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Statistical Framework for Uncertainty
Quantification in Computational
Molecular Modeling
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Abstract—As computational modeling, simulation, and predictions are becoming integral parts of biomedical pipelines, it behooves us
to emphasize the reliability of the computational protocol. For any reported quantity of interest (QOI), one must also compute and report
a measure of the uncertainty or error associated with the QOI. This is especially important in molecular modeling, since in most
practical applications the inputs to the computational protocol are often noisy, incomplete, or low-resolution. Unfortunately, currently
available modeling tools do not account for uncertainties and their effect on the final QOls with sufficient rigor. We have developed a
statistical framework that expresses the uncertainty of the QOI as the probability that the reported value deviates from the true value by
more than some user-defined threshold. First, we provide a theoretical approach where this probability can be bounded using Azuma-
Hoeffding like inequalities. Second, we approximate this probability empirically by sampling the space of uncertainties of the input and
provide applications of our framework to bound uncertainties of several QOls commonly used in molecular modeling. Finally, we also
present several visualization techniques to effectively and quantitavely visualize the uncertainties: in the input, final QOls, and also

intermediate states.

Index Terms—Uncertainty quantification, sampling, molecular modeling

1 INTRODUCTION

C OMPUTATIONAL modeling of any physical system is
inherently imperfect due to a myriad of shortcomings.
A computational model is often a discrete representation of a
continuous model of reality. Additionally, to achieve compu-
tational tractability, one uses simplified model formulations,
and employs algorithmic approximations, often using coarse
samplings of parameter/search spaces. Furthermore, the
available observed data of the physical system may itself be
noisy, incomplete, or from a different context, resulting in
our inability to capture all relevant factors of the system.
Moreover the ones we do capture, all possess a level of
uncertainty. In some cases, these errors are slight or insignifi-
cant, but when the errors combine—as they frequently do for
computations that involve geometry and complicated (linear
or non-linear) numerical systems in a multi-stage protocol—
they can create a result that is very unreliable.
Computational molecular modeling is a sub-field of
research that is especially susceptible to the accumulation
of cascadic errors for many computed molecular properties,
generally defined as quantities of interest (QOI). The com-
putations for these QOI include multi-step methods for pro-
tein sequence alignment and homology modeling, implicit
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solvation interfaces (i.e., molecular surfaces) generation [1],
[2], [3], [4], [5], [6], configuration-dependent binding affinity
calculations [7], [8], molecular docking and structure refine-
ment via molecular substructure replacement and fitting
[9], [10], [11], [12], etc. For each of these computations,
the confidence in the reported results could necessarily be
bolstered if each estimation of a QOI in the computational
pipeline also included rigorous evaluation and a bound on
its uncertainty.

Unfortunately, the majority of current computational
structure modeling and prediction protocols do not report
the confidence on the final model, quantity or prediction
they compute, and even when they do, they fail to rigorously
consider uncertainties in the input. For instance, structure
prediction protocols (including fitting, docking, homology
modeling, etc.) addresses uncertainties in an indirect way by
reporting several structures ranked under some scoring func-
tion, f, with the assumption that at least one of the predicted
structural models would be close to the truth. However, it is
not clear how to ascertain the quality or confidence on indi-
vidual models in the ranked list or whether a near-accurate
structure model is present in the entire ranked list at all.

Similarly, protocols for computing specific properties of
molecules like surface area, binding free energy, solvation,
etc., usually provide theoretical guarantees on the computa-
tional approximation errors due to numerical approxima-
tions, discretization, etc., but do not address the inherent
uncertainty of the input itself. While some work does
attempt to bound the uncertainty on individual input models
(see, for example, [14] for X-ray crystallography or [15], [16]
for NMR structure prediction using probabilistic analysis),
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determining how this uncertainty propagates to future
stages in a pipeline is left unaddressed. An exception is
recent work by Lei et al. [17] that addresses the influence of
conformational uncertainty on biomolecular solvation under
elastic network dynamics on an input structural model,
where the individual residue positions are independent and
identically distributed Gaussian random variables.

In this article, we present a mathematical and an empiri-
cal framework, both of which take into account uncertainties
present in the input to any computational step and provide
an upper bound on the uncertainty of the outcome. We also
provide intuitive visualization tools to visually inspect
uncertainties on a structural model at different stages of a
pipeline. We believe these to be invaluable additions to ratio-
nal design and analysis protocols in molecular modeling.

We define statistical uncertainty quantification as a cer-
tificate expressed as a tail bound Pr(|f — E[f]| > t] < e. In
other words, a probabilistic certificate is a function of a user-
defined parameter, ¢, that the computed value, f(X), of a
QOI, expressed as some complicated function or optimiza-
tion functional involving noisy data X, is not more than ¢
away from the true value (with high probability). In our
framework, we treat each component of X as random varia-
bles (RVs). Then we adopt a method of bounded differences,
which is a modification of Markov and Chebyshev inequal-
ities, used for independent RVs to provide Chernoff-like
bounds. However, this is not quite applicable to most bio-
physical QOIs since the components of X need not necessar-
ily be independent. We show that for such cases, a variation
of the Chernoff-Hoeffding bound, namely the Azuma
inequality [18], may be applied. Here a stochastic processes
is formulated as a Doob martingale and the Azuma inequal-
ity applied to such a martingale becomes what is known as
McDiarmid’s inequality [19]. In the methods section, we
describe this framework in greater detail and also show an
example application to compute such certificates for func-
tions with decaying kernels. In molecular biology applica-
tions, this family of functions include the van der Waals
interaction energy, atom-atom contact potentials based on
distance cutoffs, integrals over point neighborhoods, etc.

McDiarmid bounds often tend to be too conservative
(capturing the worst possible case). Furthermore, analyti-
cally deriving such bounds is quite challenging for more
complicated functions. To address this, we have also devel-
oped an alternative technique where we approximate the
distribution of values of the QOIs over the space of input
uncertainty, and then estimate the tail bounds based on the
distribution. The reliability of this estimation hinges upon a
sufficient and low-discrepancy sampling of the uncertainty
space. We employed a recently-developed pseudo-random
sampling algorithm which requires fewer samples to achieve
the desired accuracy. Our empirical analysis over a diverse
set of proteins (from the Zlab benchmark [20]) showed that a
fairly small number of samples often suffices to generate a
robust approximation of the distribution of the QOL

Our framework is general, and could theoretically be
applied to model the uncertainties of any QOI under uncer-
tainties from any source. For the purposes of this article we
have chosen to limit our applications and examples to a
selected few QOls and sources of uncertainties, leaving
our software tools open to researchers who would like to
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explore any other of the many possible sources of uncer-
tainty and QOIs. We have chosen to understand the effect of
small positional uncertainties of atoms in high resolution
crystal structures. We used B-factors reported in PDB files as
an implicit description of positional uncertainty of an atom.
The QOIs we considered are surface area (SA), volume, inter-
nal van der Waals energy or Lennard-Jones potential (L]),
coulombic energy (CE), and solvation energy under both
generalized Born (GBSA) and Possion-Boltzmann (PBSA)
models for single molecules; as well as interface area, and
binding free energy calculation for pairs of bound molecules.
(For completeness, we also describe and provide some
results from a protocol to identify large-scale conformational
changes based on changes in internal angles.)

