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Abstract

We construct a Markov chain whose stationary distribution is uniform
over all planar subgraphs of a graph. In the case of the complete graph our
experiments suggest that the random simple planar graph on n vertices
is connected but not 2-connected and has approximately 2n edges. We
present a first attack on the problem of describing what the random planar
graph looks like.

1 Introduction

The basic questions which we will be considering are the following.

Problem 1. How does one generate a random simple planar graph uniformly
at random from the set of simple planar graphs on n vertices?

Problem 2. What does this random planar graph look like?

First we clarify the issue. While there is a vast literature and long history of
methods of generating random plane configurations such as Voronoi polygons,
Delauney triangulations and the like, these are not random in the sense of being
uniformly at random over the set of all planar graphs and are just ad hoc, fast,
appealing methods of generating random plane configurations.

There is an intimate relationship between problems of counting and uniform
generation and there is considerable literature on the problems of counting plane
graphs and maps with a prescribed number of edges (see for example Tutte [13],
Cori [2], Liskovets [7, 8], Cori and Vauquelin [3], Wormald [14, 15]). On the
other hand, a few works are devoted to the random generation of certain types
of planar maps and graphs (see [4, pp 74-83], [11]). However as far as we can
see there is very little known about the two fundamental questions raised above.
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Figure 1: The (planar) graphs with 2, 3 and 4 vertices.

Consider first the collection of unlabelled simple planar graphs on n vertices.
Call this set U(n) and denote its cardinality by u(n). For example u(2) = 2,
u(3) = 4 and u(4) = 11. Similarly let £(n) and I(n) denote the set (respectively
number) of simple planar labelled graphs on n vertices. Clearly I(n) > u(n),
for example the members of ¢/(3) shown above give rise to respectively 1,3,3,1
distinct member of £(3) so that {(3) = 8. Figure 1 shows the set of unlabelled
planar graphs with 2, 3 and 4 vertices. The number below each graph counts
the associated labelled graphs.

In general, it is the labelled structures which are easier to deal with and it
is these on which we shall be concentrating here.

In the recent book [10] the first terms of the sequence (u(n)),>1 are given:
1,2,4,11, 33, 142, 822, 6910. It is easy to find the very first terms of ({(n))p>1:
1,2, 8, 64, 1023.

The precise formulation of the question raised in problem 1 and to which we
shall devote most of our attention is the following.

Problem 1(a). Does there exist an algorithm A which outputs a random
planar subgraph of K, and runs in time bounded by some polynomial function
of n (written in unary)?



We are doubtful whether such an algorithm exists. First consider the ex-
haustive algorithm of listing all planar subgraphs of K,, and choosing one at
random. There are 2() subgraphs of K, and [(n), the number of these which
are planar, is exponential (see section 6 below) so this approach cannot pro-
vide an answer. We next consider a randomised, slightly speeded up version of
the above which can be applied to any input graph G and actually works well
provided G is “close to planar”.

(1) Generate a random subgraph of G by deleting each edge independently
with probability % Call the resulting graph R.

(2) If R is planar then R, = R else repeat.
(3) Output R,.

When G = K, this randomised algorithm certainly gives a random planar
graph. However it is extremely slow.
A more general version of problem 1 is the following;:

Problem 1(b). Does there exist a polynomial time algorithm which for any
input graph G will output a planar subgraph R = R(G) chosen uniformly at
random from all planar subgraphs of G7

We conjecture not.

2 A Markov chain algorithm

Let G = (V, E) be any simple graph. We define a Markov chain M (G) with
state space all planar subgraphs of G and with transitions defined as follows.

A position of G consists of an unordered pair of distinct vertices of G. If X}
denotes the state M (G), at time ¢, then X1 is chosen as follows. A position
f of G is chosen uniformly at random.

(a) If the position f contains an edge e of X; then X;11 = Xi\e.

