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A COMPLETE SYSTEM OF ORTHOGONAL STEP FUNCTIONS

HUAIEN LI AND DAVID C. TORNEY

(Communicated by David Sharp)

Abstract. We educe an orthonormal system of step functions for the interval
[0, 1]. This system contains the Rademacher functions, and it is distinct from
the Paley-Walsh system: its step functions use the Möbius function in their
definition. Functions have almost-everywhere convergent Fourier-series expan-
sions if and only if they have almost-everywhere convergent step-function-series

expansions (in terms of the members of the new orthonormal system). Thus,
for instance, the new system and the Fourier system are both complete for
Lp(0, 1); 1 < p ∈ R.

1. Introduction

Analytical desiderata and applications, ever and anon, motivate the elaboration
of systems of orthogonal step functions—as exemplified by the Haar system, the
Paley-Walsh system and the Rademacher system. Our motivation is the example-
based classification of digitized images, represented by rational points of the real
interval [0,1], the domain of interest in the sequel.

It is imperative to establish the “completeness” of any orthogonal system. Much
is known, in this regard, for the classical systems, as this has been the subject
of numerous investigations, and we use the latter results to establish analogous
properties for the orthogonal system developed herein.

Definition 1. Let the inner product 〈f(x), g(x)〉 denote the Lebesgue integral∫ 1

0 f(x)g(x)dx.

Definition 2. A system of orthogonal functions is complete, on a given domain and
relative to a class of functions, whenever the vanishing of a member of the class’
inner products with all the orthogonal functions implies the member is equal to zero
almost everywhere (a.e.) in the domain. (Completeness is also termed maximality
[1].)

We will employ the following standard notation.

Definition 3. (i) N denotes the set of all positive integers and N1 denotes the set
of all odd, positive integers; (ii) Lq(0, 1) denotes the class of real functions whose
absolute value raised to the power q ∈ R is Lebesgue integrable over the interval
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[0, 1]; (iii) btc denotes the integer part of t ∈ R; and (iv) µ(`) denotes the classical
Möbius function; ` ∈ N [4, §16.3].

Note that, in (ii), the conventional exponent p has been replaced by q because, in
the sequel, the former exclusively denotes primes.

The Rademacher system may be taken to consist of the orthogonal functions
rk(x) = (−1)b2

kxc; k ∈ N. This system is incomplete on [0,1] because, for instance,
the rk(x)’s have odd symmetry about x = 1/2 (i.e. rk(1/2 + x) = −rk(1/2 − x));
its classical completion is the Paley-Walsh system [3, 11].

Herein, we describe an alternative step-function completion (cf. Definition 5): a
number-theoretic analogue of the Fourier system (cf. Definition 7), with the analogy
reinforced by a common function-domain of completeness (viz. Theorem 3); Sec-
tion 4 contains pertinent definitions and details. For instance, as a corollary of the
Carleson-Hunt theorem [5, 6], the expansion of every function in Lq(0, 1); 1 < q ∈ R,
in terms of our step functions, converges pointwise, almost everywhere (a.e.) to the
respective function (cf. Corollary 3). Furthermore, there are Orlicz classes whose
members have a.e. convergent Fourier-series expansions [5, Thm. 2], and therefore,
a.e. convergent expansions in terms of our step functions. Any distinctions between
the completeness properties of the new system and the aforementioned classical sys-
tems remain unresolved by means of the elementary concepts of analysis employed
herein.

Members of the Paley-Walsh system have constant step heights and may, in
general, be construed as having multiple step lengths. Members of the new system
have constant step length and, in general, have multiple step heights. Although the
new system is, by design, a discrete analogue of the Fourier system, this analogy fails
in one particular aspect: Complex exponentials exp {i2πjx}; i2 = −1, j ∈ 0 + N,
are quintessential group characters. Furthermore, the members of the Paley-Walsh
system, with multiplicative composition, constitute characters of the dyadic group,
acting upon binary representations of respective indices [3]. Our system wants,
however, a non-trivial, closed composition of its step functions: requisite for a
group character.

