
1404 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

Network-Aware Feasible Repairs
for Erasure-Coded Storage

Márton Sipos , Josh Gahm, Narayan Venkat, and Dave Oran

Abstract— A significant amount of research on using erasure
coding for distributed storage has focused on reducing the
amount of data that needs to be transferred to replace failed
nodes. This continues to be an active topic as the introduction of
faster storage devices looks to put an even greater strain on the
network. However, with a few notable exceptions, most published
work assumes a flat, static network topology between the nodes
of the system. We propose a general framework to find the
lowest cost feasible repairs in a more realistic, heterogeneous and
dynamic network, and examine how the number of repair strate-
gies to consider can be reduced for three distinct erasure codes.
We devote a significant part of the paper to determining the set
of feasible repairs for random linear network coding (RLNC)
and describe a system of efficient checks using techniques from
the arsenal of dynamic programming. Our solution involves
decomposing the problem into smaller steps, memorizing, and
then reusing intermediate results. All computationally intensive
operations are performed prior to the failure of a node to ensure
that the repair can start with minimal delay, based on up-to-
date network information. We show that all three codes benefit
from being network aware and find that the extra computations
required for RLNC can be reduced to a viable level for a wide
range of parameter values.

Index Terms— Distributed storage, matrix rank checks,
network coding.

I. INTRODUCTION AND RELATED WORK

A. Erasure Coding for Distributed Storage

IN RECENT years, distributed storage systems (DSS) have
seen a trend towards erasure coding as a means to control

the costs of storing and ensuring the resilience of large
volumes of data. Even though traditional distributed storage
systems employ replication to ensure data resilience, erasure
coding provides equivalent or better resilience while using a
fraction of the raw storage capacity required for replication.

Manuscript received January 25, 2017; revised March 6, 2018; accepted
April 3, 2018; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor M. Chen. Date of publication June 1, 2018; date of current version
June 14, 2018. This work was supported by the ÚNKP-17-3-III New National
Excellence Program of the Ministry of Human Capacities. The work of
M. Sipos was supported by the Csibi Sándor Scholarship. (Corresponding
author: Márton Sipos.)

M. Sipos was with Cisco Systems, Cambridge, MA 02142 USA. He is
now with the Budapest University of Technology and Economics, 1117
Budapest, Hungary, and also with Aalborg University, 9100 Aalborg, Denmark
(e-mail: siposm@aut.bme.hu).

J. Gahm was with Cisco Systems, Cambridge, MA 02142 USA. He is now
with Facebook, Cambridge, MA 02142 USA (e-mail: gahm@fb.com).

N. Venkat was with Cisco Systems, Cambridge, MA 02142 USA. He is now
with Amazon, Boston, MA 02210 USA (e-mail: narayan.venkat@gmail.com).

D. Oran was with Cisco Systems, Cambridge, MA 02142 USA. He is now
with Network Systems Research and Design, Cambridge, MA 02138 USA
(e-mail: daveoran@orandom.net).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TNET.2018.2830800

Both new technologies and increasing storage volume require-
ments suggest that erasure coding will continue to increase in
importance as a factor in data center design. Offloading of
encode and decode operations to GPUs, FPGAs and/or use of
modern software libraries such as ISA-L, jerasure and Kodo
promises to lower the computation costs of these operations,
potentially expanding the set of cost-effective use cases for
erasure coded storage. Additionally, the increased IOP density
and IO bandwidth of next–generation storage devices, such
as NVMe (Non-Volatile Memory Express), as compared with
rotating media or earlier SSD devices, promises to lower
the effective IO costs associated with coded storage, further
expanding the set of use cases.

Network interfaces have arguably seen a less dramatic
increase in throughput than either storage or compute. A large
bulk of the research in the area of erasure coding for distrib-
uted storage has focused on ameliorating the increased strain
on the network during repair of lost erasure-coded data by
reducing the amount of data transferred, commonly referred to
as repair bandwidth. Unlike replicated storage where data can
be recovered by simply copying the lost pieces from surviv-
ing nodes, repairing erasure coded pieces involves retrieving
significantly more data. For example, Reed-Solomon (RS) is
widely employed due to its optimal storage efficiency for
a given level of reliability (more precisely, it is Maximum
Distance Separable (MDS)). However, repairing lost pieces
requires as many coded pieces as are required to recover the
original data. To address this, several codes which perform
repair more efficiently have emerged employing techniques
such as functional repair [1], interference alignment [2] and
piggybacking [3]. Dimakis et al. [1] characterizethe inherent
trade-off between storage efficiency and repair bandwidth
and introduce regenerating codes that achieve various points
on the resulting trade-off curve. The two extremal points
on the curve are of particular interest. Minimum Storage
Regenerating (MSR) codes store the least amount of data to
achieve a given level of redundancy. Minimum Bandwidth
Regenerating (MBR) codes on the other hand store more data
on each node, but require the least amount of data to be
transferred during a repair, equal to the amount stored on the
failed node.

Shah et al. [4] introduced the concept of flexible regenera-
tion, where storage nodes contribute different amounts of data
to repairs and introduced a lower bound on the total repair
bandwidth. We introduced a slightly simpler lower bound
for MSR codes in our previous paper on the topic [5] that
forms the basis of our theoretical results for making functional
repair network-aware. We have decided against the use of a
cap on the amount of data transferred from any single node,

1063-6692 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4671-938X

SIPOS et al.: NETWORK-AWARE FEASIBLE REPAIRS FOR ERASURE-CODED STORAGE 1405

Fig. 1. An example of the network-aware repair space of an erasure code
for which the optimal repair w.r.t. the weighted cost of repairs is not the one
that transfers the fewest pieces.

as argued for in [4], as we felt it unduly excludes some
repair strategies. The same research team has provided [6]
a code for the MBR point that uses a form of exact repair
(i.e. lost pieces are replaced with identical copies) termed
‘repair-by-transfer’. This makes it interesting in severely band-
width and computationally-limited systems. We refer to this
code as RBT-MBR and include it in our evaluation. In contrast
to exact repair, some codes employ functional repair, where
lost pieces are replaced with functionally equivalent ones
instead of exact copies. The basic idea of functional repair
emerged from network coding [7], a highly effective technique
to disseminate information through a network that allows
intermediary nodes to transmit functions of the data they
received as opposed to simply forwarding it appropriately.
Ho et al. [8] proposed using functions based on linear coef-
ficients randomly selected from a finite field and called the
technique Random Linear Network Coding (RLNC). It was
quickly applied to storage [9], [10]. The code’s construction
makes it well-suited for use in dynamic, heterogenous systems
as it provides significant flexibility in the selection of pieces
and nodes to retrieve and repair data from. Furthermore, it can
be tailored to achieve any point on the trade-off curve provided
a finite field of large enough size is used, even after the
initial data distribution. However, it suffers from significant
computational overhead and crucially, due to the random
selection of coefficients, requires a relatively large finite field
to retain data integrity with high probability. This makes it
less suitable in its basic form for use in environment such as
data centers, where even a minute probability of data loss is
unacceptable. We dedicate a significant portion of the paper
to dealing with this aspect, extending the usability of RLNC
to these scenarios.

B. Network-Aware Repairs

Network topology and current traffic conditions play a
crucial role in repair performance. To reflect these attributes,
costs can be assigned to the transfer of pieces between nodes.
Under these conditions, a solution that aims to minimize
the number of transferred pieces would give a suboptimal
solution. Figure 1 shows an example for a repair using RLNC
in a two–rack setup where the cost of inter–rack transfers
is 10 times higher than that of intra–rack transfers. The
horizontal axis shows the number of pieces transferred by each
repair. Traditionally, this has been considered as the de facto
network cost of a repair and is sometimes denoted with γ [1]
and referred to as repair bandwidth. The vertical axis shows

the number of transferred pieces weighted with a linear cost
function that reflects the current state of the network. Blue
semicircles denote feasible repairs, grey semicircles unfeasible
ones. We define a repair as feasible if the resulting system
maintains its ability to reconstruct the data from any subset
of nodes of a predefined size. Thus, unfeasible repairs don’t
necessarily result in immediate data loss, but rather decrease
the reliability of the system over the course of several rounds
of failures and repairs. A red triangle denotes the repair
with the lowest weighted cost. A naive approach that is not
network-aware would select one of the feasible repairs on the
x = 4 column, a suboptimal choice for this particular cost
function. This invokes two questions that this paper seeks
to answer: how much do different types of codes benefit
from being network-aware and where can the lowest cost
feasible repairs be found in the repair space, independent of
the cost function used. An answer to the latter would provide
a solution to reduce the size of the space that should be
considered.

