Arithmetic Properties of Non-Squashing Partitions into Distinct Parts

Øystein J. Rødseth ${ }^{1}$, James A. Sellers ${ }^{2}$, and Kevin M. Courtright ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Bergen, Johs. Brunsgt. 12, 5008 Bergen, Norway rodseth@mi.uib.no
${ }^{2}$ Department of Mathematics, Penn State University, University Park, PA 16802, USA sellersj@math.psu.edu, kmc260@psu.edu

Received June 08, 2004
AMS Subject Classification: 05A17, 11P83

Abstract

A partition $n=p_{1}+p_{2}+\cdots+p_{k}$ with $1 \leq p_{1} \leq p_{2} \leq \cdots \leq p_{k}$ is non-squashing if $p_{1}+\cdots+p_{j} \leq p_{j+1}$ for $1 \leq j \leq k-1$. On their way towards the solution of a certain box-stacking problem, Sloane and Sellers were led to consider the number $b(n)$ of non-squashing partitions of n into distinct parts. Sloane and Sellers did briefly consider congruences for $b(n)$ modulo 2. In this paper we show that 2^{r-2} is the exact power of 2 dividing the difference $b\left(2^{r+1} n\right)-b\left(2^{r-1} n\right)$ for n odd and $r \geq 2$.

Keywords: partitions, non-squashing partitions, stacking boxes, congruences

1. Introduction

We begin by considering the following combinatorial problem. Suppose we have boxes with labels $1,2,3, \ldots$. A box labeled i weighs i pounds and can support a total weight of i pounds. We wish to build single stacks of boxes with distinct labels in such a way that no box will be squashed by the weight of the boxes above it. What is the number of different ways to build such a single stack of boxes where the total weight of all the boxes in the stack is exactly n pounds?

For the sake of precision, let us say that a partition of a natural number n is nonsquashing if, when the parts are arranged in nondecreasing order, say

$$
n=p_{1}+p_{2}+\cdots+p_{k} \text { with } 1 \leq p_{1} \leq p_{2} \leq \cdots \leq p_{k}
$$

we have

$$
p_{1}+\cdots+p_{j} \leq p_{j+1} \text { for } 1 \leq j \leq k-1
$$

If the boxes in a stack are labeled (from the top) $p_{1}, p_{2}, \ldots, p_{k}$, the stack will not collapse if and only if the corresponding partition is non-squashing.

It was shown by Hirschhorn and Sellers [1] that the number of non-squashing partitions of n is equal to the number of "binary partitions" of n, a much studied partition function. In fact, Hirschhorn and Sellers proved a more general result, and an alternative proof is given in [4].

Throughout this paper, we will denote the number of non-squashing partitions of n into distinct parts by $b(n)$. So the question posed in the opening paragraph is: What is $b(n)$ for a given positive integer n ?

As an example, we see that $b(10)=9$ with the following stacks being allowed:

	1	2	3
10	9	8	7

Note that the stack

is not allowed even though the numbers $1,2,3,4$ are distinct and sum to 10 . The bottom box of this stack, which can withstand a combined weight of 4 pounds, will be squashed by the weight of the boxes above it.

The first several values of the sequence $\{b(n)\}_{n \geq 0}$ can be found in Sloane's Online Encyclopedia of Integer Sequences [3, Sequence A088567]. In their recent work, Sloane and Sellers [4] extensively studied $b(n)$. In particular, they showed that the generating function $B(q)=\sum_{n=0}^{\infty} b(n) q^{n}$ satisfies the functional equation

$$
\begin{equation*}
B(q)=\frac{1}{1-q} B\left(q^{2}\right)-\frac{q^{2}}{1-q^{2}} \tag{1.1}
\end{equation*}
$$

and is given explicitly by

$$
\begin{equation*}
B(q)=\frac{1}{1-q}+\sum_{i=1}^{\infty} \frac{q^{3 \cdot 2^{i-1}}}{\prod_{j=0}^{i}\left(1-q^{2^{j}}\right)} \tag{1.2}
\end{equation*}
$$

An immediate consequence of (1.2) is that $b(n)$, the number of non-squashing partitions of n into distinct parts, is equal to the number of partitions of n into non-decreasing powers of 2 such that either all parts are equal to 1 or, if the largest part has size $2^{i}>1$, then there is also at least one part of size 2^{i-1} present in the partition.

