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ON THE REPRESENTATION OF INTEGERS
AS LINEAR COMBINATIONS OF CONSECUTIVE VALUES

OF A POLYNOMIAL

JACQUES BOULANGER AND JEAN-LUC CHABERT

Abstract. Let K be a cyclotomic field with ring of integers OK and let f be
a polynomial whose values on Z belong to OK . If the ideal of OK generated
by the values of f on Z is OK itself, then every algebraic integer N of K may
be written in the following form:

N =
l∑

k=1

εkf(k)

for some integer l, where the εk’s are roots of unity of K. Moreover, there are
two effective constants A and B such that the least integer l (for a fixed N) is

less than AÑ +B, where

Ñ = max
σ∈Gal(K/Q)

|σ(N)|.

1. Introduction

The Waring/Hilbert theorem says that, for each natural integer d, there exists
an integer g(d) such that every natural integer N may be written as the sum of
g(d) dth powers [8, Theorem 11.11].

Waring’s problem for polynomials states that, for each integer-valued polynomial
f with positive leading coefficient, if the greatest common divisor of the values of
f is 1, then there is an integer g(f) such that every sufficiently large integer N can
be written as the sum of at most g(f) values of f [8, Theorem 11.9].

One may change the problem:
— on the one hand, by strengthening the conclusion: we only consider sums either
of consecutive dth powers or of consecutive values of f (see [5, §6]),
— on the other hand, by forgetting the common bound g(d) or g(f) and by intro-
ducing coefficients different from 1.

For instance, if the coefficients are 0 and 1, then we consider ‘lacunary sums’ of
consecutive dth powers or of consecutive values, that is, sums of distinct powers or
sums of values on distinct elements. With respect to this case, we have

Proposition 1.1 ([6, Theorem 1]). Let f be an integer-valued polynomial with
positive leading coefficient such that the greatest common divisor of the values of f
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is 1. Then, every sufficiently large integer N can be written in the following way:

N =
l∑

j=1

εjf(j), where l ∈ N∗ and εj = 0, 1 (j = 1, . . . , l).

See also [4] when f has integral coefficients.
If the coefficients are +1 or −1, that is, if we consider ‘signed sums’ either of

consecutive dth powers or of consecutive values, we have

Proposition 1.2 ([2, Theorem 1]). Let d be a natural integer. Every natural integer
N may be written in the following way:

N =
l∑

j=1

εjj
d, where l ∈ N∗ and εj = ±1 (j = 1, . . . , l).

According to [2], R.W. Prielipp proved this result for d = 2 in 1987 while,
according to [3], Erdös would have proved this particular case in 1937 when he was
sixteen. Seemingly independently, Proposition 1.2 was extended to integer-valued
polynomials by Yu [10] and Bodini, Duchet and Lefranc [3, Théorème 2.1]:

Proposition 1.3. Let f be an integer-valued polynomial such that the greatest
common divisor of its values is 1. Then, every integer N may be written in the
following way:

N =
l∑

j=1

εjf(j), where l ∈ N∗ and εj = ±1 (j = 1, . . . , l).

The aim of this paper is to extend this last result to integers of number fields by
considering coefficients εj that are roots of unity. We are going to show that the pre-
vious proposition extends nearly word for word to cyclotomic fields (Theorem 5.3).
To do so, we use techniques from [3] that seem simpler than Yu’s. Doing this, we
will correct a gap in the proof given by [3]. We also obtain an effective upper bound
for the least integer l for which N has such a representation (Theorem 6.1).

2. Hypotheses and notation

Let K be a number field. Denote by OK the ring of integers of K and by µK
the group of roots of unity of K. We consider the polynomial ring

Int(Z,OK) = {g ∈ K[X ] | g(Z) ⊆ OK}.
Let f be a fixed polynomial in Int(Z,OK). Denote by d the degree of f .

We are interested in the subset R = RK(f) of OK formed by the integers
N ∈ OK that may be represented in the following form:

N =
l∑

j=1

εjf(j) (l ∈ N∗, εj ∈ µK),

where l depends on N .
We denote by λ(N) = λK(f,N) the smallest integer l such that N has such a

representation.

Examples. (1) λQ(X2, 0) = 8, λQ(X2, 2) = 4, λQ(X2, 3) = 2.
(2) For each k ∈ N∗, RQ(Xk) = Z.
(3) If d 6= −1,−3, then RQ(

√
d)(X

k) = Z because µQ(
√
d) = {±1}.
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We are going to prove that, when K is a cyclotomic field, RK(f) = OK if and
only if the values of f on Z generate the ideal OK . When K = Q, we obtain the
previous result of Yu and Bodini, Duchet and Lefranc.