(b) If the position f = (i,j) does not contain an edge in X; then X;; is
formed from X; by adding an edge (¢, j) provided this addition preserves
planarity,

(c) otherwise X;y11 = X;.

It is easy to verify that (X;) is an irreducible aperiodic Markov chain whose
transition matrix is symmetric. Thus, X; has a limiting stationary distribution
which is uniform over the set of planar subgraphs of G. In principle therefore
it gives an easily implemented algorithm for generating a planar subgraph of
G which will be approximately uniformly at random. The closeness of the
approximation will be governed by the mixing rate of the chain, and this will
depend on the graph G. In particular, when G = K, it gives what appears to
be a fairly effective way of generating a random planar graph.
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Figure 2: A typical simulation. Number of edges versus time-steps.

3 Experimental results

We present here the results of our experiments with this Markov Chain. The
program was written in C++ using the LEDA library [9].

For practical reasons, we have usually chosen the empty graph as the initial
state of the simulation. In each simulation, given n the number of vertices,
we arbitrarily fix the number of time-steps to 3n?, which from our earlier pilot
studies seems sufficiently large for the chain to settle down to what we believe
is its equilibrium state.

Figure 2 shows the evolution of the number of edges during one execution
of the program on a graph with 100 vertices. The curve increases rapidly then
oscillates around a value near to 200. This can be seen more precisely in Figure
3 which presents average values of 50 simulations. The same experiment has
been repeated on graphs with a number of vertices varying between 1 and 100.
Figure 4 clearly suggests a linear relation between the number of vertices and
the number of edges of a random planar graph. This result was obtained by
computing the average number of edges of 10 graphs for each value of n varying
from 1 to 100.

The next questions which we consider are the probabilities of a random
planar graph being connected or biconnected. Figure 5 suggests that almost all
planar graphs are connected: the probability of being connected seems to tend
to 1 or to a value very near to 1 when n goes to infinity. On the contrary, the
proportion of biconnected graphs decreases rapidly, as shown in Figure 6. These
two experiments were done on 100 graphs for each value of n.

Finally we present in Figure 7 the distribution of the degrees of the vertices
of 50 random planar graphs with 100 vertices. More precisely, in the random
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Figure 3: Number of edges versus time-steps: average values of 50 simulations.
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Figure 4: Average number of edges versus number of vertices.
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Figure 5: Experimental probability of being connected versus number of ver-
tices.
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Figure 6: Experimental probability of being biconnected versus number of ver-
tices.



Figure 7: Distribution of the degrees of vertices.

planar graph on 100 vertices we would expect the values below:

degree O(1(2|3|4|5|6[7|8]9]10|11|>11
#vertices [0 [ 620 |23 18|13 |8 (5|3 |2| 1|1 0

In order to verify that our results do not depend on the initial state, other
experiments were done with maximal planar graphs as initial states. Results
seem to be equivalent. For instance, Figure 8 presents such a simulation for a
graph with 100 vertices.

4 Properties of the random planar graph

We will denote by R(G) the random planar subgraph of G, and when G = K,
will abbreviate R(K,,) to R,.
If e(R,,) denotes the expected number of edges in R,,, then our experimental
evidence suggests that
lim n 'e(R,) =C
n— o0
exists and that C' is a constant fairly close to 2.
There is also a heuristic but wrong argument in support of the constant
C being exactly 2. It runs as follows: the expected number of vertices of a
planar map (as defined in [13]) with & edges is % + 1 (by duality and Euler’s
formula). Also, the expected number of vertices of a 3-connected unlabelled
planar graph with k edges is % + 1 (because 3-connected planar graphs are in
1-to-1 correspondence with 3-connected planar maps, and the set of 3-connected
planar maps is closed under duality).
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Figure 8: A typical simulation with a maximal planar graph as initial state.

It is obvious that e(R,) < 3n — 6 but better upper bounds seem difficult to
find. What we can prove is:

Theorem 1 The expected number of edges in Ry, is at least (3n — 6)/2.
The proof is an almost immediate consequence of a more general result.

