
Permutation Group Algebras

and

Parking Functions

Julian David Gilbey

Queen Mary & Westfield College

University of London

Submitted for the degree of

Doctor of Philosophy

2002

Part I

éøî àáà øëæì

ì"æ á÷òé ïá çð

In memory of my father

who was the first to teach me that

(n + 1
2)

2 = n(n + 1) + 1
4

Part II

Dedicated to Ann Cook

Departmental secretary from before my arrival

until her retirement in December 1996

Acknowledgements

It would be impossible in this short space to individually thank everyone who
has helped me to bring this thesis into existence; a few special ‘thank you’s must
suffice.

On the academic side, Prof. Peter Cameron, my supervisor, has been wonder-
ful. From explaining F20 to me when we first met, through to these final stages,
his continual good cheer, encouragement and belief in me (not to mention his
encyclopædic knowledge!) have kept me going throughout a very tough period
of my life. Also, many of the ideas in Part I of this thesis had their origins in
our weekly meetings.

Our departmental combinatorics study group, including in its number Prof.
Rosemary Bailey and Dr. Leonard Soicher, gave me an opportunity to present
various results and saved me from grave error at least once.

I met my co-author, Louis Kalikow, at his wedding shower. His unexpected
email in response to some mathematics I wrote for him on a serviette (napkin)
led to a fruitful and enjoyable collaboration, the results of which you can see
in Part II of this thesis. Ben Tarlow had introduced me to the problem, and
Louis’s wife Aurora Mendelsohn was responsible for the colourful naming of the
objects. Thanks, all!

The postgrads in rooms 203 and 201 have been fun and stimulating to be
around—cheers, guys!

The secretarial staff—especially Ann Cook, whose caring for the postgrads
even extended to hunting me down in Heathrow Airport to tell me that I had
received a grant—have constantly helped me with all of those niggling little (and
big) practical things.

A big collective thanks to all those who wrote and keep Linux, Debian and
TEX and friends running; without them, this thesis would have had to be typed
on a typewriter and the symbols written in by hand.

Finally, on the nonacademic side of life, thanks to my mum for supporting me
through a long and tough stretch of graduate life. Thanks to Lis for being, and
to Melissa for rescuing me. A special thank you goes to my ‘surrogate mothers’
Sue, Tamra and Leo for supporting and feeding me, along with their husbands
Clive, Ian and Jonathan; their highly intelligent kids also provided much needed
relief and other challenges. Also, thanks goes to my various housemates for
keeping me in good spirits and livening the house with music at all hours.

There are many others who have kept me going in myriad ways; to all of
them I am grateful.

London, December 2001



Abstract

Part I

Permutation Group Algebras

We consider the permutation group algebra defined by Cameron and show that
if the permutation group has no finite orbits, then no homogeneous element of
degree one is a zero-divisor of the algebra. We proceed to make a conjecture
which would show that the algebra is an integral domain if, in addition, the
group is oligomorphic. We go on to show that this conjecture is true in certain
special cases, including those of the form H Wr S and H Wr A, and show that
in the oligormorphic case, the algebras corresponding to these special groups
are polynomial algebras. In the H Wr A case, the algebra is related to the
shuffle algebra of free Lie algebra theory. We finish by considering some integer
sequences which arise from certain of these groups.

Part II

Parking Functions, Valet Functions

and Priority Queues

Parking functions on [n] = {1, . . . , n} are those functions p : [n]→ [n] satisfying
the condition |{ i : p(i) 6 r }| > r for each r, and are (n + 1)n−1 in number.
These are equinumerate with allowable input-output pairs of permutations of [n]
in a priority queue. We present a new bijection between parking functions and
allowable pairs which has many interesting invariance properties. We extend
our bijection to allowable pairs of multisets and introduce valet functions as the
corresponding extension of parking functions. Using our bijection, we interpret
the inversion enumerator for trees in the case of allowable pairs. We end
with a comparison of our bijection with other known bijections involving these
combinatorial structures, including a new bijection between parking functions
and labelled trees.



Table of Contents

Part I

Permutation Group Algebras

1 Introduction • 

2 The graded algebra of a permutation group • 

3 The degree one case • 

4 Oligomorphic-type cases: our conjecture • 

5 Special cases (I): Wreath-S-like groups • 

6 Special cases (II): Wreath-A-like groups • 

7 Non-oligomorphic groups • 

References • 



Table of Contents

Part II

Parking Functions, Valet Functions

and Priority Queues

1 Introduction • 

2 Notation • 

3 Parking functions and major functions • 

4 Priority queues and allowable pairs • 

5 Breakpoints • 

6 The bijection between parking functions and allowable pairs • 

7 Valet functions and multiset priority queues • 

8 Extending the bijection: valet functions and allowable pairs • 

9 Alternative descriptions of the bijections • 

10 Tree inversions • 

11 Comparison with other bijections • 

References • 



Part I

Permutation Group Algebras

In which we make some progress on a conjecture of

Cameron, and discover some interesting connections

with free Lie algebras

Permutation group algebras Section 1

1 Introduction

Let G be a permutation group on an (infinite) set Ω. Cameron [2] defined a
commutative, associative, graded algebra A(G) which encodes information about
the action of G on finite subsets of Ω. It is known that this algebra has zero
divisors if G has any finite orbits. The question of what happens when G has no
finite orbits is the subject of several conjectures due to Cameron [2], and we will
be exploring two of them. The first is:

Conjecture 1.1. If G has no finite orbits, then ε is a prime element in A(G).

Here ε is a certain element in the degree one component of the algebra,
defined in section 2. The following weaker conjecture would follow from this, as
we explain below.

Conjecture 1.2. If G has no finite orbits, then A(G) is an integral domain.

The first conjecture would give us insight into the following question. If the
number of orbits of G on unordered k-element subsets of Ω is nk, then for which
groups does nk = nk+1 <∞ hold? We will not study this question directly here;
more information can be found in [2] and [3, sect. 3.5].

We first show that no homogeneous element of degree one in the algebra is a
zero-divisor. Unfortunately, it is not obvious how to extend this argument to
higher degrees. We then go on to give a conjecture which would, if proven, yield
a proof of the weaker conjecture 1.2, and show that it holds in two interesting
classes of permutation groups. It also turns out in these two cases that the
algebra A(G) is a polynomial algebra, and we determine an explicit set of
polynomial generators. It will follow that the stronger conjecture also holds in
these cases. Although these results do not help to answer the question raised in
the previous paragraph (as in these cases, nk < nk+1 for all k), they do provide
further evidence to support the conjectures.

Finally, using the inverse Euler transform, Cameron [5] determined the
number of polynomial generators of each degree which would be needed for
certain of these algebras if they were actually polynomial algebras. Some of these
sequences appear in The On-Line Encyclopedia of Integer Sequences [12] in the
context of free Lie algebras. Our work gives an explanation for the sequences
observed and the connection with free Lie algebras.



Permutation group algebras Section 2

2 The graded algebra of a permutation group

We now give the definition of the algebra under consideration. Let G be a
permutation group acting on Ω. Let K be a field of characteristic 0 (either Q or
C will do). Define Vn(G) to be the K-vector space of all functions from n-subsets
of Ω to K which are invariant under the natural action of G on n-subsets of Ω.
Define the graded algebra

A(G) =
∞⊕

n=0

Vn(G)

with multiplication defined by the rule that for any f ∈ Vm(G) and g ∈ Vn(G),
the product fg ∈ Vm+n(G) is such that for any (m+ n)-subset X ⊆ Ω,

(fg)(X) =
∑

Y⊆X
|Y |=m

f(Y)g(X \ Y).

It is easy to check that, with this multiplication, A(G) is a commutative, asso-
ciative, graded algebra.

If G has any finite orbits, then this algebra contains zero-divisors. For let
X ⊆ Ω be a finite orbit, |X| = n, and let f ∈ Vn(G) be the characteristic
function of this set (so f(X) = 1 and f(Y) = 0 for Y 6= X); then clearly f2 = 0.

Considering Conjecture 1.2, it is clear that there are no zero-divisors in V0(G),
as multiplying by an element of V0(G) is equivalent to multiplying by an element
of K.

We also note that if there is a zero-divisor in A(G), so we have fg = 0 with
0 6= f, g ∈ A(G), then we can consider the non-zero homogeneous components
of f and g with lowest degree; say these are fm of degree m and gn of degree n
respectively. Then the term of degree m+n in fg will be precisely fmgn, and as
fg = 0, we must have fmgn = 0. So we may restrict our attention to considering
homogeneous elements, and showing that for any positive integers m and n, we
cannot find non-zero f ∈ Vm(G) and g ∈ Vn(G) with fg = 0.

Furthermore, we will show in the next section that V1(G) contains no zero-
divisors as long as G has no finite orbits, so in particular, the element ε ∈ V1(G)
defined by ε(x) = 1 for all x ∈ Ω is a non-zero-divisor. So if f is a homogeneous
zero-divisor of degree m, with fg = 0, and g is homogeneous of degree n > m,
we also have (εn−mf)g = 0, so εn−mf 6= 0 is a zero-divisor of degree n. Thus, if
we wish, we can restrict our attention to showing that, for each positive integer n,
we cannot find non-zero f, g ∈ Vn(G) with fg = 0.

Turning now to the stronger Conjecture 1.1, we see that the second conjecture



Permutation group algebras Section 2

follows from this (as in [2]). For if fg = 0, with f and g homogeneous and
non-zero, and deg f + deg g is minimal subject to this, then ε | fg, so we can
assume ε | f by primality. Thus f = εf ′, and deg f ′ = deg f − 1. Thus εf ′g = 0,
which implies f ′g = 0 by the above, contrary to the minimality of deg f + deg g.



Permutation group algebras Section 3

3 The degree one case

We intend to prove the following theorem.

Theorem 3.1. If G has no finite orbits, then V1(G) contains no zero-divisors.

In order to prove this theorem, we will make use of a technical proposition,
which is based on a theorem of Kantor [8]. We first quote a version of Kantor’s
theorem, as we will have use for it later.

Proposition 3.2. Let 0 6 e < f 6 d − e. Let X be a set with |X| = d. We
define (E,F) for subsets E,F ⊂ X with |E| = e and |F | = f by

(E,F) =

{
1 if E ⊂ F

0 otherwise,

and the matrix M = ((E,F)), where the rows of M are indexed by the e-subsets
of X and the columns by the f-subsets.

Then rankM =
(
d
e

)
.

The extension of this result is as follows.

Proposition 3.3. Let 0 6 e < f 6 d− 2e. Let X be a set with |X| = d, and let
E0 ⊂ X with |E0| = e be a distinguished subset of X. Let w be a weight function
on the (f − e)-subsets of X with values in the field K, satisfying the condition
that w(X ′) = 1 whenever X ′ is an (f − e)-subset of X such that X ′ * E0. We
define (E,F) for subsets E,F ⊂ X with |E| = e and |F | = f by

(E,F) =

{
w(F \ E) if E ⊂ F

0 otherwise,

and the matrix M = ((E,F)), where the rows of M are indexed by the e-subsets
of X and the columns by the f-subsets.

Then rankM =
(
d
e

)
.

Proof of theorem 3.1. Let g ∈ V1(G) with g 6= 0, and assume h ∈ Vn(G) with
n > 1 and gh = 0 (the n = 0 case has been dealt with in section 2). We must
show that h = 0, so that for any Y ⊂ Ω with |Y | = n, we have h(Y) = 0. We
assume that a set Y has been fixed for the remainder of this proof.

Since g 6= 0, there exists some (infinite) orbit ∆ ⊆ Ω on which g is non-zero;
multiplying by a scalar if necessary, we may assume that g(δ) = 1 for all δ ∈ ∆.
Pick X ⊂ Ω with |X| = 3n+ 1, Y ⊂ X and X \ Y ⊂ ∆.



Permutation group algebras Section 3

Now for any (n+ 1)-subset F ⊂ X, we have (hg)(F) = 0 as gh = hg = 0, so
that

(hg)(F) =
∑
E⊂F
|E|=n

h(E)g(F \ E) = 0.

This can be thought of as a system of linear equations in the unknowns h(E)
for E ⊂ X, |E| = n, with the matrix M = (mEF) given by mEF = g(F \E) if
E ⊂ F , and mEF = 0 otherwise.

This is precisely the situation of the proposition if we let e = n, f = n+ 1
(so that f − e = 1), d = 3n+ 1, E0 = Y and w(α) = g(α); note that w(α) = 1
whenever α /∈ E0. (We write g(α) instead of the more correct g({α}); no
confusion should arise because of this.) Thus rankM =

(
d
e

)
and the system of

equations has a unique solution, which must be h(E) = 0 for all E ⊂ X with
|E| = n, as this is a possible solution. In particular, this means that h(Y) = 0,
and since Y was chosen arbitrarily, it follows that h = 0.

Hence g is not a zero-divisor.

Proof of proposition 3.3. Let R(E) be the row of M corresponding to E. M has(
d
e

)
rows, so we must show that the rows are linearly independent. We thus

assume that there is a linear dependence among the rows of M , so

R(E∗) =
∑

E 6=E∗

a(E)R(E) (1)

for some e-set E∗ and some a(E) ∈ K. We first note that R(E∗) itself is non-zero:
this follows as we can pick some F ⊃ E∗ with F \ E∗ * E0; for this F , we have
(E∗, F) = 1.

Let Γ be the subgroup of Sym(X) which stabilises E0 pointwise and E∗ setwise.
If σ ∈ Γ, then

(Eσ, F σ) =

{
w((F \ E)σ) = w(F \ E) if E ⊂ F

0 otherwise;

either way, (Eσ, F σ) = (E,F). (For the result w((F \ E)σ) = w(F \ E), note
that both sides are equal to 1 unless F \E ⊆ E0, in which case σ fixes this set
pointwise.) Thus (1) implies that, for all F ,

(E∗, F) = (E∗, F σ) =
∑

E 6=E∗

a(Eσ)(Eσ, F σ)

=
∑

E 6=E∗

a(Eσ)(E,F).



Permutation group algebras Section 3

Thus

R(E∗) =
∑

E 6=E∗

a(Eσ)R(E).

It follows that

|Γ|R(E∗) =
∑
σ∈Γ

∑
E 6=E∗

a(Eσ)R(E)

=
∑

E 6=E∗

R(E)
∑
σ∈Γ

a(Eσ). (2)

We now consider the orbits of Γ on the e-subsets of X, excluding E∗. The
e-sets E1 and E2 will lie in the same orbit if and only if E1 ∩E0 = E2 ∩E0 and
|E1 ∩E∗| = |E2 ∩E∗|. Thus every orbit is described by a subset E′ ⊆ E0 and
an integer 0 6 i 6 e− 1. (We cannot have i = e, as we are excluding E∗ from
consideration.) Clearly not all possible pairs (E′, i) will actually correspond to
an orbit (it is not hard to see that necessary and sufficient conditions for this are
|E′ ∩E∗| 6 i 6 min{e− 1, e− |E′ \E∗|}), so that whenever we consider or sum
over such pairs below, we implicitly restrict attention to those which correspond
to an orbit. In such cases, we write E(E′, i) for the orbit. Also, for each such
pair, pick some E(E′, i) ∈ E(E′, i). Then (2) implies

|Γ|R(E∗) =
∑

(E′,i)

∑
E∈E(E′,i)

R(E)
∑
σ∈Γ

a(Eσ)

=
∑

(E′,i)

∑
E∈E(E′,i)

R(E)
∑
σ∈Γ

a(E(E′, i)σ)

=
∑

(E′,i)

∑
σ∈Γ

a(E(E′, i)σ)
∑

E∈E(E′,i)

R(E)

so that

R(E∗) =
∑

(E′,i)

b(E′, i)
∑

E∈E(E′,i)

R(E) (3)

with b(E′, i) ∈ K, and clearly not all of the b(E′, i) can be zero as R(E∗) is not
zero.

We define a total order on the pairs (E′, i) as follows. Extend the partial
order given by ⊆ on the subsets of E0 to a total order 6, and then define
(E′, i) 6 (E′′, j) if E′ < E′′ or E′ = E′′ and i 6 j. We now proceed to derive a
contradiction by showing that (3) leads to a system of linear equations for the
b(E′, i) which is triangular under this total order, with non-zero diagonal entries,
and deduce that all of the b(E′, i) must be zero.

Let (Ē, n) be a pair corresponding to an orbit. Since 2e+ f 6 d, there exists



Permutation group algebras Section 3

an f -set F (Ē, n) satisfying F (Ē, n) ∩ E0 = Ē and |F (Ē, n) ∩ E∗| = n. (Simply
take E(Ē, n) and adjoin f − e points lying in X \ (E0 ∪ E∗).) As n 6 e− 1, it
follows that F (Ē, n) + E∗, so (E∗, F (Ē, n)) = 0. Hence by (3), we have

0 =
∑

(E′,i)

b(E′, i)
∑

E∈E(E′,i)

(E,F (Ē, n)) (4)

for all such pairs (Ē, n).
We note that F (Ē, n) ∩E0 = Ē, and further that E ∈ E(E′, i) implies that

E ∩ E0 = E′; thus for the term (E,F (Ē, n)) in equation (4) to be non-zero,
where E ∈ E(E′, i), we require E′ ⊆ Ē, hence also E′ 6 Ē. Furthermore, if
(E,F (Ē, n)) 6= 0, we must have i 6 n as E ⊂ F (Ē, n). Thus if (Ē, n) < (E′, i),
we have ∑

E∈E(E′,i)

(E,F (Ē, n)) = 0. (5)

Also, there is an e-set E ⊂ F (Ē, n) satisfying E ∩ E∗ = F (Ē, n) ∩ E∗ and
E ∩ E0 = F (Ē, n) ∩ E0 = Ē; just take the union of Ē with F (Ē, n) ∩ E∗

and sufficiently many remaining points of F (Ē, n). For each such E, we have
F (Ē, n) \ E * E0, so (E,F (Ē, n)) = 1. Since K has characteristic zero, we
deduce that ∑

E∈E(Ē,n)

(E,F (Ē, n)) 6= 0, (6)

as the sum is over all sets of precisely this form.
It then follows from (4) and (5) that for each pair (Ē, n):

0 =
∑

(E′,i)6(Ē,n)

b(E′, i)
∑

E∈E(E′,i)

(E,F (Ē, n)).