Of course, we have the following containment:

RK(f) ⊆ Z[µK ] · f(Z),

where Z[µK ] · f(Z) denotes the Z[µK ]-module generated by the values of f on Z.
We are going to study some properties of stability of R. For instance,

∀ ε ∈ µK , εR = R.

In the next section we introduce some tools taken from [3].

3. Operators on Int(Z,OK)

We begin with some easy properties concerning the elements of Int(Z,OK).

Proposition 3.1. Let g be a polynomial of Int(Z,OK) and let e be its degree.

(1) There exists a unique sequence b0, b1, . . . , be of elements of OK such that

g(X) =
e∑
i=0

bi

(
X

i

)
, where

(
X

i

)
=
X(X − 1) · · · (X − i+ 1)

i!
.

In particular, e!g(X) ∈ OK [X ].
(2) The following subsets of OK generate the same Z-module:

{g(k) | k ∈ Z} , {g(0), g(1), . . . , g(e)} , {b0, b1, . . . , be}.

We denote this Z-module by Z · g(Z). In particular, these three subsets
generate the same Z[µK ]-module.

Proof. (1) Obviously, one may write

g(X) =
e∑
i=0

bi

(
X

i

)
, where bi ∈ K.

These bi’s are unique. Replacing X successively by 0, 1, . . . , e leads to a triangular
linear system in the bi’s whose matrix is unimodular with coefficients in Z:

g(0)
g(1)
g(2)
. . .
g(e)

 =


1 0 0 · · · 0
1 1 0 · · · 0
1 2 1 . . . 0
. . . . . . . . . . . . . . .
1

(
e
1

) (
e
2

)
. . .

(
e
e

)




b0
b1
b2
. . .
be

 .

Consequently, the bi’s are in OK .
(2) Obviously, we have the following inclusion of Z-modules:

(g(0), g(1), . . . , g(e)) ⊆ (g(k) | k ∈ Z) ⊆ (b0, b1, . . . , be).

Moreover, it follows from the previous linear system that we have

(b0, b1, . . . , be) ⊆ (g(0), g(1), . . . , g(e)). �
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Notation (following [3]). Let A = (ε1, . . . , εl) be a sequence of elements of µK .
Denote by l(A) = l its length. For each g ∈ Int(Z,OK) we define the action of A
on g by

A[g] =
l∑

k=1

εkg(X + k).

The following map is clearly OK-linear:

A : g ∈ Int(Z,OK) 7→ A[g] ∈ Int(Z,OK).

This symbolism is useful here because we have the equivalence

N =
l∑

k=1

εkf(k)⇔ N = A[f ](0).

Then
λ(N) = min{l(A) | A[f ](0) = N}.

We are going to use the following notation:
For A = (α1, . . . , αl) ∈ µlK , B = (β1, . . . , βt) ∈ µtK and ε ∈ µK , we let

εA = (εα1, . . . , εαl),

A = −A = (−α1, . . . ,−αl),
A×B = (α1, . . . , αl, β1, . . . , βt).

Then, one has
(εA)[g] = εA[g], A[g] = −A[g]

and

(A×B)[g](X) =
l(A)∑
k=1

αkg(X + k) +
l(B)∑
h=1

βhf(X + l(A) + h).

Then we have the following obvious lemma.

Lemma 3.2. For each A ∈ µlK and each g ∈ Int(Z,OK),

(A×A)[g](X) = A[g](X)−A[g](X + l).

If the leading term of A[g] is aXe, then the leading term of the polynomial (A×A)[g]
is −aelXe−1. In particular, deg(A×A)[g] = degA[g] − 1.

Definition 3.3. We define inductively the operators Dm (m ∈ N) by

D0 = (1) and Dm+1 = Dm ×Dm.

For instance, D1 = (1,−1), D2 = (1,−1,−1, 1), .... Replacing 1 by 0 and −1
by 1, we get the Thue-Morse sequence (see [9, Sequence A010060]).

Clearly, l(Dm) = 2m, and hence

Dm+1[g](X) = Dm[g](X)−Dm[g](X + 2m).

If m > deg(g), then Dm[g] = 0.
In particular, for the fixed polynomial f of degree d introduced in Section 2:

— Dd+1[f ] = 0, 0 ∈ RK(f) and λ(0) ≤ 2d+1.
— Dd[f ] is a constant that we denote by CK(f) or C. More precisely:

Lemma 3.4. Let ad be the leading coefficient of f . Then,

Dd[f ] = (−1)d(d!)2
d(d−1)

2 ad = CK(f) = C ∈ OK .
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Proof. By linearity,

Dd[f ] = Dd[f − adXd] +Dd[adXd] = Dd[adXd] = adDd[Xd].