The use of B-factors as a representation of the positional
uncertainty comes with two simplifying assumptions. First,
we assume that the reported B-factors are accurate, even
though there can be other equally-good or better assign-
ments of positional uncertainty based on the same electron
scattering data. For methods that improve the B-factor esti-
mation see, among others, [21], [22], [23], [24], [25]. Second,
even though there may be correlations between the B-factors
of collections of atoms—primarily due to the way positions
and uncertainties are resolved from raw data—we treat each
coordinate as independent random variables. This assump-
tion can be relaxed, but would require a slightly more
involved definition of the distribution of uncertainties (see
Methods for details).

Our empirical study on 57 x-ray structures of bound pro-
tein complexes showed that positional uncertainties translate
to relatively low uncertainty for simple quantities such as
exposed surface area (e.g., ~5 percent probability of having
more than 2 percent error), but significant uncertainties for
complex QOIs such as total energy (e.g., > 10 percent proba-
bility of having more than 5 percent error). Our study clearly
establishes the value in computing and reporting such certifi-
cates, to add credibility (or caution) to reported values, espe-
cially for complex QOIs which involve propagation of
uncertainty from simpler QOI in the calculation. Furthermore,
we found that 500 samples were more than sufficient to com-
pute reliable certificates for any QOI we considered, even for
molecules involving more than a thousand atoms (having
thousands of dimensions in the uncertainty space).

The distribution of values from the quasi-Monte Carlo
protocol can be used as a rich source of data for quantitative
visualization of uncertainties at different levels of granular-
ity. Current visualization and modeling tools (for example,
PyMol [13], Chimera [26], Coot [27], ]Mol [28], etc.) allow
one to visualize B-factors using color maps on the atoms,
smooth surface, or scalar field (or volume). However, they
fail to highlight the functional relevance of these input
uncertainties. For example, if the QOI is the optimal confor-
mation of a ligand when it binds to a particular protein
found using computational means (typically by minimizing
a scoring function such as PBSA energy (see Fig. 1C)), the
uncertainties of the atoms near the binding site would have
a higher effect on the QOI. We present visualization techni-
ques that reflect exactly how the uncertainties of different
atoms affect the QOI (see Fig. 1B, for example). These pro-
vide functionally important information about the molecule
and aid rational design by focusing on more significant sets
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Fig. 1. An illustrative example of quantifying and visualizing uncertainties. Atomic coordinates of molecules, are often reported with a measure of
uncertainty (e.g., B-factors). Currently available software hardly incorporates the effect of such uncertainties into their results or visualization.
For example, currently, one is able to see the distribution of high and low B-factors on the structural model of a molecule (10PH) as is shown in (A),
rendered using PyMol [13]. However, we would like to understand the uncertainty in a computed quantity of interest (QOI), and also understand how
the input uncertainties affect this outcome. Consider, for example, a specific QOI, the Poisson-Boltzman (PB) electrostatic potential inside and out-
side the same molecule. We show this potential field in (C), the molecule itself is rendered as its backbone only. The potential is rendered using blue
(positive), white (neutral), and red (negative) colors. Now, using our empirical uncertainty quantification model, we can (and should) further compute
the uncertainty, expressed as the standard deviation, o, computed across an ensemble of slightly perturbed samples of the molecule, of the potential
computed at every voxel. This uncertainty is visualized in (B). Note that the standard deviation is quite high in some regions. Notice that while (A)
and (B) have some correlation (high uncertainty in structure tend to correlate with high uncertainty in function), it provides a more accurate and appli-

cation-specific picture of the underlying uncertainty.

of atoms. In this article we present several novel, relevant,
quantitative and easy to interpret visualization techniques
and enhance existing ones to aid different steps of a typical
molecular modeling pipeline.

We have developed software which implements the
mathematical framework of sampling needed for statistical
UQ, use existing tools to compute the QOIs [7], [29], [30],
[31], [32], and compute uncertainty bounds as well the visu-
alization directives which can be directly loaded into exist-
ing molecular, surface/volume visualization software [13],
[33]. We envision our methods and tools would enable the
end users tools to achieve both quantitative and visual eval-
uation of various molecular modeling QOIs for correct-
ness—or the lack thereof.

2 METHODS

Statistical uncertainty quantification aims to provide a
certificate bounding the probability of error in the QOIL
Such a certificate can be expressed mathematically as
a Chernoff-Hoeffding [34] like bound as follows:

Prob(f, X, t,€) £ Pr{|f(X) — E[f]] > {] <, ey

where f(X) is the QOI computed on noisy data, X, and ¢ is a
user-defined threshold. The certificate reports ¢, a probabil-
ity that the error in f(X) is greater than ¢. In other words, we
want to guarantee that the probability of the error being
over the threshold is very small.

In this article, we adopt a loose uncertainty bound
on Doob martingales as introduced by Azuma [18] and
Hoeffding [35] and later extended by McDiarmid [19].
The McDiarmid inequality is stated as follows:

Definition 2.1 (McDiarmid Bound). Let (X;) be independent
RVs with discrete space A;. Let f : [, A — R, and |f(z1,...,
Thy ooy n) — f(@1, ., @), xn)| < ¢ Then, fort > 0

Pr]|f(X) — E[f]| > 1] < 2exp <—2t2/zcz>.
k

We present the derivation of the McDiarmid bound and
prove that it is applicable to general cases, even when the
variables are not independent; followed by an example
application for a function involving summations over
decaying kernels in the next couple of sections.

McDiarmid bounds often overestimate the error, and it is
often not easy to compute ¢; analytically for many QOIs
with complex functionals. An alternate approach is to
empirically compute the certificates using quasi-Monte
Carlo (QMC) methods [36], [37]. Assuming that the distribu-
tions of the input RVs are known, we sample the joint space
and evaluate f for each, leading to an estimation of the dis-
tribution of f over the joint uncertainty space. Then, it
becomes trivial to compute the uncertainty of individual
values of the QOI, as well as providing certificates like
Equation (1). Correctness of this empirical approach
depends on the quality and size of the samples. We discuss
our characterization of the input uncertainty space and the
sampling technique in later sections, and provide experi-
mental results which show that certificates can be robustly
computed using significantly few samples than the dimen-
sion of the space would imply.

2.1 Thoretical Framework for Statistical Uncertainty
Quantification

One often uses Chernoff-Hoeffding style bounds to provide
uncertainty bounds theoretically when the underlying RVs
are independent and one is analyzing the sum of the ran-
dom variables. In practical situations the random variables
have dependencies. In such cases, one can still prove large
deviation bounds using the theory of martingales, specifi-
cally Doob martingales and their extension.

Definition 2.2. Let (Z;);_, and (X;)_, be a sequence of random
variables on a space Q. Suppose E[X;|Zy,...,Z;i_1] = X;_1.
Then (X;) forms a martingale with respect to (Z;).

