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When enumerating trees [1, 2] or prime divisors [3, 4], the leading term of the
corresponding asymptotic series is usually sufficient for practical purposes. Greater
accuracy is possible by using several more terms, but the coefficients are not as widely
known as one might expect. We briefly provide the formulas required to compute the
required constants, as well as some theoretical background.

0.1. Trees. If Tn is the number of non-isomorphic rooted trees with n vertices,
then [5]

Tn ∼ r−nn−3/2
(
0.4399240125...+

0.0441699018...

n
+

0.2216928059...

n2
+

0.8676554908...

n3
+ · · ·

)

where r = 0.3383218568... is the unique positive root of the equation F (x, 1) = 0,
where

F (x, y) = x exp

(
y +

∞∑
k=2

T (xk)

k

)
− y

and T (x) =
∑
∞

n=1 Tnx
n is the generating function for {Tn}. Let us denote the four

numerical coefficients by C0/(2
√
π), C1/(2

√
π), C2/(2

√
π) and C3/(2

√
π). Exact

formulas for these constants can be written in terms of the partial derivatives

Fi,j =
∂i+j

∂xi∂yj
F (x, y)

∣∣∣∣∣x=r
y=1

via computer algebra. Note that F0,0 = F0,1 = 0,

1 = F0,2 = F0,3 = F0,4 = F0,5 = · · · ,
0 < F1,0 = F1,1 = F1,2 = F1,3 = F1,4 = · · · ,

and likewise Fi,j = Fi,0 for all i ≥ 2, j ≥ 1. We have

C0 =
√
2 r F1,0,

C1 = {9 r F1,0 + r2 [−11F 2

1,0 + 9F2,0 ]}/{12C0},
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C2 = {225 r F 2

1,0 + r2 [−990F 3

1,0 + 810F1,0 F2,0]

+r3 [769F 4

1,0 − 990F 2

1,0 F2,0 − 135F 2

2,0 + 360F1,0 F3,0]}/{576F1,0C0},

C3 = {42525 r F 3

1,0 + r2 [−571725F 4

1,0 + 467775F 2

1,0 F2,0]

+r3 [1211175F 5

1,0 − 1559250F 3

1,0 F2,0 − 212625F1,0 F
2

2,0 + 567000F 2

1,0 F3,0]

+r4 [−680863F 6

1,0 + 1211175F 4

1,0 F2,0 − 155925F 2

1,0 F
2

2,0 + 42525F 3

2,0

−415800F 3

1,0 F3,0 − 113400F1,0 F2,0 F3,0 + 113400F 2

1,0 F4,0]}/{207360F 2

1,0C0}.
The associated formula for tn, the number of non-isomorphic free trees of order

n, is [5]

tn ∼ r−nn−5/2
(
0.5349496061...+

0.4853877311...

n
+

2.379745574...

n2
+ · · ·

)

where r is as before and the first numerical coefficient is simply C3

0
/(4
√
π). Exact

formulas for the second and third coefficients are new:

C2

0
(C3

0
+ 30C1)

24
√
π

,
C0(C6

0
+ 35C3

0
C1 + 210C2

1
+ 126C0C2)

72
√
π

and we wonder what the next few coefficients might look like.
Other varieties of trees examined in [5] include binary trees, identity trees and

homeomorphically irreducible trees. Different functional equations apply in each case;
for example, we have

F (x, y) = x+
1

2

(
y2 +B(x2)

)
− y

for the first variety, where B(x) =
∑
∞

n=1Bnx
n is the generating function for the

number Bn of non-isomorphic rooted strongly binary trees with n leaves (B1 = B2 =
B3 = 1, B4 = 2, B5 = 3, ...). One obtains

Bn ∼ ρ−nn−3/2
(
0.3187766259...+

0.2038317427...

n
+

0.3682702316...

n2
+

1.4768193666...

n3
+ · · ·

)

with ρ = 0.4026975036... as the radius of convergence. The details are omitted.
An intermediate step to studying {Tn} involves the analysis of the series [6, 7]

T (x) =
∞∑
k=0

ck(r − x)k/2

= 1 − (2.6811281472...)(r − x)1/2 + (2.3961493806...)(r − x)

−(1.4507456802...)(r − x)3/2 + (1.4447836810...)(r − x)2

−(5.1438071207...)(r − x)5/2 + · · ·
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which is valid as x→ r−, where

c0 = 1, c1 = −
√
2F1,0, c2 = 2F1,0/3,

c3 =
{
11F 2

1,0 − 9F2,0

}
/ {18 c1} , c4 =

{
43F 2

1,0 − 45F2,0

}
/135,

c5 =
{
769F 4

1,0 − 990F 2

1,0 F2,0 − 135F 2

2,0 + 360F1,0 F3,0

}
/ {2160F1,0 c1} .