It follows from Lemma 3.2 that

Dd[Xd] = (−1)d×d×(d−1)×· · ·×2×1×2d−1×· · ·×22×2 = (−1)d×d!×2
d(d−1)

2 .

Finally, it follows from Proposition 3.1 that d!ak ∈ OK , and hence CK(f) ∈ OK .
One could also say that, in fact,

C(f) ∈ Z[µK ] · f(Z) ⊆ OK .

�

4. Stability properties of R

Proposition 4.1. For C = Dd[f ], one has

R+ C · Z[µK ] ⊆ R.

Proof. Let N ∈ R and let A = (α1, . . . , αl) ∈ µlK be such that

N = A[f ](0).

Then, for every ε ∈ µK , one has

(A× εDd)[f ](X) = A[f ](X) + εDd[f ](X + l),

and hence
A[f ](0) + εDd[f ](l) = N + εDd[f ] = N + εC ∈ R.

�

The next result is an extension of [3, Lemme 2.2], where K = Q and ε+ε′ = ±2.

Proposition 4.2. Let N ∈ R, ε, ε′ ∈ µK , and k > λ(N). Then

N + (ε+ ε′)f(k) ∈ R.

Proof. Let A = (α1, . . . , αl) be such that N = A[f ](0) and l = l(A) = λ(N). Let
m ∈ N be such that m > d and 2m ≥ k − l. Then m ≥ d+ 1 implies that

(A× εDm)[f ](0) = (A× εDm)[f ](0) = N.

Moreover, 2m ≥ k − l implies that −ε is the k-th term of one of the sequences
A × εDm or A × εDm. If we replace this −ε by ε′, we obtain a sequence B such
that

B[f ](0) = N + (ε+ ε′)f(k).

�

Bodini, Duchet and Lefranc forgot this condition k > λ(N) in their proof of [3,
Lemme 2.2]. Now we shall see how we may avoid the hypothesis k > λ(N).

Proposition 4.3. For all N ∈ R, for all ε, ε′ ∈ µK , and for all k ∈ Z, one has

N + (ε + ε′)f(k) ∈ R+ COK .
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Proof. Let c ∈ N be such that C = Dd[f ] divides c in OK . Since d!ad ∈ OK , we
may choose

c = 2
d(d−1)

2 |NK/Q(d!ad)|.
Then for k and s ∈ Z, one has

f(k + d!cs)− f(k) ∈ cOK ⊆ COK ,
because d!f ∈ OK [X ].

Now, let N ∈ R, let ε, ε′ ∈ µK and let k ∈ Z. Let A = (α1, . . . , αl) be such that
N = A[f ](0). Let s ∈ N be such that k′ = k + d!cs > l(A) = l. Then it follows
from Proposition 4.2 that

N + (ε + ε′)f(k′) ∈ R.
Moreover, one has

(f(k)− f(k′)) ∈ COK ,
and hence

N + (ε + ε′)f(k) ∈ R+ COK .
�

Note that in Proposition 4.3 we no longer have the condition k > λ(N) of
Proposition 4.2, but we no longer have the inclusion in R. In order to be able to
use the inclusion

R+ CZ[µK ] ⊆ R,
of Proposition 4.1, we shall assume that

Z[µK ] = OK .
This last equality is obviously equivalent to: K being a cyclotomic field. This will
be our hypothesis.

5. Cyclotomic fields

From now on, we assume that K is a cyclotomic field, that is, OK = Z[µK ]
(including the case K = Q).

Lemma 5.1. Assume OK = Z[µK ]. Then, for all ε, ε′ ∈ µK and for all x ∈
Z[µK ] · f(Z), one has

R+ (ε+ ε′)x ⊆ R.

Proof. This lemma extends [3, Lemme 2.3], where K = Q and ε + ε′ = ±2. It
follows from Proposition 4.1 that

R+ COK ⊆ R
and, from Lemma 4.3, that for all ε, ε′ ∈ µK and for all k ∈ Z
(∗) R+ (ε + ε′)f(k) ⊆ R.
Let x ∈ Z[µK ] · f(Z). Proposition 3.1 shows that

x =
d∑
k=0

ukf(k), where uk ∈ Z[µK ].

Writing
uk =

∑
i

mi,kεi,k, where mi,k ∈ N and εi,k ∈ µK ,
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we have
(ε+ ε′)x =

∑
i,k

mi,k(εεi,k + ε′εi,k)f(k).