Essentially, the expected value of the ith observable is the
same as the observed value of the (i — 1)th, irrespective of
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the values of all other observables. The Azuma inequality
for martingales bounds errors as follows:

Claim 2.3 (Azuma inequality). Let (X;) be martingale with
respect to (Z;). Suppose | X; — X;_1| < ¢;. Then

Pr(| X, — Xo| > t] < 2exp <—t2/220?).
5

Now consider a variation, the Doob martingale, con-
structed in the following way:

Claim 2.4. Let A and (Z;) be random variables on space ().
Then, X; = E[A|Z,, ..., Z;_] is a martingale with respect
to Z;. This is called the Doob martingale of A with respect

The weak form of the McDiarmid inequality (below) is an
analog, and derives from the Azuma inequality:

Claim 2.5. Let (X;) be independent random variables. Let
f:1I; Ai = R for sets A;. Also, suppose that |f(z,...,
Thy ooy Tn) — f(@1, .2, .o, @)| < o Then, fort > 0

Pr[|f(X) —E[f]] > t] < Qexp(QtQ/Ek:ci>.

This now completes the derivation of the McDiarmid
bound given in Definition 2.1.
2.1.1 Relaxing Independence Requirements by
Extensions of Doob Martingale

McDiarmid’s inequality assumes that the function has Lip-
schitz properties and the RVs are independent of each other.
This lead to relatively clean bounds. However, if one wishes
to analyze a very general scenario, then we can proceed as
follows.

First, there is a sequence of random variables (X;);", tak-
ing values in some set A. They can be dependent in any
way. Consider any function f : A” — R. Then, by Azuma’s
inequality (mentioned earlier), we can have a certificate
bound of the form

PI‘Hf(X) — E[f]‘ > t] < exp <_t2/2 ZC?> 7

where the only assumption we need is

[Ex, p...x, X)X, ..., Xi]
—Ex,_x, [fX)|X1,..., Xi]| <

Thus, the change in expectation on fixing the ith random
variable should not be too large. One can easily see that the
conditions required for McDiarmid’s inequality immedi-
ately imply the above hypothesis and thus the certificate
bound follows. However, one can also put practically mini-
mal restriction on the random variables and do the above
computation on the amount of perturbation in the expecta-
tion, at the cost of notational aesthetics.

We give more details now. As before there is a sequence
of random variables (X;)!_, taking values in a set A, say,
arbitrarily dependent on each other. Consider any function
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f+ A" — R. Define a sequence of random variables for ¢ = 1
ton—-1

B; = Ex,,,...x, f(X).

By definition, B; is a function of Xi,...,X;. Note that the
sequence (B;);_, forms a martingale with respect to X.

Suppose we had |Bjy1 —Bj| <¢ for i=1 to n—1.
Note that

BO - EXf(X):

and
B, = f(X).

Then, by using Azuma’s inequality on the martingale
sequence (B;), we get

Pr{|f(X) — E[f]| > ] < exp <t2/2 > c?) :

Note that the only requirement we needed for the certifi-
cate bound was |B; 41 — B;| < ¢;. We placed no restriction on
the underlying random variables. We will now reduce this
to a slightly stricter, albeit easier to analyze requirement.

Suppose for every i, and every z, . .., z,, ;, we have

EXi‘XHl X"f(x) - f(xla s ax;awi+la s axn) <q.

=Ex,.,..x.Exx;..x,[(X)
— flay,... S X)),

!/
s Ly L1y - -

which is bounded by ¢; by assumption. Therefore, we can
then use Azuma'’s inequality on the above martingale.

We highlight this with a simple illustration. Consider the
single kernel model at a single point. This will illustrate the
main point. We will again consider the 2 dimensional kernel
defined by

a

f(%y):W-

Let (X,Y) be a variable following a joint distribution.
Note that we do not require independence between X and
Y. Define

Bo(.’lj,y) = f($7y),
Bi(z) = Ey[f(z,Y)],
By = Exy[f(X,Y)].

We will demonstrate that for most reasonable distribu-
tions (e.g., those that are Lipschitz-bounded), it is relatively
straightforward to prove

By = [f(, V)] = fz, V)| < c.
This immediately implies that both

|By — Byl,|B2 — Bi| < e

Using Azuma’s inequality, we conclude the required large
deviation bound certificate.
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2.2 Analytical Uncertainty Bounds for Biophysical
Quantities

The theoretical framework presented above can be applied

to functions that possess the Lipschitz property. Here we

consider a function which is expressed as a summation over

decaying kernels of the form shown below

Sy Yyt @

x1€EAxp€B k=1 HX] — X2 ||

where b, are non-negative constants, a;, are constants, and A
and B are two sets of points, such that each of the points are
uncertain.

We chose this function since it fits many molecular QOls.
For example, this maps easily to the van der Waals energy
calculations, computing contact properties (e.g., number of
atom contacts at a binding interface, binding interface area
etc.), and many similar biophysical quantities of interest.
In such applications the uncertain quantities will be the
positions of the atoms.

In the following, we introduce some notation and then
analytically express the uncertainties of successively more
complex functions.

2.2.1 Notation

A single decaying kernel in the above summation is repre-
sented as

n
Qj;

fx1 (XZ) = 3)

b )
=1 X — 2|
where the kernel is centered at x; and evaluated at x,.
The following result is immediate:

Lemma 2.6. For a given set of aj, and by, fx, (X2)
Ax = (x2 — x1).

= fo(Ax) where

When both x; and x; are uncertain but bounded such that
every component z;; of xq is sampled from the interval
[l1i, w1;], and every component zs; of x, is sampled from the
interval [ly;, u2;], then we can assume that every component
Az; of Ax is also bounded by the interval [I;,«;] computed
based on [ly;, up;| and [l1;, u1;]. The error of fy, (x2) due to the
uncertainty of x; and x, can hence be equivalently com-
puted as the error of fo(Ax) due to the uncertainty of Ax. In
our discussion, we shall often drop the A when the context
does not require the distinction.

2.2.2 Uncertainty of a Single Kernel at a Single Point

We begin with the simplest case when the kernel is embed-
ded in 2D (the 1D case is trivial)

a

(a2 +92)"" v

filz,y) =

Assuming that « and y are sampled from the intervals
(lz,u;] and [l,,u,] respectively where [,,[,,u, and u, are
non-negative, we can define the maximum deviation due to
the change of z as

Dy, = max [f1(leyy) — fi(us, y)l-

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.16, NO.4, JULY/AUGUST 2019

Note that ¢1(y) = fily,y) — fi(u,,y) 1is positive for
l, < u,, and diy g(y) < 0. Hence, ¢1(y) is maximized when
y =1, So
Dl - max}fl T ) fl(u.l.‘7l’l/)‘
1 1 (5)

= |a (li B l?/)b/z - (UE N lf,)b/z

Dy, can also be computed the same way. Using
McDiarmid’s theory of bounded differences, we have the
following result:

Lemma 2.7. For the dezpaying kernel f, in Equation (4), Pr|[|fi—
—2t

E[fi]l > t] < 2eP13 01 where Dy, and Dy, are defined in
Equation (5).