Now this is a system of linear equations in the unknowns b(E′, i) which is lower
triangular. Also, by (6), the diagonal entries are non-zero. It follows that the
unique solution to this system is that all of the b(E′, i) are zero, which provides
the required contradiction to equation (3) above.



Permutation group algebras Section 4

4 Oligomorphic-type cases: our conjecture

4.1 Ramsey orderings on orbits of n-sets

Cameron proved the following Ramsey-type result in [3, Prop. 1.10].

Lemma 4.1. Suppose that the n-sets of an infinite set X are coloured with
r colours, all of which are used. Then there is an ordering c1, . . . , cr of the
colours and infinite subsets X1, . . . , Xr, such that Xi contains an n-set of
colour ci but no set of colour cj for j > i.

We use this as the inspiration for the following definition. IfG is a permutation
group on Ω, we say that the orbits of G on n-sets of Ω can be Ramsey ordered
if, given any finite N > n, there is an ordering of the orbits cα, α ∈ A, where
A is a well-ordered set, and a corresponding sequence of (possibly infinite)
subsets Xα ⊆ Ω with |Xα| > N , and such that Xα contains an n-set in the
orbit cα but no n-set in an orbit cβ for β > α. (We can take A to be a set
of ordinals with the ∈-ordering if we wish; this is the reason for using Greek
letters.) This pair of sequences forms a Ramsey ordering. While the particular
Ramsey ordering may depend on N , we do not usually mention N unless we have
to. The reader may think throughout of N having a very large finite value. It
turns out that this makes certain constructions below simpler than if we required
the Xα to be infinite sets.

Not every permutation group has such an ordering. For example, in the
regular action of Z on Z, there is no set with more than two elements, all of
whose 2-subsets are in the same orbit, so there cannot be a Ramsey ordering on
2-subsets. However, Cameron’s result implies that if G is oligomorphic (that is,
there are only finitely many orbits on n-sets for each n), then the orbits of G on
n-sets can be Ramsey ordered for each n.

It turns out that Ramsey orderings on n-sets naturally yield Ramsey orderings
on m-sets whenever m < n.

Proposition 4.2. Let G be a permutation group acting on an infinite set Ω. Let
m < n be positive integers, and assume that the n-set orbits of G can be Ramsey
ordered, say cα and Xα with α ∈ A are a Ramsey-ordering with N > m + n.
Then this ordering induces a Ramsey ordering on the m-set orbits as follows.
There is a subset B ⊆ A and a labelling of the m-set orbits as dβ, β ∈ B, such
that for each β ∈ B, an m-set in the orbit dβ appears in Xβ, and that for each
α ∈ A, Xα contains no m-sets in the orbit dβ for β > α.

We call the ordering of orbits dβ , β ∈ B together with the corresponding
sets Xβ given by this proposition the induced Ramsey ordering. Note that we
use the same parameter N in both orderings.



Permutation group algebras Section 4

The proof uses the following application of Kantor’s theorem (Proposition 3.2
above), shown to me by Peter Cameron.

Lemma 4.3. Let m < n be positive integers, and let X be a finite set with
|X| > m+n. Let the m-sets of X be coloured with colours from the set N. Given
an n-subset of X, we define its colour-type to be the multiset of colours of its(

n
m

)
m-subsets. Then the number of distinct m-set colours used in X is less than

or equal to the number of distinct colour-types among the n-subsets of X.

Proof. We note that only a finite number of colours appear among the m-subsets
of X, as they are finite in number. Without loss of generality, we may assume
that the colours used are precisely 1, 2, . . . , s.

As in Kantor’s theorem (Proposition 3.2), we let M be the incidence matrix
of the m-subsets versus n-subsets of X. By that theorem, as m < n and
|X| > m+ n, this matrix has rank

(|X|
m

)
, which equals the number of rows in

the matrix. Thus, by the rank-nullity theorem, M represents an injective linear
transformation.

Now for each i = 1, . . . , s, let vi be the row vector, with entries indexed by
the m-subsets of X, whose j-th entry is 1 if the j-th m-subset has colour i, and
0 if it does not. Then viM is a row vector, indexed by the n-subsets of X, whose
k-th entry is the number of m-subsets of the k-th n-subset which have colour i.

Consider now the matrix M ′ whose rows are v1M, . . . , vsM. Note that the
k-th column of this matrix gives the colour-type of the k-th n-subset of X. Its
rank is given by

rankM ′ = dim 〈v1M, . . . , vsM〉 = dim 〈v1, . . . , vs〉 = s,

as M represents an injective linear transformation, and the s vectors v1, . . . , vs

are clearly linearly independent. Now since the row rank and column rank of
a matrix are equal, we have s = rankM ′ 6 number of distinct columns in M ′,
which is the number of n-set colour-types in X. Thus the number of m-set
colours appearing in X is less than or equal to the number of n-set colour-types
in X, as we wanted.

Proof of Proposition 4.2. Let cα be any n-set orbit, and letX be a representative
of this orbit. We observe that the multiset of m-set orbits represented by the(
m
n

)
m-subsets of X is independent of the choice of X in this orbit. (For let

X̄ be another representative of the orbit cα, with X̄ = g(X), where g ∈ G. Then
the set of m-subsets of X is mapped to the set of m-subsets of X̄ by g, and so
the multisets of m-set orbits represented by these two sets are identical.) In
particular, we may say that an n-set orbit contains an m-set orbit, meaning that
any representative of the n-set orbit contains a representative of the m-set orbit.



Permutation group algebras Section 4

We first claim that every m-set orbit appears in some Xα: take a representa-
tive of an m-set orbit, say Y ⊂ Ω. Adjoin a further n−m elements to get an
n-set X̄. This n-set lies in some orbit, so there is a representative of this orbit
in one of the Xα, say X ⊂ Xα. Then this Xα contains a representative of our
m-set orbit by the above argument, as we wished to show.

Now if Y ⊂ Ω is a representative of an m-set orbit, we set

βY = min {α : g(Y) ⊂ Xα for some g ∈ G }.

Note that this implies that the m-set orbit containing Y is contained in cβY
but

not in cα for any α < βY . We set B = {βY : Y ⊂ Ω and |Y | = m }, and if Y is
an m-set, then we set dβY

to be the orbit of Y. We claim that B satisfies the
conditions of the proposition with this orbit labelling. Certainly an m-set in
the orbit dβY

appears in XβY
for each Y, by construction, and for each α ∈ A,

Xα contains no m-sets in the orbit dβ for β > α, again by construction. However,
for dβY

to be well-defined, we require that βY1 6= βY2 if Y1 and Y2 lie in distinct
orbits. We now show this to be the case by demonstrating that given any α0 ∈ A,
there can only be one m-set orbit appearing in cα0 which has not appeared in
any cα with α < α0.

So let α0 ∈ A, and let X ⊆ Xα0 have size m + n and contain an n-set in
the orbit cα0 . By the observation we made above, namely that the m-set orbits
appearing in an n-set are independent of the choice of the n-set in its n-set orbit,
it suffices to show that our set X contains at most one new m-set orbit. To
use the lemma, we colour the m-subsets of X as follows. If Y is an m-set with
βY < α0, then Y is given colour 1. Those Y ⊂ X with βY = α0 are given the
colours 2, 3, . . . , with a distinct colour per m-set orbit. (Note that any Y ⊂ X
has βY 6 α0, as all n-subsets of Xα0 lie in orbits cα with α 6 α0.)

We now consider the possible colour-types of the n-sets of X. Note first that
since the m-sets in a given m-set orbit all have the same colour, the colour-type
of an n-set depends only upon the n-set orbit in which it lies. There is some
n-subset of X in the orbit cα0 by construction, and this has a certain colour-type.
Any other n-subset X̃ ⊂ X is either in the same orbit cα0 , and so has the same
colour-type, or it is in some other orbit cα with α < α0. In the latter case, every
m-subset Y ⊂ X̃ must have βY 6 α < α0, and so it has colour 1. Thus the
colour-type of such an n-set must be the multiset [1, 1, . . . , 1].

If every n-subset of X is in the orbit cα0 , then there is only one colour-type,
and so there can only be one m-set colour in X by the lemma, that is, only
one m-set orbit with βY = α0. On the other hand, if X contains an n-set in an
orbit cα with α < α0, then there are at most two colour-types in X: the all-1
colour-type and the colour-type of cα0 . Thus, by the lemma, X contains at most



Permutation group algebras Section 4

two m-set colours. Colour 1 appears in cα, and so there is at most one other
colour present, that is, there is at most one m-set orbit with βY = α0. Thus
dβY

is well-defined on m-set orbits, and we are done.

4.2 The Ramsey-ordering conjecture

Let G be a permutation group on Ω and let m and n be positive integers. Let
d be an m-set orbit and e an n-set orbit. If c is an (m+ n)-set orbit, then we
say that c contains a d ∪ e decomposition if an (m+ n)-set X in the orbit c can
be written as X = Xm ∪Xn with Xm in d and Xn in e. We can easily show
using a theorem of P. M. Neumann that if G has no finite orbits, then for every
pair (d, e), there exists an (m+ n)-set orbit c containing a d ∪ e decomposition,
as follows.

Neumann [9] proved the following: Let G be a permutation group on Ω with
no finite orbits, and let ∆ be a finite subset of Ω. Then there exists g ∈ G

with g∆ ∩∆ = ∅. It follows trivially that if Y and Z are finite subsets of Ω,
then there exists g ∈ G with gY ∩ Z = ∅ (just take ∆ = Y ∪ Z). In our case,
let Xm and Xn be representatives of d and e respectively. Then there exists
g ∈ G with gXm ∩Xn = ∅, and gXm ∪Xn is an (m+ n)-set with the required
decomposition, hence we can take c to be its orbit.

We will be considering groups G which have a Ramsey ordering on their
(m + n)-set orbits. Let cα, α ∈ A be the ordering on (m + n)-sets, and let
dβ , β ∈ B and eγ , γ ∈ C be the induced Ramsey orderings on m- and n-sets
respectively (where we assume N is sufficiently large). We then define

β ∨ γ = min {α : cα contains a dβ ∪ eγ decomposition }.

Here is our main conjecture.

Conjecture 4.4. Let G be a permutation group on Ω with no finite orbits and
for which the orbits on n-sets can be Ramsey ordered for every n. Then given
positive integers m and n, there exists some Ramsey ordering of the orbits on
(m+n)-sets with N > 2(m+n), say cα, α ∈ A with corresponding sets Xα ⊆ Ω,
which induces Ramsey orderings dβ , β ∈ B and eγ , γ ∈ C on the m-set orbits
and n-set orbits respectively, and which satisfies the following conditions for all
β, β′ ∈ B and γ, γ′ ∈ C:

β ∨ γ < β′ ∨ γ if β < β′ and β ∨ γ < β ∨ γ′ if γ < γ′.

Note that the conditions of this conjecture also imply that if β < β′ and
γ < γ′, then β ∨ γ < β ∨ γ′ < β′ ∨ γ′, so that β ∨ γ 6 β′ ∨ γ′ implies that either



Permutation group algebras Section 4

β < β′ or γ < γ′ or (β, γ) = (β′, γ′).
Given this conjecture, it is easy to show that A(G) is an integral domain

for such groups. For if fg = 0 with 0 6= f ∈ Vm(G) and 0 6= g ∈ Vn(G), let
β0 be such that f(dβ) = 0 for β < β0 but f(dβ0) 6= 0, and let γ0 be such that
g(eγ) = 0 for γ < γ0 but g(eγ0) 6= 0. (We write f(dβ) to mean the value of f(Y)
where Y is any representative of the orbit dβ , and so on.) Letting α0 = β0 ∨ γ0,
we can consider fg(cα0). Now since fg = 0, this must be zero, but we can also
determine this explicitly. Letting X be a representative of cα0 , we have

fg(cα0) = fg(X) =
∑

Y⊂X
|Y |=m

f(Y)g(X \ Y).

Every term in the sum is of the form f(dβ)g(eγ) where dβ∪eγ is a decomposition
of cα0 , so that β ∨ γ 6 α0 = β0 ∨ γ0. But by the conjecture, this implies that
except for terms of the form f(dβ0)g(eγ0) 6= 0, every term either has β < β0 so
that f(dβ) = 0, or γ < γ0 so that g(eγ) = 0, and hence every one of these terms
is zero. Since there exist terms of the form f(dβ0)g(eγ0) by the choice of α0, we
must have fg(cα0) 6= 0. But this contradicts fg = 0, and so A(G) is an integral
domain.

Recall from section 2 that we can assume m = n when showing that A(G) is
an integral domain (that is, fg = 0 where f, g ∈ Vn(G) implies f = 0 or g = 0);
hence we can restrict ourselves to proving the conjecture in the case m = n if
this is easier.



Permutation group algebras Section 5

5 Special cases (I): Wreath-S-like groups

5.1 Notational conventions

We gather here some notation that we will be using for the rest of this part of
the thesis.

We will make use of the lexicographical order on finite sequences and multisets,
which we define as follows. Let (X,<) be a totally ordered set. If x = (x1, . . . , xr)
and y = (y1, . . . , ys) are two ordered sequences of elements of X, then we say
that x is lexicographically smaller than y, written x <lex y, if there is some t
with xi = yi for all i < t, but either xt < yt or r + 1 = t 6 s. If we now take a
finite multiset of elements of X, say M , we write seq(M) to mean the sequence
obtained by writing the elements of M (as many times as they appear in M) in
decreasing order. Then if M1 and M2 are finite multisets, we define M1 <lex M2

to mean seq(M1) <lex seq(M2). Note that <lex is a total order on the set of finite
multisets, for seq(M1) = seq(M2) if and only if M1 = M2. If we need to explicitly
list the elements of a multiset, we will write [x1, x2, . . .]. We write M1 + M2

for the multiset sum of the multisets M1 and M2, so if M1 = [x1, . . . , xr] and
M2 = [y1, . . . , ys], then M1 +M2 = [x1, . . . , xr, y1, . . . , ys].

In the following sections, we will talk about a set of connected blocks for a
permutation group, the idea being that every orbit will correspond to a multiset
or sequence of connected blocks. The choice of terminology will be explained
below, and is not related to blocks of imprimitivity. Also, the individual words
“connected” and “block” have no intrinsic meaning in the context of the definitions
in this thesis. Every connected block has a positive integral weight (for which
we write wt(∆)), and the weight of a sequence or multiset of connected blocks is
just the sum of weights of the individual connected blocks. We well-order the
connected blocks of each weight, and denote the connected blocks of weight i
by ∆(j)

i , where j runs through some well-ordered indexing set. Without loss of
generality, we assume that ∆(1)

1 is the least connected block of weight 1. We
then define a well-ordering on all connected blocks by ∆(j)

i < ∆(j′)
i′ if i < i′ or

i = i′ and j < j′. Using this ordering, we can then talk about the lexicographic
ordering on sequences or multisets of connected blocks.

5.2 Wreath-S-like groups

Our prototypical family of groups for this class of groups are those of the form
G = H Wr S, where H is a permutation group on ∆ and S = Sym(Z), the
symmetric group acting on a countably infinite set (we take the integers for
convenience). The action is the imprimitive one, so G acts on Ω = ∆× Z. We



Permutation group algebras Section 5

extract those features of this group which are necessary for the proof below to
work.

Definition 5.1. We say that a permutation group G on Ω is wreath-S-like if
there is a set of connected blocks {∆(j)

i } and a bijection φ from the set of orbits
of G on finite subsets of Ω to the set of all finite multisets of connected blocks,
with the bijection satisfying the following conditions (where we again blur the
distinction between orbits and orbit representatives):

(i) If Y ⊂ Ω is finite, then wt(φ(Y)) = |Y |.

(ii) If Y ⊂ Ω is finite and φ(Y) = [∆(j1)
i1

, . . . ,∆(jk)
ik

], we can partition Y as
Y = Y1 ∪ · · · ∪ Yk with |Yl| = il for each l. Furthermore, if Z ⊆ Y and
Z = Z1 ∪ · · · ∪ Zk, where Zl ⊆ Yl for each l, then we can write φ(Z) as a
sum of multisets φ(Z) = M1 + · · ·+Mk, where wt(Ml) = |Zl| for each l

and Ml = [∆(jl)
il

] if Zl = Yl.

Note that condition (ii) implies that φ(Yl) = [∆(jl)
il

] for j = 1, 2, . . . , k.
Essentially, this condition means that subsets of Y correspond to “submultisets”
of φ(Y) in a suitable sense.

In the case of G = H Wr S mentioned above, we take the connected blocks
of weight n to be the orbits of the action of H on n-subsets of ∆. Then every
orbit of G can be put into correspondence with a multiset of H-orbits as follows.
If Y ⊂ Ω is an orbit representative, then φ(Y) = [πi(Y) : πi(Y) 6= ∅], where
the πi are projections: πi(Y) = { δ : (δ, i) ∈ Y }, and we identify orbits of H
with orbit representatives. Note that wt(φ(Y)) = |Y | as required, and that
condition (ii) is also satisfied; in fact, in the notation of the condition, we have
Ml = [∆(j′l)

i′l
] for each l, for some appropriate i′l and j′l .