Using the containment (*), we see that

R+ (ε+ ε′)x ⊆ R.
�

Remark 5.2. The previous lemma doesn’t say that

R+ Z[µK ] · f(Z) ⊆ R.
It essentially says that

R+
∑
i

miεif(k) ⊆ R (k ∈ Z, mi ∈ Z, εi ∈ µK)

when
∑
imi is even (see Proposition 4.2). We are going to show how this condition

may be dropped in the cyclotomic case.

Theorem 5.3. Let K be a cyclotomic field. Denote by OK the ring of integers of
K and by µK the group of roots of unity of K. Let f be a polynomial of K[X ] with
degree d such that f(Z) ⊆ OK . Let

R = RK(f) =

N ∈ OK | N =
l∑

j=1

εjf(j) with εj ∈ µK

 .

Then:
(1) R is equal to the ideal of OK generated by the values of f on Z.
(2) R = OK if and only if the ideal generated by the set {f(0), f(1), . . . , f(d)}

is the ring OK .

Proof. Denote by (f(Z)) the ideal of OK generated by the values of f on Z (here
(f(Z)) = Z[µK ] · f(Z)). Let K = Q(ζ), where ζ is a primitive m-th root of unity.

(1) Obviously, R ⊆ (f(Z)). Conversely, if m is odd, then

1 = −(ζ + ζ2 + · · ·+ ζm−1),

and it follows from Lemma 5.1 that R + (f(Z)) ⊆ R. In particular, (f(Z)) ⊆ R
since 0 ∈ R, and hence R = (f(Z)).

If m is divisible by an odd number m′ > 1, then, considering ξ = ζm/m
′
, we have

1 = −(ξ + ξ2 + · · ·+ ξm
′−1),

and we may also conclude.
There remains the case when m is a power of 2. First recall, from Lemma 5.1,

that
R+ (1 − ζ)(f(Z)) ⊆ R and (1 − ζ)(f(Z)) ⊆ R.

One knows that
NK/Q(1− ζ) = 2.

Consequently, the element 1− ζ is not invertible in OK , and hence

(1− ζ)(f(Z)) 6= (f(Z)).
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Moreover,
Card ((f(Z))/(1 − ζ)(f(Z))) = N(1− ζ) = 2

implies that (f(Z)) contains exactly two classes modulo (1− ζ)(f(Z)).
Since (1 − ζ)(f(Z)) 6= (f(Z)), there is a smallest integer j ≥ 1 such that f(j) /∈

(1 − ζ)(f(Z)). Let N∗ = f(1) + f(2) + · · · + f(j). Then, N∗ ∈ R and N∗ /∈
(1 − ζ)(f(Z)). Thus, R contains two distinct classes modulo (1 − ζ)(f(Z)), and
hence is equal to (f(Z)).

(2) The second assertion results from the first one and from Proposition 3.1. �

When K = Q, the original result of Yu [10, Theorem] seems to be stronger, but
Theorem 5.3 may be easily written in a more general form:

Corollary 5.4. With the hypotheses and notation of Theorem 5.3, assume that
(f(Z)) = OK . Then, for every fixed integer m, each element N of OK may be
written in the following way:

N =
m+l∑

k=m+1

εkf(k), where εk ∈ µK , and l ∈ N

(l depends on K, f,N and m).

Proof. Let g(X) = f(X + m). Then (g(Z)) = (f(Z)) = OK , and it follows from
Theorem 5.3 that there exist l ∈ N and εk ∈ µK (k = 1, . . . , l) such that

N =
l∑

k=1

εkg(k) =
l∑

k=1

εkf(k +m) =
m+l∑

k=m+1

εkf(k).

�

6. An upper bound for λ(N)

In [2, §4], Bleicher shows that λ(N), the least integer l such that

N =
l∑

k=1

±kd (N ∈ N),

is less than
AN

1
d+1 +B

for some constants A and B only depending on the exponent d. On the other hand,
in a concluding remark, Yu [10] says that it seems more difficult to estimate this
minimal value λ(N) in the case of integer-valued polynomials. Nevertheless, we are
going to give an upper bound for λ(N) even in the general case of cyclotomic fields
and for integer-valued polynomials.

Theorem 6.1. Let K = Q(ζ) be a cyclotomic field, where ζ is a primitive m-th
root of unity (m is odd or divisible by 4). Let

f(X) =
d∑
i=0

aiX
i ∈ K[X ] with ad 6= 0 , and then deg(f) = d.
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Assume that the values of f on Z belong to the ring of integers OK and that the
ideal generated by these values is OK itself. For each N ∈ OK , denote by λ(N) the
least integer l such that

N =
l∑

k=1

εkf(k), where εk ∈ µK (k = 1, . . . , l).

