elimination yields a linear dependency
between hn; hn+1; : : : ; hn+pq.

8

(�) Using rectodi�eq, convert back this recurrence into a holonomic equation for the function
h(z) =

P
hnz

n.

The procedure rec*rec is the companion for recurrences: it returns a recurrence for the sequence
fngn, following steps (�) to (�).

Example: Squares of Catalan numbers. Knowing that the generating function of Catalan
numbers is solution of y(x) = 1 + xy2(x), we deduce a holonomic equation for the generating
function of squares of Catalan numbers:
> deq := algfuntodiffeq(y = 1 + x*y^2, y(x)):

> hadamardproduct(deq,deq,y(x));

/ 2 \

2 / d \ 3 2 | d |

(- 32 x + 3 x) |---- y(x)| + (- 16 x + x) |----- y(x)| + (1 - 4 x) y(x)

\ dx / | 2 |

\ dx /

- y(0)

algebraicsubs [Property (e)] Given a holonomic equation L(f; : : : ; f (d1)) = 0 and a square-
free polynomial equation P (z; g) = 0 with degg(P) = d2, this procedure derives a holonomic
equation for h = f � g. The algorithm is as follows:

(�) Use steps (�) and (�) of algfuntodi�eq to deduce from P (z; g) an expression for g0

g0 =
A(z; g)

B(z)
(4)

where A;B are polynomials and degg(A) < d2.

(�) Rewrite L(f; : : : ; f (d1)) = 0 as

f (d1)(z) = C(z; f(z); f 0(z); : : : ; f (d1�1)(z)) (5)

where C is rational in z and linear with respect to the other variables. Replace in (5) z
by g(z), and like in step (�) of algfuntodi�eq eliminate g from the denominator. We then
obtain

f (d1) � g(z) = D(z; g(z); f � g(z); f 0 � g(z); : : : ; f (d1�1) � g(z)) (6)

where D is rational in z, polynomial of degree less than d2 in the second variable, and
linear with respect to the other variables. Now we are ready for the main loop of the
algorithm:

(
) De�ne h = f(g(z)).

(�) Di�erentiate repetitively with respect to z and reduce according to equations (4) and (6)
as well as modulo P . The remaining terms are of the form

Ri;j(z)g
i(z)f (j)(g(z))

with Ri;j(z) a rational function, 0 � i < d2 and 0 � j < d1.

(�) After d1d2 + 1 iterations, Gaussian elimination yields the desired equation.

Example: Given an explicit holonomic function, it is often useful to �nd a di�erential equation
it satis�es. From this one can then deduce a recurrence for its Taylor coe�cients which enable
a computation of a Taylor series of order n in O(dn) operations, where d is the order of the

9

recurrence. For example, consider the exponential generating function of the numerators of
convergents to e, given in (1):

y(z) =

p
e1�

p
1�4z

1� 4z

�
1 +

2p
1� 4z

�
:

We �rst write y(z) = f(g(z)) where f(z) =
p
e1�z(1+2=z)=z2 and g(z) =

p
1� 4z. The function

f is holonomic because z(z+2)f 0 = �(z2=2+3z+6)f , and g is algebraic (g2(z) = 1�4z), thus
y is holonomic and satis�es
> eq_f:=z*(z+2)*diff(y(z),z)+(z^2/2+3*z+6)*y(z): eq_g:=y(z)^2-(1-4*z):

> algebraicsubs(eq_f, eq_g, y(z));

(2)

y(z) + 10 D(y)(z) + (- 1 + 4 z) D (y)(z)

From this one can deduce a recurrence with di�eqtorec and then using rectoproc (see below)
compute very e�ciently the numerators of the convergents to e. Since the denominators obey a
similar recurrence, this gives a way to generate quickly the nth convergent to e, within a little
amount of memory.

borel and invborel [Property (f)] Given a recurrence for a holonomic sequence fang, these
procedures compute a recurrence for the sequences fan=n!g and fn!ang respectively. Thus the

Borel transform of an o.g.f. f is the associated e.g.f. f̂ , and the inverse Borel transform of f̂ is
f , which is given formally by

f(z) =

Z 1

0

f̂(tz)e�t dt: (7)

By giving an extra parameter to these functions, they work directly on the di�erential equations.