Another example is the automorphism group of the random graph. The
random graph is the unique countable homogeneous structure whose age consists
of all finite graphs. It is also known as the Fräıssé limit of the set of finite graphs;
see Cameron [3] for more information on homogeneous structures and Fräıssé’s
theorem. We take the set of connected blocks to be the isomorphism classes of
finite connected graphs, where the weight of a connected block is the number of
vertices in it. Any orbit can be uniquely described by the multiset of connected
graph components in an orbit representative. Condition (i) is immediate, as is
condition (ii). Note, however, that there are examples in this scenario where
Ml may not be a singleton. For example, if Y = P2 is the path of length 2 (with
three vertices), so that φ(Y) = [P2], and Z ⊂ Y consists of the two end vertices
of the path, then φ(Z) = [K1,K1].

This prototypical example explains the choice of terminology: the basic units
in this example are the connected graphs, so we have called our basic units



Permutation group algebras Section 5

connected blocks, both to suggest this example and that of strongly connected
components in tournaments as considered in section 6 below.

Cameron [4, Sec. 2] has shown that A(G) is a polynomial algebra if G is
an oligomorphic wreath-S-like group, from which it follows that A(G) is an
integral domain in this case. It also follows that ε is a prime element, so
both Conjectures 1.1 and 1.2 hold in this case. The argument that A(G) is a
polynomial algebra in the oligomorphic case is similar to that presented below
for wreath-A-like groups, only significantly simpler.

We now show, using a new argument based on Ramsey-orderings, that A(G) is
an integral domain in the wreath-S-like case, even without the assumption that
G is oligomorphic. This will also provide a basis for the arguments presented in
the next section for wreath-A-like groups.

Theorem 5.2. If G is wreath-S-like, then A(G) is an integral domain.

Proof. We claim that in such a situation, the conditions of Conjecture 4.4 are
satisfied, and hence A(G) is an integral domain.

Following the requirements of the conjecture, let m and n be positive integers
and pick any integer N > 2(m + n). Denote the inverse of φ by ψ and let α
run through all multisets of connected blocks of total weight m+ n, then we set
cα = ψ(α) and let Xα be an N -set in the orbit ψ(α+ [∆(1)

1 , . . . ,∆(1)
1]), where

the second multiset has N − (m+ n) copies of ∆(1)
1 . We claim that this gives a

Ramsey ordering of the orbits on (m+ n)-sets, where the multisets are ordered
lexicographically (which gives a well-ordering on the multisets). Firstly, every
(m + n)-set orbit appears among the list by hypothesis, as ψ is a bijection.
Secondly, by construction, there is an (m+ n)-subset of Xα in the orbit ψ(α),
namely partition Xα as in condition (ii) of the definition, and remove all of the
elements corresponding to the copies of ∆(1)

1 added. This subset will then map
to α under φ, by condition (ii). Finally, any (m+ n)-subset of Xα can be seen
to correspond to a multiset lexigraphically less than or equal to α, again using
condition (ii) and the fact that ∆(1)

1 is the least connected block, so the subset
will be in an orbit cβ with β 6lex α, as required.

We note that the induced Ramsey orderings on m-set orbits and n-set orbits
are given by precisely the same construction. Specifically, let β be a multiset
with wt(β) = n. Then the orbit corresponding to the multiset β first appears
in Xα0 where α0 = β + [∆(1)

1 , . . . ,∆(1)
1]. For assume that an n-set Z in the

orbit ψ(β) appears in Xα. As we have φ(Z) = β, β must be a “submultiset”
of α in the sense of condition (ii), and it is clear that the lexicographically
smallest such α is the one given by adjoining an appropriate number of copies
of ∆(1)

1 to β. It is not difficult to show that β ∨ γ is precisely the multiset β + γ,
and that β <lex β

′ implies β + γ <lex β
′ + γ, and therefore β ∨ γ <lex β

′ ∨ γ;



Permutation group algebras Section 5

similarly, γ <lex γ
′ implies β ∨ γ <lex β ∨ γ′. (The argument is similar to that of

Theorem 6.2 below.) Thus the conditions of the conjecture are satisfied by this
Ramsey ordering, and hence A(G) is an integral domain.



Permutation group algebras Section 6

6 Special cases (II): Wreath-A-like groups

We can now apply the same ideas used for the wreath-S-like case to the next
class of groups, although the details are more intricate. The only essential
difference between these two classes is that here we deal with ordered sequences
of connected blocks instead of unordered multisets of connected blocks. We first
define this class of groups and show that their algebras are integral domains.
We then show that in the oligomorphic case, they have a structure similar to
that of shuffle algebras, and deduce that they are polynomial rings. With this
information, we then look at some integer sequences which arise from this family
of groups.

6.1 Wreath-A-like groups

If we have two finite sequences S1 = (x1, . . . , xr) and S2 = (y1, . . . , ys), then we
write S1 ⊕ S2 = (x1, . . . , xr, y1, . . . , ys) for their concatenation.

Definition 6.1. We say that a permutation group G on Ω is wreath-A-like if
there is a set of connected blocks {∆(j)

i } and a bijection φ from the set of orbits
of G on finite subsets of Ω to the set of all finite sequences of connected blocks,
with the bijection satisfying the following conditions:

(i) If Y ⊂ Ω is finite, then wt(φ(Y)) = |Y |.

(ii) If Y ⊂ Ω is finite and φ(Y) = (∆(j1)
i1

, . . . ,∆(jk)
ik

), we can partition Y as an
ordered union Y = Y1 ∪ · · · ∪ Yk with |Yl| = il for each l. Furthermore,
if Z ⊆ Y and Z = Z1 ∪ · · · ∪ Zk, where Zl ⊆ Yl for each l, then we can
write φ(Z) as a concatenation of sequences φ(Z) = S1 ⊕ · · · ⊕ Sk where
wt(Sl) = |Zl| for each l, and Sl = (∆(jl)

il
) if Zl = Yl.

As in the wreath-S-like case, condition (ii) implies that φ(Yl) = (∆(jl)
il

) for
l = 1, 2, . . . , k.

Our prototypical family of groups for this class of groups are those of the
form G = H Wr A, where H is a permutation group on ∆, and A is the group
of all order-preserving permutations of the rationals. Again, the wreath product
action is the imprimitive one, so G acts on Ω = ∆ × Q. As before, we take
the connected blocks of weight n to be the orbits of the action of H on n-
subsets of ∆. Then every orbit of G can be put into correspondence with a
unique sequence of H-orbits as follows. If Y ⊂ Ω is an orbit representative, we
can apply an element of the top group A to permute Y to a set of the form
(∆1 ×{1})∪ (∆2 ×{2})∪ · · · ∪ (∆t ×{t}), where each ∆i is non-empty. Each of
the ∆i is a representative of some H-orbit, so we set φ(Y) = (∆1,∆2, . . . ,∆t),



Permutation group algebras Section 6

again blurring the distinction between orbits and orbit representatives. It is
again easy to see that conditions (i) and (ii) of the definition hold in this case.

Another example is the automorphism group of the random tournament. In
this context, a tournament is a complete graph, every one of whose edges is
directed, and the random tournament is the Fräıssé limit of the set of finite
tournaments. A tournament is called strongly connected if there is a path between
every ordered pair of vertices. It can be shown quite easily that every tournament
can be decomposed uniquely as a sequence of strongly connected components,
where the edges between components are all from earlier components to later
ones. So here we take our set of connected blocks to be the isomorphism classes
of finite strongly connected tournaments (and again, the weight of a connected
block is the number of vertices in it), and if T is a finite subset of the random
tournament, we set φ(T) to be the sequence of strongly connected components
of T. Again, it is not difficult to see that conditions (i) and (ii) hold. Also, as
in the case of the random graph, it may be that a sub-tournament has more
components that the original tournament; for example, the cyclically-oriented
3-cycle is strongly connected, but any 2-element subset of it consists of two
strongly connected 1-sets.

A third example is the automorphism group of the “generic pair of total
orders”. This is the Fräıssé limit of the class of finite sets, where each finite set
carries two (unrelated) total orders, which can be taken as a1 < a2 < · · · < an

and aπ(1) ≺ aπ(2) ≺ · · · ≺ aπ(n) for some permutation π ∈ Sn. Thus orbits of the
Fräıssé limit are described by permutations. We can take the connected blocks
for this group to be the permutations π ∈ Sn for which there exists no k with
0 < k < n such that π maps {1, . . . , k} to itself. The details of this example are
not hard to check.

Theorem 6.2. If G is wreath-A-like, then A(G) is an integral domain.

Proof. The proof runs along very similar lines to that of Theorem 5.2. If α is a
sequence of connected blocks, we write [α] to denote the multiset whose elements
are the terms of the sequence with their multiplicities. We define an ordering on
sequences by α < β if [α] <lex [β] or [α] = [β] and α >lex β.

Again, we show that the conditions of Conjecture 4.4 are satisfied in this
case. Let m and n be positive integers and let N be a positive integer with
N > 2(m + n). Denoting the inverse of φ by ψ and letting α run through all
sequences of connected blocks of total weight m+ n, we set cα = ψ(α) and let
Xα be a N -set in the orbit ψ(α⊕ (∆(1)

1 , . . . ,∆(1)
1)), where the second sequence

has N − (m + n) copies of ∆(1)
1 . We claim that this gives a Ramsey ordering

of the orbits on (m+ n)-sets, where the sequences are ordered as described in
the previous paragraph. Firstly, every (m+ n)-set orbit appears in the list by



Permutation group algebras Section 6

hypothesis, as ψ is a bijection. Secondly, by construction, there is an (m+ n)-
subset of Xα in the orbit ψ(α), namely partition Xα as in condition (ii) of the
definition, and remove all of the elements corresponding to the copies of ∆(1)

1

appended. This subset will then map to α under φ, by condition (ii).
To show the final condition of Ramsey orderings, we must show that any

(m + n)-subset of Xα is in an orbit corresponding to a sequence less than or
equal to α. Using the notation of condition (ii), we let α = (∆(j1)

i1
, . . . ,∆(jk)

ik
)

and Xα = X1 ∪ · · · ∪Xk ∪Xk+1 ∪ · · · ∪Xr, where Xk+1, . . . , Xr correspond to
the appended copies of ∆(1)

1 . Consider a subset Y = Y1 ∪ · · · ∪ Yr ⊂ Xα with
|Y | = m+ n. If Yl 6= Xl for some l with Xl 6= ∆(1)

1 , then clearly [φ(Y)] <lex [α],
as wt(Sl) < il, and the only new connected blocks which can be used are copies
of ∆(1)

1 , which is the least connected block. So the remaining case to consider is
where some of the ∆(jl)

il
are equal to ∆(1)

1 , and for some or all of those, Yl = ∅,
whereas Ys = Xs for some s > k. But in such a case, while we have [φ(Y)] = [α],
it is clear that φ(Y) >lex α. So in either case, we have φ(Y) 6 α, or equivalently
Y 6 cα, as required.

We note that the induced Ramsey orderings on m-set orbits and n-set orbits
are given by precisely the same construction; in particular, the orbit given by
the sequence β first appears in Xα, where α = β ⊕ (∆(1)

1 , . . . ,∆(1)
1).

Finally, we must show that the remaining conditions of the conjecture are
satisfied by this Ramsey ordering. We will only show that β < β′ implies
β∨γ < β′∨γ; the other condition follows identically. We first deduce an explicit
description of β ∨ γ.

A shuffle of two sequences, say (x1, . . . , xr) and (y1, . . . , ys), is a sequence
(z1, . . . , zr+s) for which there is a partition of {1, 2, . . . , r + s} into two disjoint
sequences 1 6 i1 < i2 < · · · < ir 6 r+ s and 1 6 j1 < j2 < · · · < js 6 r+ s with
zik

= xk for 1 6 k 6 r and zjk
= yk for 1 6 k 6 s.

We first show that β ∨ γ is the lexicographically greatest shuffle of β with γ;
this is not difficult although the argument is a little intricate. We let α0 be this
greatest shuffle and note that [α0] = [β] + [γ]. Now let α be any sequence of
connected blocks for which cα contains a dβ ∪ eγ decomposition; we must show
that α0 6 α. (Here dβ and eγ are the orbits on m-sets and n-sets corresponding
to β and γ respectively.)

We let α = (A1, . . . , Ak) be this sequence of connected blocks, and let Y be a
representative of the orbit cα. Write Y as an ordered union Y = Y1∪· · ·∪Yk as in
condition (ii) of the definition of wreath-A-like groups. Then any decomposition
of cα into two subsets can be written as

cα = Z ∪ Z ′ = (Z1 ∪ · · · ∪ Zk) ∪ (Z ′1 ∪ · · · ∪ Z ′k),



Permutation group algebras Section 6

where Yl = Zl ∪ Z ′l as a disjoint union for each l. Now if we require φ(Z) = β

and φ(Z ′) = γ, this means that the sequences S1 ⊕ · · · ⊕ Sk and S′1 ⊕ · · · ⊕ S′k
corresponding to Z and Z ′ respectively, as given by condition (ii), must equal β
and γ respectively. If {Zl, Z

′
l} = {Yl,∅}, then [Sl] + [S′l] = [Al] by condition (ii),

but if not, then [Sl] + [S′l] <lex [Al] by comparing weights. As M1 <lex M2

implies M1 +M <lex M2 +M for any multisets M1, M2 and M , it follows that
[β] + [γ] 6lex [α] with equality if and only if {Zl, Z

′
l} = {Y ′l ,∅} for each l, that

is, [α0] 6lex [α] with equality if and only if α is a shuffle of β and γ. And if α is
such a shuffle, then α 6lex α0 by construction, so α0 6 α, as required.

Given this, we can now show that if β < β′, then β ∨ γ < β′ ∨ γ. We first
consider the case that [β] <lex [β′], from which it follows that [β] + [γ] <lex

[β′] + [γ]. Since [β ∨ γ] = [β] + [γ] and [β′ ∨ γ] = [β′] + [γ], we deduce that
[β ∨ γ] <lex [β′ ∨ γ], so β ∨ γ < β′ ∨ γ.

Now consider the other possible case, namely [β] = [β′] but β >lex β
′. Note

that [β∨γ] = [β′∨γ] in this case, so we must show that β∨γ >lex β
′∨γ. We let

β = (∆1, . . . ,∆r), β′ = (∆′
1, . . . ,∆

′
r) and γ = (E1, . . . , Es) in the following. We

also let α = β ∨ γ = (A1, . . . , Ar+s) and α′ = β′ ∨ γ = (A′1, . . . , A
′
r+s). Recalling

that β ∨ γ is the lexicographically greatest shuffle of β and γ, we can construct
β ∨ γ by using the following merge-sort algorithm (written in pseudo-code).

function MergeSort(β, γ)
{ We have β = (∆1, . . . ,∆r) and γ = (E1, . . . , Es) }

i← 1
j ← 1
while i 6 r or j 6 s do

if (i > r) then { Ai+j−1 ← Ej ; j ← j + 1 }
else if (j > s) then { Ai+j−1 ← ∆i; i← i+ 1 }
else if (Ej > ∆i) then { Ai+j−1 ← Ej ; j ← j + 1 }
else { Ai+j−1 ← ∆i; i← i+ 1 }

od

return α = (A1, . . . , Ar+s)

Observe what happens if we run the algorithm on the pairs (β, γ) and (β′, γ).
Assume that ∆i = ∆′

i for i < i0, but that ∆i0 > ∆′
i0

. Then they will run
identically as long as i < i0. When i = i0, they will both continue taking
terms from γ until Ej < ∆i0 or γ is exhausted. Once this happens, the (β, γ)
algorithm will take ∆i0 next, so Ai0+j−1 = ∆i0 , but the (β′, γ) algorithm will
take max{∆′

i0
, Ej}, so A′i0+j−1 = max{∆′

i0
, Ej} < ∆i0 = Ai0+j−1. Thus we

have β ∨ γ >lex β
′ ∨ γ, so β ∨ γ < β′ ∨ γ as required.

It follows that A(G) is an integral domain, as we wanted.



Permutation group algebras Section 6

6.2 Shuffle algebras

In the oligomorphic case, we can do better: the algebra A(G) is actually a
polynomial algebra if G is an oligomorphic wreath-A-like group. We show this by
noting strong similarities between our algebra and standard shuffle algebras, and
using well-known properties of shuffle algebras, in particular that the Lyndon
words form a polynomial basis for the shuffle algebra.

We start by briefly recalling the key facts we will need. We take these results
from Reutenauer’s book on free Lie algebras [11]. The references to definitions,
theorems and so forth are to his book.

Let T be an alphabet. Although Reutenauer sometimes assumes the alphabet
to be finite, it will be clear that all of the results we use below work equally well
in the infinite case: since words are always of finite length and we only ever work
with finitely many words at once, we can always restrict attention to the finite
subset of T containing the letters in use.

We write T ∗ for the set of words in the alphabet T . We write K〈T 〉 for
the K-vector space with basis T ∗. If we use the concatenation product (where
the product of two words is just their concatenation), then this is the ring of
non-commuting polynomials over T . But there is another product that we can
define on words, and by extension on K〈T 〉, called the shuffle product. This is
explained in section 1.4 of Reutenauer, and we now essentially quote parts of it.

Let w = a1· · · an be a word of length n in T ∗, and let I ⊆ {1, . . . , n}. We
denote by w|I the word ai1 · · · aik

if I = {i1 < i2 < · · · < ik}; in particular,
w|I is the empty word if I = ∅. (Such a word w|I called a subword of w.) Note
that when

{1, . . . , n} =
p⋃

j=1

Ij ,

then w is determined by the p words w|Ij and the p subsets Ij .
Given two words u1 and u2 of respective lengths n1 and n2, their shuffle

product, denoted by u1 � u2, is the polynomial

u1 � u2 =
∑

w(I1, I2),

where the sum is taken over all pairs (I1, I2) of disjoint subsets of {1, . . . , n} with
I1∪ I2 = {1, . . . , n} and |Ij | = nj for j = 1, 2, and where the word w = w(I1, I2)
is defined by w|Ij = uj for j = 1, 2. Note that u1 � u2 is a sum of words
of length n, each with the same multiset of letters, and so is a homogeneous
polynomial of degree n. Note also that the empty word, denoted by 1, is the
identity for the shuffle product, that the shuffle product is commutative and
associative, and that it is distributive with respect to addition. Thus K〈T 〉 with



Permutation group algebras Section 6

the shuffle product is a commutative, associative algebra, called the shuffle
algebra.