Theorem 2 Let E be a finite set, and D a family of subsets of E such that
1. XeD,YCX = YeD,

2. all mazimal members of D have same cardinality m.
Then the expected number of elements of a random member of D is at least m/2.

Proof of Theorem 2. Let A = (Ay,..., A;x) be the collection of maximal

members of D. We will prove the theorem by induction on k. Clearly, since

each A; has cardinality m, the theorem is true (with equality) when & = 1. Now

assume it is true for families with k or fewer maximal members and consider

the family D having Ay, ..., Ag+1 as maximal members (all of cardinality m).
Let D’ be the family defined by

XeD e {XCA4:1<i<k}
Then if R(D) denotes a random member of D, the expected size of R, written

(R(D)), is given by
(R(D)) = > IX|/D|

XeD
2xep X1+ Xxepyor [X]
[D'| + |D\D'| '




We say that a collection of subsets U is closed above or monotone increasing
ifXeld, YDODX = Y e€lU. Wenow use the following easy application of the
FKG inequality [6].

Lemma 3 Let E be any finite set, U any collection of subsets of E closed above,

then
1
(Z |X|> ) > 2|

Xeu

Proof. Define f, g on 2F by

fY) = Y| YCE,
_ 1 Yeu
g¥) = { 0 otherwise.

Then the FKG inequality gives for any positively correlated measure p : 2F —
R+
Tp)SFY)g(Y)u(Y) = BfV)u(Y)Zg(Y)uY)

where in all cases the sum is over all subsets of E. Taking u(Y) = 1 forall ¥

o 273 || > (Z |Y|> ]

Yeu YCE

as required. O

Applying the lemma with F = Apy; gives

> xep\pr [ X| S |[Agp1]  m
D\D| - 2 2

Now, by the induction hypothesis,

I X| ¢ _m
2 piTaZ 7
D d~ 2
XeD!
But if ¢/d > m/2 and u/v > m/2 then
c+u > m
d+v — 2
which completes the proof of Theorem 2. a

Proof of Theorem 1 Take E to be the edge set of K,, in Theorem 2 and let
a subset X € U/ iff X is the edge set of a planar subgraph of K,,. |

NeJ



We now turn to the relationship between R,,, the random planar graph, and
the well understood random graph G(n,p), (see Bollobas [1]).

First an elementary result which may be intuitively obvious but which we
feel is worth spelling out. If 7 is any property of graphs, then we write G € 7
to signify that G has w. In other words we are identifying a property 7= with a
class of graphs closed under isomorphism.

Lemma 4 For any graph property w,
1 1, .
Pr{R, € 1} = Pr{G(n, 5) er|Gn, 5) is planar}

Proof. Let us call w(n) the set of graphs with n vertices having property .
Then

Pr{G(n, %) en|G(n, %) is planar}
_ Pr{G(n,%) €em and G(n,1) is planar}
Pr{G(n,%) is planar}
_ It n£m)] 26)
2(3)  ln)
= Pr{R, € 7}

O
An immediate consequence of this is the following.
We say that a property 7 is monotone increasing (respectively decreasing)
if for any graph G € 7 any supergraph (respectively subgraph) of G having the
same set of vertices also has w. Then using the FKG inequality we get:

Proposition 5 Let m be any monotone property of graphs then
(a) Pr{R, € 7} > Pr{G(n
(b) Pr{R, € n} < Pr{G(n

,3) €T} if m is decreasing
,3) €} if m is increasing.

For example, taking = to be the property of being connected, all it tells us
is the intuitively obvious result that

1
Pr{R,, is connected} < Pr{G(n, 5) is connected}
and it is well known that the right hand side tends to 1 as n — oo.
A more interesting comparison is between the behaviour of R,,, which we

believe typically has about 2n edges, and the random graph G(n,p(n)), where
p(n) ~ 4/n is chosen so that the number of edges agree.