Several codes have been proposed that take network topol-
ogy into account while doing repairs. However, most do
this when distributing the data initially, thus limiting their
ability to adapt to dynamic network conditions. Li et al. [11]
proposed a tree-based topology-aware repair scheme based
on Prim’s algorithm that doesn’t have this limitation. The
paper described a heuristic-based approach to manage the large
repair space and deal with the scenario when a second storage
node is lost during repair. Unfortunately, the practical applica-
bility of this approach is slightly diminished by the delay such
a selection process introduces. Other research has focused on
looking at specific network topologies. Akhlaghi et al. [12]
grouped nodes into two sets, a “cheap” and an “expensive”
set, based on the cost of access. They introduced generalized
regenerating codes and showed that by downloading more
pieces from “cheap” nodes, the weighted cost of repairing
failed nodes can be reduced. Gastón et al. [13] presented a
similar model for a 2 rack system employing regenerating
codes. It considered the different cost of accessing inter-rack
and intra-rack data as well as the location of the newcomer
node to define a threshold function which minimizes the
amount of stored data per node and the bandwidth needed to
repair a failed node. More recently, Hu et al. [14] introduced
double regenerating codes, specifically tailored to minimizing
inter-rack traffic in a multi-rack data center. They proposed a
two-stage regeneration procedure that recombines data stored
inside racks before using it in the repair. They show gains of up
to 45.5% compared to a regenerating code at the MSR point,
assuming that intra-rack traffic is free. Thus, a preliminary
answer to the first question is that at least some erasure codes
benefit from being network aware in specific cases.

C. Checking the Feasibility of Repairs

For codes employing exact repair, the code construction
determines which repairs are feasible. For codes employing
functional repair, an information flow graph is typically used
to determine what lower bounds must be met on the amount
of data transferred during repairs to ensure the maximum flow
has a given value. Since for RLNC the coefficients used to
create the replacement pieces are drawn uniformly randomly

1406 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

from a finite field, there is a non-zero probability that they
introduce unwanted linear dependencies not represented on
the information flow graph. A significant amount of work has
been done to study this probability [15], [16]. Hu et al. [17]
proposed a heuristic two-phase checking mechanism on the
coefficient matrices. They noted that as long as a file is
split into a small number of fragments and a single repair
is checked for each potential failure, the number of matrices
for which the rank should be checked stays manageable.
This number scales linearly when multiple repairs need to be
checked, making it inefficient for our proposed network-aware
solution.

We propose a novel mechanism to reduce the number of
computations based on Gaussian elimination. This is critical
in enabling the checks to be performed on data distributions
with a large number of storage nodes and files split into many
fragments. Beyond reducing the computational load on the sys-
tem, it plays an important role in our proposed framework by
decreasing the time necessary to find a set of feasible repairs.
Thus, it limits the probability that a potentially unchecked
repair strategy is used or alternatively that the repair is delayed
to wait for the checks to finish. We base our solution on the
realization that the matrices that need to be checked share
many of their rows. Therefore, we propose reusing submatrices
after they have been reduced to an upper triangular form and
memoized, a common technique of dynamic programming.
Larger matrices can then be built by merging smaller matrices
prepared in advance. Furthermore, many of these smaller
matrices can also be reused in subsequent generations of
failure and repair, further decreasing computational costs over
the lifetime of the system. While our work is motivated by the
challenges posed by making RLNC usable in environments
such as data centers, it is applicable for other erasure codes
that employ functional repair. It can also be used to select
feasible repairs if the exact lower bounds on the amount of
data that needs to be transferred is not known.

D. Structure and Overview of the Contributions of the Paper

Our first contribution is to make the repair of erasure-
coded data network-aware by introducing a general framework
that computes the feasibility of different possible repairs in
advance. When a storage node fails, a repair is selected
based on some cost function that reflects the current state of
network connectivity among the storage nodes. By performing
the potentially computationally-intensive feasibility checks in
advance, the system is able to react to a node loss quickly and
can base the repair selection on up-to-date network traffic data.
The paper investigates the gains for different types of erasure
codes. The practical applicability of the proposed framework is
also considered by presenting techniques to reduce the number
of repairs to consider independent of the cost function in
use. This aspect is especially important for RLNC, where
the set of feasible repairs of potentially lowest cost is of
exponential size when using a naive approach. Our second
contribution is a technique to make checking the feasibility of
a large number of repairs less computationally demanding.
We present two methods to decompose the problem into
smaller parts and formulate some of the general properties

of decompositions. We also propose a technique to apply a
decomposition as a schema for the actual checks as part of
our proposed framework. We characterize the effectiveness
of our solutions using both analytic and simulation-based
tools.

Section II defines the concepts and models formally
and includes an algorithmic definition of our proposed
network-aware repair framework and decomposition method.
Section III examines different erasure codes and defines
functions that determine the location of relevant, potentially
minimal cost feasible repairs for each. Section IV looks at
the cost of performing the feasibility checks and describes
two algorithms to find good decompositions. Section V
provides experimental evidence showing the benefits of
network-awareness and decompositions. Finally, Section VI
summarizes our findings.

II. SYSTEM MODEL AND NETWORK-AWARE REPAIR

FRAMEWORK

A. System Model

A file to be stored in the DSS is broken up into k pieces
of identical size. Then, it is encoded using an erasure code to
produce n (n ≥ k) coded pieces. These are then distributed
to the N (n ≥ N) nodes: ΩN =

(
node1 node2 · · · nodeN

)
,

with each storing exactly α (α = n
N). When nodef fails,

all pieces it stored are considered lost and must be repaired
onto a replacement node. We designate the replacement node
with the same name and consider repairs, where the surviving
nodes can transfer different numbers βi of pieces to nodef :
ξj =

(
β1 β2 · · · βN

)
, including 0 (j is the index of the

repair in an arbitrary ordering of all repairs). We call all
possible repairs of a code where nodef was lost its repair
space: Ξf = {ξj | 0 ≤ βi ≤ α, βf = 0} and use the term
generation to denote a round of loss and repair. We require
the system to maintain its properties over an arbitrarily large
number of generations. We only consider single node losses
as they are most common in systems with well-separated
failure domains [18]. Performing concurrent repairs allows
for techniques that can further reduce network usage [19],
but these are outside the scope of this paper. We expect
our proposed framework to be useful in the case of multiple
concurrent failures in reducing network costs. We assume that
storage nodes are able to perform some basic operations on
the data during repairs, mainly additions and multiplications.
We consider storage systems and codes with parameters that
are N, n, k, α ∈ N

+, βi ∈ N. A summary of notations is
presented in Table I.

We consider a repair feasible if the resulting system state
maintains data recoverability after sustaining subsequent L
concurrent node losses. Each code, based on its parameters,
therefore has a maximum number of L nodes it can lose
concurrently while maintaining data recoverability, usually
chosen to be L = �n−k

α �.
Definition 1 (Feasible Repair): A repair is feasible if fol-

lowing its execution, data is recoverable from any N − L
nodes.

For codes employing exact repair, such as Reed-Solomon
and RBT-MBR, the set of feasible repairs Ξ̃f as well as L is

SIPOS et al.: NETWORK-AWARE FEASIBLE REPAIRS FOR ERASURE-CODED STORAGE 1407

TABLE I

TABLE OF NOTATIONS

defined by the structure of the code. For regenerating codes
employing functional repair, the set of feasible repairs is con-
strained by both the min-cut of an information flow graph [7]
and the coefficient selection method. On the information flow
graph, a flow to a data collector with a value of at least k
must be maintained with any L vertices from the final level
of topological sorting removed from the graph. For codes
that generate coefficients randomly such as RLNC, further
checks are necessary to ensure that the selection of coefficients
does not introduce linear dependence not portrayed on the
information flow graph. In this sense, on an information flow
graph with edges of capacity 1, i edge-disjoint paths must
correspond to i linearly independent pieces retrieved by the
data collector. To ensure this condition is met when using
randomly generated coefficients, Gaussian elimination can be
used to check the rank of several coefficient matrices that
correspond to potentially retrieved data.

We denote the set of matrices to check with M and define a
mechanism that performs these checks in a computationally-
efficient manner. Each matrix in M is obtained by concate-
nating the encoding coefficient vectors of the packets stored
on N − L − 1 surviving and one replacement node, the data
on each node represented by α rows of coefficients. Matrices
that don’t contain repaired rows need not be checked as they
have been checked before the repair. Similarly, if the same
node fails in two successive generations, the checks can be
skipped entirely, since no new coefficients are introduced into
the system. To denote matrices of size iα×k, we use an index
set based on which nodes the matrix contains rows of encoding
coefficients from: si = {index1, index2, · · · , indexi}, where
|si| = i. For example, s3 = {3, 4, 5} contains rows from
node3, node4 and node5.

