
Enumerating Communities for a Deeper
Understanding of Community Finding

Zachary Kurmas, Hugh McGuire, Jerry Scripps, and Christian Trefftz
Grand Valley State University

Allendale MI
USA

(kurmasz,mcguireh,scrippsj,trefftzc)@gvsu.edu

Abstract—

Often new insights and advancements are made by
a detailed study of the problem and the solution
space. The area of community finding has had many
algorithms proposed recently, but to our knowledge
there have not been any detailed studies of the solution
space. In this paper, we present two algorithms for enu-
merating and unranking the possible valid community
assignments for a network. To demonstrate the value
of our algorithms, we also present some interesting
insights gained by examining the solution space of some
small networks.

INTRODUCTION

Community finding algorithms take a network as input and
return a set of communities. Generally, the goal is a community
set with many intra-community links and few inter-community
links. However, each algorithm tends to use its own objective
function.

A convenient way to represent the resulting set of k
communities for a graph of n nodes is with a 0/1, n × k
matrix C, where Cij is 1 if node i is in community j and 0
otherwise. The number of possible states for C is 2nk. Even
though some values of C are not valid community assignments,
it will suffice for now as a crude approximation of the number
of possible community assignments in a network. Considering
a small network such as karate (n = 34), the number of
community assignments with k = 2 is a staggering 2.9×1020!

A number of metrics have been proposed to measure
the quality of a community assignment. The solution space
using any of these metrics has the familiar landscape of local
minimums and maximums. Many approximate solutions have
been presented; however, there does not appear to be a clear
method to compare them. We have not seen any assurances
that an algorithm falls within a restricted bounds proximate to
the global optimum. It appears that there is more work to be
done in this area.

Often, advances and new insights are revealed from a
detailed examination of the problem and its solution space. It
is the purpose of this paper to present tools for counting and
enumerating community assignment solutions and mapping
rank numbers to these solutions. We are not presenting a new
community finding algorithm, but rather a set of tools to aid in
developing and refining community finding algorithms. Using

the tools, developers and researchers can get a better feel for
the solution space.

The contributions of this paper include the following. For
a given size (n) of network and a desired number (k) of
communities,

1) an algorithm for enumerating all of the possible
community assignments for a given network size (n)
and desired number (k) of communities, and

2) an algorithm to provide an unranking algorithm for
generating the jth community assignment in an enu-
meration.

A ranking function is a mapping (or ranking) of valid
assignment to a number. The unranking function we present
does the reverse, that is, it returns the community assignment
for a particular number. This can be used for not only
enumerating all of the valid assignments but it can also be
very useful for sampling. For anything larger than a very
small network, enumerating all of the possible assignments
is not feasible. However, using the unranking function makes
it straightforward to randomly generate a large number of
communities.

We invite researchers in the area of community finding to
use these algorithms to enhance their knowledge of the domain
and further the state of the art. We offer some experiments
to illustrate their usefulness. First, the community assignment
metrics have a well-behaved distribution. Like a normal curve,
there are very few good solutions, many in the middle, and
few bad ones. Second, unlike the sum squared error (SSE)
metric for clustering, some metrics for community sets follow
a parabolic-like curve. This suggests that finding the ideal k
value can be done computationally using hill-climbing or other
such techniques.

We begin by describing the terms and metrics for assign-
ments. The next two sections present the process of community
counting and design of the algorithms for enumeration of
assignments. After that, we show the results of the experiments
followed by conclusions.

NOTATION, METRICS, AND RELATED WORK

A network G = (V,E) is a closed system of nodes
V = {v1, . . . , vn} connected by links E ⊂ V × V . Nodes
can also be grouped into communities, ci = {vj , ...vm},
through a process called community finding. An assignment
S = {G,C} is a tuple where C = {c1, ..., ck} is a collection

2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)

978-1-4799-4143-8/14 $31.00 © 2014 IEEE

DOI 10.1109/WI-IAT.2014.14

35

2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)

978-1-4799-4143-8/14 $31.00 © 2014 IEEE

DOI 10.1109/WI-IAT.2014.14

35

of k communities. In the next section we will represent an
assignment as a group of strings. One can think of it as
converting each column (community) of C into a string as
seen in Figure 1.

Fig. 1. Conversion of community structure to string format for n = 5 and
k = 3

In related work, a number of community finding algorithms
have been developed with a wide range of characteristics.
Disjoint algorithms [1], [9], [3] have no overlap but typically
optimize a metric such as modularity which tends to minimize
edges between communities. There are agglomerative methods
that have zero overlap and others that have zero between-
community edges [11]. There are also those that find clique-
like communities and minimize the non-edges within commu-
nities [7]. A variety of overlapping algorithms can be found
in [12]; many of them optimize a variant of modularity.