Then there are two effective constants A = AK(f) and B = BK(f), only depending
on K and f , such that

λ(N) ≤ AÑ +B,

where, for each x ∈ K,
x̃ = max

σ∈Gal(K/Q)
|σ(x)| .

More precisely, we may choose

A =
2
d(3−d)

2

d!
ϕ(m)2 α β γ

and
B = Aν(N ) + Λ(N ),

where ϕ denotes Euler’s function and Φm the m-th cyclotomic polynomial,

α =
1̃
ad

, Φm(X) =
ϕ(m)∑
j=0

βjX
j , β =

ϕ(m)−1∑
j=0

|βj | , γ =
1̃

Φ′m(ζ)
,

N denotes a subset of OK containing at least one representative of the classes of
OK modulo C, with

C = CK(f) = (−1)d d! 2
d(d−1)

2 ad,

and where the constants

ν(N ) = max {Ñ | N ∈ N}

and
Λ(N ) = max {λ(N) | N ∈ N}

are bounded in Propositions 6.5 and 7.1 below.

We begin with two technical lemmas.

Lemma 6.2. Let N and N0 in OK be such that

N = N0 +

(
s∑
i=1

niεi

)
C with ni ∈ Z, εi ∈ µK .

Then,

λ(N) ≤ λ(N0) +

(
s∑
i=1

|ni|
)

2d.

Proof. The case when N = N0 + εC is a straightforward consequence of Proposi-
tion 4.1. We obtain the general case by iteration. �
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Lemma 6.3. There is a constant E = EK , only depending on K, such that, for
every

x =
∑

0≤i<ϕ(m)

xi ζ
i ∈ OK (xi ∈ Z),

one has
|xi| ≤ E x̃ (0 ≤ i < ϕ(m)).

One may choose
E = EK = ϕ(m) β γ.

Proof. Denote by κ0, κ1, . . . , κϕ(m)−1 the dual basis of the basis 1, ζ, . . . , ζϕ(m)−1

of K over Q with respect to the trace. Then, for 0 ≤ i < ϕ(m), one has

xi = trK/Q(xκi) =
∑
σ∈G

σ(x)σ(κi),

where G = Gal(K/Q). Thus,

|xi| ≤ x̃
∑
σ∈G

|σ(κi)|.

It suffices to choose a constant E that is greater than

max
0≤i<ϕ(m)

(∑
σ∈G
|σ(κi)|

)
.

One knows that the κi’s are characterized by∑
0≤i<ϕ(m)

κiX
i =

∏
k 6=1, (k,m)=1

X − ζk
ζ − ζk

(see for instance [7, Proposition B03]). Since∏
k 6=1, (k,m)=1

(ζ − ζk) = Φ′m(ζ),

one has

Φ′m(ζ) ×
∑
i

κiX
i =

Φm(X)
X − ζ = −ζ−1 Φm(X) (

∑
k≥0

ζ−kXk),

and hence

|Φ′m(ζ)| |κi| =

∣∣∣∣∣∣
i∑

j=0

βjζ
i−j

∣∣∣∣∣∣ , where Φm(X) =
ϕ(m)∑
j=0

βjX
j.

Consequently, for every σ ∈ G and every i ∈ {0, 1, . . . , ϕ(m)− 1},

|Φ′m(σ(ζ))| |σ(κi)| ≤
i∑

j=0

|βj |,

and hence

|σ(κi)| ≤ β
1

minσ |σ(Φ′m(ζ))
, where β =

ϕ(m)−1∑
j=0

|βj |.



CONSECUTIVE VALUES OF A POLYNOMIAL 5081

Let

γ =
1

minσ |σ(Φ′m(ζ))| = max
σ

1
|σ(Φ′m(ζ))| =

1̃
Φ′m(ζ)

.

Finally,

max
0≤i<ϕ(m)

(∑
σ∈G

|σ(κi)|
)
≤ ϕ(m) β γ.

�
Remarks 6.4. (1) Clearly,

1 + β =
ϕ(m)∑
j=0

|βj | ≤ 2ϕ(m).

Recall also Bateman’s results on the coefficients of cyclotomic polynomials [1]:

1 + β ≤ m
d(m)

2 ,

where d(m) denotes the number of divisors of m.
(2) Note also the following obvious inequality:

γ =
1̃

Φ′m(ζ)
≤
(

2 sin
π

m

)1−ϕ(m)

.

(3) When m = 2n, one has Φ2n(X) = X2n−1
+ 1 and Φ′2n(ζ) = − 1

ζ 2n−1. Then
β = 1 and γ = 21−n, so that E = ϕ(2n)β γ = 1.