2. Orthogonal system

Our system is constructed via linear combinations of the elementary step func-
tions

cj(x) def= sgn(cos 2πjx) = (−1)b2jx+1/2c; j ∈ 0 + N,(1)

and

sj(x) def= sgn(sin 2πjx) = (−1)b2jxc; j ∈ N,(2)

where sgn(z) denotes the signum function: taking values −1, 0 and 1, for nega-
tive, vanishing and positive arguments, respectively. The Rademacher system is
comprised by the s2`−1(x) = r`(x); ` ∈ N.

Orthogonality connotes the vanishing of the respective inner product (cf. Def-
inition 1). Although every cj(x) is plainly orthogonal to every sj(x) (because of
their opposite symmetries about x = 1/2) neither are the cj(x)’s nor are the sj(x)’s
mutually orthogonal, in general. Furthermore, provisionally extending the compass
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of Definition 2 to non-orthogonal functions, the system consisting of the c’s and
s’s would be incomplete. Consider, for instance, expanding sin 2πx in terms of the
s’s: only s1 has a non-vanishing inner product with sin 2πx (cf. Lemma 3), and
this affords a poor approximation. Nevertheless, our orthogonal system—whose
members are derivable as linear combinations of the c’s and the s’s by canonical
Gram-Schmidt orthogonalization thereof—is complete on Lq(0, 1); 1 < q ∈ R (viz.
Corollary 3). The members of our system are denoted d’s (and t’s).

Definition 4. For i ∈ N, let i denote its odd part: the quotient of i by its largest
power-of-two factor.

Definition 5. d0(x) = 1, and

dj(x) =
∑
` |j

(−1)(`−1)/2`−1µ(`)cj/`(x); j ∈ N;(3)

tj(x) =
∑
` |j

`−1µ(`)sj/`(x); j ∈ N.(4)

Here, µ denotes the classical Möbius function; x ∈ R; ck(x) and sk(x) are defined
in (1) and (2); and the summations range over the divisors of j.

Definitions 4 and 5 prefigure the elementary number-theoretic character of the
present investigations, in which Möbius inversion is used extensively [7, Thm. 10.3],
[9]. Note from (4) that t2`−1(x) = s2`−1(x) = r`(x); ` ∈ N, so the t’s also comprise
the Rademacher system.

By the symmetries of the c’s and s’s, every d is plainly orthogonal to every t.
Orthogonality of the remaining members of the new system is established as follows.

Definition 6. J2(`) denotes Jordan’s totient function of index two [10]:

J2(`) def=
∑
d|`

µ(`/d)d2 = `2
∏
p|`

(1 − p−2),(5)

where the product ranges over the distinct prime factors of ` ∈ N (and with J2(1) =
1).

Theorem 1.

〈dj(x), dk(x)〉 =


δjk if j or k = 0;

δjk
J2(j)

j2 otherwise

 ; j, k ∈ 0 + N,

and

〈tj(x), tk(x)〉 = δjk
J2(j)

j2 ; j, k ∈ N,

where δjk denotes the Kronecker delta.

The two following lemmas facilitate proof of the theorem. Recall that for j and
k ∈ Z, (j, k) denotes their greatest common divisor and [j, k] denotes their least
common multiple.
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Lemma 1. For j and k in N,

〈cj(x), ck(x)〉 =
{

(−1)(j+k)/2+1 (j, k)/[j, k] if j/j = k/k;
0 otherwise,

(6)

and

〈sj(x), sk(x)〉 =
{

(j, k)/[j, k] if j/j = k/k;
0 otherwise.

(7)

These integrals have previously escaped notice. To facilitate exposition, a proof
of Lemma 1 is postponed to the final section.

Lemma 2. For j and k ∈ N,∑
m|k µ(m)(j, k/m)2 =

{
J2(k) k|j;

0 otherwise.