Note that c2 = c2
1
/3 and c4 = (30c1c3−c4

1
)/45, while c3 and c5 cannot be algebraically

represented in terms of preceding ck values. Most of these results are new.
Likewise, in connection with {tn}, we have [6, 7]

t(x) =
∞∑
k=0

dk(r − x)k/2

= 0.5657439434...− (4.0484928944...)(r − x)− (6.4243835496...)(r − x)3/2

−(5.5810996983...)(r − x)2 + (7.3498535571...)(r − x)5/2 + · · ·
where

d0 =
1

2
(1 + T (r2)) , d1 = 0,

d2 = −1

2
(c2

1
+ 2rT ′(r2)) , d3 = c1c2,

d4 =
1

2
(−c2

2
− 2c1c3 + 2r2T ′′(r2) + T ′(r2)) , d5 = −c2c3 − c1c4

and T ′(x), T ′′(x) denote the first and second derivatives of T (x), respectively. The
singular part of t(x) (that is, the part corresponding to dk for odd k) depends just
on the coefficients cj. No analogous simplification of the analytic part of t(x) (dk for
even k) is known.

0.2. Darboux-Pólya Method. Although the asymptotic series for Tn and tn are
evidently new, the underlying method appears (at least implicitly) in the works of
Darboux [8, 9] and Pólya [10]. We give the steps of a straightforward algorithm for
computing the mth coefficient Cm of the asymptotic series for Tn.

Define first zi,j to be 0 if (i ≥ 1 and j = 2) or (j > 2), and 1 otherwise. Define
Pi,j and Ai,j via the recursions

Pi,j = zi,j

Fi,j −
i−1∑
p=1

j∑
q=0

(
i
p

)(
j
q

)
Ap,qPi−p,j−q −

j∑
q=1

(
j
q

)
A0,qPi,j−q

A0,0

,

Ai,j =

Fi,j+2 −
i−1∑
p=0

j+2∑
q=0

(
i
p

)(
j+2
q

)
Ap,qPi−p,j−q+2

(j + 1)(j + 2)
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with initial conditions P0,2 = 2 and P0,j = 0 for all j �= 2. Let

pk =
Pk,1(−r)k

k!
, qk =

Pk,0(−r)k
k!

and define bl via the recursion

bl =

−
l−1∑
k=1

bkbl−k +
1
4

l∑
k=1

pkpl−k+1 − ql+1

2b0

with initial condition b0 = −√−q1.
Define next

si = 2i−2
(
2i
i

)
− 1

2

i−1∑
j=1

(
i−1
j−1

)
23(i−j)sj −

i−1∑
k=1

i−k∑
j=1

(
i−k−1
j−1

)
23(i−j−k)sjsk

with initial condition s0 = 1, and the recursion

Su,v =




1 if u = v = 0
(−1)u21−4usu if u ≥ 1 and v = 0

−
u∑

w=0

(
v − 1

2

)w+1
Su−w,v−1 if u ≥ 0 and v ≥ 1.

Finally, we have

Cm = 2
m∑
k=0

bkSm−k,k+1

which completes the algorithm.
Some explanation is clearly needed. We know that F (x, T (x)) = 0. The Weier-

strass Preparation Theorem implies that, for (x, y) sufficiently close to (r, 1),

F (x, y) = A(x, y) · P (x, y)
where A(x, y) is analytic, A(r, 1) �= 0, and

P (x, y) = (y − 1)2 + p(x)(y − 1) + q(x)

where p(x), q(x) are analytic and p(r) = q(r) = 0. The sequence {bl} arises from
setting the various coefficients of the polynomial-like approximation P (x, T (x)) equal
to zero. By Darboux’s theorem,