The above results can be readily extended to d dimen-
sions for the function f; defined below:

93

fo(x) = (6)

.
[

Let, f5;(x,y) represent f5(x) such that the value of the ith
component is fixed to y. So we define the maximum devia-
tion of f, due to the change of one variable x; between the
range [l;,u;] as

Dy; = max gy;(x) = max| fo; (x, i) = fo; (0 w)|. (D)
Again gy,(x) is positive and as; L g5(x) < 0 for all compo-

nents z; of x. Hence, g»(x) is maximized when z; = [; for all
Jj where [; is the lowest possible value for z;

1

1
- ®)
()™ (w+5at)”

DQ[ = |a\

Lemma 2.8. For the decaymg kernel fo defined in Equation (6),

Pr[|fo — E[f2]] > t] < 262 DZ' such that Dy; is defined as in
Equation (8).

Note that Lemmas 2.7 and 2.8 hold even when a < 0
(i.e., negative).

2.2.3 Uncertainty of Multiple Kernels at a Single Point
Now we extend the scope to consider functions which
are expressed as a sum of n decaying kernels centered at
the origin

n

f) =32 )

O
r=ril b

Let /5 (x) = 1

tion (9). Now, the maximum deviation will be defined
similar to Equation (7)

denote the k:h decaying term in Equa-
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Ds;(x) = max g3(x)

= m3X|f3g(Xa li) = f3i (%, u;)]

- Z(fgf(x, li) = fsf"(’ﬁ UZ))

k (10)
< max 3| (00 1) = St O w))|

k

<n mgxm&x“fgf(x,li) — f;;,f’(x, ul))|
=n m};&x Dgf,

where D" is defined the same way as Dy, in Equation (8)
for the kth kernel.

Lemma 2.9. For the sum of decaying kernel f; given in
Equation (9)

—212

Pr[|f3(x) — E[fg(x)” > t] < 2621 Ds;z(x),

such that Ds;(x) is defined as in Equation (10).

2.2.4 Uncertainty of a Multiple Kernels at Multiple
Points

Let us define a volumetric function in d dimensions as a

sum over multiple kernels defined at multiple points belong-

ing to the set A as follows:

fi(Ay) = ZiL

an
b
xen b=t Ix=yll™

Now, f; can be expressed as

Fi1(Ay) =D fax(y)

x€A

Zf3o(y - X)

xeA

= Zf:%o(Am)

x€A

(12)

Since, f; is a simple summation over independent points,
the result in Lemma 2.10 follows immediately from
Lemma 2.9.

Lemma 2.10. For the sum of decaying kernel fi(A,y) given in
Equation (11)

—21%

Prl|fi(A,y) — E[fs(A,y)]| > 1] < 2edmea 2 P18,
such that Ds;(Ax) is defined as in Equation (10).

2.2.5 Uncertainty of a Integral over Multiple Kernels
at Multiple Points

Finally, we bound the uncertainties in the integral function we
mentioned at the beginning of this section in Equation (2).

Lemma 2.11. For the sum of decaying kernel F(A, B) given in
Equation (11)
—2t? :
Pr]|F(A, B) — E[F(A, B)|| > ] < 2e2ome 2gen 2 P58,
such that Ds;(Ax) is defined as in Equation (10) and Ax =
(x2 — x1).
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2.3 Empirical Uncertainty Quantification
The basis of empirical uncertainty quantification is to
approximate the distribution of the function f(X) under
the space of perturbations of the uncertain variables X.
This approximation is done by sufficiently exploring the
space and accumulating the measurements/observations
or computed values of f. Depending on X and the func-
tion f, different exploration methods can be beneficial.
We have chosen to use the quasi-Monte Carlo method.
This is general and one can prove that the approxima-
tion of the distribution of f(X) produced by QMC has
bounded error.

Bounded Error of Estimation Through Low-Discrepancy Sam-
pling. We define the modulus of continuity, o(f,t), for a
function f on a d-dimensional product space Z¢, as

max
uﬂ,'el'd&é(um)gt
where §(u,v) is the distance between two samples. Essen-
tially, w(f,t) is the maximum change of f between two close
samples.
Now, we define the discrepancy of a set P of N samples,
with respect to a collection of subsets, X, as

_ |PNX| n(X)
ovtr) =y (5 )

(14)

where p is the Lebesgue measure (high-dimensional vol-
ume), and U is the universe. In other words, Dy (P, X) cap-
tures the how evenly the points cover the universe.

The following theorem establishes the bound on the
approximation error for the distribution of f (adapted from
Theorem 2.13 of [38)]).

Theorem. If f is continuous in I, then, for any set of samples
P ={x1,29,..., 2y} such that x; € T, we have

<o £ (D3(P)). (15

zd

1 N
flu)du = 5> fan)

In our case, we want to approximate a distribution. Notice
that the above theorem guarantees that if low-discrepancy
sampling is performed, the cumulative distribution function
(CDF), as well as the moments, will be approximated with
bounded error. Note that a simpler QMC strategy can be
applied to find the minimum ¢, for each x, and hence derive
the loose McDiarmid bound.

In the next few sections we detail the application of
empirical UQ on molecular modeling scenarios. In particu-
lar, we discuss the identifying the sources of uncertainties,
defining their distributions, defining the joint space and
finally the specific sampling techniques.

2.3.1 Structural Uncertainties in Molecular Structures

The two most common representation of molecular structure
in atomic detail both express the position of each atom- one
using Cartesian coordinates, and the other using internal
coordinates (which is a series of bond lengths, bond angles
and dihedral angles). In the first representation, the degrees
of freedom or the space of configurational uncertainty is
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related to each coordinate value; in the latter representation,
typically the dihedral angles are the only degrees of freedom
since bond lengths and angles are considered constants.

X-ray crystallography can, in most cases, identify the
expected locations of each atom by analyzing a 3D recon-
structed electron density map of a molecule derived from
the diffraction pattern from a crystal lattice of the molecule.
Clearly, the expected location is determined as one from a
distribution of possibilities: typically, one that best fits the
density while satisfying other constraints including the
protein’s primary, secondary and tertiary structure, as well
as biophysical interactions. To capture the inherent uncer-
tainty and the distribution of other possible locations of the
atom, a temperature factor or B-factor is also reported.

B-factors are derived from structure factors, which are
based on the Fourier transform of the average density of the
scattering matter. The structure factor, F'(h ), for a given
reflection vector, /, is the sum of the optimized parameters
for each atom type j, and position & and as defined by the
following equation:

o 1 B
h)=>_ fjexp (— i B,-hfh> exp (2mht@) ,
7

where f; is the scattering factor, B; is the B-factor for atom j,
and 7 is the 3-dimensional position of each atom [39].