B. Representing the Cost of Network Transfers

We define the cost functions using matrix C, where ci,j

denotes the cost to transfer a single piece from nodei to nodej

and column C[j] the costs associated with transfers to nodej .
We introduce two restrictions on C. The diagonal elements
must be ci,i = 0, while all others i �= j, ci,j ≥ 0.

C =

⎛

⎜
⎜
⎜
⎝

0 c1,2 · · · c1,N

c2,1 0 · · · c2,N

...
...

. . .
...

cN,1 cN,2 · · · 0

⎞

⎟
⎟
⎟
⎠

(1)

We use this general way of modeling costs to make it
applicable to different network topologies and traffic patterns.
It can be based on any number of measured parameters such
as available bandwidth, latencies, number of dropped packets,
queueing delays, etc. It can be used, but is not limited,
to minimize the total time required for repairing lost data. We
make the assumption that the cost of transferring a single piece
from nodei to nodej is not dependent on the total number of
pieces sent between them in the period in which the cost is
regarded as accurate. This assumption is valid if the examined
period is short or the repair traffic is a negligible fraction of
the traffic flowing on the same links.

We evaluate the network-aware cost-weighted repair space
of the code as shown in Figure 1, where the weighted cost for
repairing data on nodef using repair ξj is cost(ξj) = ξjC[f],
where C[f] is used to denote column f .

C. A Network-Aware Repair Framework

Our proposed framework selects the lowest cost repair
and is independent of erasure code and network topology,
as illustrated in Algorithm 1. Whenever there is a change
in the layout of the data (the initial distribution of data and
any subsequent repairs), the set of feasible repairs Ξ̃f is
computed for each possible directly subsequent node failure
using precompute_feasibility, defined in Algorithm 2. Thus,
the potentially computation–heavy search for feasible repairs
takes place before an actual node failure. When a failure does
occur, the system can react quickly, calculating the cost for
each feasible repair based on a cost function reflecting up-
to-date network conditions. The lowest cost repair can be
performed with minimal delay. Then, the set of feasible repairs
must be precomputed again to prepare the system for the
following node failure and so on.

The implementation of the is_feasible() function from
Algorithm 2 is determined by the erasure code in question
and the definition of feasibility, which is left to the designer
and operator of the system. For our purposes, we will define
a repair as feasible if the system maintains the same level of
reliability after it is performed, i.e. data remains recoverable
from any N − L nodes.

The practical applicability of our proposed framework is
determined by the complexity of the is_feasible() function
and the size of Ξf and Ξ̃f . For codes that select encoding
coefficients at random, computational complexity is also deter-
mined by the values of parameters N, n, k, α as the rank of a
potentially large number of matrices in M must be checked.

1408 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

Algorithm 1 Network-Aware Repair Framework
1: � Initial data distribution �

2: precompute_feasibility
3: repeat
4: � wait for nodef failure �

5: min_cost := ∞
6: for ξj ∈ Ξ̃f do
7: if cost(ξi) = ξiC[f] < min_cost then
8: min_cost := cost(ξi)
9: ξ_sel := ξi

10: end if
11: end for
12: execute ξ_sel
13: precompute_feasibility
14: until false

Algorithm 2 Precompute Feasibility
1: procedure precompute_feasibility
2: Ξ̃i := ∅
3: for nodei ∈ ΩN do
4: for ξj ∈ Ξi do
5: if is_feasible(ξj) then
6: Ξ̃i := Ξ̃i ∪ ξj

7: end if
8: end for
9: end for

10: end procedure

D. Decomposing Matrix Rank Checks Into Reusable Parts

To perform the rank checks efficiently, we propose decom-
posing the Gaussian elimination performed for the coefficient
matrices in M into smaller steps that can be shared between
different checks and across subsequent failure and recovery
generations. Once a set of steps and order is identified, it can
be used as a schema as long as N , L and α don’t change.

Definition 2: A decomposition(D, Ψ) is a set of matrices
D = {s(1)

1 , s
(2)
1 , . . . , s

(k1)
1 , . . . , s

(kj)
j }, where si is a matrix

constructed by concatenating row-by-row the encoding vectors
of the packets stored on i nodes, j ≤ N − L, kj ≤ (

N
j

)
,

M ⊂ D and a mapping Ψ to match each matrix in D except
those containing rows from a single node (s1) to a pair of
matrices from D.

A decomposition can also be represented with a directed
acyclic graph that defines the dependencies between matrices
as shown in Figure 3. The matrices in D are the vertices
of the graph and a root element is added that connects
to all nodes representing matrices in M ⊂ D. Edges go
between nodes according to Ψ to denote which pair of matrices
should be transformed to upper triangular form (UTF) before
tackling a given matrix. The checks are then a traversal of
the graph, and each visited vertex (matrix) is memoized in
upper triangular form to reduce the number of operations in
subsequent visits. The fewer matrices that need to be visited
and the lower the cost of each visit, the fewer computations are
necessary.

Fig. 2. An example of merging s2 and s1, α = 2.

Fig. 3. An example of a valid decomposition.

We group matrices of identical size to simplify the notation
and use Si to denote the set of matrices of size iα × k that
includes all possible combinations of selecting all rows from i
nodes. Ssel

i = {si|si ∈ Si ∩D} is the set of matrices that are
selected to be part of D from Si. This grouping determines
the levels of the topological sorting of D. In order to traverse
the graph, we define the merge operation sa ⊕ sb = si, where
a + b = i and sa ∩ sb = ∅ as follows. First, the rows of sb

are appended to the end of sa. Second, the rows of sa are
used to create leading zeros in the appended rows to get the
resulting si into UTF. An overview is shown in Figure 2 with
0 elements shown as white boxes, non-zero elements shown
with solid red and elements that are going to be transformed
to 0 shown with a wavy red fill. The mapping Ψ associates a
pair of matrices sa and sb with each matrix si ∈ Ssel

i , i > 1.
A valid decomposition D is one that can be used to

recreate all matrices in M in upper triangular form using
the merge operation. Furthermore, it must also provide
a means to build all matrices in D except for matrices
containing rows from a single node. For example, D =
{{1}; {2}; {3}; {4}; {1, 2}; {1, 4};M}, shown in Figure 3, is a
valid decomposition for M = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}},
but D′ = {{1}; {3}; {4}; {1, 2}; {2, 3};M} (not shown) is
not, as neither {1, 2}, {2, 3} ∈ D′ nor {1, 3, 4} ∈ M
can be built from merging elements of D′. This example
highlights that valid decompositions must contain all matrices
that contain rows associated with packets on a single node as
well as intermediate matrices.

III. LOCATING POTENTIALLY LOWEST-COST

FEASIBLE REPAIRS

In this section we define specific cost functions for the
different erasure codes in order to reduce the number of repairs
to consider and to be able to characterize the repair space of
each code in terms of where the lowest cost feasible repairs
are. The codes were chosen to cover both exact and functional

SIPOS et al.: NETWORK-AWARE FEASIBLE REPAIRS FOR ERASURE-CODED STORAGE 1409

repair and both MSR and MBR points on the storage – repair
bandwidth trade-off curve.

Let us look at finding the minimum cost feasible repair ξmin

and its associated cost: κ = cost(ξmin) =
∑N

i=1,i�=f βici,f

after losing the data stored on nodef .

A. Reed-Solomon

Here we examine decoding-based repair for Reed-
Solomon(RS) as this can be applied to any linear MDS
code. We restrict our evaluation to the α = 1 case to
be in line with how RS is generally used for storage. Let
c(1), c(2), · · · , c(N−1) : c(i) ∈ set(C[f]) \ cf,f be a permuta-
tion of costs in ascending order and β(1), β(2), · · ·β(N−1) the
corresponding number of transferred pieces. Thus, the cost
of the minimal cost repair is shown on Equation (2) and the
number of feasible repairs to consider given no knowledge of
C is

∣
∣
∣Ξ̃f

∣
∣
∣ =

(
n
k

)
.

κRS =
k∑

i=1

c(i) (2)

B. RBT-MBR

There are two distinct repair strategies to consider. Ide-
ally, each surviving node transfers a single encoded piece
(βi = 1, i �= f) as defined in [6]. Alternatively, if at
least k distinct pieces are transferred, the decoding of the
embedded MDS code can take place and missing code words
can be re-encoded. Whilst this second repair strategy involves
additional bandwidth and computation, it can result in lower
transfer costs for some C. Let c(i) and β(i) be defined as
previously. The cost of the optimal repair κRBT-MBR is specified
in Equation (3) based on the two repair strategies.

κRBT-MBR = min

(
N−1∑

i=1

c(i) ,

N−L∑

i=1

(α − i + 1)c(i)

)

(3)

The first term is the cost of transferring a single piece from
each surviving node. The second term expresses retrieving as
many pieces from the lower cost nodes as possible without get-
ting duplicates.