Tn ∼ (−1)nr−n
∞∑
k=0

bk
(
k+1/2

n

)
;
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hence it remains to compute asymptotic series for half-integer binomial coefficients.
We know that [11]

(
−1/2
n

)
=

(−1)n√
πn

(
1− 1

8n
+

1

128n2
+

5

1024n3
− 21

32768n4
− 399

262144n5
+ · · ·

)

=
(−1)n√

πn

∞∑
j=0

Sj,0
nj

from which we immediately deduce that

(
1/2
n

)
=

(−1)n+1
2
√
πn3/2

(
1 +

3

8n
+

25

128n2
+

105

1024n3
+

1659

32768n4
+

6237

262144n5
+ · · ·

)

=
1

2
√
π

(−1)n
n3/2

∞∑
j=0

2Sj,1
nj

,

(
3/2
n

)
=

3(−1)n
4
√
πn5/2

(
1 +

15

8n
+

385

128n2
+

4725

1024n3
+

228459

32768n4
+

2747745

262144n5
+ · · ·

)

=
1

2
√
π

(−1)n
n3/2

∞∑
j=0

2Sj,2
nj+1

,

(
5/2
n

)
=

15(−1)n+1

8
√
πn7/2

(
1 +

35

8n
+

1785

128n2
+

40425

1024n3
+

3462459

32768n4
+

71996925

262144n5
+ · · ·

)

=
1

2
√
π

(−1)n
n3/2

∞∑
j=0

2Sj,3
nj+2

,

and so forth. The conclusion follows.
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0.3. Prime Divisors. If ω(n) is the number of distinct prime divisors of n, and
Ω(n) is the total number (including multiplicity) of prime divisors of n, then

En(ω) ∼ ln(ln(n)) + 0.2614972128...+
∞∑
k=1


−1 + k−1∑

j=0

γj
j!


 (k − 1)!

ln(n)k
,

Varn(ω) ∼ ln(ln(n))− 1.8356842740...+
1.0879488865...

ln(n)
+

3.3231293098...

ln(n)2
+ · · · ,

En(Ω) ∼ ln(ln(n)) + 1.0346538818...+
∞∑
k=1


−1 + k−1∑

j=0

γj
j!


 (k − 1)!

ln(n)k
,

Varn(Ω) ∼ ln(ln(n)) + 0.7647848097...− 2.8767219464...

ln(n)
− 4.9035933594...

ln(n)2
+ · · · ,

where

En(X) =
1

n

n∑
i=1

X(i), Varn(X) = En(X2)− En(X)2

and γj is the jth Stieltjes constant [12]. The leading numerical terms in each of the
four expansions are [4, 13]

λ = γ0 +
∑
p

[
ln

(
1 − 1

p

)
+

1

p

]
= γ0 +

∞∑
k=2

µ(k)

k
ln(ζ(k)),

λ −∑
p

1

p2
− π2

6
= λ−

∞∑
k=1

µ(k)

k
ln(ζ(2k))− π2

6
,

Λ = γ0 +
∑
p

[
ln

(
1 − 1

p

)
+

1

p− 1

]
= γ0 +

∞∑
k=2

ϕ(k)

k
ln(ζ(k)),

Λ +
∑
p

1

(p− 1)2
− π2

6
= Λ +

∞∑
k=2

ϕ2(k)− ϕ(k)

k
ln(ζ(k))− π2

6
,

respectively, where ζ(x) is the Riemann zeta function, µ(k) is the Möbius mu function,
ϕ(k) is the Euler totient function, and the function ϕl(k) is defined by

ϕl(k)

kl
=
∏
p|k

(
1− 1

pl

)
,

ζ(s− l)

ζ(s)
=

∞∑
k=1

ϕl(k)

ks

(in particular, ϕ = ϕ1).