If we assume that the static atomic electron densities
have spherical symmetry (or, more specifically defined by a
trivariate Gaussian, ), this can be converted into the aniso-
tropic temperature factor commonly used, T'(%2) [40]

T(R) = exp|~27*((R- @),

where the univariate Gaussian form (needing not the direc-
tion of /, but only its magnitude) is described by
T(|h]) = exp[-87°(u?)(sin” 6)/\7]. (16)
Finally, the B-factor is defined as B = 8n2(u?). Thus, a
B-factor of 20, 80, or 180A2 corresponds to a mean positional
displacement error of 0.5, 1, and 1.5A, respectively. Other
metrics, such as R-factor [41] or diffraction-component preci-
sion index (DPI) [42] can be used to provide more insight
into these uncertainties. However, throughout this paper we
will use B-factors as they are commonly available in the PDB.
When using an internal coordinate system, the assump-
tion is that the entire molecule is like a connected graph
embedded in 3D space. Each node of the graph is an atom,
and each edge represents a bond. So, knowing the position
of any one atom, the location of all other atoms can be
uniquely determined, given the bond length, bond angle
(angle at a node between two bonds), and dihedral angles
(given three successive bonds, the dihedral angle is defined
as the angle between the two planes formed by bonds 1 — 2
and 2 — 3) of all other atoms. Moreover, internal coordinates
successfully capture the dependence of one atom’s position
on the positions of all its neighbors. Also, since bond lengths
and angles have been empirically observed to be constants
(or nearly so), this representation allows one to reduce the
number of degrees of freedom to only the change of dihe-
dral angles (henceforth called torsion angles since the
change is similar to a twisting motion around a bond).

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL.16, NO.4, JULY/AUGUST 2019

2.3.2 Parametrizing the Space of Uncertainties

Given the x-ray structure M containing n atoms of a protein
or a complex of two proteins in the PDB file format, we
extract the anisotropic B-factors BY, BY and B? for each atom
a; € M. The distribution of the position of the atom in each
direction is modeled as a Gaussian distribution whose PDF

is defined as ,
1 (i — 1)
plzi) = WGXP [— T} ;

where o7 is the standard deviation derived as \/g from
the B-factor, and the mean u} is the expected position of the
atom. Note that for some x-ray structures only an isotropic
B-factor B, is reported. In that case we simply assume
B =B/ = B:=B,.

To represent a protein with internal coordinates, the ¢ and
Y angles of the backbone are considered the random varia-
bles. We shall express each such degree of freedom using a
random variable distributed uniformly between a range
[lower, upper] where the limits of the range are derived from
the so-called Ramachandran plot [43], which is an empirical
study of dihedral angle values observed in protein structures.

17

2.3.3 Sampling and Curating Configurations

The joint distribution, either defined as the product space of
Gaussian distributions for the B-factor case, or of indepen-
dent uniform distributions for the torsion angles case, repre-
sents the space of possible configurations for the molecule.
Let N be the number of degrees of freedom in either repre-
sentation, and start by generatmg a sample from the uniform
distribution U}, ~ U(0, 1) using a pseudorandom generator
which guarantees low discrepancy sampling in high dimen-
sional product spaces (described in the next section).

To convert each uniform sample to the joint distribution
for the B-factor case, we use entries from Uy to produce a
tuple (uf, ..., u?). Each number u] from this tuple is mapped
to a sample from a Normal dlstrlbutlon al, using the Box-
Muller method [44], and finally appropriate translation and
scaling is performed to get a sample from the corresponding
Gaussian distribution as s/ = u/ +oJal. These samples
(sf,...,s?) are used as dlsplacement values for each of the n
atoms in the new configuration.

For torsion angles, each entry in Uy, is mapped from [0, 1]
to the [lower, upper] range by simple uniform scaling, and
the desired configuration in Cartesian space is computed
using the Denavit-Hartenberg transform [45].

It is possible that for both methods outlined above some
sampled configurations might result in severe clashes
between non-consecutive atoms. Those configurations with
high number of clashes are discarded. Additionally, as bond
angles and lengths are not maintained under the B-factor
sampling model, we subject each sample configuration to a
brief minimization round with Amber 12 [46] using the ff03
forcefield [47]. Finally, we prepare each sample for further
calculations by protonating and assigning partial charges
using PDB2PQR [48] in amber mode.

2.3.4 Efficient Low-Discrepancy Sampling

A major issue with the practicality of QMC is that it suffers
from the curse of dimensionality. Specifically, if m samples
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log(N)

0.05

0.03
0.02
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Fig. 2. Number of samples needed to maintain e discrepancy. Note that
the y-axis is log-scale, so the number of samples (N) required for the
naive method grows exponentially in d (number of dimensions), whereas
the pseudorandom method (PRNG) grows as a function of log d.

are required to achieve a discrepancy ¢ in one dimension,
then at least m? samples will be necessary to achieve the
same level of discrepancy in d dimensions, if the sampling is
carried out naively (i.e., product of samples in each dimen-
sion). For the type of applications we are interested in (i.e., a
required discrepancy of < 1 percent and dimension ~1000),
the number of samples would be prohibitively high.

The low-discrepancy product-space sampler developed
by Bajaj et al. [49] reduces the number of samples signifi-

cantly: from m? to only (d)o( log <%>), where m = (4)3“(1),

while still ensuring the same discrepancy bounds. Note that
this is polynomial in m and d. (See Fig. 2 for a summary of
the number of samples required for different values of d
and e.) Furthermore, this method guarantees that for any
given number of samples, the discrepancy of the sampled
set is optimal. Hence, it can be applied iteratively.

The basic intuition behind the sampling strategy of
Bajaj et al. is as follows. Low-discrepancy sampling in one
dimension (e.g., the interval [0, 1)) is trivial: for € discrepancy,
sample at m = 1/e equal points along the interval. In d dimen-
sions, using this naive approach independently in each
dimension requires md samples, and the discrepancy over the
entire hyper-rectangle is highest along the diagonal: eV/d. If,
instead, the coordinates of a single sample are generated
dependently, the same discrepancy can be achieved using
much fewer samples. Deterministic sequences with these
guarantees exist (such as the Sobol or Halton sequences [50]),
and the work of Bajaj et al. improves upon these through ran-
domization, thus reducing some of the bias observed in deter-
ministic methods.

In our application, we have explored iterative sampling
and considered the sampling to be sufficient when the
approximation of the moments of the distribution of a QOI
converge. We found that convergence was achieved with rel-
atively few samples in practice. Please see Results for details.

3 RESULTS AND DISCUSSION

In this section, we detail the results of applying our QMC-
based UQ framework to generate Chernoff-like bounds (see
Methods) for a set of 57 protein complexes. Additionally,
we provide a protocol to determine the number of samples
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Fig. 3. Histogram of sampled QOls for 1OPH:A. The red vertical line is the
value of 7 computed using the original coordinates reported in the PDB.

required to guarantee the accuracy of the empirical certifi-
cates for specific proteins. The results clearly establish the
necessity of rigorous quantification of uncertainties, and
also shows that such an endeavor need not be prohibitively
time consuming. Finally, we describe some visualization
protocols which provide interactive and intuitive represen-
tations of the computed uncertainty measures.

3.1 Uncertainty Quantified Computation of
Molecular Properties
3.1.1  Benchmark and Experiment Setup

We applied the QMC approach for empirical UQ of compu-
tationally evaluated QOIs to 57 crystal structures with 2
bound chains each. We took the “rigid-body” cases of anti-
body-antigen, antibody-bound and enzyme complexes
from the Zlab benchmark 4 [20]. We used this docking
benchmark as we were interested in demonstrating how
uncertainty in QOI reported on a single protein is magnified
when combined with another protein, such as is often done
with computing protein binding affinity.