∑N−L
i=1 (α− i+1) = k because the embedded

code is MDS and the way RBT-MBR is constructed [6]. With
no knowledge of C, the number of repairs that are potentially
lowest cost is reduced to

∣∣
∣Ξ̃f

∣∣
∣ = 1 + (N − L)!

(
N−1
N−L

)
.

C. Network Coding

Unlike the previous codes, network coding does not have
a fixed repair strategy, thus we resort to analyzing the infor-
mation flow graph (IFG) to limit the search for Ξ̃f . RLNC
has been shown to be able to store and recover as many
individual encoded pieces as the max-flow of the IFG as long
as some constraints are met [20]. We use the system of checks
described in Section II-D to select coding coefficients that
enable the cut-set bounds to be be achieved. Ω(g)

N \ node
(g)
f

is the set of surviving storage nodes in generation g of loss
and repair, and let [S(g)]l denote the set of its l-subsets, i.e.
[S(g)]l := {X ⊂ (Ω(g)

N \ node
(g)
f)
∣
∣|X | = l}.

Theorem 3: Consider a DSS that uses an erasure code that
achieves the cut-set bounds for the information flow graph and
initially has the property of being able to recover the data from
any (N − L) nodes, where (N − L)α = k. It maintains this
property through an arbitrarily large number of single node
failure and repair generations for any failure pattern if and
only if the condition in Equation (4) is met.

∀g ≥ 1, ∀s ∈ [S(g)]L :
∑

node
(g)
i ∈s

β
(g)
i ≥ α (4)

Less formally, during a repair in generation g, any L sized
selection of nodes must transfer at least α pieces for the
system to be able to sustain the loss of L nodes following the
repair. This constraint is sufficient to ensure that the number
of edge-disjoint paths on the IFG between the data source
and a data collector does not decrease to below k if L nodes
are subsequently lost in the following generation. It is also
necessary for MSR codes, where (N − L)α = k.

Corollary 4: Theorem 3 also applies if (N −L)α > k with
the change that the condition in Equation (4) is only sufficient,
not necessary.

We have included a proof for both in the appendix (see in
Supplementary Material).

Let β(1), β(2), · · · , β(N−1) be a permutation of the number
of pieces transferred from remaining nodes of ascending
order and c(1), c(2), · · · , c(N−1) the respective costs from
set(C[f]) \ cf,f . Taking Equation (4) into consideration,
we can define a more specific cost function for the opti-
mal repair in Equation (5), by only considering repairs∑N−1

i=1 βi ≤ k.

κRLNC-MSR =
L∑

i=1

c(i)β(i) +
N−1∑

i=L+1

c(i)β(L)

=
L−1∑

i=1

c(i)β(i) + β(L)
N−1∑

i=L

c(i) (5)

The first term expresses the cost for the L lowest values of β(i),
the second term the cost for the rest of the nodes. Each of these
must transfer at least β(L) to satisfy Equation (4). κRLNC-MSR is
minimized if the c(i) are in descending order, i.e. transferring
more from cheaper nodes and less from expensive ones. The
free variables are thus reduced to β(1), β(2), · · · , β(L). Given
that Equation (4) should be satisfied with equality for ξmin,
this leads to a significant reduction in the number of poten-
tial repairs to consider shown in Equation (6). Furthermore,
it determines the positions of the lowest cost feasible repairs
in Ξf and once C is known, the optimal repair can quickly
be selected.

∣
∣
∣Ξ̃f

∣
∣
∣ =

∣∣
∣
∣
∣

{

ξ :
L∑

i=1

β(i) = α

}∣∣
∣
∣
∣

(6)

This is an integer partitioning problem on α that is constrained
by limiting solutions to those with L additive parts. The
number of non-constrained partitions is given by a recurrence
formula based on Euler’s pentagonal number theorem. The
first elements can also be found in the OEIS as sequence

1410 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

Fig. 4. Case study for RLNC(k, α, N). (a) RLNC(12, 6, 4) c1 < c2 +c3. (b) RLNC(12, 6, 4) c1 > c2 +c3. (c) RLNC(12, 4, 6) c1 +c2 < 2(c3 +c4 +c5).
(d) RLNC(12, 4, 6) c1 + c2 > 2(c3 + c4 + c5).

A000041 [21]. The number of solutions with L parts is equal
to the number of partitions in which the largest part is of size
L [22]. A similar recurrence formula exists for this constrained
version of the problem [23].

As the bound in Equation (4) is sufficient to ensure data
survival for all parameters, we may apply the previous results
for non-MSR codes as well. However, it is possible to define
tighter bounds for these codes, shown on Equation (7) [4].

N−1∑

i=1

β(i) ≥ γ(βmax)

where

γ(βmax) = max(α − βmax, k mod α) + �k/α� (7)

Shah et al. [4] introduce a cap on the amount of pieces any
single node transfers, 1 ≤ βmax ≤ α. They argue against
full flexibility (βmax = α), as it involves transferring at least
k pieces. However, for some C, transferring k pieces is
actually the lowest cost repair strategy. An example can be
seen in Figure 4d. Based on Equation (7), we define the costs
of optimal repairs for a given βmax on Equation (8).

κRLNC(βmax) =
�γ(βmax)/βmax�∑

i=1

c(i)βmax

+ c(�γ(βmax)/βmax�+1)(γ(βmax) mod βmax) (8)

To enumerate the set of feasible repairs based on these bounds,
the procedure must be repeated for all possible integer values
of βmax, merging results. The number of feasible repairs of
potentially optimal cost is shown on Equation (9), giving α
similar constrained integer partitioning problems as for the
MSR point. In this case the constraint in each is that the largest
part of a partition must be at most βmax. Due to the equivalence
described in [22], it is the same problem as for the MSR point.
Unfortunately, it is not clear whether this approach returns all
possible lowest cost feasible repairs.

∣
∣∣Ξ̃f

∣
∣∣ ≥

α∑

βmax=1

∣
∣
∣∣
∣

{

ξ :
N−1∑

i=1

β(i) = γ(βmax)

}∣∣
∣∣
∣

(9)

1) Case Study: Let us look at two sets of parameters at the
MSR point for which RLNC behaves differently depending
on C. We have selected these particular sets because of
their low number of potentially minimum cost repairs. Let us

assume with no loss in generality that nodeN has failed and
ci = ci,N are in ascending order. Figure 4 shows zoomed-in
views of the part of Ξf containing ξmin.

First, we look at k = 12, α = 6, N = 4 and require that
L = 2 failures be supported. Considering Equation (5) and
assuming repairs do not introduce linear dependence, only 4 of
them need to be compared to find ξmin.

ξ1 = (3 3 3 0), ξ2 = (2 4 4 0),
ξ3 = (1 5 5 0), ξ4 = (0 6 6 0)

For c1 = c2 + c3 all four repairs have the same cost.
For c1 < c2 + c3, ξ1, which is the most balanced repair
with the least amount of pieces transferred has the lowest
cost as shown in Figure 4a. On the other hand, for c1 >
c2 + c3, cost(ξ1) > cost(ξ2) > cost(ξ3) > cost(ξ4), i.e.
the repair transferring the most amount of pieces has the
lowest cost as shown in Figure 4. Thus, in these cases a
traditional mechanism that only tries to minimize the amount
of transferred data will sub-optimally pick ξ1, giving an error
of cost(ξ1)−cost(ξ4) = c1−c2−c3. More importantly, ξ2 and
ξ3 will not be the lowest cost repairs regardless of C, thus the
number of relevant repairs whose feasibility must be checked
is further reduced to just those transferring 9 and 12 pieces,
ξ1 and ξ4 in this case.

Second, we look at k = 12, α = 4, N = 6 and require that
L = 3 node failures be supported. In this case the lowest cost
feasible repairs based on Equation (5) are:

ξ1 = (1 1 2 2 2 0), ξ2 = (0 2 2 2 2 0),
ξ3 = (0 1 3 3 3 0), ξ4 = (0 0 4 4 4 0)

The cut-off point between ξ1 and ξ4 is c1+c2 = 2(c3+c4+c5).
Due to the limited number of ways the number 4 can be
reduced to additive components, there are no minimal cost
feasible repairs with a total of 9 or 11 transferred linear
combinations. Thus, there might not be a clear decreas-
ing or increasing order of costs like in the previous example
as shown in Figure 4c and 4d. Therefore, more repairs must
be checked.

IV. EFFICIENT METHOD TO CHECK THE FEASIBILITY

OF REPAIRS FOR RLNC

A. Enumerating the Encoding Coefficient Matrices to Check

Having looked at finding the set of feasible, potentially
lowest cost repairs, we now turn our attention to the selection

SIPOS et al.: NETWORK-AWARE FEASIBLE REPAIRS FOR ERASURE-CODED STORAGE 1411

of encoding coefficients for RLNC. So far, we have deter-
mined which repairs are feasible by examining cut-sets on
an information flow graph. This section complements this
by describing a system of checks that ensures all encoding
matrices that may be defined by the graph have a rank of k,
i.e. contain at least one invertible k × k submatrix. This is
necessary since RLNC uses randomly generated coefficients.