Sloane and Sellers [4, Corollary 4] did briefly consider congruences for $b(n)$ modulo 2. Since $b(n)$ can be viewed as a restricted binary partition function (given the interpretation above), we searched for congruence properties of $b(n)$ similar to those satisfied by some other restricted binary partition functions, as studied by Rødseth and Sellers [2], and discovered the following result.

Theorem 1.1. For each integer $r \geq 2$, we have

$$
\begin{equation*}
b\left(2^{r+1} n\right)-b\left(2^{r-1} n\right) \equiv 0 \quad\left(\bmod 2^{r-2}\right) \tag{1.3}
\end{equation*}
$$

Moreover, no higher power of 2 divides the left hand side of (1.3) if n is odd.
We prove Theorem 1.1 using tools developed by Rødseth and Sellers [2] as well as the functional equation (1.1).

2. Auxiliaries

The power series in this paper will be elements of $\mathbb{Z}[[q]]$, the ring of formal power series in q with coefficients in \mathbb{Z}. We define a \mathbb{Z}-linear operator

$$
U: \mathbb{Z}[[q]] \longrightarrow \mathbb{Z}[[q]]
$$

by

$$
U \sum_{n} a(n) q^{n}=\sum_{n} a(2 n) q^{n}
$$

Notice that if $f(q), g(q) \in \mathbb{Z}[[q]]$, then

$$
\begin{equation*}
U\left(f(q) g\left(q^{2}\right)\right)=(U f(q)) g(q) \tag{2.1}
\end{equation*}
$$

Moreover, if $f(q)=\sum_{n} a(n) q^{n} \in \mathbb{Z}[[q]], g(q)=\sum_{n} c(n) q^{n} \in \mathbb{Z}[[q]]$, and M is a positive integer, then we have

$$
f(q) \equiv g(q) \quad(\bmod M) \quad(\text { in } \mathbb{Z}[[q]])
$$

if and only if, for all n,

$$
a(n) \equiv c(n) \quad(\bmod M) \quad(\text { in } \mathbb{Z})
$$

We shall use below the following identity for binomial coefficients:

$$
\begin{equation*}
\binom{2 n+r-1}{r}=\sum_{i=\lceil r / 2\rceil}^{r}(-1)^{r-i} 2^{2 i-r}\binom{i}{r-i}\binom{n+i-1}{i} . \tag{2.2}
\end{equation*}
$$

The truth of this relation follows by expanding both sides of the identity

$$
\frac{1}{(1-q)^{2 n}}=\frac{1}{(1-q(2-q))^{n}}
$$

and comparing the coefficient of q^{r} on each side of the equation.
Let

$$
h_{i}=h_{i}(q)=\frac{q}{(1-q)^{i+1}}, \quad i \geq 0
$$

Then

$$
\begin{equation*}
h_{i}=\sum_{n=1}^{\infty}\binom{n+i-1}{i} q^{n} \tag{2.3}
\end{equation*}
$$

so that

$$
U h_{r}=\sum_{n=1}^{\infty}\binom{2 n+r-1}{r} q^{n} .
$$

It follows from (2.2) and (2.3) that

$$
\begin{equation*}
U h_{r}=\sum_{i=\lceil r / 2\rceil}^{r}(-1)^{r-i} 2^{2 i-r}\binom{i}{r-i} h_{i} \tag{2.4}
\end{equation*}
$$

for $r \geq 0$.
Next, we recursively define $K_{r}=K_{r}(q)$ by

$$
\begin{equation*}
K_{2}=2^{3} h_{2} \quad \text { and } \quad K_{i+1}=U\left(\frac{1}{1-q} K_{i}\right) \tag{2.5}
\end{equation*}
$$

for $i \geq 2$. We have the following lemma regarding K_{r}.
Lemma 2.1. For $1 \leq i \leq r-1$, there exist $\gamma_{r}(i) \in \mathbb{Z}$ such that

$$
\begin{equation*}
K_{r}=\sum_{i=1}^{r-1} \gamma_{r}(i) h_{i+1} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{r}(i) \equiv 0 \quad\left(\bmod 2^{r+i}\right) \tag{2.7}
\end{equation*}
$$

Proof. This is a weak version of [2, Lemma 1].
Lemma 2.2. For $r \geq 2$ and $1 \leq i \leq r$, there exist $\delta_{r}(i) \in \mathbb{Z}$ such that

$$
\begin{equation*}
U K_{r}=\sum_{i=1}^{r} \delta_{r}(i) h_{i} \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{r}(i) \equiv 0 \quad\left(\bmod 2^{r+i}\right) \tag{2.9}
\end{equation*}
$$