For each of the complexes, we applied the sampling to
the receptor and the ligand (the two chains in the structure)
separately, and evaluated the uncertainty measures for the
calculation of surface area, volume, and components of free
energy including Lennard-Jones, Coulombic, dispersion,
GB and PB. We also computed the uncertainties in the bind-
ing interface area, and change of free energy. In the follow-
ing sections we explore different aspects of this analysis.

3.1.2 Uncertainty of Unperturbed Models

Fig. 3 shows the distribution of values computed for the
sampled models for PDB structure 10PH-chainA. The red
lines in the figures marks the value computed on the origi-
nal coordinates, and emphasizes the fact that the original
coordinates do not always provide the best estimate of the
expected value of a QOL The z-scores for these structures,
with respect to the expected value and standard deviation
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TABLE 1
Chernoff-Like Bounds for PDBID:10OPH

t 0.001 0.005 0.010 0.020 0.050 0.100
area(A) 0911 0.613 0.326 0.050 0.000 0.000
area(B) 0911 0582 0306 0.052 0.000 0.000
Aarea(A) 0964 0.823 0.650 0358 0.031 0.000
Aarea(B) 0973 0.889 0.771 0.560 0.155 0.005
vol(A) 0.727 0.088 0.003 0.000 0.000 0.000
vol(B) 0.765 0.174 0.005 0.000 0.000  0.000
Avol(A) 0.877 0485 0.169 0.009 0.000 0.000
Avol(B) 0.895 0495 0.176 0.006  0.000  0.000
GB(A) 0970 0.835 0.660 039 0.061 0.012
GB(B) 0964 0.817 0.618 0310 0.019 0.003
AGB(A) 098 0929 0863 0.725 0.364 0.099
AGB(B) 0982 0934 0866 0.726 0.372 0.094
PB(A) 0970 0.864 0.727 0508 0.114 0.014
PB(B) 0966 0.838 0.672 0.403 0.047 0.004
APB(A) 0990 0942 0863 0.719 0.378 0.106
APB(B) 0984 0940 0.870 0.748 0463 0.164

For each value of t, corresponding values of e are calculated from 1,000 samples.

derived from the empirical distribution, are 0.33, —0.82,
1.37, and 0.25 for area, volume, GB, and PB, respectively.
This emphasizes the importance of applying some form of
empirical sampling to find the best representative model
(one which minimizes the z-score, for instance).

3.1.3 Certificates for Computational Models

We also determined the likelihood of producing a large error
in the calculation of QOI, due to the presence of uncertainty in
the input, in terms of Chernoff-like bounds. For each model in
the dataset, we generated 1,000 low-discrepancy samples,
and then computed the probability, ¢, of a randomly sampled
model having more than 0.1, 0.5, 1, 2, 5 and 10 percent error
(t). Error is defined as |z’ — E[z]|/E|z], where 2’ is the value
computed for a random model and E[z] is the expected value
over all samples.

Table 1 lists Chernoff bounds as described above for
the two chains of 10PH, and Table 2 shows corresponding
data for the full dataset. The rows named Aarea(A) rep-
resent the quantity area(A + B) — area(A) — area(B) com-
puted while keeping B fixed and sampling the distribution
of A; rows named Aarea(B) report the same quantity while
keeping A fixed and sampling the distribution of B.

As can be seen in these tables, for most of the QOIs,
the probability of incurring more than 5 percent error is
negligible. Also note that the probability of error is higher
for A QOIs simply because the errors of individual quanti-
ties are being propagated and amplified. Uncertainties are
also higher in more complex functionals.

3.2 Number of Samples Sufficient to Provide
Statistically Accurate Certificates

The results reported in the previous two sections highlight
the importance of UQ and also shows that mean values of
QOI do not always correlate well with the those computed
on the original molecules, so statistical bounds across a set
of samples are needed. However, it is important to note that
single statistics that deviate greatly from the mean (“rare”
events that are actually plausible biological configurations)
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TABLE 2
Average Chernoff-Like Bounds for 1,000 Samples
of All Protein Chains

t 0.001 0.005 0.010 0.020 0.050 0.100
area 0.910 0.575 0.282 0.059 0.004 0.000
Aarea 0.910 0.578 0.288 0.066 0.009 0.003
vol 0.767 0.191 0.038 0.006 0.001 0.000
Avol 0.768 0.193 0.038 0.006 0.001 0.000
GB 0.963 0.817  0.648 0.391 0.100 0.029
AGB 0.963 0.818 0.651 0.394 0.103 0.030
PB 0.969 0.846 0.708 0.472 0.125 0.023
APB 0.969 0.847  0.710 0.476 0.132 0.030

can have a great effect on these first and second moments.
Therefore, it is important to ensure that the distributions
generated through sampling accurately represent the
underlying distributions, instead of just a poorly-sampled
subset. While the number of samples required with our
pseudo-random number generator is drastically lower than
a naive exponential sampling method, it is still prohibitive
to generate all possible samples. However, in all the simula-
tions we ran, we have found that this theoretical bound
overestimates the requirement and much fewer samples is
sufficient.

In this section, we present a protocol for determining the
number of pseudo-random samples needed to achieve
robust certificates, or the minimal number of samples before
the gain achieved through additional sampling is negligible.

For each QOI, we select a subset of » samples and calcu-
lated € for given values of ¢ (see Equation (1)) on this reduced
dataset. We did the same for s random samples (where
s > r), and computed the distance (L2 norm) between the
two. If the distance was less than a given threshold, 7, then
we determined we had reached saturation; otherwise, we
increased the number of reduced samples, r (potentially also
s), and repeated the above calculations.

As the full set of samples is not always available, we deter-
mined the saturation for both the full dataset (where s =1,000)
and a reduced, incremental comparison (s = r + 10, averaged
over 50 trials). For the experiments in this section, we calcu-
lated € for 6 different values of 7. Since the expected distance
between any two random points in 6d space is 0.9689 (an
analytic form for such distances has been derived in [51],
and the precomputed values for several dimensions are
available online [52]), we chose 7 at 0.05, which is much
lower than 0.9689, as our measure of convergence.

Table 3 shows the number of samples needed to reach
saturation for a number of QOI, compared to the number of
samples predicted by our incremental method. For instance,
the Chernoff-bound calculated for on the incremental
method for PB energy with 10PH chain A (top table)
reached saturation after 287 samples; with only 174 sam-
ples, we were able to achieve Chernoff-like bounds with at
least 95 percent accuracy, when compared to the full data-
set. This trend was repeated over all 104 individual chains,
suggesting that the incremental approach is a good method
to use when a “full dataset” has not already been computed.
Fig. 4 shows a plot of both metrics as the number of samples
is increased.