Two Asymptotic Series 7

The second numerical coefficient in Varn(ω) is

γ0 − 1 + 2
∑
p

ln(p)

p(p− 1)
= γ0 − 1 + 2

∞∑
k=2

µ(k)
ζ ′(k)

ζ(k)

and the second numerical coefficient in Varn(Ω) is

γ0 − 1− 2
∑
p

ln(p)

(p− 1)2
= γ0 − 1 + 2

∞∑
k=2

ϕ(k)
ζ ′(k)

ζ(k)
,

where ζ ′(x) is the derivative of the zeta function. This result, as well as the result
for means, appears in [13, 14, 15] but apparently with errors. Knuth [16] revisited
Diaconis’ original computations; this essay closely follows [16]. Finally, the third
numerical coefficient in Varn(ω) is

−γ1 − (γ0 − 1)

(
γ0 + 2

∑
p

ln(p)

p(p− 1)

)
+ 2

∑
p

(2p− 1) ln(p)2

2p(p− 1)2

and the third numerical coefficient in Varn(Ω) is

−γ1 − (γ0 − 1)

(
γ0 − 2

∑
p

ln(p)

(p− 1)2

)
− 2

∑
p

p ln(p)2

(p− 1)3
;

this result is new and awaits confirmation.
For completeness’ sake, we record the values of six relevant prime series [4, 13, 17]:

t =
∑
p

1

p2
= 0.4522474200..., T =

∑
p

1

(p− 1)2
= 1.3750649947...,

u =
∑
p

ln(p)

p(p− 1)
= 0.7553666108..., U =

∑
p

ln(p)

(p− 1)2
= 1.2269688056...,

v =
∑
p

(2p− 1) ln(p)2

2p(p− 1)2
= 1.1837806913..., V =

∑
p

p ln(p)2

(p− 1)3
= 2.0914802823....

0.4. Selberg-Delange Method. The theory here is much deeper than what was
discussed earlier. It starts with asymptotic formulas for the generating functions
[18, 19, 20]

1

N

N∑
n=1

zω(n) = ln(N )z−1
(
a0(z) +

a1(z)

ln(N)
+

a2(z)

ln(N )2
+ · · · ar(z)

ln(N )r
+O

(
1

ln(N)r+1

))
,
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1

N

N∑
n=1

zΩ(n) = ln(N)z−1
(
A0(z) +

A1(z)

ln(N)
+

A2(z)

ln(N)2
+ · · · Ar(z)

ln(N)r
+O

(
1

ln(N)r+1

))
,

where if

s− 1

s

∏
p

(
1− 1

ps

)z−1 (
1 +

z

ps − 1

)
=

∞∑
k=0

bk(z)(s − 1)k = b(z),

s− 1

s

∏
p

(
1− 1

ps

)z−1 (
1− z

ps

)−1
=

∞∑
k=0

Bk(z)(s− 1)k = B(z),

then

aj(z) =
bj(z)

Γ(z − j)
, Aj(z) =

Bj(z)

Γ(z − j)
.

Let us focus on ω(n) for the sake of definiteness. Delange’s formula expresses that,
asymptotically, if n is uniformly distributed on {1, 2, ..., N}, then the distribution
of ω(n) is the convolution of a Poisson random variable with mean ln(ln(N )) and
another random variable X whose generating function is

E(zX) ∼ a0(z) +
a1(z)

ln(N )
+

a2(z)

ln(N )2
+ · · ·

Thus the mean of ω(n) will be ln(ln(N)) plus the mean of X, and the variance will
be ln(ln(N )) plus the variance of X. We have

E(X) ∼ a′0(1) +
a′1(1)

ln(N)
+

a′2(1)

ln(N)2
+ · · · ,

E(X(X − 1)) ∼ a′′0(1) +
a′′1(1)

ln(N)
+

a′′2(1)

ln(N)2
+ · · · ,

hence
Var(X) ∼ c0 +

c1
ln(N)

+
c2

ln(N)2
+ · · ·

where

cj = a′′j (1) + a′j(1)−
j∑

i=0

a′i(1)a
′
j−i(1).

The corresponding coefficients for Ω(n) will be denoted by C0, C1, C2, ... and satisfy
similar relations.

To obtain the mean, note that setting z = 1 in the formula for b(z) gives

s − 1

s
ζ(s) =

∞∑
k=0

bk(1)(s− 1)k.
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Replacing s by s+ 1, we have

(
∞∑
i=0

(−1)isi
)1 + ∞∑

j=0

(−1)j
j!