Example: Resummation. Formal power series solutions of linear di�erential equations at an
irregular point are generally divergent [20]. However, by means of Borel transform and then its
inverse transform under integral form, one can get correct numerical values from these divergent
series (the litterature on this subject is abundant, more precise and general statements can be
found in [2, 3, 14, 15, 18]). Of particular interest are the singularities of the Borel transform
which are intimately related to the Stokes phenomenon. This corresponds to taking di�erent
paths of integration in (7) so as to avoid singularities. These singularities can be obtained
explicitly as the roots of the higher order coe�cient of the di�erential equation satis�ed by the
Borel transform. We give the celebrated example of Euler's equation
> eq := {z^2*diff(y(z),z)+y(z)=z, (D(y))(0)=1};

/ \

2 | d |

eq := {D(y)(0) = 1, z |---- y(z)| + y(z) = z}

| |

\ dz /

The power series solution to this equation can be found by di�eqtorec and solving the result-
ing equation: it is the divergent series

P
(�1)nn!zn+1. This prevents direct computation of

say y(0:1). We compute the Borel transform of eq:
> eq2:=borel(eq,y(z),Y,'diffeq');

/ d \

eq2 := {D(Y)(0) = 1, Y(0) = 0, z (z + 1) |---- Y(z)| - z}

\ dz /

From this we deduce that the only singularity of the Borel transform is at �1. Besides, we
do not need numerical integration to compute ŷ = Y in (7) because fortunately this equation
admits a very simple liouvillian solution:

10

> dsolve(eq2,Y(z));

Y(z) = ln(z + 1)

We thus get a convergent integral representation for the solution:
> res:=Int(exp(-t)*ln(z*t+1),t=0..infinity);

infinity

/

|

res := | exp(- t) ln(1 + z t) dt

|

/

0

And we can easily compute y(z) at a speci�ed z. This is y(0:1):
> evalf(subs(z=0.1,res));

.09156333394

As a check, the method of summation to the least term yields in this case 0:0915637760, whose
�rst 6 digits are correct.

2.2 Useful tools

rectoproc Given a holonomic recurrence, rectoproc returns a Maple procedure that com-
putes the nth term of the sequence. The initial terms of the sequence, if provided, are stored in
the remember table of the procedure; the other terms are computed one by one, according to
the recurrence, and using the memo-mechanism (option remember) provided by Maple.

Example: Motzkin numbers. Using algfuntodi�eq, we obtained (page 7) a holonomic equation
for the o.g.f.M (z) of Motzkin numbers. Now we �rst translate this di�erential equation into a
recurrence
> rec := diffeqtorec((3*z^3+2*z^2-z)*D(y)(z)+(3*z^2+3*z-2)*y(z)+2, y(z), M(n));

{M(0) = 1, M(1) = 1, (3 n - 3) M(n - 2) + (2 n + 1) M(n - 1) + (- n - 2) M(n)}

which we convert into a procedure to compute the nth Motzkin number Mn

> Motzkin := rectoproc(rec, M(n));

proc(n)

options remember;

if not type(n,nonnegint) then ERROR(`invalid arguments`) fi;

((3*n-3)*procname(n-2)+(2*n+1)*procname(n-1))/(n+2)

end

Now the Maple procedure Motzkin enables one to get as many terms of the sequence as we
want
> Motzkin(100);

737415571391164350797051905752637361193303669

The above computation took only 0:2 second on a DecStation 5000, compared to 8:6 seconds
using the formula (3). In general, for a recurrence of order k, the procedure rectoproc makes
O(kn) operations to compute the nth term of the sequence (or all terms up to the nth). As
already mentioned, this is usually the fastest way to compute coe�cients of algebraic functions.
More generally, when faced with a sequence, it is very important to check whether it may be
holonomic, because this allows for a very fast computation of the elements of the sequence.
Another nice example is the rencontres problem [7, p. 180-183] already mentioned.

ratpolytocoe� Given a rational function, this procedure computes an explicit value of
the nth Taylor coe�cient. The algorithm consists in computing a partial fraction decompo-
sition and then translating it term by term. It is equivalent to solving the linear recurrence with
constant coe�cients by the characteristic polynomial.

11

Example: The Fibonacci sequence. We start from the generating function obtained by list-
toratpoly.
> ratpolytocoeff(1/(1-z-z^2),z,n);

(- 1 - n) (- 1 - n)

(- 1 - %1) %1

- ------------------- + -----------

2 %1 + 1 2 %1 + 1

2

%1 := RootOf(- 1 + _Z + _Z)

This is to be read

Fn =
��n�1 � (�1� �)�n�1

2�+ 1
;

where � is any of the roots of z2+ z� 1 (the golden ratio and its algebraic conjugate). A future
version of this program will completely avoid unnecessary factorizations and thus work over the
mimimal algebraic extension [10].

3 Installation and customization

As usual in Maple, the package gfun comes in two �les: gfun and gfun.test. These are
available by anonymous ftp from ftp.inria.fr or by email from the authors. From the �le
gfun, one should �rst create a �le gfun.m by typing (under Unix)

maple -s < gfun

To use the package, the globalMaple variable liblist (MapleV.2 does not need this) should
be set in such a way that the package is located in a visible place. See ?with under Maple
for more details. Once liblist has been properly set, the package is loaded by the command
with(gfun). Then help on-line for the package is also loaded and can be accessed by ?gfun. If
you intend to use this package a lot, it might be desirable to set liblist and to load gfun in
your .mapleinit �le (under Unix).