Fig. 5 shows the number of samples needed before
the relative error (when computed on the full dataset) is
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TABLE 3
Number of Samples Necessary to Converge
on Statistical Bounds

10PH B A AB AA

area 230/134 233/153 215/146 351/197
vol 119/72 102/64 103/55 332/205
LJ 79/49 240/168 315/133 324/192
CP 79/43 114/62 93/71 355/213
GB 281/143 319/202 300/207 326/211
PB 287/174 365/209 357/206 348/196
1DFJ E I AE Al

area 265/157 471/295 421/240 337/199
vol 156/69 385/273 428 /257 343/218
LJ 319/223 462/361 507/361 363/206
CP 235/138 652/401 607/509 353/214
GB 341/219 335/193 296/217 303/227
PB 360/235 546/375 567/430 338/225

The process has converged if differences between computed values of e do not
change (detailed description of convergence can be found in the text). The pair
of entries in each cell refer to the two variants of convergence considered: incre-
mental, where each value is compared with the value computed with 10 addi-
tional samples; and global, where the value is compared with that computed on
all 1,000 samples. Data presented here correspond to PDBID:10PH, chains
A and B (top table) and PDBID:1DF], chains E and I (bottom).

negligible for several QOI, compared with the total B-factor
of the protein (a statistic that attempts to incorporate the entire
molecular uncertainty) and number of atoms. As can be seen
in these figures, neither total B-factor nor number of atoms
are capable of predicting the number of samples needed.
Indeed, the number of samples required to predict accurate
distributions of values is not linked to any extrinsic property
(such as size of the protein, total B-factor, etc.), but is instead
linked to intrinsic properties of the distribution and how often
the “rare” events happen. Thus, if the rare events are more
common (such as chain I of PDBID:1DFJ in Fig. 5), it is neces-
sary to generate more samples. The incremental sampling
approach provides an accurate procedure for computing con-
fident probabilistic bounds by generating more samples for
proteins that have higher intrinsic uncertainty.

3.3 \Visualizing Uncertainties in Molecular
Properties

3.3.1 Visualizing Uncertainties in Computed QOls

While there are many methods for visualizing uncertainties
in molecular structure (i.e., coloring by B-factor), these
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Fig. 4. Plot showing the rate of convergence for statistical certificates,
computed for the calculation of free energy (MM-PBSA). For each num-
ber of samples, r, the Chernoff-like bounds were computed, and then
compared with either those computed on the entire dataset (red line) or
a partial dataset containing r + 10 samples (blue line). Noise in the plot-
ted lines are due to differences in samples selected; reported values are
the average over 50 trials. Plot is for 1OPH chain A.

methods highlight the inherent uncertainties in the molecu-
lar structure and their parameterization, but do not directly
highlight the effect of these uncertainties on computed
properties of the molecule. Specifically, we are interested in
bounding the propagated uncertainty in the calculated
property, and also localizing the origins of uncertainty
which disproportionately affect the outcome. This is carried
out using the statistical QMC framework described above.
Below we discuss some techniques which allows one to
visually explore such uncertainties.

Pseudo-Electron Cloud. One method for visualizing such
uncertainty is a pseudo-electron cloud, where samples are
combined into a single volumetric map whose voxels repre-
sent the likelihood (over the set of samples) of an atom occu-
pying the voxel. Fig. 6A shows such a visualization for
10PH chain A. Note that this data is not simply useful for
visualization, but can be used as the representation of the
shape of the molecule for docking and fitting exercises to
incorporate the input uncertainties directly into the scoring
functions (see also Fig. 10).

Localized Uncertainty in Molecular Surface Calculations.
In many applications, instead of a volumetric map, one uses
a smooth surface model to compute QOIs like area, volume,
curvature, interface area etc. In such cases, a visualization
like Fig. 6B can be very descriptive. It shows a single smooth
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Fig. 5. Convergence of sampling protocol across all samples. Plot of total B-factor (a measure of both size and uncertainty) against number of samples
needed before the relative error is negligible (z = 0.05). QOls are exposed surface area (left), LJ potential (center), and PB energy (right).
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Per vertex uncertainty (defined as
standard deviation) of molecular
Surface construction

Volume rendering showing the probability
of a voxel intersecting an atom
Surface rendering shows atoms at mean positions.

Fig. 6. Visualization of molecular surface uncertainties. (A) A volumetric
map showing the likelihood of the voxel being occupied by an atom, com-
puted using a sampling of the joint probability distribution of the atom
positions. (B) Expected deviation of each point on the surface of a single
model, w.r.t. all models sampled based on the joint distribution of the loca-
tions of the atoms. Green colored regions are expected to remain more or
less stable in any sample, red colored ones may vary a lot.

surface model (based on the original/mean coordinates),
and the colors at each point on the surface show the average
distance of that point from all surfaces generated by sam-
pling the joint distribution. Unsurprisingly, most parts of
the surface in the figure show very low deviation, and only
the narrow and dangling parts show high deviations. Com-
paring this with the rendering of B-factors (in Fig. 7A)
shows that even though some parts of the surface are in
regions with high B-factors, the uncertainties do not affect
the surface computation as much. Hence, higher tempera-
ture factors may not always result in a higher uncertainty in
computed property, and a sensitivity analysis with low dis-
crepancy sampling is warranted.

Uncertainty in Energy Calculations. We use the same tech-
nique to show the local impact of compounded QOIs, or
those using primary QOIs as input. Computation of MM-
PBSA energy first evaluates the PB potential on a volume
which encapsulates the molecule and the solvent. This
potential calculation itself requires a smooth surface repre-
sentation of the molecule as input, along with the positions
and charges of the atoms. In this case, not only can we
bound the bound the overall uncertainty of the final value
of PB energy, but can also bound the uncertainties of inter-
mediate PB potentials calculated at each voxel. We do this
by defining the PB potential at each voxel as a separate QOI,
and evaluate the QOI (potential at a given voxel) for each
sample generated with the QMC sampling protocol. Hence,
we derive a distribution for each voxel. The means and stan-
dard deviations of these distributions are rendered in
Figs. 7C and 7B (respectively), showing the positive and
negative potential regions, as well as regions that have vary-
ing potential. Comparing the input uncertainties (B-factors
in Fig. 7A) to these third level propagated uncertainties
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Fig. 7. Visualization of molecular energy uncertainties. (A) Simple mapping
of B-factors to the surface of the protein. (B) Expected deviation of potential
energy of a given voxel, w.r.t. all models sampled based on the joint distribu-
tion of the locations of the atoms. Green colored regions are expected to
remain more or less stable in any sample, red colored ones may vary a lot.
(C) Display of potential energy map averaged over all samples.
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Fig. 8. Large-scale conformational samples resulting from torsion angle
sampling. Samples of Calmodulin, which undergoes massive conforma-
tional shifts when bound with calcium. Left, the open and closed struc-
tures (corresponding to PDBID:1CFD and PDBID:1CKK, respectively)
are colored blue and green (respectively). Right, torsional samples of
closed conformation (transparent), showing large conformational shifts
from input molecule.

shows that while in some regions the uncertainties had a
cancellation effect, in other regions they were amplified.

3.4 Applications to Internal Angle Sampling
Throughout this paper, we have identified a protocol for
showing the uncertainty in QOI that exists in the presence
of atomic uncertainty. We have stressed that this same pro-
tocol could also be used to model uncertainty on QOI when
the underlying molecules are sampled from their internal
(torsional) angles. However, there is one major distinction.

For proteins, small changes in torsion angles can result in
huge conformational shifts; therefore, the QMC sampling
protocol defined in this paper does not produce uncertain
states of the same protein, but completely new configurations.
To test our QMC sampling protocol with torsional angles, we
used Calmodulin, a protein that undergoes large conforma-
tional shifts when bound with calcium (see Fig. 8). We sam-
pled from the closed structure of Calmodulin (PDBID:1CFD),
which contains 148 residues, providing 296 degrees of free-
dom, and generated 1,000 samples according to the QMC
protocol defined above.