Using the associative and distributive properties of the shuffle product, we
can also give an expression for the shuffle product of the words u1, . . . , up, of
respective lengths n1, . . . , np; their shuffle product is the polynomial

u1 � · · ·� up =
∑

w(I1, . . . , Ip),

where now the sum is taken over all p-tuples (I1, . . . , Ip) of pairwise disjoint
subsets of {1, . . . , n} with

⋃p
i=1 Ij = {1, . . . , n} and |Ij | = nj for each j = 1,

. . . , p, and where the word w = w(I1, . . . , Ip) is defined by w|Ij = uj for each
j = 1, . . . , p.

A word appearing in the shuffle product u1 � · · · � up is called a shuffle
of u1, . . . , up. Note that this is consistent with the definition of shuffle we
used in the proof of Theorem 6.2 above. As an example, if a, b, c ∈ T , then
ab� ac = abac+ 2aabc+ 2aacb+ acab, and aabc and acab are both shuffles of
ab and ac.

The next definition we need is that of a Lyndon word. Assume that our
alphabet T is totally ordered. Then a Lyndon word in T ∗ is a non-empty word
which is lexicographically smaller than all of its nontrivial proper right factors;
in other words, w is a Lyndon word if w 6= 1 and if for each factorisation w = uv

(concatenation product) with u, v 6= 1, one has w <lex v.
An alternative categorisation of Lyndon words is as follows (Corollary 7.7 in

Reutenauer). Given a word w = a1 · · · an of length n, we can define the rotation
operator ρ by ρ(w) = a2 · · · ana1. Then a word w of length n > 1 is Lyndon if
and only if w <lex ρ

k(w) for k = 1, . . . , n− 1, which is to say that w is primitive
(it does not have the form w = ur for some r > 1) and that it is lexicographically
smaller than any rotation (cyclic permutation) of itself. It follows that Lyndon
words are in bijective correspondence with primitive necklaces; see [11, Chap. 7]
for more information.

A key property of Lyndon words is that every word w ∈ T ∗ can be written
uniquely as a decreasing product of Lyndon words, so w = lr1

1 · · · l
rk

k , where
l1 >lex · · · >lex lk and r1, . . . , rk > 1. (This follows from Theorem 5.1 and
Corollary 4.4, and can also easily be proved directly—see section 7.3.)

Finally, Theorem 6.1 states that the shuffle algebra K〈T 〉 is a polynomial
algebra generated by the Lyndon words, and that for each word w, written as a
decreasing product of Lyndon words w = lr1

1 · · · l
rk

k as in the previous paragraph,



Permutation group algebras Section 6

one has
S(w) def=

1
r1! · · · rk!

l�r1
1 � · · ·� l�rk

k = w +
∑

[u]=[w]
u<lexw

αuu, (7)

for some non-negative integers αu, where l�r means l� · · ·� l with r terms in
the product, and, in this context, [u] means the multiset of letters in the word u.

Note that it is equation (7) which proves that K〈T 〉 is a polynomial algebra:
the set T ∗ is a K-vector space basis for K〈T 〉, and given any finite multiset M of
elements of T , the matrix relating the basis elements {w : w ∈ T ∗ and [w] = M }
to {S(w) : w ∈ T ∗ and [w] = M } is unitriangular when the words are listed in
lexicographic order, so that {S(w) : w ∈ T ∗ } also forms a basis for K〈T 〉. This
argument is true whether T is finite or infinite.

We can now apply this to our case of oligomorphic wreath-A-like permutation
groups. Let G acting on Ω be such a group, as in Definition 6.1 above. We
obviously take our alphabet T to be the set of connected blocks of the action
(as given by the definition of wreath-A-like groups), so that T ∗ corresponds
bijectively to the set of orbits of G on finite subsets of Ω. The alphabet T has
the standard ordering defined on connected blocks, and the set T ∗ can then
be ordered either by the lexicographic order (denoted <lex) or by the order we
defined at the start of Theorem 6.2 (denoted <).

Clearly A(G) can be regarded as a K-vector space, with the set of char-
acteristic functions of finite orbits as basis. We will identify the connected
block sequence w = (∆(j1)

i1
, . . . ,∆(jk)

ik
) with the characteristic function of the

corresponding orbit, writing w for both. Via this correspondence, we can identify
A(G) with K〈T 〉 as vector spaces. The grading on A(G) induces a grading
on K〈T 〉: the homogeneous component Vn(G) is identified with the subspace
of K〈T 〉 spanned by {w ∈ T ∗ : wt(w) = n }. We then consider the product that
the vector space K〈T 〉 inherits via this identification. Let v ∈ T ∗ be another
connected block sequence. We write v � w for the product in A(G) and the
induced product in K〈T 〉. The notation is designed to indicate that this product
is related to the shuffle product, as we will see, and we call it the complete shuffle
product. (It is also somewhat related to the infiltration product on K〈T 〉; see
[11, sect. 6.3].) Recalling the definition of multiplication in A(G), we see that
for any finite subset X ⊂ Ω with |X| = wt(v) + wt(w),

(v� w)(X) =
∑

Y⊆X
|Y |=wt(v)

v(Y)w(X \ Y).

But v(Y) is none other than the characteristic function which has value 1 if



Permutation group algebras Section 6

φ(Y) = v and 0 otherwise, and similarly for w(Y \X). So we have

(v� w)(X) = |{Y ⊆ X : φ(Y) = v, φ(X \ Y) = w }|.

Thus, setting u = φ(X) and writing u→ v∪w if there is a Y ⊆ X with φ(Y) = v

and φ(X \ Y) = w, we have

v� w =
∑

u∈T∗

βuu,

where βu > 0 if u→ v ∪ w and βu = 0 otherwise.
Now we can characterise those u for which u→ w ∪ v quite easily. Firstly,

consider the case that [u] = [w] + [v], that is, the set of connected blocks of u
is the same as those of w and v combined. Then u → w ∪ v if and only if
u is a shuffle of w and v, by condition (ii) of Definition 6.1, as in the proof of
Theorem 6.2. In fact, the terms in w� v with [u] = [w] + [v] will be precisely
w� v, which is easy to see. Now consider those terms with [u] 6= [w] + [v]. If
[u] <lex [w] + [v], then it is easy to see that we cannot have u→ w ∪ v, but it
may be possible otherwise. We deduce that our product is given by:

w� v = w� v +
∑

wt(u)=wt(w)+wt(v)

[u]>lex[w]+[v]

βuu (8)

for some non-negative integers βu.
Now given w = lr1

1 · · · l
rk

k written as a (concatenation) product of decreasing
Lyndon words, we can consider the complete shuffle product as we did for the
normal shuffle product above:

S̄(w) def=
1

r1! · · · rk!
l�r1
1 � · · ·� l�rk

k

=
1

r1! · · · rk!
l�r1
1 � · · ·� l�rk

k +
∑

wt(u)=wt(w)

[u]>lex[w]

βuu

= w +
∑

[u]=[w]
u<lexw

αuu+
∑

wt(u)=wt(w)

[u]>lex[w]

βuu

= w +
∑

wt(u)=wt(w)
u>w

αuu,

(9)

where the αu and the βu are non-negative integers. To get the second line, we
have repeatedly used equation (8) to reduce the complete shuffle product to a
normal shuffle product. Observe that wt(lr1

1 · · · l
rk

k) = wt(w), hence the sum is



Permutation group algebras Section 6

over words with wt(u) = wt(w), and with [u] >lex [w], since >lex is transitive
and [u1] >lex [u2] implies [u1] + [u] >lex [u2] + [u] for any word u. That the
βu are non-negative is easy to see, and it is not that much harder to see that
they are integral, although we do not need this. In the third line, we have
used equation (7), and in the last line, we have set αu = βu in the case that
[u] >lex [w], and used the relation on words (sequences) defined in the previous
section, namely u > w if [u] >lex [w] or [u] = [w] and u <lex w.

It is also important to note that in our case, the set {u : wt(u) = wt(w) }
is finite, as there are only finitely many connected blocks of each weight, the
same number as the number of orbits on sets of size wt(w), so that the sums in
equation (9) are all finite.

We now see, as above, that the matrix relating {w : w ∈ T ∗ and wt(w) = n }
to { S̄(w) : w ∈ T ∗ and wt(w) = n } is unitriangular when the words of weight n
are listed in the order we have defined. It follows that the S̄(w) form a vector
space basis for A(G) = K〈T 〉, and hence the set of Lyndon words is a set of
polynomial generators for A(G). We summarise these results as a theorem.

Theorem 6.3. If G is an oligomorphic wreath-A-like permutation group, then
A(G) is a polynomial ring, and the generators are those characteristic functions
on orbits corresponding to Lyndon words as described above.

We can now deduce:

Corollary 6.4. If G is an oligomorphic wreath-A-like permutation group, then
the element ε ∈ V1(G) is prime in A(G).

Proof. We have e = ∆(1)
1 + · · ·+ ∆(r)

1 , where the ∆(j)
1 are the orbits on 1-sets.

As each of the ∆(j)
1 is a Lyndon word, A(G) = K[∆(1)

1 , . . . ,∆(r)
1 ,∆(1)

2 , . . .].
It follows that we can replace the polynomial generator ∆(1)

1 by ε (as they
are linearly related), giving A(G) = K[ε,∆(2)

1 , . . . ,∆(r)
1 ,∆(1)

2 , . . .]. It is clear,
since we then have A(G)/(ε) ∼= K[∆(2)

1 , . . . ,∆(r)
1 ,∆(1)

2 , . . .], that A(G)/(ε) is an
integral domain, so ε is prime in A(G).

6.3 Integer sequences, necklaces and free Lie algebras

Theorem 6.3 leads us to revisit some counting questions. Cameron [5] considered
the following question. If the algebra A(G) corresponding to an “interesting”
oligomorphic group G were polynomial, what would be the sequence counting
the number of polynomial generators of each degree? From knowledge of the di-
mension of each homogeneous component of A(G), the answer can be determined
using the inverse Euler transform. Now that we have an explicit description
of the polynomial generators in the wreath-A-like case, an examination of the



Permutation group algebras Section 6

sequences observed might yield some interesting new information about those
sequences.

The two sequences we will consider are those arising from the groups S2 Wr A
and A Wr A, both of which appear in the On-Line Encyclopedia of Integer
Sequences [12]. There are some obvious generalisations to other groups, as we
observe below. The n-th homogeneous component of the group S2 Wr A has
dimension Fn+1 (a Fibonacci number, where F0 = 0 and F1 = 1), and so the
sequence counting the number of generators of degree n is A006206, beginning
1, 1, 1, 1, 2, 4, 5, 8, 11, 18, By our result, the n-th term of this sequence
gives the number of Lyndon words of weight n (starting with n = 1) in the
alphabet T = {∆1,∆2}, where ∆1 and ∆2 have respective weights 1 and 2.

Similarly, for the group A Wr A, the n-th homogeneous component has
dimension 2n−1 for n > 1, and the sequence counting the number of generators
of degree n is A059966, beginning 1, 1, 2, 3, 6, 9, 18, 30, (Note that the
paper quoted above had sequence A001037 by mistake, this being the inverse
Euler transform of the closely related sequence (2n).) This sequence then counts
the number of Lyndon words of weight n in the alphabet T = {∆1,∆2, . . . },
where ∆i has weight i.

The Encyclopedia entry gives a different explanation, however: this sequence
lists the dimensions of the homogeneous components of the free Lie algebra with
one generator of each degree 1, 2, 3, etc. The connection between these two
descriptions of this sequence is easy to describe, using [11, Thm. 4.9]. Let T be
an alphabet whose letters each have a positive integral degree/weight (we use
these terms interchangeably in this section), and where there are only finitely
many letters of each possible weight. There is a basis of the free Lie algebra
on the alphabet T (viewed as a vector space) given by {Pw : w ∈ T ∗ Lyndon },
where Pa = a if a ∈ T , and Pw = [Pu, Pv] otherwise, where w = uv with
v being the lexicographically smallest nontrivial proper right factor of w (see
[11, Thm. 5.1]). Note that it trivially follows by induction that the degree of the
homogeneous polynomial Pw is wt(w). Thus the dimension of the homogeneous
component of degree n of the free Lie algebra on the alphabet T is the number
of Lyndon words in T ∗ of weight n. It follows that we can also describe the
two sequences above as either the number of Lyndon words of weight n in the
alphabets {∆1,∆2} and {∆1,∆2, . . . } respectively, or as the number of primitive
necklaces of weight n in these symbols, or as the dimension of the homogeneous
component of degree n of the free Lie algebras on these sets. This obviously
generalises to other wreath-A-like groups.

We may ask other counting questions based on these ideas. We start with
an alphabet of weighted letters T (again with only finitely many letters of each



Permutation group algebras Section 6

weight). The primary questions arising are how to transform between the three
sequences:

an = number of letters of weight n in T ,

wn = number of words of weight n in T ∗,

ln = number of Lyndon words of weight n in T ∗.

(Of course, ln can also be regarded as the number of primitive necklaces of
weight n in this alphabet.) In our context, an is the number of connected
blocks of weight n in our wreath-A-like group, wn gives the dimension of the
homogeneous component of weight n in A(G) and ln gives the number of
polynomial generators of weight n in A(G). We use the notation and some of
the ideas presented in Bernstein and Sloane’s paper on integer sequences [1].

The transformation between (an) and (wn) can be effected by INVERT, as
every word is an ordered sequence of letters:

1 +
∞∑

n=1

wnx
n =

1
1−

∑∞
n=1 anxn

.

The transformation between (wn) and (ln) is performed using EULER, as every
word is a product of a decreasing sequence of Lyndon words, so can be identified
with a multiset of Lyndon words:

1 +
∞∑

n=1

wnx
n =

∞∏
n=1

1
(1− xn)ln

.

It follows that we can transform between (an) and (ln) using a variant of WEIGH:

1−
∞∑

n=1

anx
n =

∞∏
n=1

(1− xn)ln . (10)

Most of the six possible conversions between (an), (wn) and (ln) are straightfor-
ward given these formulæ; the two which are harder are converting (wn) and (an)
to (ln). Inverting the EULER transform is explained in [1]; we apply the same
idea to convert from (an) to (ln).

Given a sequence (an), we introduce the auxiliary sequence (cn) defined
by the equation 1−

∑∞
n=1 anx

n = exp
(
−

∑∞
n=1 cnx

n/n
)
. Using the generating

functions A(x) =
∑∞

n=1 anx
n and C(x) =

∑∞
n=1 cnx

n, we can perform standard
manipulations using the defining equation for (cn) to deduce that C(x) =



Permutation group algebras Section 6

xA′(x) + C(x)A(x). It follows that

cn = nan +
n−1∑
k=1

ckan−k. (11)

Now substituting exp
(
−

∑
cnx

n/n
)

for 1 −
∑
anx

n in equation (10), taking
logarithms and expanding as a power series gives the coefficient of xn/n to be
cn =

∑
d|n d ld. Finally, Möbius inversion gives

ln =
1
n

∑
d|n

µ(n/d)cd. (12)

Thus we have an effective way of calculating the number of Lyndon words of
a given weight given the number of letters of each possible weight.

As an interesting example of this process, let us consider our favourite group,
G = S2 Wr A. In this case, recall that we have T = {∆1,∆2}, so a1 = a2 = 1
and an = 0 for n > 3. Then the sequence (cn) is calculated by equation (11):
we have c1 = 1 and c2 = 3. For n > 3, we have cn = cn−1 + cn−2, so (cn) is the
standard Lucas sequence (Ln): 1, 3, 4, 7, 11, 18, We can now calculate the
sequence (ln): the first few terms are as we predicted: 1, 1, 1, 1, 2, 2, 4, 5, . . . ,
and a general formula is ln = 1

n

∑
d|n µ(n/d)Ld, as is given in the Encyclopedia

entry for A006206. One interesting thing to observe is that if p is prime, then
we have lp = (µ(1)Lp + µ(p)L1)/p = (Lp − 1)/p. It follows that the Lucas
sequence satisfies Lp ≡ 1 (mod p) for all primes p, a known result (see Hoggart
and Bicknell [7]), but somewhat surprising in this context.

The description of our sequence A006206 in the Encylcopedia is “aperiodic
binary necklaces [of length n] with no subsequence 00, excluding the sequence ‘0’.”
Our description is that it counts primitive necklaces of weight n in the alphabet
{∆1,∆2}. These are easily seen to be equivalent: if we replace every ∆1 by the
symbol 1 and every ∆2 by the symbols 10 (in clockwise order, say), then we
will get a primitive (aperiodic) binary necklace with no subsequence 00 whose
length equals the weight of the necklace we started with, and we can perform the
inverse transformation equally simply (as we are excluding the necklace 0). We
can do the same with the group Sn Wr A, enabling us to count the number of
primitive binary necklaces of length n with no subsequence 00 · · · 0 (with n zeros)
and excluding the necklace 0.

Now let us apply these ideas to the case G = A Wr A. Firstly, the auxilary
sequence turns out to be cn = 2n − 1, and the sequence (ln) is given by
ln =

∑
d|n µ(n/d)(2d−1). This can be simplified using the result

∑
d|n µ(n/d) =

[n = 1], where we are using Iverson’s convention that if P is a predicate, then



Permutation group algebras Section 6

[P] = 1 if P is true and 0 otherwise. So we have ln =
∑

d|n µ(n/d)2d − [n = 1].
The sequence given by

∑
d|n µ(n/d)2d is sequence A001037, and so our sequence

differs from it by 1 in the n = 1 term only, yielding the observed sequence
A059966. We can also give a necklace description of this sequence as above: it is
the number of primitive binary necklaces of length n excluding the necklace 0—
the sequence A001037 is essentially the same, but does not exclude the necklace 0,
so it it also counts the number of binary Lyndon words of length n. (These are the
descriptions of this sequence given in the Encyclopedia.) Finally, as above, if we
consider the term lp for p prime, we see that lp = ((2p−1)−1)/p = 2(2p−1−1)/p,
so for p > 2, we deduce Fermat’s little theorem for base 2, that is 2p−1 ≡ 1
(mod p).