Proof. This is a weak version of [2, Lemma 2].
Now we define

$$
L_{2}=2^{2} h_{2}+h_{1}
$$

and, for $i \geq 2$,

$$
\begin{equation*}
L_{i+1}=K_{i+1}-\left(U K_{i}\right) \frac{1}{1-q}+U L_{i} \tag{2.10}
\end{equation*}
$$

Lemma 2.3. For $r \geq 2$, there exist $\lambda_{r}(i) \in \mathbb{Z}$ such that

$$
\begin{equation*}
L_{r}=\sum_{i=1}^{r} \lambda_{r}(i) h_{i} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{r}(1) \equiv 2^{r-2} \quad\left(\bmod 2^{r-1}\right) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{r}(i) \equiv 0 \quad\left(\bmod 2^{r+i-2}\right) \quad \text { for } 2 \leq i \leq r \tag{2.13}
\end{equation*}
$$

Proof. We use induction on r. The lemma is true for $r=2$. Suppose that for some $r \geq 3$ there are integers $\lambda_{r-1}(j)$ such that

$$
\begin{equation*}
L_{r-1}=\sum_{j=1}^{r-1} \lambda_{r-1}(j) h_{j} \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{r-1}(1) \equiv 2^{r-3} \quad\left(\bmod 2^{r-2}\right) \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{r-1}(j) \equiv 0 \quad\left(\bmod 2^{r+j-3}\right) \quad \text { for } 2 \leq j \leq r-1 \tag{2.16}
\end{equation*}
$$

Then, by (2.14) and (2.4),

$$
\begin{aligned}
U L_{r-1} & =\sum_{j=1}^{r-1} \lambda_{r-1}(j) U h_{j} \\
& =\sum_{j=1}^{r-1} \lambda_{r-1}(j) \sum_{i=\lceil j / 2\rceil}^{j}(-1)^{j-i} 2^{2 i-j}\binom{i}{j-i} h_{i} \\
& =\sum_{i=1}^{r-1} \sum_{j=i}^{\min (r-1,2 i)}(-1)^{j-i} 2^{2 i-j}\binom{i}{j-i} \lambda_{r-1}(j) h_{i} .
\end{aligned}
$$

Moreover, by (2.10), (2.6), and (2.8),

$$
\begin{aligned}
L_{r} & =K_{r}-\left(U K_{r-1}\right) \frac{1}{1-q}+U L_{r-1} \\
& =\sum_{i=1}^{r-1} \gamma_{r}(i) h_{i+1}-\sum_{i=1}^{r-1} \delta_{r-1}(i) h_{i+1}+U L_{r-1} \\
& =\sum_{i=2}^{r} \gamma_{r}(i-1) h_{i}-\sum_{i=2}^{r} \delta_{r-1}(i-1) h_{i}+U L_{r-1}
\end{aligned}
$$

so that (2.11) holds with

$$
\begin{equation*}
\lambda_{r}(1)=-\lambda_{r-1}(2)+2 \lambda_{r-1}(1) \tag{2.17}
\end{equation*}
$$

and, for $2 \leq i \leq r$,

$$
\begin{equation*}
\lambda_{r}(i)=\gamma_{r}(i-1)-\delta_{r-1}(i-1)+\sum_{j=i}^{\min \{r-1,2 i\}}(-1)^{j-i} 2^{2 i-j}\binom{i}{j-i} \lambda_{r-1}(j) \tag{2.18}
\end{equation*}
$$

It follows that all the $\lambda_{r}(i)$ are integers. Furthermore, by (2.16) with $j=2,(2.15)$ and (2.17), we get (2.12). Finally, (2.13) follows from (2.18), (2.7), (2.9), and (2.16).

3. Proof of Theorem $\mathbf{1 . 1}$

Throughout this section, the element $f(q)$ of $\mathbb{Z}[[q]]$ will simply be written as f. If the argument is not q, then we will, of course, include the argument in the notation.