The behavior of the functions in the package is controlled by their arguments and by several
global variables. Most notably (see also ?gfun,parameters),

{ gfun['maxordereqn'] and gfun['minordereqn']maximumand minimumorder of linear
recurrence equation or linear di�erential equation which is tried in the functions seriesto: : :
and listto: : : ;

{ gfun['maxdegeqn'] and gfun['mindegeqn']maximum and minimum degree of an alge-
braic equation for the functions listtoalgeq and seriestoalgeq;

{ gfun['maxdegcoeff'] and gfun['mindegcoeff']maximum and minimumdegree of the
coe�cients in the l.d.e., l.r.e. and algebraic equations for the functions seriesto: : : and
listto: : : ;

{ gfun['optionsgf'] a list of types of generating functions to try in the functions listto: : :
and seriesto: : : .

It is also possible to get details of the computations taking place by setting infolevel[gfun]
to anything between 0 and 5 (increasing it gives more information).

Acknowledgements

This program started partly from discussions with F. Bergeron and S. Plou�e, and bene�ted
from their constant but kind urge to add new functionalities.

12

This work was supported in part by the ESPRIT III Basic Research Action Programme of
the E.C. under contract ALCOM II (#7141).

References

[1] Bergeron, F., and Plouffe, S. Computing the generating function of a series given its
�rst terms. Journal of experimental mathematics (1992).

[2] Borel, �E. Le�cons sur les s�eries divergentes. In Collection de monographies sur la th�eorie
des fonctions, publi�ee sous la direction de M. �Emile Borel. Gauthiers-Villars, Paris, 1901.
Second edition, 1928. Reprinted by J. Gabay, 1988.

[3] Candelpergher, B. Une introduction �a la r�esurgence. Gazette des Math�ematiciens 42
(Oct. 1989), 36{64.

[4] Chudnovsky, D. V., and Chudnovsky, G. V. On expansion of algebraic functions in
power and Puiseux series, I. Journal of Complexity 2 (1986), 271{294.

[5] Chudnovsky, D. V., and Chudnovsky, G. V. On expansion of algebraic functions in
power and Puiseux series, II. Journal of Complexity 3 (1987), 1{25.

[6] Comtet, L. Calcul pratique des coe�cients de Taylor d'une fonction alg�ebrique.
L'Enseignement Math�ematique 10 (1964), 267{270.

[7] Comtet, L. Advanced Combinatorics. Reidel, Dordrecht, 1974.

[8] Delest, M.-P., and Viennot, G. Algebraic languages and polyominoes enumeration.
Theoretical Computer Science 34 (1984), 169{206.

[9] Duval, D. Diverses questions relatives au calcul formel avec des nombres alg�ebriques.
Doctorat d'�Etat, Universit�e scienti�que, technologique et m�edicale de Grenoble, 1987.

[10] Gourdon, X., and Salvy, B. Asymptotics of linear recurrences with rational coe�cients.
Tech. rep., INRIA, 1992. To appear.

[11] Graham, R., Knuth, D., and Patashnik, O. Concrete Mathematics. Addison Wesley,
1989.

[12] Guttmann, A. J., and Enting, I. G. The number of convex polygons on the square
and honeycomb lattices. Journal of Physics Series A 21 (1988), 467{474.

[13] Lipshitz, L. D-�nite power series. Journal of Algebra 122 (1989), 353{373.

[14] Loday-Richaud, M. Introduction �a la multisommabilit�e. Gazette des Math�ematiciens 44
(Apr. 1990), 41{63.

[15] Malgrange, B., and Ramis, J.-P. Fonctions multisommables. Annales de l'Institut
Fourier 42, 1-2 (1992), 353{368.

[16] Sloane, N. J. A. A Handbook of Integer Sequences. Academic Press, 1973.

[17] Stanley, R. P. Di�erentiably �nite power series. European Journal of Combinatorics 1
(1980), 175{188.

[18] Thomann, J. Resommation des s�eries formelles. Solutions d'�equations di��erentielles
lin�eaires du second ordre dans le champ complexe au voisinage de singularit�es irr�eguli�eres.
Numerische Mathematik 58 (1990), 503{535.

[19] Ulmer, F. On algebraic solutions of linear di�erential equations with primitive unimodular
Galois group. In Algebraic Algorithms and Error Correcting Codes (1991), vol. 307 of
Lecture Notes in Computer Science, pp. 446{455.

[20] Wasow, W. Asymptotic Expansions for Ordinary Di�erential Equations. Dover, 1987. A
reprint of the John Wiley edition, 1965.

13

[21] Wilf, H. S. Generatingfunctionology. Academic Press, 1990.

[22] Zeilberger, D. A holonomic systems approach to special functions identities. Journal of
Computational and Applied Mathematics 32 (1990), 321{368.

[23] Zeilberger, D. A proof of JulianWest's conjecture that the number of two-stack-sortable
permutations of length n is 2(3n)!=((n+ 1)!(2n+ 1)!). Discrete Mathematics 102 (1992),
85{93.

14