An investigation of those sequences of non-negative integers (bn) for which
1
n

∑
d|n µ(n/d)bd is a non-negative integer for all n has been undertaken by Puri

and Ward [10], who call them exactly realizable. We can thus add to their work
a class of exactly realizable sequences: those which are of the form (cn), where
(cn) is given by equation (11) for some sequence of non-negative integers (an).
A particular family of such sequences is given by ai = 1 for 1 6 i 6 n and ai = 0
for i > n; these are sometimes known as “generalised Fibonacci sequences”, and
have been discussed by Du [6] (where this sequence is called φn). It would be
interesting to know whether new congruence identities can be discovered by
applying this technique to some of the sequences identified there or to sequences
produced by other wreath-A-like groups.



Permutation group algebras Section 7

7 Non-oligomorphic groups

Throughout this part of the thesis, we have mostly focused on oligomorphic
groups, proving results in general where there was no problem in doing so. In
this final section, we consider briefly the issues arising in the non-oligomorphic
case.

As has already been pointed out above, the group Z acting regularly on Z
does not have a Ramsey ordering on 2-sets, so much of what we did above will
not help us to understand the algebra A(Z). It is easy to construct other similar
examples.

A more difficult question is whether we have even got the “right” definition
of the algebra A(G) in the non-oligomorphic case. The definition we have been
using was introduced specifically to study the behaviour of oligomorphic groups.
There are two finiteness conditions which can be imposed on the algebra we
consider.

Firstly, we have taken the direct sum A(G) =
⊕∞

n=0 Vn(G), which is the
direct limit as N →∞ of the vector spaces

⊕N
n=0 Vn(G) (with the obvious direct

maps). We could have instead taken the cartesian sum
∑∞

n=0 Vn(G), being the
inverse limit of the same family of vector spaces (with the obvious inverse maps).

Secondly, and independently of the first choice, we could either take Vn(G)
to be the vector space of all functions from n-subsets of Ω to K which are fixed
by G, as we have until now, or we could take it to be the subspace of this
consisting of those functions which assume only finitely many distinct values on
n-sets. (The latter idea was suggested to me by Peter Cameron.) Note, though,
that if there are infinitely many orbits on n-sets, this vector space will still have
uncountable dimension. It is not hard to check that if we use the latter definition,
the multiplication in the algebra is still well-defined. Also, this distinction does
not exist in the oligomorphic case. (Another seemingly plausible choice, those
functions in Vn(G) which are non-zero on only finitely many orbits of G, can
fail to produce a well-defined multiplication: consider, for example, the case
of e2 with our favourite non-oligomorphic group, Z: it takes the value 2 on every
2-set.)

Thus we have four plausible algebras to choose from, and it is not clear which
is the “correct” one to use. More work is still required in this area.



Permutation group algebras References

References

[1] M. Bernstein and N. J.A. Sloane, Some canonical sequences of integers,
Linear Algebra and Applications 226/228 (1995), 57–72.

[2] Peter J. Cameron, Orbits of permutation groups on unordered sets, II, J.
London Math. Soc. (2) 23 (1981), 249–264.

[3] , Oligomorphic Permutation Groups, Cambridge University Press,
1990.

[4] , The algebra of an age, Model Theory of Groups and Automorphism
Groups (David M. Evans, ed.), Cambridge University Press, 1997, pp. 126–
133.

[5] , Sequences realized by oligomorphic permutation groups, Journal of
Integer Sequences 3 (2000), Article 00.1.5.

[6] B.-S. Du, A simple method which generates infinitely many congruence
identities, Fibonacci Quart. 27 (1989), 116–124.

[7] V. E. Hoggart Jr. and M. Bicknell, Some congruences of the fibonacci num-
bers modulo a prime p, Math. Mag. 47 (1974), 210–214.

[8] William M. Kantor, On incidence matrices of finite projective and affine
spaces, Mat Z. 124 (1972), 315–318.

[9] Peter M. Neumann, The structure of finitary permutation groups, Arch.
Math. (Basel) 27 (1976), 3–17.

[10] Yash Puri and Thomas Ward, Arithmetic and growth of periodic orbits,
Journal of Integer Sequences 4 (2001), Article 01.2.1.

[11] Christophe Reutenauer, Free Lie Algebras, Oxford University Press, 1993.

[12] N. J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, available
at http://www.research.att.com/~njas/sequences/, 2001.



Part II

Parking Functions,

Valet Functions

and Priority Queues

In which we present a new bijection between parking

functions and priority queues, extend it to a bijection

between valet functions and priority queues on

multisets, and learn of the standard of driving in Boston

This is an edited version of the published paper: Julian D. Gilbey

and Louis H. Kalikow, Parking functions, valet functions and

priority queues, Discrete Mathematics 197/198 (1999), 351–373.

Parking functions, valet functions and priority queues Section 1

1 Introduction

The combinatorial properties of parking functions have attracted interest for
some time. Much is known about these functions and how they relate to other
combinatorial structures such as trees. Recently, allowable pairs of permutations
of a priority queue have also been studied. In this part of the thesis, we study
these two classes of objects, which turn out to be closely related.

After introducing some notation in section 2, we define parking functions in
section 3, together with some background material on the subject. The same is
done for priority queues and allowable pairs in section 4. In section 5 we define
the notion of a “breakpoint” for both parking functions and allowable pairs,
and in section 6 we present a new bijection between these objects. In section 7
we introduce valet functions, which turn out to correspond to allowable pairs
of permutations of a multiset. We also note an interesting bijection between
valet functions and k-way trees, which restricts to a new bijection between
parking functions and labelled trees. In section 8 we present, with detailed
proof, a bijection between valet functions and allowable pairs for a multiset.
This bijection, of which our first bijection is a special case, has the property
of being both output and breakpoint preserving. (The output of the various
objects involved is defined in sections 3, 4 and 7.) In section 9 we give an
alternative description of the bijection of section 6, and use this in section 10 to
give an interpretation for allowable pairs of the inversion enumerator for trees,
showing that our bijection preserves this too in a suitable sense. We conclude
in section 11 by comparing our bijection to other bijections involving parking
functions and priority queues.

2 Notation

We write [n] for {1, 2, . . . , n} and [n]0 for [n] ∪ {0}, with the convention that
[0] = ∅. We will often think of a function p : [n] → [n] as the sequence of
its values p(1), . . . , p(n) (sometimes even omitting the commas). Similarly, we
regard a permutation σ ∈ Sn as either a bijection σ : [n]→ [n] or as a sequence
σ1σ2 . . . σn (writing σi for σ(i)). If (ai) is a sequence, we will also use a to refer
to it. In the case that each ai ∈ N, we write Ma for the multiset {1a1 , 2a2 , . . . }.
Note that 0 is considered a natural number! (Also, we are using standard set
notation for multisets, which is different from that used in the first part of this
thesis; this turns out to be more convenient here.)

From section 7 onwards, we will be considering functions p : [k] → P([n])
with |p(i)| = ai for each i, where P(Ω) denotes the power set of Ω. We will list
the elements of each p(i) as pi(1), pi(2), . . . , pi(ai). The order in which we do so



Parking functions, valet functions and priority queues Section 3

turns out to be unimportant for our results, as we will show below, so without
loss of generality, we will assume that they are listed in increasing order, unless
stated otherwise. We will also write p1(1), . . . , pi(j − 1) as shorthand for the
initial subsequence of p1(1), . . . , p1(a1), p2(1), . . . , pk(ak) up to, but excluding,
pi(j), even in the case that j = 1.

3 Parking functions and major functions

Consider a one-way street with n empty parking spaces in a row. There are
n drivers who wish to park in these spaces and they arrive one at a time. Each
driver has a preferred parking space, to which she drives. If it is empty, she
parks there, but if not, she parks in the next available parking space if there is
one. If, however, the rest of the spaces are occupied, she leaves without parking.
If all of the cars are able to park, we call the sequence of preferred positions a
parking function.

Formalising this description, we define a parking function to be a function
p : [n] → [n] for which the following algorithmic function returns TRUE, and
we write Pn for the set of all parking functions on [n]. Our arrays are indexed
starting at 1, and we follow the convention that the body of a loop headed by a
condition such as “for i := 1 to 0 do” is never executed.

function TestParking(p, n)
L := empty array of length n+ 1
for i := 1 to n do

l0 := min{ l : l > p(i) and L[l] is empty }
if l0 = n+ 1 then

return FALSE

else

L[l0] := i

fi

od

return TRUE

If the algorithm returns TRUE, we write πn(p) for the resulting permutation
(L[1], L[2], . . . , L[n]) of [n], calling it the output of p. We note that if p is a
parking function and τ = πn(p), then τ−1(i) > p(i) for each i.

Parking functions were introduced in computer science and combinatorics by
Konheim and Weiss [12, Sec. 6] as a colourful way to study a hashing problem.
(However, the original scenario used would no longer be considered politically
correct!) In their paper, they proved that the number of parking functions



Parking functions, valet functions and priority queues Section 3

on [n] is (n+ 1)n−1. Further proofs of this fact followed, including a beautiful
one by Pollak (see Riordan [18, Sec. 2] and Foata and Riordan [5, Sec. 2]), a
simple extension of which is used to prove Theorem 7.2 below. (An alternative
description of Pollak’s proof in group-theoretic terms is given by Stanley in [22,
Sec. 2].) Knuth [11, Sec. 6.4] surveys the results about parking functions known
to computer science in the early 1970s. (His description is given in terms of a
hashing algorithm, but see also exercises 6.4–29 through 6.4–31 in which the
parking function description is presented.)

It was recently pointed out to me by Joseph Kung that parking functions have
been known to statisticians for a long time, in the context of order statistics. This
also leads to a natural generalisation of parking functions. For more information,
see Kung and Yan [14].

Several bijections between parking functions on [n] and other sets of com-
binatorial structures are known. The first published bijection between parking
functions and acyclic functions on [n] (which are trivially representable by la-
belled trees on [n]0) was by Schützenberger [20]. Kreweras [13, Sec. 6] gives a
bijection that maps labelled trees with k inversions to parking functions with
k probes. (Inversions are described in section 10 below. Note also that our
parking functions correspond to Kreweras’s suites majeures under the bijection
p(i) 7→ (n+ 1)− p(i).) Moszkowski [16, Sec. 3] gives another bijection, in which
a node of the tree with i children corresponds to a parking space in which i cars
prefer to park. Pollak (see Riordan [18, Secs. 3 and 4] and Foata and Riordan [5,
Sec. 2]) also gives a bijection in which a parking function is associated with a code
which, by Prüfer’s correspondence, corresponds to a tree. Foata and Riordan [5]
also present another bijection from parking functions on [n] to acyclic functions
on [n], and Françon [6] has shown how their result may be generalised to a
much larger class of selection procedures. Knuth [11, answer to exercise 6.4–31]
describes two bijections which are based on those of Foata and Riordan [5] and
Kreweras [13], but are in fact different from them. Finally, in section 7 below, we
describe a bijection which satisfies the property described in part (a) of Knuth’s
answer. In addition to these, Stanley [21, 22, 23] has studied how parking func-
tions relate to noncrossing partitions and to hyperplane arrangements. Parking
functions have also proved to have interesting algebraic properties. See, for
example, the series of conjectures concerning diagonal invariants and parking
functions presented by Haiman [10].

We define a probe to be an attempt by a car to park in an already occupied
space, and the number of probes of a parking function is the total number of
probes made by all of the cars. For example, if a car prefers space 3, but parks
in space 6 (because spaces 3, 4 and 5 were full), the car makes three probes.
In the language of the algorithm TestParking, the number of probes of car i is



Parking functions, valet functions and priority queues Section 3

l0− p(i). So, letting τ = πn(p) as before, car i makes τ−1(i)− p(i) probes. Thus
the number of probes of p is given by

n∑
i=1

(τ−1(i)− p(i)) =
n∑

i=1

τ−1(i)−
n∑

i=1

p(i)

=
n∑

j=1

j −
n∑

i=1

p(i)

= 1
2n(n+ 1)−

n∑
i=1

p(i),

as τ is a permuation of [n]. In particular, the number of probes of a parking
function p ∈ Pn depends only upon the values which the function takes, not
the order in which it takes them. This was known already; see for example
Peterson [17, page 137] or Gessel and Sagan [7, Sec. 7].

In Konheim and Weiss [12, Sec. 3], an expression is also obtained for the size
of the set S(τ) = { p ∈ Pn : πn(p) = τ }, defined for any τ ∈ Sn. Given τ , set
τ(0) = n+ 1 and define

bτ (i) = max{ j ∈ [i− 1]0 : τ(j) > τ(i) }.

Then we have

|S(τ)| =
n∏

i=1

(i− bτ (i)). (1)

To see why this is true, notice that if car m parks in space j, its preferred space
could have been any space numbered i 6 j as long as the spaces i, i + 1, . . . ,
j − 1 were occupied before it attempted to park. This will be the case if and
only if all of these spaces are occupied by cars numbered less than m.

We finish this section with a very important alternative characterisation of
parking functions. We call a function f : [n]→ [n] a major function if it satisfies
the property

|{ i : f(i) 6 m }| > m for m = 1, 2, . . . , n.

Lemma 3.1. p is a parking function if and only if p is a major function.

This is the special case of Lemma 7.3 below with a = (1, 1, . . . , 1). It is also
straightforward to prove directly, and has been known for a long time. A direct
proof can be found in Gessel and Sagan [7, Theorem 7.2].



Parking functions, valet functions and priority queues Section 4

4 Priority queues and allowable pairs

We follow Atkinson and Thiyagarajah [3] for the following definitions. A pri-
ority queue is an abstract data type supporting the operations Insert and
DeleteMin. There is an input data stream σ = σ1σ2 . . . and an output data
stream τ = τ1τ2 . . . , where the σi are (possibly repeated) elements of a totally
ordered set. Each Insert operation will insert the next element of σ into the
queue, and each DeleteMin operation will remove a minimal element of the
queue, placing it in the output stream. We only allow a DeleteMin operation
when the queue is non-empty.

We restrict ourselves throughout this thesis to the case where σ is finite; it
follows that τ is also. If σ has length n, then an allowable sequence of n Insert’s
and n DeleteMin’s (that is, one with the property that any initial subsequence
contains at least as many Insert’s as DeleteMin’s) will be called a priority
queue computation. If σ is the input and τ is the output of some priority queue
computation, we call (σ, τ) an allowable pair. We write Qn for the set of allowable
pairs on [n], by which we mean those allowable pairs (σ, τ) for which σ, τ ∈ Sn.
The following algorithm from Atkinson and Beals [1] takes as input a pair (σ, τ)
of data streams of length n and tests whether it is an allowable pair. (The use
of the notation Insert(σj) rather than simply Insert is for convenience, as it
allows us to refer to our location in σ.)

function TestPair((σ, τ), n)
Q := empty priority queue
i := 1
for j := 1 to n do

(∗) while τj /∈ Q do

Insert(σi)
i := i+ 1

od

if τj 6= min(Q) then

return FALSE

else

DeleteMin

fi

od

return TRUE

If (σ, τ) is an allowable pair, then τ is called the output of (σ, τ), and the
priority queue computation executed by this algorithm is called the natural



Parking functions, valet functions and priority queues Section 5

computation for (σ, τ).
Many properties of Qn are known. Atkinson and Thiyagarajah [3, Thm. 1]

found that the number of allowable pairs on [n] is (n+ 1)n−1. Moreover, they
show in [3, Lemma 5] that the number of allowable pairs (σ, τ) having a given
permutation τ ∈ Sn as output is given by the same expression as that which
counts the number of parking functions having τ as output (|S(τ)| in equation (1)
above). This suggests the possible existence of an interesting bijection between
parking functions and allowable pairs on [n] which is output preserving.

As with parking functions, bijections have been found between allowable
pairs on [n] and labelled trees on n+ 1 vertices. Atkinson and Beals [1, Sec. 3]
define such a bijection inductively, and Gessel and Wang [8] give algorithms
for this bijection. A variant of their bijection can be obtained by letting their
γ(i,m) denote the result of inserting m within γ before the symbol i, where i is
given the name “root” if m is inserted at the end of γ. A different bijection,
also defined by induction, is given by Golin and Zaks [9]. This too has a variant
obtained by connecting ∗ in Tπ→σ to the predecessor of max(πi) in πi.

Atkinson, Linton and Walker [2] generalised the work on allowable pairs by
permitting the input and output data streams to be permutations of a multiset
Ma = {1a1 , 2a2 , . . . , kak}. They found that the number of allowable pairs in this
case is 1

n+1

∏k
i=1

(
n+1
ai

)
. This was calculated by constructing a bijection between

the allowable pairs and certain k-way trees. (A k-way tree is either an empty
tree or a root node with a sequence of k k-way subtrees.) Their bijection, again
defined by induction, is a natural extension of the bijection in Atkinson and
Beals [1] for allowable pairs on [n]. We provide a corresponding extension of
parking functions below (sections 7ff), and deduce an alternative way of counting
these pairs.

5 Breakpoints

We now define a parallel concept for both functions [n] → [n] and pairs of
permutations of [n], which turns out to be invariant under our bijection and is
crucial to our method of proof.