Let us look at how these matrices can be enumerated
through an example: k = 4, α = 2, N = 4 and L = 2. With
no knowledge of which node will fail, we must consider all
feasible repairs that have the potential to be of lowest cost for
each. In this case, by solving the integer partitioning problem
for RLNC-MSR described in Section III-C, we find there is a
single feasible repair for each potential failure that may have
minimal cost: ξ1 =

(
0 1 1 1

)
, ξ2 =

(
1 0 1 1

)
, ξ3 =

(
1 1 0 1

)

and ξ4 =
(
1 1 1 0

)
, i.e. βi = 1. Each will generate α = 2

rows of coefficients, which we will denote with {1′}, {2′},
{3′} and {4′} to reflect the node with which they will be
associated. To ensure that data is recoverable even if L nodes
are unavailable, we must check coefficient rows associated
with all combinations of sets of nodes of size N−L. However,
only matrices that also contain rows from repaired nodes must
be checked, since others must have been previously checked.
If checks fail, a new set of coefficients must be generated for
that repair. Thus,

M = {{1′, 2}; {1′, 3}; {1′, 4};
{1, 2′}; {2′, 3}; {2′, 4};
{1, 3′}; {2, 3′}; {3′, 4};
{1, 4′}; {2, 4′}; {3, 4′}}. (10)

Since a naive approach involving Gaussian elimination that
checks the rank of individual matrices one by one is computa-
tionally expensive, we propose decomposing the process into
reusable steps as described in Section II-D.

B. Characterizing the Costs Associated With the Checks

We would like to use decompositions that result in a
small number of computations and matrices to memoize.
Unfortunately, the number of valid decompositions is large
and with increasing N , we quickly reach a combinatorial
explosion. This section focuses on deriving the computa-
tional and storage costs associated with a decomposition and
motivates the choice of algorithms for selecting effective
decompositions.

1) The Cost of Reaching Upper Triangular Form Using
Basic Gaussian Elimination: we examine the number of
divisions and pairs of multiplications and additions needed to
transform a k× k matrix into UTF as a baseline. An example
is shown in Figure 5 for k = 6. For α = 2, this corresponds
to checking the coefficients associated with data stored on
3 nodes. Several simplifications can be made to the general
Gauss elimination algorithm to save on computational cost: the
back substitution step can be skipped and it is not necessary
to reduce pivot elements to 1 (reduced row echelon form).
Furthermore, all operations can be performed solely on the
coefficient matrices.

Fig. 5. Required operations for reducing a matrix (k = 6) to upper
triangular form using Gaussian elimination. (a) Divisions. (b) Multiplications
and additions.

Fig. 6. Required operations for reducing a matrix (k = 6) to upper triangular
form using merging a = 2, b = 1, α = 2. (a) Divisions. (b) Multiplications
and additions.

The number of divisions is the number of elements below
the diagonal for square matrices:

dGauss(k) =
k−1∑

j=1

j =
k(k − 1)

2
(11)

The number of multiplications is the same as the number of
additions. It can be calculated for square matrices by counting
for all elements on or above the diagonal the number of
elements below them:

mGauss(k) =
k−1∑

j=1

(k − j)(k − j + 1) =
k(k2 − 1)

3
(12)

2) The Cost of Merging sa⊕sb = si: the computational cost
of getting the result of merging UTF matrices of size aα× k
and bα × k into a UTF, where a + b = i and i ≥ 2. This
includes the practically important case where a = b = i/2.

The number of leading 0 elements in an UTF matrix of size
iα× k (where iα ≤ k) gives a good indication on the number
of operations that can be skipped when performing a merge:

lz(si) = lz(Si) = lz(i) =
iα−1∑

j=0

j =
(iα − 1)iα

2
(13)

The number of divisions can be calculated by subtracting from
the total number of elements that need to be reduced to 0 those
that have already been reduced in the two submatrices:

d(a, b) = lz(i)− lz(a)− lz(b)

=
bα∑

j=1

aα = abα2. (14)

Equation (15) gives the number of multiplications and
additions. We have included how we derived it in the appendix
(see in Supplementary Material).

m(a, b) = abα2

(
k − (a + b)α

2
+ 1
)

(15)

1412 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

Figure 5a shows an example for a = 2, b = 1, α = 2, k = 6.
The arrows start from the elements that need to be divided to
create a leading 0 at the location they point to. The number of
multiplications is the same as the number of additions required
for eliminating elements and is derived in Equation (15).
Figure 5b shows an example for a = 2, b = 1, α = 2, k = 6.
The arrows start from the elements that are multiplied with a
constant and then added to the location they point to.

By comparing Figures 5 and 6 we can observe that intu-
itively, not having to eliminate the same elements multiple
times (white boxes) is important for the effectiveness of our
proposed technique compared to basic Gauss elimination.

3) The Computational Cost of Decompositions: Having
looked at the cost of individual merges, we now turn to the
total computational cost of a decomposition that checks a
single repair for each node failure: the number of divisions
in (16) and the number of multiplications/additions in (17).

DIV S(D) =
N−L∑

i=2

∑

si∈Ssel
i

d(a, b) +
∑

s1∈S1

lz(1)

=
N−L∑

i=2

∑

si∈Ssel
i

d(a, b) + N
α2 − α

2
(16)

MA(D) =
N−L∑

i=2

∑

si∈Ssel
i

m(a, b) +
∑

s1∈S1

α∑

j=1

(k − j + 1)

(17)

The second term in both equations is the cost of transforming
matrices s1 ∈ S1, including the r sets of repaired rows for
each of the possible node failures into upper triangular form.
If matrices from previous generations are stored, then the
summation can simply skip these. If a decomposition avoids
memoizing matrices containing repaired rows, as per our goal,
the value of r only influences the number of computations by
determining the size of S1 and SN−L.

|S1| = N(r + 1)

|SN−L| = N

(
N − 1

N − L − 1

)
r (18)

The number of reusable matrices depends non-trivially on
the decomposition. We leave investigating this aspect as future
work and present experimental results in Section V.

4) The Memory Requirements of Decompositions: Our pro-
posed approach requires memory to store memoized matrices.
The number of matrix elements that need to be stored for
decomposition D is given in Equation (19).

MEMOnaive(D) =
N−L∑

i=1

|Ssel
i |iαk (19)

A simple improvement can be achieved by only storing non-
zero elements. This decreases storage costs to those given in
Equation (20).

MEMOreduced(D) =
N−L∑

i=1

|Ssel
i |(iαk − lz(i)) (20)

C. Finding Efficient Decompositions

1) Observations on the Relationships Between Costs: Based
on Equations (14) and (15), we can make some observations
that will help in determining good decomposition strategies.
Let a, b, a′, b′, c, d ∈ N

+, sb ∈ Sb, sc ∈ Sc, sd ∈ Sd and
a + b = a′ + b′ = i and c + d = b.

1) m(a, b) = m(b, a) and d(a, b) = d(b, a) (because a and
b are interchangeable in Equations (14), (15))

2) d(a, b) > d(a′, b′) ⇔ |a− b| < |a′− b′| (consequence of
Equation (14) and because more imbalanced sets have
a larger number of already reduced elements; the larger
the matrix, the more reduced elements it has)

3) m(a, b) > m(a′, b′) ⇔ |a − b| < |a′ − b′| (consequence
of Equation (15) in which the part in brackets is the
same for a, b and a′, b′)

4) m(a, b) > m(a′, b′) ⇔ d(a, b) > d(a′, b′) (same
argument as previous observation)

5) lz(sb) ≥ lz(sc)+ lz(sd) (consequence of Equation (13)
and i2 > a2 + b2)

6) d(a, b) ≤ d(a, c)+ d(a+ c, d) (consequence of previous
observation and Equation (14))

Observation 4) is important because a decomposition that
minimizes the number of divisions will also minimize the
number of multiplications and additions. Observation 2) and
3) have the consequence that a decomposition that decreases
i by one (i.e. selecting a = 1, b = i − 1 or b = 1, a = i − 1)
has the lowest computational cost in that decomposition step.
We refer to this method as decrease and conquer. Conversely,
a = � i

2� or b = � i
2� has the highest number of computations

for any given i. On the other hand, it also reduces the size
of the matrix by the greatest degree. Thus matrices between
S�i/2� and Si can be skipped and less memory is needed.
We refer to this approach as divide and conquer and propose
the following method to deal with odd levels: if i is even,
divide the problem into a = b = i

2 . If i is odd, fall back to
the previous approach and decrease the problem to a = a−1,
b = 1. An alternative decrease and conquer decomposition
would be to select a = � i

2� and b = � i
2�, then do a second

decomposition if a �= b to cover Sb using Sa and S1.
There is therefore a trade-off between minimizing the

number of levels (and reducing memory requirements in the
process) in a decomposition and the cost of moving between
levels using merging. However, it is not immediately apparent
how the number of matrices in each level (|Ssel

i |) changes
for different points on the trade-off curve. This metric also
plays a key role in determining the number of computations.
In the following subsections, we propose two heuristic-based
algorithms to find decompositions for both the decrease and
conquer and divide and conquer methods.