Proof of Theorem 6.1. Let N be a finite subset of OK such that N contains at least
one representative of the classes of OK modulo C. Then, for every fixed element
N in OK , there is at least one element N0 in N and an element x in OK such that

N −N0 = Cx.

For each σ ∈ G = Gal(K/Q),

|σ(x)| ≤ |σ(N)| + |σ(N0)|
|σ(C)| ,

and hence

x̃ ≤ (Ñ + Ñ0)
1̃
C
.

Since OK = Z[ζ], the element x may be written in the following way:

x =
∑

0≤i<ϕ(m)

xi ζ
i with xi ∈ Z,

and Lemma 6.2 shows that

λ(N) ≤ λ(N0) + 2d
∑

0≤i<ϕ(m)

|xi|.

On the other hand, it follows from Lemma 6.3 that

|xi| ≤ E (Ñ + Ñ0)
1̃
C
.

Consequently,

λ(N) ≤ λ(N0) + 2d ϕ(m) E (Ñ + Ñ0)
1̃
C
.
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Replacing 1̃
C by 2

d(1−d)
2

d! α and E by ϕ(m)β γ, we obtain

λ(N) ≤ λ(N0) +A(Ñ + Ñ0)

with

A =
2
d(3−d)

2

d!
ϕ(m)2 α β γ.

Finally,
λ(N) ≤ Λ(N ) +A (Ñ + ν(N )),

where
ν(N ) = max {Ñ0 | N0 ∈ N}

and
Λ(N ) = max {λ(N0) | N0 ∈ N}.

We then may choose
B = A ν(N ) + Λ(N ).

The constant A is well defined. To prove the effectiveness of B, we have to give
upper bounds for ν(N ) and Λ(N ) for some choice of N . This is done in Proposi-
tions 6.5 and 7.1 below. �

A choice for N . Let

c = cK(f) = 2
d(d−1)

2 (d!)ϕ(m) |NK/Q(ad)|.

Note that c ∈ N and C divides c in OK . Then let

N =

N =
∑

0≤i<ϕ(m)

niζ
i | ni ∈ Z, −

c

2
< ni ≤

c

2

 .

For every N =
∑
i ni ζ

i ∈ OK and for 0 ≤ i < ϕ(m), let n0
i ∈ Z be such that

ni ≡ n0
i (mod c) and − c

2 < n0
i ≤ c

2 . Then N0 =
∑

i n
0
i ζ
i ∈ N , and c divides

N −N0; a fortiori C divides N −N0.

Proposition 6.5. With the previous choice for N , one has

ν(N ) = max {Ñ | N ∈ N} ≤ (d!)ϕ(m) 2
d(d−1)

2 −1 ϕ(m) |NK/Q(ad)|.

Proof. Of course, for every N0 =
∑
i n

0
i ζ
i ∈ N , one has

Ñ0 ≤
∑
i

|n0
i | ≤

c

2
ϕ(m),

since every σ(N0) is of the form∑
i

n0
i σ(ζ)i =

∑
i

n0
i ζ
ik,

where k is prime to m. Let

νK(f) =
c

2
ϕ(m) = (d!)ϕ(m) 2

d(d−1)
2 −1 ϕ(m) |NK/Q(ad)|.

Then, for each N0 ∈ N , Ñ0 ≤ νK(f). �
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Remarks 6.6. (1) Note that, with this choice for N and this bound for ν(N ), one
has

B = 2d−1 (d!)ϕ(m)−1 ϕ(m)3 α β γ |NK/Q(ad)| + Λ(N ).

(2) In the case when ad ∈ Q, one has α = 1
|ad| and one may choose

c = 2
d(d−1)

2 d! ad.

Consequently,
B = 2d−1 ϕ(m)3 β γ + Λ(N ).

(3) If K = Q, then m = β = γ = ϕ(m) = 1,

A =
2
d(3−d)

2

d! ad
and B = 2d−1 + Λ(N ).

It remains to give an effective bound for Λ(N ). This is done in Proposition 7.1
in the next section.

7. An upper bound for Λ(N )

Notation 7.0. Recall that

Λ(N ) = max {λ(N) | N ∈ N},
where

N =

N =
∑

0≤i<ϕ(m)

niζ
i | ni ∈ Z, −

c

2
< ni ≤

c

2


and

c = cK(f) = (d!)ϕ(m) 2
d(d−1)

2 |NK/Q(ak)|.
Let v0, . . . , vd ∈ OK be such that

d∑
k=0

vkf(k) = 1

(it follows from Proposition 3.1 that f(0), . . . , f(d) generate the ideal OK), and let

V = VK(f) = max {ṽk | 0 ≤ k ≤ d}.