10
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Figure 9: Distribution of the degrees of vertices in G(n,4/n).

Elementary results from random graph theory, see Bollobas [1, p.57], show
that the number of vertices of degree k in G(n, p) is asymptotically Poisson with
parameter )\, and that

-1 —1—
)\k:n<nk )pk(l—p)nlk-

Thus the expected number of vertices of degree k in G(n,4/n) is

4Ic
Dy(n) ~ nye*

4asn—>oo.

It is interesting to compare these, as shown in Figure 9, with our experimental
results on degrees of R, (Figure 7).

A more striking difference between R,, and G(n, %) is that almost certainly
G(n, %) is disconnected for large n, whereas our simulations suggest R,, is con-
nected. Intuitively this can be explained as follows, with about 2n edges to
distribute, they have to be far more “spread out” in R,, than in G(n, %) This

helps connectivity.

5 Connectivity properties

First we consider the probability i(n) that a specific vertex of R,,, say vertex 1,
is isolated. This is given by

Illn—1)

i) ="

11



We believe that i(n) is monotone decreasing but note that showing this is
equivalent to showing that

I(n)? <l(n+ Di(n—1),

in other words that the sequence [(n) is log concave. Proving such inequalities
tends to be extremely difficult.
Elementary computations for small n indicate also that

pr(n) = Pr{R,, has an isolated vertex}

decreases fairly rapidly. For example we have

n [1] 2 | 3 1 5
pi(n) | 1| 1/2 | 1/2 | 23/64 | 256/1023

We believe that lim,,_,oopr(n) = 0 but have only been able to show:
Theorem 6 The probability that R, has an isolated vertez is Q(n—10).

Proof Suppose that (X;) the Markov chain on n-vertex planar graphs is in
equilibrium. Let (Z;) be the Markov process defined by

7 - 1 if X; has an isolated vertex
P71 0 otherwise.

There must be at least one vertex of degree < 5in X;. Let it be v and let i1, ..., ix
be the neighbours of v. Then Z;,5 = 1 if the random mechanism governing X;
chooses, in some order, the positions (v,i1)...(v, i) in its next k transitions and
avoids them in the remaining 5 — k transitions. The probability of this is at
least Cn~10. m]

We now consider the probability that R,,, the random planar graph, is con-
nected. If we denote this probability by p.(n) then clearly

pe(n) = le(n)/l(n),

where I.(n) denotes the number of connected members of £(n), and for small n
we get

n 2 3 4 5
pe(n) | 1/2 | 1/2 | 19/32 | 727/1023

From Theorem 6 p.(n) < 1—Cn~1% as n — oo but we believe that, as with
the general random graph,
lim p.(n)=1.

n—oo

We are unable to prove this but the following result indicates a certain drift
towards there being only one connected component in R,:

12



Proposition 7 Let (Z;) be the Markov process which counts the number of
connected components in the graph X; (having n vertices). Let us denote, for
any t > 0 and for any 1 < i,j < n -1, P{i = j} = Pr{Zy1 = j|Z; = i}.
Then, fort >0 and 1 <k<n-—1,

n—=k

()

k(n —k) + h(k—1)

P{k+1—k} >

and, for 1 <i,j <n and|i —j| > 1,
P{i—j}=0.

Proof. Suppose that X; has k connected components and let ¢ be the number
of isthmi in X;. Then obviously Pi{k — k + 1} = i/(}). Now the number of
isthmi in a graph with n vertices and k connected components is at most n — k
(this value can be reached only if the graph is a forest of trees). This gives the
first inequality of the proposition.