2) The First Step of a Decomposition: As described in
Section IV-A, matrices containing rows from N −L−1 exist-
ing nodes and one hypothetically replacement node must be
checked. If we consider that r hypothetical repairs are checked
for each possible node failure, |M | = (L + 1)r

(
N

N−L−1

)
.

Instead of starting from these matrices, the first step of a
decomposition should be treated differently to ensure that
no repaired rows are present in matrices in SN−L−1. Since
at the time of the checks it is not known which node

SIPOS et al.: NETWORK-AWARE FEASIBLE REPAIRS FOR ERASURE-CODED STORAGE 1413

Algorithm 3 Greedy Algorithm for Decrease and Conquer

1: build G(i, 1)
2: while X �= ∅ do
3: find vy , where deg(vy) ≥ deg(vj), ∀vj ∈ G
4: Ssel

i−1 = Ssel
i−1 ∪ vy

5: Y = Y \ vy

6: for all vx, where (vx, vy) ∈ E(G) do
7: X = X \ vx

8: E(G) = E(G) \ (vx, v∗) � all edges involving vx

9: end for
10: end while
11: return Ssel

i−1

Fig. 7. The shared rows of matrices in M that should be checked for N = 3,
L = 1, r = 2. Single and double apostrophes denote rows with coefficients
from potential repairs. For example, 2′ and 2′′ are rows resulting from the
two different potential repairs of node2.

will fail, hypothetical repaired rows limit the reusability of
matrices.

To account for this, we propose a simple schema to deter-
mine the first step of the decomposition, shown in Figure 7.
The matrices in SN−L can be built in the following way: by
selecting Ssel

N−L−1 = SN−L−1 (i.e. taking all possible matrices
that contain N − L − 1 non-repaired rows) and adding every
possible repaired row to each of them, we arrive at SN−L. This
allows the decomposition to start from M = SN−L−1 instead
of SN−L and only include coefficients from existing rows to
maximize matrix reuse. We will show in Section IV-C3 that
this first step is optimal in selecting the minimal number of
matrices from SN−L−1.

3) Greedy Algorithm for Decrease and Conquer: We wish
to select Si−1 in such a way that all elements of Ssel

i can be
generated by adding an element of S1 to an element of Si−1.
Let G = (V, E) be an undirected bipartite graph with vertices
divided into sets V = X ∪ Y , where X = {si|si ∈ Ssel

i } and
Y = {si−1|si−1 ∈ Sall combos

i−1 }. There is an edge between a
vertex vx ∈ X and vy ∈ Y if and only if for the corresponding
si and si−1, si−1 ⊂ si. We wish to cover all vertices vx ∈ X
using as few vertices vy ∈ Y as possible. In each iteration of
Algorithm 3, the vertex vy with the highest degree is selected
and removed from the graph. All vertices vx it is connected
to are also removed along with any edges containing vx. The
algorithm terminates when there are no more vertices in X .

This greedy algorithm is well known and is analogous to
the approach of selecting a covering set in such a way that at
every choice, the set that covers the most uncovered elements
is selected. This is a H(n)-approximation algorithm and it
has been proven [24] that no polynomial-time algorithm with

Fig. 8. Example for a state change of the divide and conquer algorithm
showing both graphs and the sets of already selected matrices. Some elements
of Y and Ỹ have been omitted (. . .) due to space constraints. The next
step (result shown on the right) selects and adds {3,4} to Ssel

2 as it is tied
with {1,2,3} in covering the most matrices in G and partially covers more
matrices in G̃. The algorithm then removes {3,4}, {1,2,3,4,6} and {2,3,4,5,6}
from G and G̃ along with all of their edges. It then adds an edge between
{1,2,3,4,5} and {1,2,5} (not shown) in G to reflect that {1,2,5} now fully
covers {1,2,3,4,5}.

a better approximation factor exists for this NP-hard problem.
Fortunately, n = max |si| = i, as all matrices from the
set used for the cover have exactly i elements. Thus, even
though |Si| =

(
k
i

)
increases computational costs quickly,

the approximation factor increases slowly
(

log i
log(i−1)

)
with i

and remains acceptable even for large values of i.
We could apply this algorithm for the first step of finding

a decomposition and it would select a covering set that is the
combination of N − L − 1 out of N rows.

Proposition 5: If r repairs are checked for each possible
node failure, then |SN−L| = |SN−L−1|(L + 1)r, which is the
same as our previously proposed first step and is in fact the
best we can hope to achieve (we have included a proof in the
appendix see in Supplementary Material).

We have decided to follow the technique proposed in
Subsection IV-C2 instead of this algorithm for the first step of
a decomposition to ensure that if multiple minimum cost set
covers exist (this is the case for r = 1), the one that maximizes
matrix reuse through memoization is selected.

4) Greedy Algorithm for Divide and Conquer: We propose
extending the previous algorithm to deal with the more general
case when a matrix of size i × k is decomposed into two
submatrices of size a×k and b×k, where a+ b = i. Figure 8
shows an example for a state change of the algorithm. We
will keep the graph G to have a pairing that denotes which
submatrices cover which matrices. The set X remains the
matrices that need to be covered and Y contains all possible
submatrices of size a × k and b × k that can be built from
elements of S1. There is an edge between a vertex vx ∈ X
and vy ∈ Y if and only if v′y /∈ Y , where v′y := vx\vy. In other
words, v′y is the relative complement of vy with respect to vx,
the rows of vx left uncovered by vy . We refer to it as its pair.
Unless a = 1 or b = 1, G has no edges in the beginning
because ∀vy ∈ Y → v′y ∈ Y . Put differently, in the beginning
no single element in Y can cover an element in X . In the
special case of a = 1 or b = 1, G is initialized as described
in the previous subsection.

We introduce a second graph G̃ (X̃ = X , Ỹ = Y), to have
a pairing that denotes which submatrices cover which matrices

1414 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

partially. vy ∈ Ỹ partially covers vx ∈ X̃ if its pair v′y ∈ Ỹ .
These are submatrices, whose pairs have not yet been selected
and thus can only provide partial cover for vx. G̃ must be
initialized to have all partially covering edges, thus in the
initial state of the algorithm E(G̃) = {(vx, vy)|vx \ vy ∈
Ỹ , vx ∈ X̃, vy ∈ Ỹ }. In the special case where a = 1 or b = 1,
G̃ will have no edges and may be disregarded as the algorithm
falls back to the decrease and conquer algorithm.

Algorithm 4 selects submatrices from Y until all matri-
ces in X have been covered. It selects the submatrix vy

that has the highest degree in G, i.e. covers most matrices.
Tie–breaks are handled by selecting the submatrix that has
the higher degree in G̃, i.e. partially covers more matrices.
When a submatrix is selected, it is removed from both G and
G̃. Furthermore, all matrices it covers are removed from both
G and G̃ along with any edges they are part of. Any matrix
ṽx it partially covered is updated in G: an edge is added
between vx and v′y to reflect that v′y can cover vx following the
selection.

Algorithm 4 Greedy Algorithm for Divide and Conquer

1: Build G(a, b), G̃(a, b)
2: while X �= ∅ do
3: MAX = {vy|vy ∈ G, deg(vy) ≥ deg(vj), ∀vj ∈ G}
4: find ṽy ∈ MAX, where deg(ṽy) ≥ deg(ṽj), ∀vj ∈ G̃
5: if |vy| = a then
6: Ssel

a = Ssel
a ∪ vy

7: else
8: Ssel

b = Ssel
b ∪ vy

9: end if
10: Y = Y \ vy

11: Ỹ = Ỹ \ ṽy

12: E(G) = E(G) \ (v∗, vy) � all edges involving vy

13: E(G̃) = E(G̃) \ (ṽ∗, ṽy) � all edges involving ṽy

14: for all vx covered by vy do
15: X = X \ vx

16: X̃ = X̃ \ ṽx

17: E(G) = E(G) \ (vx, v∗) � all edges involving vx

18: E(G̃) = E(G̃) \ (ṽx, ṽ∗) � all edges involving ṽx

19: end for
20: for all ṽx partially covered by ṽy do
21: E(G̃) = E(G̃) ∪ (ṽy

′, ṽx), where ṽy ∪ ṽy
′ = vx

22: end for
23: end while
24: return Ssel

a , Ssel
b

Proposition 6: For every partially covered vx by the
selected vy , there will always be exactly one v′y that will
cover vx (we have included a proof in the appendix see in
Supplementary Material).