Denote by f̃ the polynomial

f̃(X) =
d∑
i=0

ãiX
i

and let

F =
d+1∑
k=1

f̃(k).

If m is not a power of 2, we denote by m′ the least odd divisor ≥ 3 of m, we let

δ(m) =
m′ − 1

2
,

and we put

ω(m) =
[
(d+ 1) ϕ(m)3 δ(m) β γ V

c

2

]
.
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If m = 2n, we let

δ(1) =
1
2
, δ(m) =

1
2 sin π

m

for m ≥ 4,

and
ω(2n) =

[
(d+ 1) 2n−1 δ(2n) V

(
2n−2c+ F

)]
.

Proposition 7.1. With the hypotheses of Theorem 5.3 and Notation 7.0, one has

Λ(N ) ≤ λω(m),

where λω(m) is defined by

λ0 = 2d+1 and λk+1 = h(λk),

h denoting the polynomial

h(X) = 2 d! c + X + G f̃(X + d!c)

with

G =
2

(d+1)(4−d)
2

d!
ϕ(m)2 α β γ.

We first need several technical lemmas.

Lemma 7.2. If m is not a power of 2, then every N ∈ OK may be written in the
following form:

N =
∑
i∈I

(εi + ε′i) f(ki) with εi, ε
′
i ∈ µK , ki ∈ N,

with
Card(I) ≤ (d+ 1)× ϕ(m)2 × δ(m)× β × γ × V × Ñ .

Proof. Obviously,

N =
d∑
k=0

Nvkf(k).

Let us write
Nvk =

∑
0≤j<ϕ(m)

wk,jζ
j (wk,j ∈ Z).

Then

N =
d∑
k=0

 ∑
0≤j<ϕ(m)

wk,jζ
j

 f(k).

As already noticed in the proof of Theorem 5.3, the element ξ = ζ
m
m′ satisfies

m′−1∑
i=1

ξi = −1.

Consequently,

N =
d∑
k=0

 ∑
0≤j<ϕ(m)

wk,jζ
j

− δ(m)∑
i=1

ξi(1 + ξδ(m))

 f(k),
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and then

N =
d∑
k=0

 ∑
0≤j<ϕ(m)

nk,j

δ(m)∑
i=1

(εi,j,k + ε′i,j,k)

 f(k),

where εi,j,k, ε′i,j,k ∈ µK and nk,j ∈ N. It follows from Lemma 6.3 that

nk,j = |wk,j | ≤ E × Ñvk ≤ E × ṽk × Ñ ≤ E × V × Ñ = ϕ(m) β γ V Ñ.

�

Lemma 7.3. If m is a power of 2, then every N ∈ OK may be written in the
following form:

N = N0 +
∑
i∈I

(εi + ε′i) f(ki), where εi, ε′i ∈ µK , ki ∈ N,

with

N0 = 0 or N0 =
k0∑
k=1

f(k) for some k0 ≤ d+ 1

and
Card(I) ≤ (d+ 1)× ϕ(m)× δ(m)× V × (Ñ + F ).

Proof. As seen in the proof of Theorem 5.3, there exists a least integer k0 (1 ≤
k0 ≤ d+ 1) such that f(k0) 6∈ (1− ζ)OK , and then such that

N∗ =
k0∑
k=1

f(k) /∈ (1− ζ)OK .

We also know that every N ∈ OK is of the form

N = N0 + (1 − ζ)N1 with N0 = 0 or N∗ and N1 ∈ OK .
As for the previous lemma, we may write

N1 =
d∑
k=0

N1vkf(k) =
d∑
k=0

 ∑
0≤j<ϕ(m)

wk,jζ
j

 f(k).

Thus

N −N0 = (1 − ζ)N1 =
d∑
k=0

 ∑
0≤j<ϕ(m)

nk,j(εk,j + ε′k,j)

 f(k),

with nk,j ∈ N, εk,j , ε′k,j ∈ µK and

nk,j = |wk,j | ≤ EÑ1vk ≤ EÑ1ṽk ≤ E × V × (Ñ + Ñ∗)×
1̃

1− ζ .

We may conclude, since

E = 1 , Ñ∗ ≤
d+1∑
k=1

f̃(k) = F,

and
min
σ∈G

|1− σ(ζ)| = 2 sin
π

m
= δ(m)−1. �
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Lemma 7.4. Let N ∈ OK and k ∈ N be such that k > λ(N). Then, for all
ε, ε′ ∈ µK ,

λ(N + (ε+ ε′)f(k)) ≤ λ(N) + 2 max(2d, k − λ(N)).