Proof. Using Möbius inversion and (5), the lemma is true if and only if

g2 =
∑
m|g

J2(m) =
∑
m|g

m2
∑
`|m

`−2µ(`) =
∑
`|g

µ(`)
∑
r|(g/`)

r2; g ∈ N.

Here, g denotes (j, k) ∈ N. Möbius inversion of g2 =
∑
`|g µ(`)

∑
r|(g/`) r

2 yields
an identity (for all g ∈ N), establishing the foregoing identity and, hence, the
lemma. �

Proof of Theorem 1. For j, k ∈ N1, (7) establishes that 〈t2rj(x), t2sk(x)〉 = 0 when-
ever r 6= s; r, s ∈ 0 + N. To evaluate the remaining inner products of pairs of t’s,
from Lemma 2 it follows that

j
∑
m|k

µ(m)(j, k/m)
m [j, k/m]

=
∑
`|j

δk`
J2(`)
`

; k ∈ N.

Möbius inversion yields

∑
`|j

µ(`)

j`∑
m|k

µ(m)(j/`, k/m)
m [j/`, k/m]

 = δjk
J2(j)
j

; j ∈ N.

Note that, from (4) and (7), for j, k ∈ N1, the left-hand side plainly equals
j〈t2sj(x), t2sk(x)〉; s ∈ 0 + N, establishing the claims of the theorem pertaining
to the orthogonality of t’s and to the inner products of their squares.

The orthogonality of the d’s follows from an analogous proof, which is omitted
because this result also follows from the orthogonality of the t’s and Claim 2, of
the next section. �

3. Step-function particulars

Because j/j equals the smallest index k for a ck(x) comprised by dj(x) and for
a sk(x) comprised by tj(x); j ∈ N, we have the following consequence of Definition
5.

Claim 1. dj(x) and tj(x) have (minimum) period j/j, i.e.,

dj(x) = dj(x± j/j) and tj(x) = tj(x± j/j); j ∈ N.
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Translations which interconvert s’s and c’s are readily found from

sj(x) = (−1)kcj(x+ (2k − 1)/(4j)); j ∈ N, k ∈ Z.(8)

We now establish an analogous relationship between tj(x) and dj(x); j ∈ N.

Claim 2.

tj(x) = (−1)(k+(j−1)/2)dj(x+ (2k − 1)j/(4j)); j ∈ N, k ∈ Z.

Proof. For a function of period r to contain points of even and odd symmetries,
these must plainly occur alternately, at intervals of length r/4. Here, r = j/j. From
(8),

cj/`(x ± j/(4j)) = (−1)((j/`)±1)/2sj/`(x),

for `|j. Substituting the foregoing identity into the c’s appearing on the right-hand
side of (3) yields (4) – using the following modulo-four congruence: each composite
element of N1 is plainly congruent, modulo 4, to the sum of (a) any factor thereof,
(b) the quotient of the element by the factor and (c) –1, establishing the claim for
k = 1. The extension to all other values of k results from the symmetries of the d’s
and t’s about x = 1/2. �

Claim 3. All the steps of dj(x) and tj(x) have length properly equal 1
2j ; j ∈ N,

using periodicity to unite the leftmost and rightmost (half) steps of dj(x).

Proof. Here, “proper” implies that consecutive step heights differ, which, from
Claim 2, is equivalent to tj(k/2j − ε) 6= tj(k/2j); k = 1, 2, . . . , 2j and 0 < ε, an
infinitesimal.

Assume tj(k/2j − ε) = tj(k/2j), which, from (4), implies∑
` |j

`−1µ(`)(−1)b(k−ε)/`c =
∑
` |j

`−1µ(`)(−1)bk/`c; k ∈ {1, 2, . . . , 2j}.

For sufficiently small ε, the only summands which differ are those whose indices
satisfy ` |k, and these differ by a factor of –1; thus, the foregoing equality yields∑

` |n
`−1µ(`)(−1)k/` = 0,

where n denotes (j, k). As all the `’s are odd, this implies
∑

` |n `
−1µ(`) = 0, a

contradiction because the latter sum equals φ(n)/n > 0, with φ(n) denoting the
Euler totient function [7, (10.9)]. �

Möbius inversion of formulas readily derived from (4) yield the first instances of
series expansions of functions in terms of our step functions.