By (2.4), we have

$$
\begin{align*}
& U h_{0}=h_{0} \tag{3.1}\\
& U h_{1}=2 h_{1} \tag{3.2}\\
& U h_{2}=4 h_{2}-h_{1} . \tag{3.3}
\end{align*}
$$

Also notice that

$$
\begin{equation*}
U \frac{1}{1-q}=\frac{1}{1-q} \tag{3.4}
\end{equation*}
$$

Using (1.1) and (2.1), we find that

$$
\begin{aligned}
U B & =\frac{1}{1-q} B-\frac{q}{1-q} \\
& =\frac{1}{1-q}\left(\frac{1}{1-q} B\left(q^{2}\right)-h_{0}\left(q^{2}\right)\right)-h_{0} \\
& =\left(h_{1}+\frac{1}{1-q}\right) B\left(q^{2}\right)-\frac{1}{1-q} h_{0}\left(q^{2}\right)-h_{0} .
\end{aligned}
$$

Applying U once more, we get, using (2.1), (3.1), (3.2), and (3.4),

$$
\begin{aligned}
U^{2} B & =\left(U h_{1}+U \frac{1}{1-q}\right) B-\left(U \frac{1}{1-q}\right) h_{0}-U h_{0} \\
& =\left(2 h_{1}+\frac{1}{1-q}\right) B-h_{1}-h_{0}
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
U^{2} B-B & =\left(2 h_{1}+h_{0}\right)(B-1)+h_{1} \\
& =\left(2 h_{1}+h_{0}\right)\left(\frac{1}{1-q} B\left(q^{2}\right)-\frac{1}{1-q^{2}}\right)+h_{1} \\
& =\left(2 h_{2}+h_{1}\right) B\left(q^{2}\right)-\left(2 h_{1}+h_{0}\right) \frac{1}{1-q^{2}}+h_{1},
\end{aligned}
$$

so that, using (3.1), (3.2), (3.3), and (2.5),

$$
\begin{aligned}
U^{3} B-U B & =\left(2 U h_{2}+U h_{1}\right) B-\left(2 U h_{1}+U h_{0}\right) \frac{1}{1-q}+U h_{1} \\
& =8 h_{2} B-4 h_{2}+h_{1} \\
& =K_{2}(B-1)+L_{2} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
U^{r+1} B-U^{r-1} B=K_{r}(B-1)+L_{r} \tag{3.5}
\end{equation*}
$$

is true for $r=2$. Suppose that (3.5) holds for some $r \geq 2$. Then we have

$$
\begin{aligned}
U^{r+1} B-U^{r-1} B & =K_{r}\left(\frac{1}{1-q} B\left(q^{2}\right)-\frac{1}{1-q^{2}}\right)+L_{r} \\
& =\left(\frac{1}{1-q} K_{r}\right) B\left(q^{2}\right)-K_{r} \frac{1}{1-q^{2}}+L_{r}
\end{aligned}
$$

and applying U we get by (2.5) and (2.10),

$$
\begin{aligned}
U^{r+2} B-U^{r} B & =K_{r+1} B-\left(U K_{r}\right) \frac{1}{1-q}+U L_{r} \\
& =K_{r+1}(B-1)+L_{r+1}
\end{aligned}
$$

Thus (3.5) holds for all $r \geq 2$.
For $r \geq 2$, we have, by Lemma 2.1,

$$
K_{r} \equiv 0 \quad\left(\bmod 2^{r+1}\right)
$$

and, by Lemma 2.3,

$$
L_{r} \equiv 2^{r-2} h_{1} \quad\left(\bmod 2^{r-1}\right)
$$

so that, by (3.5) and (2.3),

$$
\sum_{n=1}^{\infty}\left(b\left(2^{r+1} n\right)-b\left(2^{r-1} n\right)\right) q^{n} \equiv 2^{r-2} \sum_{n=1}^{\infty} n q^{n} \quad\left(\bmod 2^{r-1}\right)
$$

Therefore,

$$
b\left(2^{r+1} n\right)-b\left(2^{r-1} n\right) \equiv 2^{r-2} n \quad\left(\bmod 2^{r-1}\right)
$$

and this completes the proof of Theorem 1.1.

References

1. M.D. Hirschhorn and J.A. Sellers, A different view of m-ary partitions, Australas. J. Combin. 30 (2004) 193-196.
2. $\emptyset . J$. Rødseth and J.A. Sellers, Binary partitions revisited, J. Combin. Theory, Ser. A 98 (2002) 33-45.
3. N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2003, published electronically at http://www.research.att.com/~njas/sequences/.
4. N.J.A. Sloane and J.A. Sellers, On non-squashing partitions, to appear, http://arxiv.org/abs/math.CO/0312418.