γjs
j+1


 =

s

s+ 1
ζ(s+ 1) =

∞∑
k=0

bk(1)s
k

thus
b0(1) = 1, b1(1) = γ0 − 1, b2(1) = −(γ1 + γ0 − 1).

Since
a′0(1) = b′0(1) + γ0b0(1) = λ (to be proved shortly),

a′k(1) = (−1)k−1(k − 1)!bk(1), k ≥ 1,

the result follows. This argument also applies verbatim to B(z), but with λ replaced
by Λ.

To obtain the variance, differentiate b(z) and set z = 1:

b′(1) = b(1)
∑
p

[
ln

(
1− 1

ps

)
+

1

ps

]

=
{
1 + (γ0 − 1)(s− 1)− (γ1 + γ0 − 1)(s− 1)2 + · · ·

}
·
{
(λ− γ0) + u(s− 1)− v(s− 1)2 + · · ·

}

thus
b′0(1) = λ − γ0, b′1(1) = (γ0 − 1)(λ− γ0) + u,

b′2(1) = −v + (γ0 − 1)u− (γ1 + γ0 − 1)(λ− γ0).

Also

b′′(1) = b′(1)
∑
p

[
ln

(
1 − 1

ps

)
+

1

ps

]
− b(1)

∑
p

1

p2s

= {(λ− γ0) + · · ·} {(λ − γ0) + · · ·} − {1 + · · ·} {t+ · · ·}

therefore b′′0(1) = (λ − γ0)2 − t. Since

a′′0(1) = b′′0(1) + 2γ0b
′
0(1) +

(
γ20 − π2

6

)
b0(1) = λ2 − t− π2

6
,

a′′k(1) = 2(−1)k−1(k − 1)!

(
b′k(1) +

(
γ0 −

k−1∑
j=1

1
j

)
bk(1)

)
, k ≥ 1,

the formulas for c0, c1, c2 follow.



Two Asymptotic Series 10

In the same way, to obtain the variance for Ω(n), differentiate B(z) and set z = 1:

B′(1) = B(1)
∑
p

[
ln

(
1− 1

ps

)
+

1

ps − 1

]

=
{
1 + (γ0 − 1)(s− 1)− (γ1 + γ0 − 1)(s− 1)2 + · · ·

}
·
{
(Λ− γ0)− U(s− 1) + V (s − 1)2 + · · ·

}
thus

B ′
0(1) = Λ− γ0, B ′

1(1) = (γ0 − 1)(Λ− γ0)− U,

B ′
2(1) = V − (γ0 − 1)U − (γ1 + γ0 − 1)(Λ− γ0).

Also

B ′′(1) = B′(1)
∑
p

[
ln

(
1− 1

ps

)
+

1

ps − 1

]
+B(1)

∑
p

1

(ps − 1)2

= {(Λ− γ0) + · · ·} {(Λ− γ0) + · · ·}+ {1 + · · ·} {T + · · ·}
therefore B ′′

0 (1) = (Λ − γ0)
2 + T . We have A′′

0(1) = Λ2 + T − π2

6
and a formula for

A′′
k(1), k ≥ 1, identical to that for a′′k(1) earlier; hence the formulas for C0, C1, C2

follow. It is interesting that higher-order terms for En(ω) and En(Ω) coincide, but
differ for Varn(ω) and Varn(Ω).

We conclude with an unsolved problem. The expressions

N∑
n=1

2ω(n),
N∑
n=1

3ω(n),
N∑
n=1

2Ω(n)

were mentioned in [21]. Tenenbaum [22] has computed that

N∑
n=1

3Ω(n) = N θg
(
ln(N)
ln(2)

)
+O(N ln(N)3)

where θ = ln(3)/ ln(2) = 1.5849625007... [23] and g(x) is a fractal-like function of
period 1 that oscillates between two positive constants. In fact,

g(x) =
3

2

∑
m≥1

gcd(m,6)=1


3Ω(m)

mθ
·∑
k≥0

3−(θ−1)k−{x− ln(m)
ln(2)

−θk}




where {y} = y − �y� for all real numbers y, and

3.74... = lim
x→1−

g(x) = inf
x

g(x) < sup
x

g(x) = lim
x→0+

g(x) = 4.74...

It would be good to someday know these bounds to higher precision.
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