Claim 4.

sj(x) =
∑
`|j

`

j

{
t`(x)− δ2|`

t`/2(x)
2

}
,

where δ2|` equals unity if ` is even and equals zero otherwise.
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4. Completeness and a.e. convergence

Definition 7. Let the formal Fourier-series expansion of f(x) equal

α0 +
∞∑
j=1

{αj cos 2πjx+ βj sin 2πjx} ,

with
α0

def= 〈f(x), 1〉;αj def= 2〈f(x), cos 2πjx〉
and

βj
def= 2〈f(x), sin 2πjx〉; j ∈ N.

The α’s and β’s are called Fourier coefficients.

Definition 8. The formal series expansion of a function f(x), in terms of our step
functions, equals

a0 +
∞∑
j=1

{ajdj(x) + bjtj(x)} ,(9)

with

aj
def= 〈f(x), dj(x)〉/〈dj(x), dj(x)〉; j ∈ 0 + N,

and

bj
def= 〈f(x), tj(x)〉/〈tj(x), tj(x)〉; j ∈ N.

Recall that Theorem 1 evaluates these denominators. Note that the inner prod-
ucts of (9)’s numerators are guaranteed to exist for any function in Lq(0, 1); 1 <
q ∈ R; a proof may be based on the lemma that a function which is locally in Lq

will be locally in Lr, provided that 1 ≤ r ≤ q [2]; here, r = 1. Convergence is
defined as follows.

Definition 9. The convergence of a function’s series expansion at a point, such
as (9), is equivalent to the existence of a limit for the partial sums of the series
(i.e. the limit of the sum of summands of index ≤ n as n → ∞). Furthermore,
the convergence of a function’s series expansion over a domain connotes that it
converges pointwise at all points thereof, etc.

Theorem 2 (Carleson-Hunt). The Fourier series of every function in Lq(0, 1); 1 <
q ∈ R, converges pointwise to the respective member a.e. (almost everywhere) in
[0,1] [5, 6].

Corollary 1. Every function whose expansion (9) converges a.e. to this function
has a Fourier-series expansion which converges a.e. to this function.

Proof. Consider the Fourier-series expansion of a partial sum of the first n terms of
(9). Next consider a partial sum of the first n′ terms of this Fourier-series expansion,
and, for fixed n, let n′ → ∞. Because the respective d’s and t’s are evidently in,
say, L2(0, 1), these Fourier-series expansions converge a.e. to the partial sum of (9)
(by Theorem 2).

Now let n→∞. By hypothesis, these partial sums converge a.e. to the expanded
function, and the Fourier-series thereof will, therefore, converge a.e. to the expanded
function; the union of the complements of the two domains of a.e. convergence
plainly being of measure zero. Furthermore, because, the Fourier coefficients are
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the same for two functions which are equal to one another almost everywhere,
the Fourier coefficients yielded by this double-limit procedure equal the Fourier
coefficients of the function. �

Our main result on completeness of the new system requires the converse of
Corollary 1, Corollary 2, which is established by means of the following lemmas
and proposition, establishing the well-approximability of cos 2πkx and sin 2πkx by
their respective expansions (9); k ∈ N (viz. Corollary 5).

Lemma 3. 〈cj(x), 1〉 = δj0, and, for j and k ∈ N,

〈cj(x), cos 2πkx〉 =

{
(−1)n−12
(2n−1)π if k = (2n− 1)j, with n ∈ N;

0 otherwise;

〈sj(x), sin 2πkx〉 =
{ 2

(2n−1)π if k = (2n− 1)j, with n ∈ N;
0 otherwise.

The evaluation of these integrals is straightforward; proof is omitted.

Definition 10.