Let p : [n] → [n]. We say that b ∈ [n]0 is a breakpoint of p if we have
|{ i : p(i) 6 b }| = b. It is easily checked that in the case p ∈ Pn, this con-
dition is equivalent to {L[1], . . . , L[b]} = { i : p(i) 6 b }. (We always have
{L[1], . . . , L[b]} ⊆ { i : p(i) 6 b }; then consider the sizes of the sets.) In the car
drivers description, this says that every driver who wishes to park in one of the
first b spaces succeeds in doing so.

Now let (σ, τ) ∈ Sn × Sn. We say that b ∈ [n]0 is a breakpoint of (σ, τ) if



Parking functions, valet functions and priority queues Section 6

{σ1, . . . , σb} = {τ1, . . . , τb}. In the case (σ, τ) ∈ Qn, this is equivalent to saying
that, with the natural computation, the queue is empty after outputting τb.
(This follows, for if b is a breakpoint, then once the first b elements of σ have
been read into the queue, the body of the while loop in the TestPair algorithm
will not be executed again until τb has been output. The converse is trivial.)

It is clear that 0 and n are always breakpoints of any p ∈ Pn and any
(σ, τ) ∈ Qn. The following lemma shows that at least one other breakpoint often
exists in such cases.

Lemma 5.1. (a) Let p ∈ Pn, t = πn(p) and d = t−1(n). Then d is a break-
point of p.

(b) Let (σ, τ) ∈ Qn and δ = τ−1(n). Then δ is a breakpoint of (σ, τ).

This follows as a special case of Corollary 8.2 when a = (1, 1, . . . , 1). It is
also very straightforward to prove directly.

6 The bijection between parking functions and allowable

pairs

We define functions φn : Pn → Qn and ψn : Qn → Pn inductively. For n = 0,
the functions are trivial, as the sets have only one element.

For n > 1, given p ∈ Pn, we define (s, t) = φn(p) as follows:

(φ1) Set t = πn(p) and d = t−1(n).

(φ2) Define p′ ∈ Pn−1 by setting, for i < n,

p′(i) =

{
p(i)− 1 if p(i) > d,

p(i) otherwise.

(φ3) Set (s′, t′) = φn−1(p′).

(φ4) We define s by inserting n into the p(n)-th position of s′.

And for n > 1, given (σ, τ) ∈ Qn, we define q = ψn(σ, τ) as follows:

(ψ1) Set q(n) = σ−1(n) and δ = τ−1(n).

(ψ2) Let σ′ and τ ′ be, respectively, σ and τ with n deleted, so (σ′, τ ′) ∈ Qn−1.

(ψ3) Set q′ = ψn−1(σ′, τ ′).

(ψ4) For i < n, set

q(i) =

{
q′(i) + 1 if q′(i) > δ,

q′(i) otherwise.



Parking functions, valet functions and priority queues Section 7

Theorem 6.1. The functions φn and ψn are well-defined, mutually inverse
bijections between Pn and Qn, and are output and breakpoint preserving.

This follows as a special case of Theorem 8.1, where a = (1, 1, . . . , 1). It can
also be proved directly in a similar manner. Surprisingly, however, we have been
unable to find a substantially simpler proof of this result, even when using the
results of section 9 below.

7 Valet functions and multiset priority queues

From now on, a = (ai) will be a finite sequence of positive integers with k terms,
and we set n =

∑k
i=1 ai. Furthermore, if k > 1, we will let the sequence b = (bi)

consist of the first k − 1 terms of a and set n′ =
∑k−1

i=1 bi = n− ak.
We define valet functions in a similar way to parking functions. There are

again n cars, but this time, there are k types of car and k valets. Each valet is
responsible for one type of car and has an appropriately sized preferred subset
of the parking spaces in which to park those cars. Each valet tries in turn to
park all of his cars, allocating one of his cars to each of his preferred spaces, and
parking the cars one by one, using the same rules as before. If all of the cars are
able to be parked, the chosen subsets form a valet function.

We again formalise this description. We define a valet function on a to be
a function p : [k]→ P([n]), with |p(i)| = ai for each i, for which the following
algorithmic function returns TRUE. We write Pa for the set of valet functions on
this a. (We recall that we write p(i) = {pi(1), . . . , pi(ai)}, although we do not
make any assumptions about the order of the elements pi(1), . . . , pi(ai) until
after we have proved Lemma 7.1.)

function TestValet(p, k,a)
n :=

∑k
i=1 ai

L := empty array of length n+ 1
for i := 1 to k do

for j := 1 to ai do

(†) l0 := min{ l : l > pi(j) and L[l] is empty }
if l0 = n+ 1 then

return FALSE

else

L[l0] := i

fi

od

od

return TRUE



Parking functions, valet functions and priority queues Section 7

The next lemma guarantees that if the algorithm returns TRUE, it makes
sense to speak of the permutation (L[1], L[2], . . . , L[n]) of Ma. As before, we
write πa(p) for this permutation, calling it the output of p. (The proof is delayed
until the end of this section.)

Lemma 7.1. The ordering chosen for the elements of each p(i) does not affect
either the return value of the algorithm TestValet or, if the return value is TRUE,
the contents of array L when the algorithm terminates.

Theorem 7.2. The number of valet functions on a is

1
n+ 1

k∏
i=1

(
n+ 1
ai

)
.

Proof. We extend Pollak’s proof for the number of parking functions on [n] (see
section 3 above) to this case. Consider a circular car park with n+ 1 parking
spaces labelled 1, 2, . . . , n+ 1 in order, and allow each valet to choose a subset
of preferred spaces of size ai from the n+ 1 spaces. As described above, each
valet allocates one of their cars to each of their preferred spaces. Each valet now
tries to park his cars in turn: for each car, he starts at their preferred space for
that car and then, if necessary, drive around the circle (in order) until they find
an empty space. (This is always possible as there are sufficiently many spaces
available.) The number of possible choices of subsets is given by

∏k
i=1

(
n+1
ai

)
. A

particular choice of subsets yields a valet function if and only if the empty space
left after all n cars park is the (n+ 1)-th space. By symmetry, as there are n+ 1
possible choices for the empty space, this happens for precisely 1/(n+ 1) of the
possibilities, giving the stated result.

This result combined with the bijection in section 8 below yields another
method of counting allowable pairs, which together with the bijection given
by Atkinson, Linton and Walker [2] yields a new way of counting k-way trees
(see Atkinson and Walker [4]). Similarly, Pollak’s original proof together with
the bijection of Kreweras [13] will yield a proof of Cayley’s theorem for the
number of labelled trees on n + 1 vertices. Also, if we use the (0, 1) matrices
introduced by Atkinson and Walker [4] to represent k-way trees, we can set
p(i) = { l : mil = 1 } (where M(Γ) = (mij) is the matrix of the k-way tree Γ),
giving a bijection between valet functions and k-way trees. This clearly restricts
to a bijection between parking functions and labelled trees (treating a labelled
tree on n+ 1 vertices as an n-way tree), and it satisfies the property described
by Knuth [11] in part (a) of the answer to exercise 6.4–31. This bijection is
distinct from all of those described in section 3 above, but it turns out that it is
actually related to that of Moszkowski [16]; modifying his bijection by ordering



Parking functions, valet functions and priority queues Section 7

the vertices of the tree using a depth-first search (that is, preorder) instead of
a breadth-first search gives our bijection. The proof of this is straightforward
using Lemma 7.3 below and the well-known result that a sequence f(1), . . . ,
f(n+ 1) of natural numbers is the down-degree sequence of some tree on [n]0
rooted at 0, traversed in preorder, precisely when

∑m
i=1 f(i) > m for m = 1, 2,

. . . , n and
∑n+1

i=1 f(i) = n. (This latter result is essentially due to Schröter; see
Rosenbloom [19, pp. 152–156 and 205] for a proof and references.)

We can also extend the concept of a major function correspondingly. We
say that a function f : [k]→ P([n]) satisfying |f(i)| = ai for each i is a major
function if it satisfies the property

k∑
i=1

|f(i) ∩ [m]| > m for m = 1, 2, . . . , n.

Just as in the parking function case, we have the following lemma (which is also
proved below).

Lemma 7.3. p is a valet function if and only if p is a major function.

We similarly define Qa to be the set of all allowable pairs on the multiset Ma,
that is all allowable pairs (σ, τ) where σ and τ are (multiset) permutations of Ma.

Next, we extend the definition of breakpoints to this case. We say that
b ∈ [n]0 is a breakpoint of a function f : [k] → P([n]), where |f(i)| = ai as
usual, if

∑k
i=1 |f(i) ∩ [b]| = b. If p is a valet function, it follows as before that

b is a breakpoint if and only if {L[1], . . . , L[b]} = {1|p(1)∩[b]|, . . . , k|p(k)∩[b]|} as
multisets. Similarly we say that b ∈ [n]0 is a breakpoint for a pair (σ, τ) of
permutations of Ma if {σ1, . . . , σb} = {τ1, . . . , τb} as multisets, and as before,
b is a breakpoint of an allowable pair (σ, τ) ∈ Qa if and only if, with the natural
computation, the queue is empty after outputting τb.

Before we prove Lemma 7.1, we introduce some notation which will make it
easier to refer to the progress of the algorithms TestValet and TestPair. Given
any function p : [k]→ P([n]) with |p(i)| = ai for each i, we execute the algorithm
TestValet(p, k,a), setting

Ei(j) = { l ∈ [n+ 1] : l > pi(j) and L[l] is empty at the start of loop (i, j) }

and
Êi(j) = { l ∈ [n+ 1] : L[l] is empty at the start of loop (i, j) },

so that
Ei(j) = Êi(j) ∩ {pi(j), . . . , n+ 1},

where by “the start of loop (i, j)”, we mean the point (†) in the algorithm when



Parking functions, valet functions and priority queues Section 7

the values of i and j are as given. We will never refer to Ei(j) or Êi(j) in cases
that such a point is not reached. Note that, by construction, the (i, j)-th car will
park in minEi(j) if it is less than n+ 1, and will fail to park if Ei(j) = {n+ 1}.

Similarly, if (σ, τ) are a pair of permutations of Ma, we execute the algorithm
TestPair((σ, τ), n), and let Q(i, j) be the contents of the queue Q at the point (∗)
where the values of i and j are as given. We will also never refer to Q(i, j) unless
such a point is reached.

Proof of Lemma 7.1. It suffices to show that if we swap the values of pi(j) and
pi(j + 1) (where 1 6 j < ai), the output is unaffected, since any permutation of
p(i) can be achieved by a sequence of transpositions of this form.

We use a prime to distinguish between the executions of TestValet with
the original ordering of p(i) and the ordering in which pi(j) and pi(j + 1) have
been swapped (the latter having a prime). We note that L = L′ at the start
of the loop (i, j), as the algorithms are identical until this point; in particular,
Êi(j) = Ê′i(j). Consider first the case pi(j) < pi(j + 1). Then E′i(j) ⊆ Ei(j)
and one of the following holds:

(i) Ei(j) = {n+ 1}.

Thus E′i(j) = {n + 1} as well and the algorithm returns FALSE in both
cases.

(ii) minEi(j) < n+ 1 but Ei(j + 1) = {n+ 1}.

Then we either have that |Êi(j) ∩ {pi(j), . . . , n}| = 1 or, if not, then
Êi(j)∩{pi(j+ 1), . . . , n} = ∅. In the former case, if minEi(j) < pi(j+ 1),
then E′i(j) = {n+ 1}, otherwise E′i(j + 1) = {n+ 1}. In the latter case
E′i(j) = {n+ 1}. Thus in all of these cases the algorithm returns FALSE

for both orderings.

(iii) minEi(j) < n+ 1 and minEi(j + 1) < n+ 1.

Then we either have minEi(j) < pi(j + 1), in which case minE′i(j) =
minEi(j + 1) and minE′i(j + 1) = minEi(j), or minEi(j) > pi(j + 1), in
which case minE′i(j) = minEi(j) and minE′i(j + 1) = minEi(j + 1). In
either case, neither algorithm returns FALSE at this point, and the arrays L
and L′ are identical after these two executions of the inner for loop. Since
the rest of the algorithms run identically, the lemma holds in this case.

The case pi(j) > pi(j+1) is entirely similar and the lemma is thus established.

Proof of Lemma 7.3. We show that p is not a valet function if and only if p is
not a major function.



Parking functions, valet functions and priority queues Section 8

Assume that p is not a major function. Then we can find an m satisfying∑k
i=1 |p(i) ∩ [m]| < m, so that

∑k
i=1 |p(i) ∩ {m+ 1, . . . , n}| > n−m.

Noting that each possible value of l0 can be used at most once in the execution
of the TestValet algorithm, and that l0 > pi(j) for each (i, j), we see that there
are more than n−m values of l0 greater than m when the algorithm runs, so
for some (i, j), we must have l0 = n+ 1. Thus p is not a valet function.

Conversely, if p is not a valet function, let (i0, j0) be the value of (i, j) at
which the algorithm returns FALSE, so that minEi0(j0) = n + 1. Let m be
the last empty space in L (other than n + 1) when the algorithm terminates,
so m < pi0(j0). Then for each (i, j) lexicographically less than (i0, j0) with
pi(j) 6 m, we have minEi(j) < m, as m remains unoccupied. But as the
n−m entries L[m+ 1], . . . , L[n] are all occupied, it follows that n−m terms of
p1(1), . . . , pi0(j0 − 1) are greater than m, as is pi0(j0).

So we see that
∑k

i=1 |p(i) ∩ {m + 1, . . . , n}| > n − m + 1, or equivalently∑k
i=1 |p(i) ∩ [m]| 6 m− 1, proving that p is not a major function.

8 Extending the bijection: valet functions and allowable

pairs

This bijection is an extension of the one presented in section 6. We also prove
here that this really is a bijection as claimed. Theorem 6.1 follows as a corollary
of this theorem.

We define functions φa : Pa → Qa and ψa : Qa → Pa inductively. For k = 0,
the functions are trivial, as the sets only have one element.

For k > 1, given p ∈ Pa, we define (s, t) = φa(p) as follows:

(φ1) Set t = πa(p) and D = t−1(k). We let d0 = 0, dak+1 = n + 1 and
D = {d1, . . . , dak

}, where d1 < d2 < · · · < dak
.

(φ2) Define p′ ∈ Pb by setting, for i < k,

p′(i) =
ak⋃

w=0

{ l − w : l ∈ p(i) and dw < l < dw+1 }.

(φ3) Set (s′, t′) = φb(p′).

(φ4) We define s by inserting ak terms labelled k into s′ so that s(j) = k if
j ∈ p(k).

And for k > 1, given (σ, τ) ∈ Qa, we define q = ψa(σ, τ) as follows:



Parking functions, valet functions and priority queues Section 8

(ψ1) Set q(k) = σ−1(k) and ∆ = τ−1(k). Let δ0 = 0, δak+1 = n + 1 and
∆ = {δ1, . . . , δak

}, where δ1 < δ2 < · · · < δak
.

(ψ2) Let σ′ and τ ′ be, respectively, σ and τ with all k’s deleted, so (σ′, τ ′) ∈ Qb.

(ψ3) Set q′ = ψb(σ′, τ ′).

(ψ4) For i < k, set

q(i) =
ak⋃

w=0

{λ+ w : λ ∈ q′(i) and δw < λ+ w < δw+1 }.

Theorem 8.1. The functions φa and ψa are well-defined, mutually inverse
bijections between Pa and Qa, and are output and breakpoint preserving.

Proof. We prove the result by induction on k, the case k = 0 being trivial. We
must first show that the algorithms are well-defined. The only problematic parts
here are the steps (φ2) and (ψ2), where we must justify the claims that p′ ∈ Pb

and (σ′, τ ′) ∈ Qb. We then show that both functions preserve breakpoints and
identify a special set of breakpoints, from which we deduce that φa(p) ∈ Qa and
ψa(σ, τ) ∈ Pa. Finally, we show that φa and ψa are mutually inverse and output
preserving. The proof is quite technical in nature.

Throughout the proof we will assume, using Lemma 7.1, that the elements
of p(i), p′(i) and the like are listed in increasing order. In particular, this allows
us to make statements such as: p′i(j) = pi(j)− w where dw < pi(j) < dw+1.

It is also useful to note here that both (dw−w) and (δw−w) are non-decreasing
sequences, as both (dw) and (δw) are strictly increasing sequences.

We use the following figure to guide us in our thinking, for example when
we consider how to obtain t′ from t. The top row represents a permutation
of Ma and the bottom row represents the corresponding permutation of Mb.
Alternatively, we can think of the top and bottom rows as representing L and L′

respectively, suggesting the relationship between p and p′, E and E′ and the
like. The shaded boxes in the rows represent 0 and n+ 1 or n′ + 1, which are
sometimes needed. Many of the steps in the proof given are “obvious” in terms
of this picture, but we prefer to give formal proofs in terms of the defining
algorithms.

k k · · · k

d0 = 0 d1 d2 dak
dak+1 = n+ 1

· · ·

n′ + 10



Parking functions, valet functions and priority queues Section 8

(i) The step (φ2) is well-defined and πb(p′) is πa(p) with all k’s deleted.

We could show that step (φ2) is well-defined by proving that p′ is a major
function. However, we prefer to show the result directly from the algorithm
TestValet, for this also allows us to show that πb(p′) is πa(p) with all k’s
deleted. More precisely, if we set t = πa(p) and t′ = πb(p′), we show that,
for 1 6 l′ 6 n′,

t′(l′) = t(l′ + w) where dw < l′ + w < dw+1. (2)

(Note that because of step (φ1) in the calculation of φb(p′), the t′ of
step (φ3) really is πb(p′).)

