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Abstract. A partition n = p1 + p2 + · · ·+ pk with 1 ≤ p1 ≤ p2 ≤ ·· · ≤ pk is non-squashing if
p1 + · · ·+ p j ≤ p j+1 for 1≤ j ≤ k−1. On their way towards the solution of a certain box-stacking
problem, Sloane and Sellers were led to consider the number b(n) of non-squashing partitions of
n into distinct parts. Sloane and Sellers did briefly consider congruences for b(n) modulo 2. In
this paper we show that 2r−2 is the exact power of 2 dividing the difference b(2r+1n)−b(2r−1n)
for n odd and r ≥ 2.
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1. Introduction

We begin by considering the following combinatorial problem. Suppose we have boxes
with labels 1, 2, 3, . . . . A box labeled i weighs i pounds and can support a total weight
of i pounds. We wish to build single stacks of boxes with distinct labels in such a way
that no box will be squashed by the weight of the boxes above it. What is the number
of different ways to build such a single stack of boxes where the total weight of all the
boxes in the stack is exactly n pounds?

For the sake of precision, let us say that a partition of a natural number n is non-
squashing if, when the parts are arranged in nondecreasing order, say

n = p1 + p2 + · · ·+ pk with 1 ≤ p1 ≤ p2 ≤ ·· · ≤ pk,

we have
p1 + · · ·+ p j ≤ p j+1 for 1 ≤ j ≤ k−1.

If the boxes in a stack are labeled (from the top) p1, p2, . . . , pk, the stack will not
collapse if and only if the corresponding partition is non-squashing.
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It was shown by Hirschhorn and Sellers [1] that the number of non-squashing par-
titions of n is equal to the number of “binary partitions” of n, a much studied partition
function. In fact, Hirschhorn and Sellers proved a more general result, and an alternative
proof is given in [4].

Throughout this paper, we will denote the number of non-squashing partitions of n
into distinct parts by b(n). So the question posed in the opening paragraph is: What is
b(n) for a given positive integer n?

As an example, we see that b(10) = 9 with the following stacks being allowed:
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Note that the stack
1

2

3
4

is not allowed even though the numbers 1, 2, 3, 4 are distinct and sum to 10. The bottom
box of this stack, which can withstand a combined weight of 4 pounds, will be squashed
by the weight of the boxes above it.

The first several values of the sequence {b(n)}n≥0 can be found in Sloane’s On-
line Encyclopedia of Integer Sequences [3, Sequence A088567]. In their recent work,
Sloane and Sellers [4] extensively studied b(n). In particular, they showed that the
generating function B(q) = ∑∞

n=0 b(n)qn satisfies the functional equation

B(q) =
1

1−q
B(q2)−

q2

1−q2 , (1.1)

and is given explicitly by

B(q) =
1

1−q
+

∞

∑
i=1

q3·2i−1

∏i
j=0(1−q2 j

)
. (1.2)

An immediate consequence of (1.2) is that b(n), the number of non-squashing parti-
tions of n into distinct parts, is equal to the number of partitions of n into non-decreasing
powers of 2 such that either all parts are equal to 1 or, if the largest part has size 2i > 1,
then there is also at least one part of size 2i−1 present in the partition.

Sloane and Sellers [4, Corollary 4] did briefly consider congruences for b(n) mod-
ulo 2. Since b(n) can be viewed as a restricted binary partition function (given the
interpretation above), we searched for congruence properties of b(n) similar to those
satisfied by some other restricted binary partition functions, as studied by Rødseth and
Sellers [2], and discovered the following result.
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Theorem 1.1. For each integer r ≥ 2, we have

b(2r+1n)−b(2r−1n) ≡ 0 (mod 2r−2). (1.3)

Moreover, no higher power of 2 divides the left hand side of (1.3) if n is odd.

We prove Theorem 1.1 using tools developed by Rødseth and Sellers [2] as well as
the functional equation (1.1).

2. Auxiliaries

The power series in this paper will be elements of Z[[q]], the ring of formal power series
in q with coefficients in Z. We define a Z-linear operator

U : Z[[q]] −→ Z[[q]]

by
U ∑

n
a(n)qn = ∑

n
a(2n)qn.

Notice that if f (q), g(q) ∈ Z[[q]], then

U( f (q)g(q2)) = (U f (q))g(q). (2.1)

Moreover, if f (q) = ∑n a(n)qn ∈ Z[[q]], g(q) = ∑n c(n)qn ∈ Z[[q]], and M is a positive
integer, then we have

f (q) ≡ g(q) (mod M) (in Z[[q]])

if and only if, for all n,

a(n) ≡ c(n) (mod M) (in Z).

We shall use below the following identity for binomial coefficients:
(

2n+ r−1
r

)

=
r

∑
i=dr/2e

(−1)r−i22i−r
(

i
r− i

)(

n+ i−1
i

)

. (2.2)

The truth of this relation follows by expanding both sides of the identity

1
(1−q)2n =

1
(1−q(2−q))n

and comparing the coefficient of qr on each side of the equation.
Let

hi = hi(q) =
q

(1−q)i+1 , i ≥ 0.

Then

hi =
∞

∑
n=1

(

n+ i−1
i

)

qn, (2.3)
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so that

Uhr =
∞

∑
n=1

(

2n+ r−1
r

)

qn.

It follows from (2.2) and (2.3) that

Uhr =
r

∑
i=dr/2e

(−1)r−i22i−r
(

i
r− i

)

hi (2.4)

for r ≥ 0.
Next, we recursively define Kr = Kr(q) by

K2 = 23h2 and Ki+1 = U
( 1

1−q
Ki

)

(2.5)

for i ≥ 2. We have the following lemma regarding Kr.