Proof. The proof of Proposition 4.2 shows that, if N = A[f ](0) where l(A) = λ(N),
then N +(ε+ε′)f(k) = B[f ](0) for some B such that l(B) = l(A)+2m with m > d
and k ≤ 2m + l(A). The least integer m is max(d+ 1, dlog2(k − λ(N)e), and hence

2m ≤ 2 max(2d, k − λ(N)).

�

Lemma 7.5. For all N ∈ OK , ε, ε′ ∈ µK , and k ∈ N,

λ(N + (ε+ ε′)f(k)) ≤ h(λ(N)),

where h is the following polynomial of degree d:

h(X) = 2d!c + X + G f̃(X + d!c)

with

G =
2

(d+1)(4−d)
2

d!
ϕ(m)2 α β γ.

Proof. Let k′ ∈ N be such that k′ − k ∈ d!cZ and k′ > λ(N). One may choose k′

in [λ(N), λ(N) + d!c]. Then it follows from Lemma 7.3 that

λ(N + (ε+ ε′)f(k′)) ≤ λ(N) + 2 max(2d, d!c) = λ(N) + 2d!c.

On the other hand,

(ε + ε′)(f(k′)− f(k)) = Cy, where y ∈ OK .
Obviously,

ỹ ≤ 2
1̃
C

(f̃(k) + f̃(k′)) ≤ 4
1̃
C
f̃(λ(N) + d!c).

Writing y =
∑

0≤i<ϕ(m) yiζ
i, we see from Lemma 6.2 that

|yi| ≤ 4E × 1̃
C
f̃(λ(N) + d!c).

Then,
N + (ε + ε′)f(k) = N + (ε + ε′)f(k′) + (ε+ ε′)(f(k)− f(k′))

implies that

λ(N + (ε+ ε′)f(k)) ≤ λ(N) + 2d!c+ 2d
∑

0≤i<ϕ(m)

|yi|

≤ λ(N) + 2d!c+ 2d+2ϕ(m)× E × 1̃
C
× f̃(λ(N) + d!c).

To conclude, it suffices to use the values for E and C. �

Proof of Proposition 7.1. Let N ∈ N ; then Ñ ≤ c
2ϕ(m). We first consider the case

when m is not a power of 2. Lemma 7.2 shows that it suffices to use Lemma 7.5
Card(I) times starting with N = 0 and λ(0) ≤ 2d+1. We have

Card(I) ≤ (d+ 1) ϕ(m)2 δ(m) β γ × V × Ñ

≤ (d+ 1) ϕ(m)3 δ(m) β γ V × c

2
,
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that is,
Card(I) ≤ ω(m).

Consider the increasing sequence {λn}n∈N defined inductively by

λ0 = 2d+1 and λn+1 = h(λn).

Then,
Λ(N ) ≤ λω(m).

Assume now that m is a power of 2. Lemma 7.3 shows that it suffices to use
Lemma 7.5 Card(I) times starting with N = 0 or N = N∗ and λ(0) ≤ 2d+1 or
λ(N∗) ≤ d+ 1. We have

Card(I) ≤ (d+ 1)ϕ(m)δ(m) V × (Ñ + F )

≤ (d+ 1) ϕ(m) δ(m) V ×
( c

2
ϕ(m) + F

)
,

that is,
Card(I) ≤ ω(m).

The conclusion is the same because we still start with λ0 = max(2d+1, d + 1) =
2d+1. �

Remark 7.6. The bounds that we obtained are very large, especially those given
for Λ(N ). But, as seen in Remarks 6.6, one may find better bounds when one
considers specific polynomials. In particular, if there exists k ∈ {0, 1, . . . , d} such
that f(k) = 1, then 1 may replace V and d+1 in Lemmas 7.2 and 7.3 for the upper
bound of Card(I).

For instance, assume that K = Q and that f(x) is the binomial polynomial(
X

d

)
=
X(X − 1) · · · (X − d+ 1)

d!
.

Then ad = 1
d! , c = |C| = 2

d(d−1)
2 , δ(1) = 1

2 , V = 1, 1 − ζ = 2, N0 is f(0) = 0 or
f(d) = 1, and F may be replaced by d, so that Card(I) ≤ 1

2 (|N |+ d) with |N | ≤ c
2

for every N ∈ N . Consequently, ω =
[
2
d2−d−4

2 + d
2

]
with λ0 = d. Recall that

A = 2
d(3−d)

2 and B = 2d−1 + Λ(N ).

In the particular case when d = 2 we have c = 2, N = {0, 1}, Λ(N ) = 3 and

λQ

(
X(X − 1)

2
, N

)
≤ 2|N |+ 5.
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naisons à coefficients ±1 des premiers carrés, La Nouvelle Revue des Mathématiques de
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