σk =
1
k2

∑
j∈N1

1
J2(j)

 ∑
`|(j,k)

`2µ(j/`)


2

; k ∈ N.(10)

Lemma 4. For all k ∈ N,

σk =
π2

8
.(11)

Outline of Proof. As the left-hand side of (11) is a function only of k it will suffice
to establish it for k ∈ N1. We begin by establishing

σ1 =
∑
j∈N1

µ2(j)
J2(j)

=
∑
j∈N1

µ2(j)
j2
∏
p|j(1− p−2)

=
∑
j∈N1

1
j2

=
π2

8
.

The rightmost equality was known to Euler. The penultimate equality, from the
left, follows from the right-hand equality of (5). The penultimate equality, from
the right, is established by noting µ2(j) merely annuls summands for non-square-
free j’s. Consider, therefore, the following mapping of natural numbers onto the
square-free natural numbers: j 7→ j′, the latter denoting the product of the distinct
prime factors of j, and consider the middle summation to range over the square-
free, positive, odd integers. Expanding the factors (1 − p2)−1 in geometric series
1 + p2 + p4 · · · , we recover the reciprocal of the square of every j mapping to a
given j′. Summing over j′, the reciprocal of the square of every j ∈ N1 is evidently
recovered, establishing the identity.

The following identity, used subsequently in this proof, is, in fact, a specialization
of (5).

J2(pi11 p
i2
2 · · · pinn j) = p2i1

1 p2i2
2 · · · p2in

n

 ∏
i∈{1,2,... ,n}: pi 6 | j

(1− p−2
i )

 J2(j),

(12)
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where p1, p2, . . . , pn denote distinct primes and j, i1, . . . , in ∈ N. As a corollary of
(12), with p prime, m ∈ N1 and (m, p) = 1, we obtain the following identity, also
used subsequently in this proof:

∑
j∈N1

1
J2(phj)

 ∑
`|(j,m)

`2µ(pj/`)


2

=
m2

p2h
σm.(13)

We proceed to establish (11) for all k of the form pi, with p an odd prime. It is
easily established, for i ∈ N, using (10), that

σpi =
1
p2i

σ1 +
∑
j∈N1

(
2p2µ(pj)µ(j) + p4µ2(j)

) i∑
h=1

p4h−4

J2(phj)

 .

Transforming this formula, using (12), (13)—for m = 1—and elementary factoriza-
tions of the Möbius function, yields the desired identity: σpi = σ1 = π2/8.

Now, consider σmpi , where p is an odd prime, where m ∈ N1, where i ∈ N and
where (m, p)=1. By induction, we may assume that σm = π2/8. Then, from (10),

σmpi =
1

m2p2i

m2σm +
∑
j∈N1


 ∑
`|(pj,pm)

`2µ(pj/l)


2

−

 ∑
`|(j,m)

`2µ(pj/l)


2
 i∑
h=1

p4h−4

J2(phj)

 .

This equation yields σmpi = σm upon using (12), (13) and elementary factorizations
of the Möbius function. Therefore, by induction on the number of distinct primes
factoring k, σk = π2/8 for all k ∈ N1 and, hence, for all k ∈ N. �

Proposition 1. Parseval’s identity (the Lyapunov-Steklov closure condition) holds
for the expansions (9) of cos 2πkx; k ∈ 0 + N and of sin 2πkx; k ∈ N.

Proof. By definition, Parseval’s identity holds for the expansion (9) of a function
whenever the corresponding Bessel’s inequality is satisfied as an equality. For k = 0,
Bessel’s inequality reads

∞∑
j=0

〈dj(x), 1〉2
〈dj(x), dj(x)〉 ≤

∫ 1

0

dx = 1.

From Lemma 3, 〈dj(x), 1〉 = δj0, which, by Theorem 1, establishes the inequality to
be an equality in this case. For the functions cos 2πkx and sin 2πkx; k ∈ N, Bessel’s
inequality yields the following inequalities, using the normalization coefficients of
Theorem 1.