We compare the executions of TestValet(p, k, a) and TestValet(p′, k− 1,b),
distinguishing the variables associated with the latter by using a prime.
We claim that, for i < k,

Ê′i(j) = {n′ + 1} ∪
ak⋃

w=0

{ l − w : l ∈ Êi(j) and dw < l < dw+1 }. (3)

Before proving this claim, we show that given (3) for a particular (i, j), it
follows that

E′i(j) = {n′ + 1} ∪
ak⋃

w=0

{ l − w : l ∈ Ei(j) and dw < l < dw+1 } (4)

for this (i, j). To show this, recall that E′i(j) = Ê′i(j) ∩ {p′i(j), . . . , n′ + 1}.
It is thus sufficient to show that for each w we have

{ l − w : l ∈ Êi(j) and dw < l < dw+1 } ∩ {p′i(j), . . . , n′ + 1}

= { l − w : l ∈ Ei(j) and dw < l < dw+1, }.
(5)

Let w0 be such that dw0 < pi(j) < dw0+1, so that p′i(j) = pi(j)− w0. We
consider the three cases w < w0, w > w0 and w = w0 separately. If w < w0,
then as (dw+1 − 1) − w 6 dw0 − w0 < p′i(j), the left hand side of (5) is
empty, as is the right hand side, since dw+1 6 dw0 < pi(j) 6 minEi(j).

If w > w0, then (dw + 1) − w > (dw0+1 − (w0 + 1)) + 1 > p′i(j), so the
left hand side is simply { l − w : l ∈ Êi(j) and dw < l < dw+1 }. But as
pi(j) < dw, it follows that l ∈ Êi(j) if and only if l ∈ Ei(j) when l > dw.
Thus the right hand side is the same.



Parking functions, valet functions and priority queues Section 8

Finally, if w = w0 we have

{ l − w0 : l ∈ Ei(j) and dw0 < l < dw0+1 }

= { l − w0 : l ∈ Êi(j) and l > pi(j) and dw0 < l < dw0+1 }

= { l − w0 : l ∈ Êi(j) and dw0 < l < dw0+1 } ∩ {p′i(j), . . . , n′ + 1},

where the last line follows as pi(j)−w0 = p′i(j), and for any l < dw0+1, we
have the inequalities l − w0 6 dw0+1 − (w0 + 1) 6 dak+1 − (ak + 1) = n′.
Thus our claim about E′i(j) follows from that about Ê′i(j).

We now prove our claim about Ê′i(j). We show that (3) holds every time
(†) is reached in the execution of the algorithms. On the first occasion
that (†) is reached, we have (i, j) = (1, 1), and as Ê′i(j) = [n′ + 1] and
Êi(j) = [n+ 1], the claim holds.

Assume that (3) holds at (†) when (i, j) = (i0, j0), where i0 < k. We have
l0 = minEi0(j0) 6 n, and we let w0 be such that dw0 < l0 < dw0+1, noting
that l0 /∈ D when i < k. It follows easily from (4) that l′0 = minE′i0(j0) =
l0 − w0. Thus the next time (†) is reached, Êi(j) = Êi0(j0) \ {l0} and
Ê′i(j) = Ê′i0(j0) \ {l

′
0} (where we have (i, j) = (i0, j0 + 1) or (i0 + 1, 1),

according to whether j0 < ai0 or j0 = ai0). Thus we have

Ê′i(j) = Ê′i0(j0) \ {l
′
0}

=
(
{n′ + 1} ∪

ak⋃
w=0

{ l − w : l ∈ Êi0(j0) and dw < l < dw+1 }
)

\{l0 − w0}

= {n′ + 1} ∪
ak⋃

w=0

{ l − w : l ∈ Êi(j) and dw < l < dw+1 },

proving that (3) holds for (i, j), and hence (3) holds for all (i, j) pairs.

It follows immediately from this that p′ ∈ Pb and that πb(p′) is πa(p)
with all k’s deleted: if dw < l′ + w = l < dw+1, then for some (i, j) with
i < k, we have l = minEi(j), and for this (i, j), we see that l0 = l and
l′0 = l′. As t(l0) = t′(l′0) = i, we have t′(l′) = t(l′ + w), proving (2). Also,
the above showed that for each (i0, j0) with i0 < k, we have l′0 = l0 − w0,
so l′0 < dw0+1 − w0 6 dak+1 − ak = n′ + 1, so p′ is a valet function.

(ii) The step (ψ2) is well-defined.

Consider the natural priority queue computation for (σ, τ). Removing
the i-th Insert for each i ∈ σ−1(k) and the j-th DeleteMin for each
j ∈ τ−1(k) yields a priority queue computation (actually the natural one)



Parking functions, valet functions and priority queues Section 8

which produces an output of τ ′ given an input of σ′. Thus (σ′, τ ′) ∈ Qb.

This argument can be formalised in terms of the algorithm TestPair, as in
part (vii) below, but we shall not give details here.

(iii) φa preserves breakpoints.

Let b be a breakpoint of p and let w be such that dw 6 b < dw+1, so that
for i < k, pi(j) 6 b if and only if p′i(j) 6 b− w. Also, |p(k) ∩ [b]| = w as
t−1(k) = {d1, . . . , dak

} and b is a breakpoint of p. Thus

k−1∑
i=1

|p′(i) ∩ [b− w]| =
k−1∑
i=1

|p(i) ∩ [b]|

=
k∑

i=1

|p(i) ∩ [b]| − |p(k) ∩ [b]|

= b− w,

so b− w is a breakpoint of p′.

By the inductive hypothesis, b−w is a breakpoint of φb(p′) = (s′, t′), so
that {s′1, . . . , s′b−w} = {t′1, . . . , t′b−w} as multisets. But we noted above
that |p(k) ∩ [b]| = w and that ti = k for i = d1, d2, . . . , dak

, so using
step (φ4), we see that

{s1, . . . , sb} = {s′1, . . . , s′b−w} ∪ {kw}

= {t′1, . . . , t′b−w} ∪ {kw}

= {t1, . . . , tb},

showing that b is a breakpoint of (s, t).

(iv) ψa preserves breakpoints.

We use an argument similar to that of part (iii) above. Let b be a breakpoint
of (σ, τ) and let w be such that δw 6 b < δw+1. Then we have {τ1, . . . , τb} =
{τ ′1, . . . , τ ′b−w} ∪ {kw}. But as b is a breakpoint of (σ, τ), we must have
{σ1, . . . , σb} = {σ′1, . . . , σ′b−w} ∪ {kw} as well. Thus {σ′1, . . . , σ′b−w} =
{τ ′1, . . . , τ ′b−w} and b − w is a breakpoint for (σ′, τ ′). By the inductive
hypothesis, it follows that b− w is a breakpoint for q′.

It is relatively straightforward to show that for i < k, q′i(j) 6 b− w if and



Parking functions, valet functions and priority queues Section 8

only if qi(j) 6 b. Also, |q(k) ∩ [b]| = |σ−1(k) ∩ [b]| = w, hence

k∑
i=1

|q(i) ∩ [b]| =
k−1∑
i=1

|q(i) ∩ [b]|+ |q(k) ∩ [b]|

=
k−1∑
i=1

|q′(i) ∩ [b− w]|+ w

= (b− w) + w = b,

so b is a breakpoint of q as required.

(v) dw − w is a breakpoint of p′ for each w.

In the execution of TestValet(p, k,a), we have Êk(1) = D ∪ {n + 1}, so
that dw ∈ Êi(j) for all (i, j) with i < k. Thus, for such pairs, pi(j) < dw if
and only if minEi(j) < dw. It follows that

∑k−1
i=1 |p(i)∩ [dw]| = dw −w, as

minEi(j) is distinct for distinct (i, j) and {minEi(j) : i < k } = [n] \D.

Now for i < k, if pi(j) < dw then p′i(j) 6 dw − w by the definition of p′

and the monotonicity of dw − w. Also, if pi(j) > dw, then p′i(j) > dw − w.
Thus pi(j) < dw if and only if p′i(j) 6 dw − w, and

k−1∑
i=1

|p′(i) ∩ [dw − w]| =
k−1∑
i=1

|p(i) ∩ [dw]|

= dw − w,

as required.

(vi) δw − w is a breakpoint of (σ′, τ ′) for each w.

Consider the natural computation for (σ, τ). Remove the i-th Insert and
the j-th DeleteMin for each i ∈ σ−1(k) and j ∈ τ−1(k) to get a priority
queue computation for (σ′, τ ′), as in part (ii) above.

Note that when k is output in the priority queue computation for (σ, τ),
the queue Q contains only k’s. Thus, in the priority queue computation
for (σ′, τ ′), the queue will be empty at each point at which k would have
been output in the corresponding computation for (σ, τ), that is, after each
(δw − w)-th DeleteMin.

As above, this argument can be formalised by comparing the executions
of TestPair((σ, τ), n) and TestPair((σ′, τ ′), n′). It is similar to, but easier
than, the argument in part (vii) below.

(vii) φa produces allowable pairs.



Parking functions, valet functions and priority queues Section 8

Given p ∈ Pa, we show that (s, t) = φa(p) is an allowable pair. By the
inductive hypothesis, we know that (s′, t′) = φb(p′) is an allowable pair,
and by step (φ4) and the result of (i) above, (s, t) is obtained from (s′, t′)
by inserting k’s into s′ and t′ in positions determined by p(k) and D

respectively.

To show that (s, t) is an allowable pair, we compare the execution of the
algorithms TestPair((s, t), n) and TestPair((s′, t′), n′), distinguishing the
variables in the two executions by using a prime. We set

u(i) = |s−1(k) ∩ [i− 1]|

and

v(j) = |t−1(k) ∩ [j − 1]|,

noting that si = s′i−u(i) if si 6= k and tj = t′j−v(j) if tj 6= k. As j 6 i

throughout the execution of the algorithm, and |p(k) ∩ [j]| > |D ∩ [j]| for
all j, we see that u(i) > v(j) and u(i + 1) > v(j + 1) whenever (∗) is
reached in the algorithm.

We claim that on each such occasion we have

Q(i, j) = Q′(i− u(i), j − v(j)) ∪ {ku(i)−v(j)}. (6)

Recall that Q(i, j) is the content of the queue Q at the point (∗) when
i and j are as given. It is certainly true when (i, j) = (1, 1). Given
this result for (i, j) = (i0, j0), we consider four possibilities for the next
step in TestPair((s, t), n), showing that in each case the claim is true the
next time (∗) is reached. We assume that the corresponding execution of
TestPair((s′, t′), n′) has reached (∗) with (i′, j′) = (i0−u(i0), j0−v(j0)); it
will follow from this induction argument that this point is indeed reached.

(a) tj0 /∈ Q and si0 6= k.

We cannot have tj0 = k in this case, for if k /∈ Q, then u(i0) = v(j0)
from (6). As u(i0 + 1) > v(j0 + 1) > v(j0) but si0 6= k, we must
have u(i0 + 1) = u(i0) and v(j0 + 1) = v(j0), hence tj0 6= k. Thus
t′j0−v(j0)

/∈ Q′, so si0 = s′i0−u(i0)
is inserted in both algorithms, giving

Q(i0 + 1, j0) = Q(i0, j0) ∪ {si0}

= Q′(i0 − u(i0), j0 − v(j0)) ∪ {ku(i0)−v(j0)}

∪ {s′i0−u(i0)
}

= Q′(i0 + 1− u(i0 + 1), j0 − v(j0)) ∪ {ku(i0+1)−v(j0)},



Parking functions, valet functions and priority queues Section 8

as u(i0 + 1) = u(i0) in this case.

(b) tj0 /∈ Q and si0 = k.

Then after Insert(si0) is executed in TestPair((s, t), n), we have

Q(i0 + 1, j0) = Q(i0, j0) ∪ {k}

= Q′(i0 − u(i0), j0 − v(j0)) ∪ {ku(i0)−v(j0)} ∪ {k}

= Q′(i0 + 1− u(i0 + 1), j0 − v(j0)) ∪ {ku(i0+1)−v(j0)},

as u(i0 + 1) = u(i0) + 1 in this case.

(c) tj0 ∈ Q and tj0 6= k.

As tj0 = t′j0−v(j0)
, we see that t′j0−v(j0)

∈ Q′(i0 − u(i0), j0 − v(j0))
and thus t′j0−v(j0)

= minQ′ (as TestPair((s′, t′), n′) does not return
FALSE). It follows from (6) that tj0 = minQ(i0, j0), and therefore
TestPair((s, t), n) does not return FALSE at this point either. After the
DeleteMin is executed in each of the algorithms, we have removed
tj0 = t′j0−v(j0)

from both Q and Q′, so

Q(i0, j0 + 1) = Q(i0, j0) \ {tj0}

=
(
Q′(i0 − u(i0), j0 − v(j0)) ∪ {ku(i0)−v(j0)}

)
\{t′j0−v(j0)

}

= Q′(i0 − u(i0), j0 + 1− v(j0 + 1)) ∪ {ku(i0)−v(j0+1)},

as v(j0 + 1) = v(j0) in this case.

(d) tj0 ∈ Q and tj0 = k.

Then j0 ∈ D, say j0 = dw, so v(j0) = w − 1. Thus we have

Q(i0, j0) = Q′(i0 − u(i0), j0 − v(j0)) ∪ {ku(i0)−v(j0)}

= Q′(i0 − u(i0), dw − w + 1) ∪ {ku(i0)−v(j0)}

We must have u(i0) > v(j0) as k ∈ Q, so to show that the execution
of TestPair((s, t), n) does not return FALSE at this point, it suffices to
show thatQ′(i0−u(i0), dw−w+1) = ∅. By (v), dw−w is a breakpoint
of p′, and by the inductive hypothesis, it follows that dw − w is a
breakpoint of (s′, t′). Thus at the point that t′dw−w was deleted from
the queue in TestPair((s′, t′), n′), Q′ was empty. (This has already
occurred, as now j′ = dw − w + 1.) Let i1 be the smallest value of i
satisfying i− u(i) = dw − w + 1 for which (i1, j0) occurred as a value
of (i, j) during the execution of TestPair((s, t), n). Then i1 6 i0 and
Q′(i1−u(i1), dw−w+1) = ∅. Now if u(i1)−v(j0) = u(i1)−w+1 > 0,



Parking functions, valet functions and priority queues Section 8

it follows that tj0 = k ∈ Q when (i, j) = (i1, j0), hence i1 = i0

and Q′(i0 − u(i0), dw − w + 1) = ∅ as required. If not, then we
have Q(i1, j0) = ∅, which shows that i1 = j0 = dw. Now since
v(dw + 1) 6 u(dw + 1), but v(dw) = u(dw) and dw ∈ D, we deduce
that dw ∈ p(k). Hence si1 = k, so that i0 = i1+1 and u(i0) = u(i1)+1,
giving Q′(i0 − u(i0), dw − w + 1) = Q′(i1 − u(i1), dw − w + 1) = ∅
as required. Thus TestPair((s, t), n) does not return FALSE at this
point.

After this step, we have j = j0 + 1 and v(j) = v(j0) + 1, so

Q(i0, j0 + 1) = Q(i0, j0) \ {k}

=
(
Q′(i0 − u(i0), j0 − v(j0)) ∪ {ku(i0)−v(j0)}

) ∖
{k}

= Q′(i0 − u(i0), j0 + 1− v(j0 + 1)) ∪ {ku(i0)−v(j0+1)}.

It follows from the analysis of these four cases that our claim holds. It
follows from our proof of cases (c) and (d) that every time the test tj ∈ Q is
carried out in TestPair((s, t), n), the test succeeds, so (s, t) is an allowable
pair.

(viii) ψa produces valet functions.

Given (σ, τ) ∈ Qa, it suffices to demonstrate that q = ψa(σ, τ) is a major
function (appealing to Lemma 7.3), that is, given m ∈ [n], we show that∑k

i=1 |q(i) ∩ [m]| > m. We note that by the inductive hypothesis, we
already have q′ ∈ Pb, so q′ is a major function.

Let w be such that δw 6 m < δw+1. For i < k, we can easily deduce
that qi(j) 6 m if and only if q′i(j) 6 m − w. Thus

∑k−1
i=1 |q(i) ∩ [m]| =∑k−1

i=1 |q′(i) ∩ [m − w]| > m − w. But we also know that |q(k) ∩ [m]| =
|σ−1(k) ∩ [m]| > |τ−1(k) ∩ [m]| = w, and hence

∑k
i=1 |q(i) ∩ [m]| > m.

Thus q is a valet function as required.

(ix) ψaφa = IdPa .

Given p ∈ Pa, we set (s, t) = φa(p), then (σ, τ) = (s, t) and finally set
q = ψa(σ, τ) = ψaφa(p). We wish to show that p = q.

As τ = t, we have ∆ = D, so δw = dw for each w. As pi(j) /∈ D for i < k

and q(k) = p(k), it is clear that if p′ = q′, then p = q. But as p′ = ψb(s′, t′)
by the inductive hypothesis and q′ = ψb(σ′, τ ′) by step (ψ3), it suffices
to show that (s′, t′) = (σ′, τ ′). However, we showed in (i) that t′ is t with
all k’s deleted, and clearly s′ is s with all k’s deleted by step (φ4). Also,
step (ψ2) tells us that σ′ and τ ′ are respectively σ and τ with all k’s



Parking functions, valet functions and priority queues Section 8

deleted. Thus, since (s, t) = (σ, τ), we have (s′, t′) = (σ′, τ ′), so p = q and
ψaφa = IdPa .

(x) φaψa = IdQa and πa(ψa(σ, τ)) = τ .

Given (σ, τ) ∈ Qa, we first set q = ψa(σ, τ), then set p = q and finally set
(s, t) = φa(p) = φaψa(σ, τ). We show that πa(q) = τ , and then use this to
deduce that (s, t) = (σ, τ); these are the two results desired.

We proceed in a manner similar to that used in (i). We know by the
inductive hypothesis that (σ′, τ ′) = φb(q′), so we also have τ ′ = πb(q′)
by step (φ1). Comparing the execution of TestValet(q, k,a) with that of
TestValet(q′, k − 1,b), we claim that for i < k,

Êi(j) = {n+ 1} ∪∆ ∪
ak⋃

w=0

{ l + w : l ∈ Ê′i(j) and δw < l + w < δw+1 }.