Lemma 2.1. For 1 ≤ i ≤ r−1, there exist γr(i) ∈ Z such that

Kr =
r−1

∑
i=1

γr(i)hi+1, (2.6)

where
γr(i) ≡ 0 (mod 2r+i). (2.7)

Proof. This is a weak version of [2, Lemma 1].

Lemma 2.2. For r ≥ 2 and 1 ≤ i ≤ r, there exist δr(i) ∈ Z such that

UKr =
r

∑
i=1

δr(i)hi, (2.8)

where
δr(i) ≡ 0 (mod 2r+i). (2.9)

Proof. This is a weak version of [2, Lemma 2].

Now we define
L2 = 22h2 +h1,

and, for i ≥ 2,

Li+1 = Ki+1 − (UKi)
1

1−q
+ULi. (2.10)

Lemma 2.3. For r ≥ 2, there exist λr(i) ∈ Z such that

Lr =
r

∑
i=1

λr(i)hi, (2.11)

where
λr(1) ≡ 2r−2 (mod 2r−1) (2.12)

and
λr(i) ≡ 0 (mod 2r+i−2) for 2 ≤ i ≤ r. (2.13)
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Proof. We use induction on r. The lemma is true for r = 2. Suppose that for some r ≥ 3
there are integers λr−1( j) such that

Lr−1 =
r−1

∑
j=1

λr−1( j)h j, (2.14)

where
λr−1(1) ≡ 2r−3 (mod 2r−2) (2.15)

and
λr−1( j) ≡ 0 (mod 2r+ j−3) for 2 ≤ j ≤ r−1. (2.16)

Then, by (2.14) and (2.4),

ULr−1 =
r−1

∑
j=1

λr−1( j)Uh j

=
r−1

∑
j=1

λr−1( j)
j

∑
i=d j/2e

(−1) j−i22i− j
(

i
j− i

)

hi

=
r−1

∑
i=1

min(r−1,2i)

∑
j=i

(−1) j−i22i− j
(

i
j− i

)

λr−1( j)hi.

Moreover, by (2.10), (2.6), and (2.8),

Lr = Kr − (UKr−1)
1

1−q
+ULr−1

=
r−1

∑
i=1

γr(i)hi+1 −
r−1

∑
i=1

δr−1(i)hi+1 +ULr−1

=
r

∑
i=2

γr(i−1)hi−
r

∑
i=2

δr−1(i−1)hi +ULr−1,

so that (2.11) holds with

λr(1) = −λr−1(2)+2λr−1(1), (2.17)

and, for 2 ≤ i ≤ r,

λr(i) = γr(i−1)−δr−1(i−1)+
min{r−1,2i}

∑
j=i

(−1) j−i22i− j
(

i
j− i

)

λr−1( j). (2.18)

It follows that all the λr(i) are integers. Furthermore, by (2.16) with j = 2, (2.15) and
(2.17), we get (2.12). Finally, (2.13) follows from (2.18), (2.7), (2.9), and (2.16).
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3. Proof of Theorem 1.1

Throughout this section, the element f (q) of Z[[q]] will simply be written as f . If the
argument is not q, then we will, of course, include the argument in the notation.

By (2.4), we have

Uh0 = h0, (3.1)

Uh1 = 2h1, (3.2)

Uh2 = 4h2−h1. (3.3)

Also notice that
U

1
1−q

=
1

1−q
. (3.4)

Using (1.1) and (2.1), we find that

UB =
1

1−q
B−

q
1−q

=
1

1−q

(

1
1−q

B(q2)−h0(q2)

)

−h0

=

(

h1 +
1

1−q

)

B(q2)−
1

1−q
h0(q2)−h0.

Applying U once more, we get, using (2.1), (3.1), (3.2), and (3.4),

U2B =

(

Uh1 +U
1

1−q

)

B−

(

U
1

1−q

)

h0 −Uh0

=

(

2h1 +
1

1−q

)

B−h1−h0.

Furthermore,

U2B−B = (2h1 +h0)(B−1)+h1

= (2h1 +h0)

(

1
1−q

B(q2)−
1

1−q2

)

+h1

= (2h2 +h1)B(q2)− (2h1 +h0)
1

1−q2 +h1,

so that, using (3.1), (3.2), (3.3), and (2.5),

U3B−UB = (2Uh2 +Uh1)B− (2Uh1 +Uh0)
1

1−q
+Uh1

= 8h2B−4h2 +h1

= K2(B−1)+L2.
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Thus
U r+1B−U r−1B = Kr(B−1)+Lr (3.5)

is true for r = 2. Suppose that (3.5) holds for some r ≥ 2. Then we have

U r+1B−U r−1B = Kr

(

1
1−q

B(q2)−
1

1−q2

)

+Lr

=

(

1
1−q

Kr

)

B(q2)−Kr
1

1−q2 +Lr,

and applying U we get by (2.5) and (2.10),

U r+2B−U rB = Kr+1B− (UKr)
1

1−q
+ULr

= Kr+1(B−1)+Lr+1.

Thus (3.5) holds for all r ≥ 2.
For r ≥ 2, we have, by Lemma 2.1,

Kr ≡ 0 (mod 2r+1),

and, by Lemma 2.3,
Lr ≡ 2r−2h1 (mod 2r−1),

so that, by (3.5) and (2.3),

∞

∑
n=1

(b(2r+1n)−b(2r−1n))qn ≡ 2r−2
∞

∑
n=1

nqn (mod 2r−1).

Therefore,
b(2r+1n)−b(2r−1n) ≡ 2r−2n (mod 2r−1),

and this completes the proof of Theorem 1.1.
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