∞∑
j=1

j2

J2(j)
〈dj(x), cos 2πkx〉2 ≤ 1

2
= 〈cos 2πkx, cos 2πkx〉; k ∈ N,(14)

and
∞∑
j=1

j2

J2(j)
〈tj(x), sin 2πkx〉2 ≤ 1

2
= 〈sin 2πkx, sin 2πkx〉; k ∈ N .(15)



A COMPLETE SYSTEM OF ORTHOGONAL STEP FUNCTIONS 3499

To establish that these inequalities are satisfied as equalities, Lemmas 3 and 4 and
Definitions 5 and 10 yield, after simplification,
∞∑
j=1

j2

J2(j)
〈tj(x), sin 2πkx〉2 =

∞∑
j=1

j2

J2(j)
〈dj(x), cos 2πkx〉2 =

4
π2
σk =

1
2

; k ∈ N.

�

Corollary 2. Every function whose Fourier-series expansion converges a.e. to this
function has an expansion (9) which converges a.e. to this function.

Sketch of Proof. [For a complete proof, viz. Proof of Corollary 1, mutatis mu-
tandis]. Consider the partial sums of the Fourier series of such a function. As a
corollary of Proposition 1, the expansions (9) of such partial sums converge a.e. to
the respective partial sum. Because these partial sums converge a.e. to the function,
the expansion (9) of the given function converges a.e. to the function. �

Corollaries 1 and 2 yield the following theorem.

Theorem 3. Every function has a Fourier-series expansion which converges a.e. to
this function if and only if it has an expansion (9) which converges a.e. to this
function.

Corollary 3. The system consisting of the d’s and t’s is complete for Lq(0, 1); 1 <
q ∈ R.

Proof. Thus, from Theorem 2 and Corollary 2, the expansion (9) of every member
of Lq(0, 1); 1 < q ∈ R converges a.e. to the respective member. It follows that the
only functions in these classes of functions whose expansions (9) converge to zero
a.e. are themselves equal zero a.e.; our definition of completeness (cf. Definition
2). �

As the members of the Paley-Walsh and Haar systems for [0,1] are in, say, L2(0, 1)
and, furthermore, as our step functions have a.e. convergent expansions in either
of the respective series [8], we note the following consequence of Corollary 3.

Corollary 4. One may substitute either “Paley-Walsh-series” or “Haar-series”
for “Fourier-series” in the statement of Theorem 3.

5. Example

Definition 11. Given that k|`,

J̃2(k; `) def=
∑
d|k

d2µ(`/d).

Corollary 5.

cos 2πkx =
−2
πk

∑
j∈N1

(−1)(j+k)/2jJ̃2((j, k); j)djk/k(x)
J2(j)

; k ∈ N.

Also,

sin 2πkx =
2
πk

∑
j∈N1

jJ̃2((j, k); j)tjk/k(x)
J2(j)

; k ∈ N.
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It may be noted, in connection with Definition 11, that J̃2(`; `) = J2(`) (cf. (5)),
and

J̃2(k; `) =
(
k

k̆

)2

µ(`/k)J2(k̆),

where k̆ denotes the quotient of k by all its prime-power factors, for the primes
factoring (k, `/k).

6. Proof of (7)

Proof of (7) is facilitated by the introduction of new step functions. The latter
may be used to obtain (6) directly, or (7) may also be used to obtain (6) as an easy
corollary.

Proof of (7). Consider the functions

fj(x) def= (−1)bjxc, x ∈ [0, 1], j ∈ N.
Note that fj(x) = s2j(x) is a step function alternating between 1 and −1 on
the consecutive intervals [0, 1/j), [1/j, 2/j),. . . , [(j − 1)/j, 1). Thus, it has period
2/j; j ∈ N. For each j, let j = j2`j . Our proof will be completed by establishing
that

〈fj(x), fk(x)〉 =
{

0 `j 6= `k;
(j, k)/[j, k] otherwise.(16)

To derive (16), note that, by definition, 〈fj(x), fk(x)〉 =
∑(j,k)

s=1

∫ s
(j,k)
s−1
(j,k)

fj(x)fk(x)dx.