It follows immediately from this, as in (i), that

Ei(j) = {n+ 1} ∪ { δ ∈ ∆ : δ > qi(j) }

∪
ak⋃

w=0

{ l + w : l ∈ E′i(j) and δw < l + w < δw+1 }.

We prove the claim by showing that it holds each time (†) is reached in
the algorithms. The result is trivial on the first occasion, as (i, j) = (1, 1),
so that Êi(j) = [n + 1] and Ê′i(j) = [n′ + 1]. Assume the result to be
true at (†) when (i, j) = (i0, j0), where i0 < k. We let w0 be such that
δw0 < qi0(j0) < δw0+1, so that q′i0(j0) = qi0(j0)− w0 satisfies δw0 − w0 <

q′i0(j0) 6 δw0+1 − (w0 + 1). But δw0+1 − (w0 + 1) is a breakpoint of q′ by
part (iv) and the inductive hypothesis, so it follows that δw0 − w0 < l′0 =
minE′i0(j0) 6 δw0+1 − (w0 + 1). Thus we have

l0 = minEi0(j0)

= min
(
{n+ 1} ∪ { δ ∈ ∆ : δ > qi0(j0) }

∪
ak⋃

w=0

{ l + w : l ∈ E′i0(j0) and δw < l + w < δw+1 }
)

= min
(
{n+ 1} ∪ { δ ∈ ∆ : δ > qi0(j0) } ∪ {l′0 + w0}

)
.

But δw0 < l′0 + w0 6 δw0+1 − 1, so l0 = l′0 + w0. Thus the next time that



Parking functions, valet functions and priority queues Section 8

(†) is reached, we have Ê′i(j) = Ê′i0(j0) \ {l
′
0} and

Êi(j) = Êi0(j0) \ {l0}

=
(
{n+ 1} ∪∆ ∪

ak⋃
w=0

{ l + w : l ∈ Ê′i0(j0) and δw < l + w < δw+1 }
)

\{l′0 + w0}

= {n+ 1} ∪∆ ∪
ak⋃

w=0

{ l + w : l ∈ Ê′i(j) and δw < l + w < δw+1 },

as required, where (i, j) = (i0, j0 + 1) or (i0 + 1, 1) according as j0 < ai0

or j0 = ai0 .

In particular, this proof shows that at the end of the loop i = k − 1, we
have, for each w,

(L[δw + 1], . . . , L[δw+1 − 1]) = (L′[δw − w + 1], . . . , L′[δw+1 − (w + 1)]),

and L[δw] is still empty. Thus during the loop i = k in TestValet(q, k,a),
minEk(j) ∈ ∆ for each j (using (viii)), so that πa(q) is πb(q′) = τ ′ with
k’s inserted into the ak positions determined by ∆. Thus πa(q) = τ as
stated.

We are now able to show that (s, t) = (σ, τ). Having shown that πa(q) = τ ,
and noting that t = πa(p), we deduce that t = τ , as p = q. It follows that
D = t−1(k) = τ−1(k) = ∆. By construction, qi(j) /∈ ∆ for i < k, so steps
(φ2) and (ψ4) now yield p′ = q′. But then, by the inductive hypothesis,
(s′, t′) = φb(p′) = φb(q′) = (σ′, τ ′), so s′ = σ′. As s is s′ with k’s inserted
in the positions determined by p(k) = q(k), and σ is σ′ with k’s inserted
in the positions determined by σ−1(k) = q(k), it follows that s = σ, hence
(s, t) = (σ, τ) and φaψa = IdQa .

(xi) φa and ψa are both output preserving.

That φa is output preserving is clear from step (φ1), and ψa is output
preserving by the result of part (x) above.

Corollary 8.2. (a) Let p ∈ Pa, t = πa(p) and D = t−1(k). Then maxD is a
breakpoint of p.

(b) Let (σ, τ) ∈ Qa and ∆ = τ−1(k). Then max ∆ is a breakpoint of (σ, τ).

Proof. (a) In part (v) of the proof, we noted that
∑k−1

i=1 |p(i)∩ [dw]| = dw −w
for each w. In particular, when w = ak, so that dw = maxD, we have
|p(k) ∩ [dw]| = ak = w (as all the cars in p(k) park in the spaces in D), so∑k

i=1 |p(i) ∩ [dw]| = dw as required.



Parking functions, valet functions and priority queues Section 9

(b) In part (vi) of the proof, we noted that when k is output in the computation
of (σ, τ), the queue Q contains only k’s. Thus when the final k is output,
Q must be empty, so max∆ is a breakpoint of (σ, τ).

9 Alternative descriptions of the bijections

It is possible to calculate all of φn, ψn (as defined in section 6), φa and ψa

non-inductively, as we now demonstrate.
Given (σ, τ) ∈ Qn, we define for each j ∈ [n]

S(σ, j) = |{ l ∈ [j] : σl 6 σj }|

and

T (τ, j) = |{ l ∈ [j] : τl > τj }|.

We then set q(i) = S(σ, σ−1(i)) + T (τ, τ−1(i)) and claim that q = ψn(σ, τ).
We can extend this to multisets as follows. Given (σ, τ) ∈ Qa, for each i ∈ [k]

we list the elements of σ−1(i) and τ−1(i) in increasing order as σ̄i(1), . . . , σ̄i(ai)
and τ̄i(1), . . . , τ̄i(ai) respectively. Setting

q(i) = {S(σ, σ̄i(j)) + T (τ, τ̄i(j)) : j ∈ [ai] } (7)

gives q = ψa(σ, τ), as we now show by induction.
The statement is vacuously true if k = 0. For k > 1, we assume this result

to be true for k − 1, so using the notation of the previous section, we have, for
i < k,

q′(i) = {S(σ′, σ̄′i(j)) + T (τ ′, τ̄ ′i(j)) : j ∈ [ai] }.

We consider the relationship between S(σ, σ̄i(j)) and S(σ′, σ̄′i(j)), noting
that σσ̄i(j) = i by definition of σ̄i(j). We have

S(σ, σ̄i(j)) = |{ l ∈ [σ̄i(j)] : σl 6 i }|

and

S(σ′, σ̄′i(j)) = |{ l ∈ [σ̄′i(j)] : σ′l 6 i }|.

But as σ′ is just σ with all of the k’s deleted, we see that {σ1, . . . , σσ̄i(j)} =
{σ′1, . . . , σ′σ̄′

i(j)
} ∪ {kr} as multisets for some r. Thus S(σ, σ̄i(j)) = S(σ′, σ̄′i(j)).

This can be proven formally, but we do not do so here.



Parking functions, valet functions and priority queues Section 9

A similar argument also shows that

T (τ, τ̄i(j)) = |{ l ∈ [τ̄i(j)] : τl > i }|

and

T (τ ′, τ̄ ′i(j)) = |{ l ∈ [τ̄ ′i(j)] : τ ′l > i }|

differ by the number of k’s in τ which appear before the τ̄i(j) position, and this
is given by w, where w satisfies δw < τ̄ ′i(j) + w < δw+1. Thus the q(i) given by
equation (7) satisfies qi(j) = q′i(j) + w where δw < q′i(j) + w < δw+1. Therefore
the qi(j), and hence also the q(i), are the same as those produced by step (ψ4)
of the bijection.

It remains to show that q(k) is the same as in our original bijection. But
this is easy: we have S(σ, σ̄k(j)) = |{ l ∈ [σ̄k(j)] : σl 6 k }| = σ̄k(j) and
T (τ, τ̄k(j)) = |{ l ∈ [τ̄k(j)] : τl > k }| = 0, so q(k) = { σ̄k(j) : j ∈ [ak] } = σ−1(k)
as required.

Thus this really is another description of ψa.

Next, given p ∈ Pn, we can calculate φn(p) = (s, t) in the following way. We
already know that t = πn(p), the output of p. To find s, we use a modified
method of parking cars, which we will call Boston parking. As in the regular
scenario, the cars wish to park on our one-way street, arriving in the same order
as before. But now, when a car arrives, it insists on parking in its preferred
space. If this space is empty, it simply parks there. If not, it displaces the car
currently there to the next space, possibly setting off a chain of displacements
until some car is pushed into an empty space or beyond the end of the row of
spaces. A function p : [n] → [n] is called a Boston parking function if no car
is displaced beyond the n-th space. It is trivial to check that a function is a
Boston parking function if and only if it is a (normal) parking function, as at
each step during the parking process, the same space is filled, albeit with a
possibly different car. (The name is indicative of the perceived standards of
driving etiquette in Boston; the legal aspects of this algorithm will be left to
those better versed in that subject!)

As an example, consider the parking function 3, 1, 4, 4, 3, 2 in P6. Car 1
parks in space 3. Then car 2 parks in space 1 and car 3 parks in space 4. When
car 4 arrives, it pushes car 3 over to space 5 and parks in space 4. Subsequently,
car 5 pushes cars 1, 3 and 4 along one space, parking itself in space 3. Finally,
car 6 parks in space 2, which was still empty. The permutation of Boston-parked
cars is 265143. Under the usual rules for parking cars, the permutation obtained
is 261345. Therefore, φ6(314432) = (265143, 261345).

This alternative description of φn can easily be extended to the valet functions



Parking functions, valet functions and priority queues Section 10

and multiset case. Here, each valet parks each of his cars following the Boston
parking rules. However, unlike normal parking, the output here does depend
upon the ordering of each p(i). We require that the elements of each p(i) are
ordered in increasing order so that, for example, the cars of valet k end up
parked in the spaces given by p(k).

The proof that this bijection is the same as φn or φa is then straightforward
by induction, once we note that the breakpoints of Boston parking functions are
identical to those of normal parking functions, and that dw − w is a breakpoint
of p′ for each w.

10 Tree inversions

Using the alternative description of the bijection φn, we can give an interpretation
for allowable pairs of the inversion enumerator for trees, In(x), which was first
described by Mallows and Riordan [15]. An inversion in a rooted labelled tree
is a pair (b, a) with b > a for which the (unique) path from the root to vertex a
passes through b. The coefficient of xk in In(x) is the number of trees on [n]0
rooted at 0 with k inversions.

Kreweras [13] used his bijection between parking functions on [n] and labelled
trees on [n]0 to prove that the coefficient of xk in In(x) is the number of parking
functions on [n] with k probes. (See section 3 above for the definition of a probe.)
To interpret In(x) for allowable pairs, we define an inversion of an allowable pair
(σ, τ) to be a pair (b, a) ∈ [n]× [n] with b > a, where b appears before a in σ but
after a in τ . It follows that the number of inversions of (σ, τ) is the number of
inversions of σ (defined in the usual sense for a permutation) minus the number
of inversions of τ . We show that our bijections φn and ψn map parking functions
with k probes to allowable pairs with k inversions and vice versa.

Theorem 10.1. The map ψn maps allowable pairs with k inversions to parking
functions with k probes.

Proof. Let p = ψn(σ, τ) and denote the number of probes of car i by k(i). We
prove the theorem by showing that for each i, the number of inversions of (σ, τ)
of the form (i, j) is equal to k(i). We use our alternative description of ψn in
this proof.

We say that j moved after i if j appears before i in σ, but after i in τ ;
similarly, we say that j moved before i if j appears after i in σ, but before i in τ .
It is clear that if j moved after i, then j > i, and if j moved before i, then j < i.



Parking functions, valet functions and priority queues Section 10

Given (σ, τ) ∈ Qn, note that

τ−1(i) = |{ j ∈ [n] : j > i and j is before i in σ }|

− |{ j ∈ [n] : j > i and j moved after i }|

+ |{ j ∈ [n] : j = i, or j < i and j is before i in σ }|

+ |{ j ∈ [n] : j < i and j moved before i }|.

From the results of section 9 above, we have p(i) = S(σ, σ−1(i)) + T (τ, τ−1(i)).
By some simple manipulations, we see that

S(σ, σ−1(i)) = |{ l ∈ [σ−1(i)] : σl 6 i }|

= |{ j ∈ [n] : j = i, or j < i and j is before i in σ }|

and

T (τ, τ−1(i)) = |{ l ∈ [τ−1(i)] : τl > i }|

= |{ j ∈ [n] : j > i and j is before i in τ }|

= |{ j ∈ [n] : j > i and j is before i in σ }|

− |{ j ∈ [n] : j > i and j moved after i }|,

since anything greater than i and before it in τ must have been before it in σ

also. We then deduce that

τ−1(i) = S(σ, σ−1(i)) + T (τ, τ−1(i))

+ |{ j ∈ [n] : j < i and j moved before i }|

= p(i) + |{ j ∈ [n] : j < i and j moved before i }|

= p(i) + |{ j ∈ [n] : (i, j) is an inversion of (σ, τ) }|.

Recalling from section 3 that k(i) = τ−1(i)− p(i) for each i, we deduce that k(i)
equals the number of inversions of (σ, τ) of the form (i, j), and the theorem is
proven.

Corollary 10.2. The coefficient of xk in In(x) equals the number of allowable
pairs in Qn with k inversions.

This can also be proved directly using the recurrence for In(q) given by
Mallows and Riordan [15, p. 94] and the fact that any (σ, τ) ∈ Qn can be
written in the form (γi,nδ, αnβ), where (γ, α) and (δ, β) are allowable pairs, and
γi,n means γ with n inserted in the i-th position. (Note that this is different
from the meaning of γ(i,m) in Atkinson and Beals [1].)



Parking functions, valet functions and priority queues Section 11

11 Comparison with other bijections

It is worth considering whether our bijection is simply the composition of a
known bijection between parking functions and trees together with one between
trees and allowable pairs. However, considering the parking function 3, 1, 4, 1, 5,
9, 2, 6, 5 in P9, with φ9(314159265) = (472193856, 241357896), we find that the
trees produced by the bijections described in section 3 (not considering the family
described by Françon [6]) and those produced by the bijections described in
section 4 are all distinct. Thus our bijection cannot be written as a composition
of any pair of the previously known bijections. It would be interesting to find
some natural bijections between trees and parking functions or allowable pairs
which provide such a composition.

It would also be interesting to find extensions of some of the known bijections
between parking functions and trees to bijections between valet functions and
k-way trees, and especially to find ones which preserve some generalisation of
inversions and probes.

References

[1] M.D. Atkinson and R. Beals, Priority queues and permutations, SIAM J.
Computing 23 (1994), 1125–1230.

[2] M. D. Atkinson, S.A. Linton, and L. A. Walker, Priority queues and multi-
sets, Electron. J. Combin. 2 (1995), no. Research Paper 24, 18pp.

[3] M. D. Atkinson and M. Thiyagarajah, The permutational power of a priority
queue, BIT 33 (1993), 2–6.

[4] M. D. Atkinson and Louise Walker, Enumerating k-way trees, Information
Processing Letters 48 (1993), 73–75.

[5] D. Foata and J. Riordan, Mappings of acyclic and parking functions, Æqua-
tiones Math. 10 (1974), 10–22.

[6] Jean Françon, Acyclic and parking functions, J. Comb. Th. (A) 18 (1975),
27–35.

[7] I.M. Gessel and B.E. Sagan, The Tutte polynomial of a graph, depth-first
search, and simplicial complex partitions, The Foata Festschrift, Electron.
J. Combin. 3 (1996), no. 2, Research Paper 9, 36pp.

[8] I.M. Gessel and K.-Y. Wang, A bijective approach to the permutational
power of a priority queue, unpublished.



Parking functions, valet functions and priority queues References

[9] M. Golin and S. Zaks, Labelled trees and pairs of input-output permuta-
tions in priority queues, Graph-Theoretic Concepts in Computer Science
(Herrsching, 1994), Lecture Notes in Comput. Sci., no. 903, Springer, Berlin,
1995, pp. 282–291.

[10] Mark D. Haiman, Conjectures on the quotient ring by diagonal invariants,
Journal of Algebraic Combinatorics 3 (1994), 17–76.

[11] D.E. Knuth, Sorting and Searching, 2nd ed., The Art of Computer Pro-
gramming, vol. 3, Addison–Wesley, Reading, MA, 1998.

[12] A.G. Konheim and B. Weiss, An occupancy discipline and applications,
SIAM J. Applied Math. 14 (1966), 1266–1274.

[13] G. Kreweras, Une famille de polynômes ayant plusieurs propriétés énumera-
tives, Periodica Mathematica Hungarica 11 (1980), 309–320.

[14] Joseph P. S. Kung and Catherine Yan, Gonc̆arov polynomials and parking
functions, preprint.

[15] C.L. Mallows and J. Riordan, The inversion enumerator for labeled trees,
Bull. Amer. Math. Soc. 74 (1968), 92–94.

[16] P. Moszkowski, Arbres et suites majeures, Periodica Mathematica Hungarica
20 (1989), no. 2, 147–154.

[17] W. W. Peterson, Addressing for random access storage, IBM J. Res. Develop.
1 (1957), 130–146.

[18] J. Riordan, Ballots and trees, J. Comb. Th. 6 (1969), 408–411.

[19] Paul C. Rosenbloom, The elements of mathematical logic, Dover, New York,
1950.

[20] M. P. Schützenberger, On an enumeration problem, J. Comb. Th. 4 (1968),
219–221.

[21] Richard P. Stanley, Hyperplane arrangements, intervals orders, and trees,
Proc. Nat. Acad. Sci. U.S.A. 93 (1996), no. 6, 2620–2625.

[22] , Parking functions and noncrossing partitions, The Wilf Festschrift
(Philadelphia, PA, 1996), Electron. J. Combin. 4 (1997), no. 2, Research
Paper 20, 14pp.

[23] , Hyperplane arrangements, parking functions, and tree inversions,
Mathematical Essays in Honor of Gian-Carlo Rota (B. Sagan and R. Stanley,
eds.), Birkhäuser, Boston/Basel/Berlin, 1998, pp. 259–375.