On the other hand, if X; has k£ + 1 connected components with respective
cardinalities ¢1,ca, ..., cgt+1, then the number of ways to add an edge in order
that X¢;; has k connected components is

E CiCj
i=1...k+1
Jj<i

The minimum of this expression is reached when ¢y = ¢y = ... = ¢, = 1 and
ck+1 = n—k subject to the obvious constraints that 1 < ¢; and Y¢; = n or some
permutation of these values. To see this write

2 Zcicj = (8¢;)? — B =n? — BcF.
i<j
Hence the problem reduces to maximising ¥¢? subject to the same constraints.

The result follows by standard dynamic programming arguments. Then

k(k—1)

Z cicj > k(n —k) + 5

i=1...k+1
J<i

and this gives the second inequality. O

We deduce immediately the corollary:

13



Corollary 8

P{k — k+1} < 1

—_— < - 1<k<n-1, tt >0.
Pkriok) ~k rsksnob nr20

Proposition 9 Let (Y;) be an ergodic Markov chain having state space {1,...,n}
and transition probabilities as in Proposition 7. Then, at equilibrium,

1
Pr{y; =1} > -.
e

Proof. Let 7 = (m,m2,...7,) denote the stationary distribution of (¥;), and
M = (a;;) its transition matrix. Then 7 satisfies the following system of equa-
tions:

T = 01171 + G172

T2 = Q1271 + G222 + G323

Th = Op—1kTh—1 + G kT + Ghp1kThe1 (2<k<n-—1)
Tpn = OGp—1,nTn—1 + An,nTn

Moreover, we know that A is stochastic, that is a; ;-1 + a;; + ;41 = 1 Vi.
Then by induction we can prove that
a
7Tk+1:Mﬂ'k 1<k<n-1,
Ak41,k
and we deduce from Corollary 8 that
Tk

k

Since 1 | m; = 1, we get, as required,

Tht1 < 1<k<n-1

._\
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6 Associated counting problems

In order to be more precise in our estimates above we need to understand better
the behaviour of quantities such as l.(n) and I(n). Crude counting arguments
show that logl(n) = f(nlogn) as n — oo and similarly for I.(n). Greater
precision seems difficult. What we can prove is:

14



Lemma 10 [.(n) > (6n — 16)l.(n — 1).

Proof. Let G be a graph of L.(n—1). First, suppose that G is maximal planar.
Let us count the number of ways to create a graph of £.(n) by adding the vertex
n. We can

e attach n to one vertex of G : there are n — 1 possibilities;

e or attach n to the two extremities of one edge of G : there are 3n — 9
possibilities;

e or attach n to the three vertices of one face (in the unique planar repre-
sentation of G): there are 2n — 6 possibilities if n > 4.

There are no more possibilities. This gives 6n — 16 ways of constructing a graph
of L.(n) from a maximal member of L.(n — 1).

If G is not maximal, then add some “virtual” edges to obtain a maximal
graph G’ which contains G, and then apply the previous constructions.

So the formula is true for n > 4. It is true too for n < 4 since [.(1) = 1,
1.(2)=1,1,(3) =4 and I.(4) = 38. |

Corollary 11 [(n) > (6n — 15){(n —1).

Proof. It suffices to add the case where n is connected to none of the other
vertices. O

More generally, we can prove

Lemma 12 If n is large enough that s exists satisfying the equation
n—1
AN =)
(” > > 65 — 16.
s—1
then l.(n) > (6s — 16)I(n — 1).

For example this gives I.(n) > 20l(n — 1) provided n > 26.

Proof. Let G € L(n — 1). First, fix s > 1 and suppose that there exists in G
a connected component with at least s vertices. We can construct a graph of
L.(n) by attaching the vertex n to each connected component of G, using the
method given in the proof of lemma 10. This gives at least 6s — 16 ways to
construct the new graph.