From their evident periodicities, fj(x+ s
(j,k) ) = ±fj(x) and fk(x+ s

(j,k) ) = ±fk(x)
for all j, k ∈ N. Thus,

〈fj(x), fk(x)〉 = c

∫ 1
(j,k)

0

fj(x)fk(x)dx,

where c is a constant (which we will evaluate, for non-vanishing, right-hand inte-
grals). Now,

∫ 1
(j,k)

0

fj(x)fk(x)dx =
∫ 1

2(j,k)

− 1
2(j,k)

fj

(
x+

1
2(j, k)

)
fk

(
x+

1
2(j, k)

)
dx.

(17)

If `j 6= `k, then either j
(j,k) is even and k

(j,k) is odd or vice versa. Consequently,
about x = 0, either fj(x + 1

2(j,k) ) is odd and fk(x + 1
2(j,k) ) is even or vice versa.

Hence, fj(x+ 1
2(j,k) )fk(x+ 1

2(j,k) ) is odd on [− 1
2(j,k) ,

1
2(j,k) ] and 〈fj(x), fk(x)〉 = 0,

establishing (16) for this case.
Next, suppose that `j = `k. Then both j

(j,k) and k
(j,k) are odd, which implies

fj(x+ s
(j,k) ) = (−1)sfj(x) and fk(x+ s

(j,k) ) = (−1)sfk(x). Thus, from (17),

〈fj(x), fk(x)〉 = (j, k)
∫ 1

(j,k)

0

fj(x)fk(x)dx.(18)

Thus, our proof of (16), whence (7), will be completed by establishing∫ 1
(j,k)

0

fj(x)fk(x)dx =
1

[j, k]
.(19)
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Let s = j/(j, k), t = k/(j, k) and ξ = 1
st(j,k) = 1

[j,k] . Without loss of generality,

suppose s > t. Partition the interval [0, 1
(j,k) ] by the points in the union of S def=

{sξ, 2sξ, . . . , (t− 1)sξ} with T
def= {tξ, 2tξ, . . . , (s− 1)tξ}. Note, because (s, t) = 1,

S and T are disjoint.
The product fj(x)fk(x) changes sign as x traverses the points in S ∪ T. To

evaluate the left-hand side of (19), one may sum the integrals of fj(x)fk(x) over
the intervals, of [0, 1/(j, k)], defined by the points of T : [(i−1)tξ, itξ), i = 1, 2, . . . , s.
(As the integrands are finite, whether or not the right endpoint of these intervals
is included in the integration is immaterial to the value of the integral of (19).)
We dichotomize these intervals into (i) those including a point of S, in their proper
interior, and (ii) the complement. (Each point of S plainly falls in the proper
interior of the foregoing intervals). Considering the second type of intervals—in
their native order—fj(x)fk(x) alternates between 1 and −1 thereupon because, on
each intervening interval of the first kind, fj(x)fk(x) takes both signs. Therefore,
the sum of the integrals of fj(x)fk(x) on the intervals of the second type equals tξ.
Now, there remain t−1 intervals of the first type, each of which may be represented
by the respective element of S. We find

is = hit+ ri; 0 ≤ ri < t; i = 1, 2, . . . , t− 1.(20)

The integral of fj(x)fk(x) on the ith interval of the first type, denoted by Ii, plainly
equals ±(2ri − t)ξ; with the respective sign equals (−1)hi−i+1. However, by (20),
hi − i and ri have the same parity. So,

Ii = (−1)ri+1(2ri − t)ξ; i = 1, 2, . . . , t− 1.

Because (s, t) = 1, {ri} = {1, 2, . . . , t− 1}. Therefore,
t−1∑
i=1

Ii =
t−1∑
i=1

(−1)i+1(2i− t)ξ = (1− t)ξ.

Adding this result to tξ, the sum of the integrals over the intervals of the second
type, yields (19), and, hence, with recourse to (18), we also obtain (16) for this
case. �
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