D. Performing Invertability Checks Given a Decomposition

A decomposition is only dependent on N, L, α, parameters
that typically don’t change during the lifetime of a system.
Therefore, several decompositions can be computed in advance
to cover the likely parameter set values before the system
comes online. Thus, even if finding a good valid decom-
position is computationally expensive, it does not negatively

influence the general repair performance of the system. This
subsection examines how a decomposition can be applied. If a
check fails, new coefficients can be generated and operations
associated with the failed check should be redone.

1) The Benefits of Performing Checks in a Top-Down Man-
ner: Given a valid decomposition D, either a bottom-up or a
top-down approach can be used to do the checks. Bottom-
up checks start with matrices from Ssel

1 and then reduce each
matrix sj ∈ Ssel

j level-by-level to an upper triangular form and
memoize it after merging two smaller matrices based on Ψ.
This approach has the benefit of avoiding recursive calls, but
will only provide relevant information on the rank of a matrix
sm ∈ M after all smaller matrices sj ∈ Sj , j < m have been
reduced to an upper triangular form. Conversely, a top-down
approach starts with matrices sm ∈ M and attempts to merge
sm = sa ⊕ sb, where the choice of sa and sb is defined by
Ψ. If either sa and/or sb are not yet in UTF, the algorithm is
called recursively on sa and/or sb and so on. Once a matrix is
reduced into UTF, it is memoized so it can be reused for other
matrices from M. Thus, the invertability of some sm will be
known earlier than using a bottom-up approach. This can be
used to provide probabilistic statements on the overall result
of the checks before all matrices are checked.

This is most important in situations where the checks
are time constrained. Either there aren’t enough free com-
putational resources in the system and the checks must be
postponed or two node failures occur in quick succession and a
repair must be started before the checks for the second failure
have time to complete. A more informed decision may still
be made on what repair to select based on the matrices that
have been computed so far. By using a top-down approach and
ordering the matrices in M in a certain way, the amount of
useful information at any given point in time can be increased.
One possibility is to take one repair for each node failure first.
Once at least one feasible repair is found for every failure,
one more repair for each failure can be checked and so on.
This minimizes the time until at least one feasible repair is
found for every possible failure scenario. Alternatively, if it
is acceptable for the system to temporarily go below the
predetermined L number of concurrent node failures it must
sustain, the matrices may be ordered differently. In this case,
checks may also start by looking at a single repair for each
node failure first. However, instead of completing all checks
for that repair, only one matrix is checked at each step, moving
on to check matrices associated with other node failures. With
each pass, the degree of confidence with which it can be stated
that a repair is feasible for any L node losses increases.

2) Memoizing Matrices Across Generations: A further
reduction in computations can be achieved if matrices from
a decomposition are stored and reused across multiple gener-
ations. Any matrix that contains rows from the recently lost
node should be discarded, but all others can be reused in the
subsequent generation. The proposal to start a decomposition
from M = SN−L−1 described in subsection IV-C2 also
encourages matrix reuse across generations as it ensures that
only matrices containing rows from actual nodes (as opposed
to rows from hypothetical repairs) are memoized. We leave
the characterization of the choice of decomposition on the
expected number of matrices that can be reused as future work

SIPOS et al.: NETWORK-AWARE FEASIBLE REPAIRS FOR ERASURE-CODED STORAGE 1415

and present simulation-based results to show the effectiveness
of this enhancement. Checks for the initial data distribution
cannot reuse matrices from previous generations and no matri-
ces are skipped as there were no previous failures.

V. DISCUSSION

A. Evaluation Method for Network Awareness

In this section we evaluate how much each erasure code
benefits from being network aware and perform a thorough
analysis on the number of computations required to perform
the feasibility checks. We compare our proposed framework
that guarantees finding the least cost repairs to a naive
approach that selects one of the repairs with the lowest traffic
but has no knowledge of transfer costs. We perform our
analysis using sets of code parameters CODE(N, α, k) that
meet the following constraints: 2 ≤ N ≤ 20, 1 ≤ α ≤ 10,
5 ≤ k ≤ 32. We also required that each code must be
able to sustain L ≥ 2 node losses while maintaining data
recoverability following each repair. We have selected such a
wide range of values to cover most parameter sets of interest.
We have strived to take into consideration other practical
aspects as well. We have chosen to have an upper bound
on k as it is the main factor that determines the decoding
overhead during read operations for non-systematic codes such
as RLNC and RBT-MBR. We require that codes have a storage
efficiency of Nα

k ≤ 2.5. We decided to use 2.5 as a cut-off
point to include more cases for RBT-MBR, despite being a
relatively high value for a practical system. For Reed-Solomon
we only consider α = 1 as this maximizes its ability to
lose nodes. Recently, Guruswami and Wootters [25] proposed
sub–packetization for RS raising the possibility that repair
for RS may benefit from other values of α (or non-integer
values of βi). However, we are unaware of any practical
implementation or the exact implications of this construction
and have therefore decided to consider RS as used in current
systems. For RLNC and RBT-MBR, we restrict our evaluation
to sets which have a repair space size for a given failed node
of at most 216 and 224 respectively. While one of the key
benefits of our proposed approach is that it can handle large
repair spaces by only considering a small fraction of repairs,
we would have been unable to compare our solution to the
baseline approach without this constraint. Fortunately, most
practically interesting cases for N , k and α are included.
50 sets of parameters meet these constraints for RS, 8 for
RBT-MBR and 214 for RLNC.

Each run for each code, costs and set of code parame-
ters consisted of 100 iterations of node loss and recovery.
Operations were performed over GF(28). Two types of cost
matrices C were considered. First, I: one that is based on
a static network topology where nodes are grouped evenly
in 2 racks. Costs have two types: inter-rack(10×) and intra-
rack (1×). We used this model to evaluate the benefits of
network awareness assuming a simple, static topology such
as that defined in [13]. Second, we used a cost matrix that
also portrays current network traffic conditions. The same
C is multiplied entrywise in each round with a different
matrix containing values drawn randomly from the following
uniform distributions: II: U(0.75, 1.25), III: U(0.5, 1.5), IV:

Fig. 9. Gains of network awareness.

Fig. 10. Comparing different levels of sub–packetization for RLNC. Results
show the differences between pairs of codes.

U(0.25, 1.75), V: U(0, 2). This allows us to portray the
relationship between the variance in network activity and the
potential benefit for an erasure code to be network-aware.

B. The Benefits of Network Awareness

Figure 9 shows how much each erasure code benefits
from knowledge of network costs. Because of the different
parameter sets, the codes should not be compared against each
other directly. However, a general trend can be observed: the
larger the variance in the costs, the larger the gain is compared
to the naive approach. Thus, a distributed storage system with
more dynamic traffic patterns will potentially see a larger
benefit from performing network-aware repairs. For Reed-
Solomon and RBT-MBR which use exact repair, most cost
types show gains in being network aware across all parameter
sets. In the case of RLNC, there is a significant gain overall.
RBT-MBR does not benefit at all from being network-aware
in a balanced static two–rack scenario regardless of the actual
values of the cost. This is due to decoding-based repairs having
always to access a certain amount of data from outside the rack
in a balanced scenario. If the difference between the costs of
going to the different inter-rack nodes and intra-rack nodes
respectively is the same, a decoding-based repair will entail a
cost that is greater than repairing by simply transferring data.
However, if there is variance between the cost of accessing
nodes in the same cost category, repair by transfer is not
always optimal.

C. The Benefits of Sub–Packetization for RLNC

For RLNC, several codes with the same repair and storage
efficiency can be created for a given N number of nodes by
varying the level of sub–packetization, i.e. by changing the
number of k packets a file is divided into. Intuitively, a higher
level of sub–packetization yields more feasible repairs and
may give more flexibility in choosing a repair with lower

1416 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 26, NO. 3, JUNE 2018

Fig. 11. Reduction in the number of operations compared to Gaussian elimination.

cost. We examined whether this is the case for the two-
rack scenario. We selected all 80 pairs of codes from our
measurements for which N1 = N2 and k1

α1
= k2

α2
. For chains

of codes that meet these criteria, we looked at subsequent
pairs. For example, from RLNC1(N1 = 7, k1 = 5, α1 = 1),
RLNC2(N2 = 7, k2 = 10, α2 = 2) and RLNC3(N3 = 7, k3 =
15, α3 = 3) we have compared RLNC1 to RLNC2, and
RLNC2 to RLNC3 respectively. Figure 10 shows on average
a slight decrease in cost. Thus, at least for relatively static
environments (cost levels I, II, III), higher levels of sub–
packetization increase the advantages of network awareness.

