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Given a family  C = {C1, C2, ..., Cn}  of  n  simple (Jordan) curves w
hich intersect pairwise in finitely many points, we say that it is an indepe
ndent family if each of the  2n  sets

   X1 « X2 « ... « Xn (*)

is not empty, where  Xj   denotes one of the two connected components 
of the complement of  Cj   (that is, each  Xj   is either the interior or the e
xterior of  Cj ).  If, moreover, each of the sets in (*) is connected, we say 
that the independent family  C  is a Venn diagram.  An independent fam
ily or Venn diagram is called simple if no three curves have a common poi
nt.

Introduced by the logician John Venn in 1880, Venn diagrams with  
n ≤ 3  curves have been the staple of many finite mathematics and other 
courses.  Over the last decade the interest in Venn diagrams for larger val
ues of  n  has intensified (see, for example, Ruskey [8] and the many refe
rences given there).  In particular, considerable attention has been devote
d to symmetric Venn diagrams.  A Venn diagram with  n  curves is said to
 be symmetric if rotations through  360/n  degrees map the family of c
urves onto itself, so that the diagram is not changed by the rotation.  Thi
s concept was introduced by Henderson [7], who provided two examples 
of non-simple symmetric Venn diagrams; one consists of pentagons, the o
ther of quadrangles, but both can be modified to consist of triangles.  A s
imple symmetric Venn diagram consisting of five ellipses was given in [5].
  As noted by Henderson, symmetric Venn diagrams with  n  curves canno
t exist for values of  n  that are composite.  Hence  n = 7  is the next valu
e for which a symmetric Venn diagram might exist.  Henderson stated in [
7] that such a diagram has been found; however, at later inquiry he could 
not locate it, and it was conjectured in [5] that such diagrams do not exis
t.

In fact, this conjecture was disproved by the examples of simple Ve
nn diagrams of seven curves given in [6], leading to the diametrically opp
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osite conjecture that symmetric Venn diagrams exist for every prime  n.  
By a curious coincidence, several additional examples of symmetric Venn 
diagrams with seven curves were produced shortly thereafter by other pe
ople (see, for example [2]).  Details of the history of these discoveries ca
n be found in the paper by Edwards [3] and the report by Ruskey [8].  Th
e former presents a list of six different self-complementary simple symme
tric Venn diagrams of seven sets, while that latter expands this and gives 
a list of 23 simple monotone symmetric Venn diagrams, as well as various
 other enumerations.  (Self-     complementary means that the Venn d
iagram is isomorphic to the one in which "inclusion" and "exclusion" are in
terchanged; by the result of [1], monotone is equivalent to saying that t
he Venn diagram is isomorphic to one with convex curves.)  These results
 were obtained by exhaustive computer searches.

The next step towards clarifying the conjecture would be to investi
gate whether there exist any symmetric Venn diagrams of  11  curves.  D
espite claims (like the one in [2]; all such claims were later withdrawn) by 
several people of having found diagrams of this kind, none are known at t
his time.  The sheer size of the problem for  11  curves puts it beyond th
e reach of the available approaches through exhaustive computer searche
s.  Hence it may be worthwhile to investigate a more general problem whi
ch may be solvable for one or two values beyond  n = 7,  in hope that ne
w ideas will appear that may be applicable to the elusive case of  n = 11.

Henderson's argument that symmetric Venn diagrams cannot exist i
f the number of curves is a composite integer is based on the following fa
ct from number theory:  if  n = r s,  where  r  and  s  are integers greater t
h a n   1   a n d   r   i s  a  p r i m e  n u m b e r ,  t h e n  t h e  b i n o m i a l  c o e f f i c i e n t   ËÁ
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  is not divisible by  n.  On the other hand, this obstacle disappears if inst
ead of Venn diagrams one is considering independent families of  n  sets –
– however, such families seems to be of little interest since it is very easy
 to generate them for every  n;  examples for  n = 4  and  6  appear in [5]
.  But while it may seem, on number-theoretical or combinatorial grounds, 
that such families must have a very large number of regions, a closer inve
stigation shows that as far as combinatorics and number theory are conc
erned, the number of regions could be not too much larger than in a Venn
 diagram.  This happens because many of the types of regions occur in  n-
tuples, and only few require duplication in order to accommodate rotation
al invariance.
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Let us denote by  (a,b,...,f)  a selection of the elements  a, b, ... , f,
  from the family of labels of the members of the independent family of c
urves.  All selections that can be transformed into each other by cyclic pe
rmutations of the labels are said to constitute a type of selections.  Clear
ly, in a symmetric independent family of  n  curves, each type (except the
 selections of none, or of all labels) must be represented by  n  or a multi
ple of  n  regions.  A discussion of the case  n = 6  may illustrate this cont
ention.  The  12  relevant selections here are  (a),  (a,a+1),  (a,a+2),  (a,a
+3),  (a,a+1,a+2),  (a,a+1,a+3),  (a,a+1,a+4),  (a,a+2,a+4),  (a,a+1,a+2,
a+3),  (a,a+1,a+2, a+4),  (a,a+1, a+3, a+4),  (a,a+1,a+2,a+3,a+4).  Henc
e there must be at least  12 ⋅ 6 + 2 = 74  regions in any symmetric indep
endent family of six curves, instead of the 64 regions in a Venn diagram o
f  6  curves.  

The above example can be generalized to obtain a lower bound on t
he number of regions that must be present in any symmetric independent
 family of  n  curves.  The resulting lower bound is      M(n) = 2 + n ⋅ (Cn –
 2),  where  Cn  is the number of distinct 2-colored necklaces of  n  beads
, provided rotationally equivalent necklaces are not distinguished.  The nu
mbers  Cn  have been studied by several authors (see [4], Table I, [R], pa
ge 162, or [9], Sequence  M0564,  where additional references can be fo
und).  From these tables it appears that the rate of growth of  M(n)  is ab
out  2n  for all  n,  and if  n  is prime then  M(n) =  2n.

Thus one may reasonably pose the following question:

Is there for every  n  a symmetric independent family of  n  curves 
with only  M(n)  regions ?

This clearly generalizes the question about the existence of symme
tric Venn diagrams with prime numbers of curves.  The advantage of the 
new question is that it can be answered affirmatively for  n = 4  and  n = 
6  (see Figures 1 and 2),  and the first open case,    n = 8,  would seem n
ot to require prohibitively large computational effort.  We venture the foll
owing

Conjecture 1.  For every integer  n  there exists a symmetric independe
nt family of  n  curves with only  M(n)  regions .
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A curious property of the known examples of minimal symmetric ind
ependent families for composite  n  is that none is simple.  While for  n = 
4  it can be shown that no such family can be simple, it is not clear wheth
er the same is true for  n = 6  or higher values of  n.

Conjecture 2.  If  n  is not a prime, every symmetric independent family 
with  M(n)  regions is non-simple.

Figure 1.  A symmetric independent family of four equilateral triangles, wi
th  M(4) = 18 regions.
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Figure 2.  A symmetric independent family of six polygons with   M(6) = 7
4  regions.  The polygons could have been selected to be convex, but the
n many of the regions would have been very small.  The existence of an is
omorphic convex representation is a consequence of a general result esta
blished in [1].
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