Now suppose that all connected components of G have less than s vertices.
We construct a graph of L.(n) as follows: attach n to one vertex of each com-
ponent of G, then attach together the neighbours of n in a way such that the
subgraph containing only the neighbours of n is a tree. Let k& be the number

15



of connected components of G: k > ZT_II The number of labelled trees (Cayley
trees) with & nodes is equal to k*~2,

So, we have I.(n) > (6s —16)I(n — 1), provided that (%)(%_2) > 65— 16.
O

We believe that
im
n—oo l(n)

=1

but cannot prove it. However, it would not be surprising if, for large n, the
random planar graph had very few automorphisms, see for example the remark
[13, page 138]. If this is the case it would be useful to have better understanding
of the unlabelled counting problem. For this we obtain the following results:

Theorem 13 There exists 0 > 0 such that

3=

lim (uc(n))

n—o0

=40

and 256 256

— <0<8—.

2T — — 27
Proof. Let M be the set of mazimal planar (unlabelled) graphs. Given an
integer n, any graph of ¢/(n) can be constructed from some graph of M(n) by
deleting some edges. Thus, since there are 3n — 6 edges in a maximal planar
graph, u(n) < 23" %m(n).

Tutte [12] has given the number of planar triangulations with n vertices. Let

us consider the triangulations whose external face has degree 3. Their number
is (using Tutte’s notation)

2(4n — 11)! 729v/2v/3 256\ "
(n—2)!(3n — 7)1 2097152y/mn3/2 \ 27 )

z,[)n—B,O =

Such a triangulation can be considered as a maximal planar graph in which
one face! is distinguished (the external one), and the three vertices of this face
are labelled a, b and ¢ (see [12]). Then

ue(n) <u(n) <2°"Om(n) < 2°" %, 30

ue(n) = O <n (8%)3 .

Now let B Be the set of connected birooted graphs constructed as follows:
take a graph which is not maximal planar in i/, choose two non adjacent vertices

and finally we get

IThe faces are well defined here because there exists only one planar representation on the
sphere of any maximal planar graph.

16



Figure 10: The operation *.

which lie in the same face in a planar representation of the graph and distinguish
them as the first root r; and the second root ro. Then create an edge between
r1 and ro. It is easy to see that

b(n) = O (<s22—5f>n> . (1)

Now we define a binary operation in B, as illustrated in Figure 10. Let G,
and G5 be in B. The graph G = G * G5 is defined as follows: create an edge
between the first root of G; and the second root of G2 and an edge between the
first root of G5 and the second root of GG;. The first root of G; becomes the
first root, of G while the second root of G5 becomes the second root of G.

We easily see that G belongs to B: indeed, if we remove the edge between
the two roots and forget the rooting, the resulting graph belongs to ¢.. On the
other hand, G1 xGy = G| xG5 = G = G| and G2 = GS. To see this, observe
that, given G = G1 * G2, we find GG; and G2 by deleting the edge between the
two roots of G and then, in the resulting graph, deleting the unique isthmus
crossed by any path between the two roots of G. The second root of GG; and the
first root of (G5 are the extremities of this isthmus. Now notice that if G; and
G2 belong respectively to B(ni) and B(ns), then G x G5 belongs to B(ni + ns).
Thus

b(n1 + nz) Z b(nl)b(ng) an,nz. (2)

From expressions (1) and (2) and the fundamental theorem of supermultiplica-
tive functions we deduce that there exists # such that lim,, ., (b(n))*/" = 6.
Since the number of maximal planar graphs is such that lim,, o, (m(n))'/" =
256

557 we get

lim (uc(n))Y/"™ =4.

n—o0

d

We deduce the following corollary by standard asymptotic considerations
(see for example [5]):

17



Corollary 14
lim wu(n)'/" = 6.
n—o0
This lends greater credence to our belief that as n — oo the probability that
R, is connected tends to 1.

7 Conclusion

Of the many problems left open in the above the most pressing is deciding
whether or not the Markov chain we propose is indeed rapidly mixing. Settling
this would be greatly helped by a better knowledge of the random planar graph.
However this seems a difficult combinatorial problem, and even a good upper
bound on its number of edges is elusive.
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