D. Evaluation Method for Decompositions

To test the effectiveness of the proposed decomposition
techniques, we have implemented both divide and conquer and
decrease and conquer algorithms in Python. We removed the
constraint on the size of the repair space to include a total
of 629 RLNC codes. We can apply the decrease and conquer
approach to all of these. The divide and conquer approach
falls back to decrease and conquer in all but 348 cases. The
figures have had the 281 duplicate cases removed for clarity.

As a reference for how operations translate to time,
the checks for RLNC4(N = 10, k = 14, α = 2)
using Gaussian elimination involve 76440 division and
764400 multiplications and additions for r = 1. On an Intel
i7-3770@4.2GHz running MATLAB R2016a, it takes roughly
50 seconds for r = 1 and 502 seconds for r = 10 repairs to
be checked for each node.

E. The Benefits of Doing Decompositions

Figure 11 shows the benefits of using our proposed tech-
nique for r = 1. By decomposing the rank checks and reusing
intermediary results, a reduction of up to 87% is achieved in
the number of multiplication/addition operations compared to
doing Gaussian eliminations on the matrices in M. The gains
grow in value and significance with the number of operations
for both types of decomposition, making checks feasible for a
wider range of parameters. Divisions show a similar trend,
though in a few cases we actually see an increase in the
number of computations and results show more variance.

Looking at different values for r in Figure 12, we can see
how the difference between the computational cost difference
increases as r grows. This is as expected based on Equa-
tion (18). All other figures show simulations for r = 1.

Fig. 12. Checking the feasibility of multiple repair strategies for each node
failure.

Fig. 13. Comparing divide and conquer to decrease and conquer on memory
and computational costs.

F. Comparing Divide and Conquer to Decrease and Conquer

Section IV-C briefly described the trade-off between the
number of memoized matrices and the number of opera-
tions. Figure 13 illustrates a direct comparison between the
two proposed methods on this aspect. Divide and conquer
requires up to 37% less memory than decrease and conquer.
The downside is an increase of up to 33% in the number
of multiplications/additions. The memoized matrices for the
examined codes typically require around 200kB - 300kB
of memory, with a maximum of 6.2MB. This is negligible
compared to the data associated with the coefficients. Thus,
most practical systems should employ decrease and conquer
to reduce the amount of computations as much as possible.
Division operations show a similar trend.

G. Memoizing Across Generations

Finally, we look at the benefit of reusing matrices across
generations of node failure and recovery. We expected to

SIPOS et al.: NETWORK-AWARE FEASIBLE REPAIRS FOR ERASURE-CODED STORAGE 1417

Fig. 14. Benefits of reusing matrices across generations.

show further large gains in computation cost by extending
our solution with this simple technique because most matrices
remain valid through at least two subsequent generations.
However, results in Figure 14 only show relatively modest
gains of between 5%-15%. This can be explained by looking
more closely into which matrices can be reused. While around
N−1

N of the smallest matrices contain rows are present in two
subsequent generations, the ratio is smaller for larger matrices.
Furthermore, most of the computations can be associated
with the larger matrices. Nevertheless, the modest additional
memory cost makes reusing matrices across generations a
good choice to further reduce computational costs.

VI. CONCLUSIONS AND FUTURE WORK

First, we have answered one of the key questions from the
introduction: yes, knowledge of network conditions benefits a
wide range of erasure codes. We have proposed a framework
to check the feasibility of repairs in advance and provided
analytic results on reducing the space of relevant feasible
repairs. We hope to make further advances for specific network
topologies by looking at specific types of cost matrices.

Second, we have presented a set of techniques to increase
the practical value of our work for erasure codes employing
randomly selected coefficients, such as RLNC. Our proposed
decomposition of matrix rank checks shows significant reduc-
tions in the number of computations needed and has negligible
memory costs. We presented two algorithms to perform the
decomposition and found that in practice a decrease and
conquer type solution works better. We wish to continue this
work by formalizing the problem of ordering the matrices that
are to be checked in such a way that useful information on
their rank is gained as soon as possible.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[2] Y. Wu and A. G. Dimakis, “Reducing repair traffic for erasure coding-
based storage via interference alignment,” in Proc. IEEE Int. Symp. Inf.
Theory, Jun./Jul. 2009, pp. 2276–2280.

[3] K. V. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking design
framework for read- and download-efficient distributed storage codes,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2013, pp. 331–335.

[4] N. B. Shah, K. V. Rashmi, and P. V. Kumar, “A flexible class of
regenerating codes for distributed storage,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2010, pp. 1943–1947.

[5] M. Sipos, J. Gahm, N. Venkat, and D. Oran, “Erasure coded storage on
a changing network: The untold story,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[6] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Dis-
tributed storage codes with repair-by-transfer and non-achievability of
interior points on the storage-bandwidth tradeoff,” IEEE Trans. Inf.
Theory, vol. 58, no. 3, pp. 1837–1852, Mar. 2012.

[7] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[8] T. Ho et al., “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[9] S. Acedańsk, S. Deb, M. Médard, and R. Koetter, “How good is
random linear coding based distributed networked storage?” in Proc.
1st Workshop Netw. Coding, Theory Appl., 2005, pp. 1–6.

[10] S. Deb, C. Choutte, M. Médard, and R. Koetter, “Data harvesting:
A random coding approach to rapid dissemination and efficient storage
of data,” in Proc. IEEE ICC, Mar. 2004, pp. 1–12.

[11] J. Li, S. Yang, X. Wang, and B. Li, “Tree-structured data regeneration
in distributed storage systems with regenerating codes,” in Proc. IEEE
INFOCOM, Mar. 2010, pp. 1–9.

[12] S. Akhlaghi, A. Kiani, and M. R. Ghanavati, “A fundamental trade-off
between the download cost and repair bandwidth in distributed storage
system,” in Proc. IEEE Int. Symp. Netw. Coding (NetCod), Jun. 2010,
pp. 1–6.

[13] B. Gastón, J. Pujol, and M. Villanueva. (Jan. 2013). “A realistic distrib-
uted storage system that minimizes data storage and repair bandwidth.”
[Online]. Available: https://arxiv.org/abs/1301.1549

[14] Y. Hu, P. P. C. Lee, and X. Zhang, “Double regenerating codes for
hierarchical data centers,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jul. 2016, pp. 245–249.

[15] A. Khan and I. Chatzigeorgiou, “Improved bounds on the decoding
failure probability of network coding over multi-source multi-relay
networks,” IEEE Commun. Lett., vol. 20, no. 10, pp. 2035–2038,
Oct. 2016.

[16] J. Heide, M. V. Pedersen, F. H. P. Fitzek, and M. Medard, “On code
parameters and coding vector representation for practical RLNC,” in
Proc. IEEE Int. Conf. Commun., Jun. 2011, pp. 1–5.

[17] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang, “NCCloud: Applying
network coding for the storage repair in a cloud-of-clouds,” in Proc.
10th USENIX Conf. File Storage Technol., 2012, pp. 1–8.

[18] K. V. Rashmi et al., “A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study on the
Facebook warehouse cluster,” in Proc. 5th USENIX Conf. Hot Topics
Storage File Syst., 2013, pp. 1–67.

[19] M. Silberstein, L. Ganesh, Y. Wang, L. Alvisi, and M. Dahlin, “Lazy
means smart: Reducing repair bandwidth costs in erasure-coded distrib-
uted storage,” in Proc. Int. Conf. Syst. Storage, New York, NY, USA,
2014, pp. 1–7.

[20] S. Jaggi, Y. Cassuto, and M. Effros, “Low complexity encoding for
network codes,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2006, pp. 40–
44.

[21] N. J. A. Sloane. (1991) The On-Line Encyclopedia of Integer Sequences.
[Online]. Available: http://http://oeis.org/A000041

[22] H. Alder, “Partition identities—From Euler to the present,” Amer. Math.
Monthly, vol. 76, no. 7, pp. 733–746, 1969.

[23] R. P. Stanley, Enumerative Combinatorics, vol. 1, 2nd ed. New York,
NY, USA: Cambridge Univ. Press, 2011.

[24] I. Dinur and D. Steurer, “Analytical approach to parallel repetition,” in
Proc. 46th Annu. ACM Symp. Theory Comput., 2014, pp. 624–633.

[25] V. Guruswami and M. Wootters. (2015). “Repairing Reed–Solomon
codes.” [Online]. Available: https://arxiv.org/abs/1509.04764

Authors’ photograph and biography not available at the time of publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