Unlike with the atomistic sampling protocol, providing
bounds for QOI like as surface area or volume (that are
expected to change substantially with each new configura-
tion) do not bound uncertainty, but instead deviations due
to configurational shifts (see Fig. 9, where the surface area
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Fig. 9. Distribution of simple QOI (surface area, left, and energy (GBSA),
right) for samples of closed Calmodulin conformation PDBID:1CKK. Red
dotted line shows the QOI on the input closed conformation, and blue
shows the open (PDBID:1CFD). Note that these histograms do not rep-
resent structural uncertainty but changes in QOI due to conformational
changes. Compare with Fig. 3 where structural uncertainty for a different
protein is bounded.
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and energy vary much more than the surface area and
energy of atomistic sampling, as found in Fig. 3). Hence, for
internal angle sampling, we focus on uncertainties for QOIs
which are computed over a collection of configurations
instead. For example, define a QOI as the possible binding
site on a protein (receptor). We define this as the probability,
over possible configurations and transformations of the
binding partner (ligand), that an atom (i.e., a point on
the surface) of the receptor would be in contact (within a
distance cut-off).

Given a calibrated scoring function F with bounded
errors, specific configurations s4 and sz of two molecules A
and B, and a low dispersion sampling of the space of rela-
tive orientations SE(3), we can compute a list of the top &
ranked orientations of s4 with sp (e.g., through protein-
protein docking). Let the ith orientation be expressed using
a transformation 7; which is applied to sp (denoted T;(sp)).
Now, for each atom a on molecule A, let BS(a, sp) be a ran-
dom variable denoting the event that a is in contact with sp
upon binding; i.e., a is on the binding site. Now, we define
the probability of BS(a, sp) as follows:

Pr(BS(a, sp))

pes(a,sp) = (18)

Zcont a,T;(sg)),
where cont(a,T;(sp)) is 1 if at least one atom in T;(sp) is
within a cutoff distance from a, otherwise it is 0.

Equation (18) establishes the binding site probabilisti-
cally. Given an accurate docking tool and molecules in
favorable configurations, the probabilities would be high
for small contiguous regions of protein A, and low in other
regions. On the other hand, almost equal probability across
A would indicate poor docking prediction, and/or poor
affinity between the molecules.

3.4.1 Inhibitor Selection Based on Binding Site Overlap

We can perform the samp procedure for protein-ligand
docking, where the ligand is typically a small (non-protein)
molecule. During ligand optimization for binding, one
needs to sample the configuration for the ligand and then,
for each configuration, apply docking to predict the best
ranked orientations (of the sample configuration). In such
cases, we augment the definition of the probability of an
atom being on the binding site by summing over all
configurations. In other words, let R be the receptor and L
be the ligand, and let » € R be an atom on R, then

kN Z Z (cont(r,Ti(sL))),

SLECL i

pos(r,Ch) (19)

where C” represents the configurational space of the ligand,
L,and C% is the N discrete samples taken from this space.

Given this probabilistic estimate of the binding site, we
define a new scoring function to rank the ligand configura-
tion+orientations. For a given orientation 7; of a given con-
figuration s;, we define its score as follows:

= pps(r,Ch)

reR

bindScore(sr, T, ) - cont(r,T;(sr)).  (20)

Hence, configurations of the ligand which can bind at
highly probably binding sites are rewarded.
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Fig. 10. Comparing different ligand conformations using probabilistic
binding site on the same protein. The smooth surfaces in the figures
show the probabilistic binding site on the kB kinase g (PDBID:3RZF) for
binding with an inhibitor ligand, where red is not likely and blue is very
likely. The ligand atoms are colored according to the average probability
of receptor atoms within a given cutoff (4A). Hence, a ligand configura-
tion which has a high proportion of blue and low amount of red/orange is
a better configuration (model on the right).

A visualization of Equation (20) is shown in Fig. 10. For
this particular example, we obtained a correct configuration
of a ligand that inhibits the «B kinase g, from the protein
data bank model 3RZF, and a wrong configuration of the
same ligand from the model 3QAD. We started with the
wrong configuration, generated 1,000 samples, and docked
each of them using Autodock [32] to the kinase. Fig. 10
shows two ligand conformations. The one on the left has a
poor RMSD (3.24) with respect to the known correct config-
uration (and orientation) of 3RZF, and the one on the right
has a favorable RMSD (1.069). Interestingly, both of them
received the same score, —8.2, from AutoDock. However,
the left one had a bindScore of 55,213, and the right one
had 55,667, showing that bindScore correctly identifies the
correct configuration.

4 CONCLUSIONS

In this article we have shown that even subtle uncertainties
present in high resolution X-ray structures can lead to
significant error in computational modeling. Such errors
are propagated and compounded when output from one
stage of modeling is used in the next. We considered the
uncertainties in atomic position reported through B-factors
and evaluated how they create uncertainty in computed
quantities of interest (e.g., surface area, van der Waals
energy, solvation energy, etc.). While some existing compu-
tational protocols attempt to bound the uncertainties/error
due to algorithmic or numerical approximations, they do
not account for the uncertainties in the input. However, our
empirical study on 57 x-ray structures of bound protein
complexes showed that there significant probability (> 10
percent) of having more than 5 percent error in total energy
calculation (PBSA) purely due to input uncertainties. Hence,
one must account for and bound such uncertainties.

We have shown that input uncertainties can be modeled
as random variables and the uncertainty of the computed
outcome (a dependent random variable) can be bounded
using Chernoff-like bounds introduced by Azuma and
McDiarmid. We have also shown that such bounds are also
applicable when the input random variables are dependent,
and show how one can theoretically bound the probability
of error for Coulombic potential calculation (and any sum-
mation of distance dependent decaying kernels in general).
In the future, we aim to derive similar bounds for other bio-
physically relevant functions.
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We have also introduced an empirical quasi-Monte Carlo
approximation method based on sampling the joint distri-
bution of the input random variables to produce an ensem-
ble of models. The ensemble is used to approximate a
distribution of values for the quantity of interest. This distri-
bution in turn can be used to bound the uncertainty of the
calculation in terms of statistical certificates. A very interest-
ing and promising outcome from application of this frame-
work to a large set of protein structures for a wide variety
of calculations showed that one typically needs fewer than
500 samples before the QMC procedure converges, hence it
is quite practical to perform and report such certificates in
modeling exercises. Currently, we are working on provid-
ing bounds for binding free energy of large-scale conforma-
tional shifts through torsion angle sampling.

We have also shown that many of the current methods
for visualizing protein uncertainty is limited: displaying
surface uncertainty simply by B-factor is insufficient, as
uncertainty from X-ray crystallography does not necessarily
track natural shifts in protein conformation. We have dis-
played several different visualization techniques for dis-
playing not only atomic uncertainty, but also uncertainty in
energy calculations. Displaying 3-dimensional uncertainty
of quantities such as the Poisson Boltzman potential can
provide valuable information that a single potential map
cannot.
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