ENUMERATION OF ASSIGNMENTS

As discussed in the introduction, there are 2nk ways
of naively assigning nodes to communities. They may be
represented bitwise, e.g. as follows for n = 5 & k = 3:

bit patterns (decimals)
------------ ------------

00000 00000 00000 (0 0 0)
00000 00000 00001 (0 0 1)
. (. . .)
00110 10101 11000 (6 21 24)
. (. . .)
11111 11111 11110 (31 31 30)
11111 11111 11111 (31 31 31)

(The mapping above shows bit patterns and their decimal
values.) Each line represents an assignment of nodes to
communities. E.g. with the middle line above, each of the
3 bit patterns “00110”, “10101”, and “11000” describes a
community, where each bit is “1” if the corresponding node
is assigned to that community, or “0” otherwise. Naturally,
these assignments can be enumerated straightforwardly using
k integer counters ranging from 0 to 2n − 1, e.g. as indicated
above for n = 5 & k = 3.1

However, some of the naive assignments of nodes to com-
munities are unreasonable or redundant. We wish to exclude
such undesirable assignments, thereby reducing the amount
of assignments we process from 2nk to a lower number.
Specifically, we wish to have assignments that are:

1Keeping the counters separate makes this processing comparable to a
classic automobile odometer. Each time one counter needs to ‘roll around’
from “...1111” to “...0000”, the counter at its left needs to advance
by 1.

1) non-empty (no empty communities)
2) unique (no duplicates)
3) comprehensive (every node is assigned to at least one

community)

First, a trivial improvement to the basic enumeration al-
gorithm indicated above is to exclude communities that are
empty, e.g. “00000”. We satisfy this requirement by starting
counters at the bit pattern “...0001” instead of “...0000”.
This guarantees that all assignments will have no empty
communities.

Second, we exclude duplicate assignments,
e.g. “00110 10101 11000 (6 21 24)”
and “11000 10101 00110 (21 6 24)”; and we also
exclude assignments with multiple identical communities,
e.g. “01101 01101 10110 (13 13 22)”. We avoid
such duplication by initializing each counter 1 higher than the
counter to its left and limiting each counter to 2n − 1 minus
the number of counters at its right. E.g., for n = 5 & k = 2
the three counter variables may be designated as c2, c1,
and c0 from left to right, and we make c2 range from 1
to 29, we make c1 range from c2 + 1 to 30, and we
make c0 range from c1 + 1 to 31. Thus, we generate
the assignment “00110 10101 11000 (6 21 24)” but
none of its permutations, nor any assignments with multiple
identical communities.

Third, we guarantee only comprehensive assignments
by excluding assignments for which some nodes
are not included in any community. For example,
suppose n = 5 & k = 3. With the comprehensive
assignment “00110 10101 11000”, each node is
included in at least one community; by contrast, the
assignment “00010 01000 01100” is not comprehensive
because the first and last nodes are not included in any
community. Observe that an assignment is comprehensive
if and only if the bitwise OR of the values is the
bit pattern comprising n “1”s, i.e. “111...111”;
e.g. 00110 OR 10101 OR 11000 yields 11111,
whereas 00010 OR 01000 OR 01100 yields
only 01110. To achieve comprehensiveness, each time
we modify the rightmost counter, we also set any
needed bits in it if necessary. E.g. for n = 5 & k = 3,
suppose the current assignment of counters c2,c1,c0
is “00010 01000 10111 (2 8 23)”. Simply
incrementing the rightmost counter c0 from 10111 to 11000
would produce the assignment 00010 01000 1100, which
is not comprehensive. We remedy this by setting additional
bits in c0 as follows:

1) We set a variable named “need2” to 11111.
2) We set “need1” to need2 with c2’s bits cleared:

need1 := need2 & ˜c2
:= 11111 & ˜00010 := 11101

3) We set “need0” to need1 with c1’s bits cleared:
need0 := need1 & ˜c1

:= 11101 & ˜01000 := 10101
4) We set “lack” to need0 with c0’s bits cleared:

lack := need0 & ˜c0
:= 10101 & ˜11000 := 00101

3636

5) Since lack �= 00000, we set need0’s bits in c0:2

c0 := need0 | c0
:= 10101 | 11000 := 11101 (29)

Thus, we obtain the comprehensive assign-
ment “00010 01000 11101 (2 8 29)”.

One issue is that using this algorithm to address
comprehensiveness whenever c0 is re-initialized to
c1+1 may skip some assignments. E.g. for n = 5
& k = 3, suppose the counters c2,c1,c0
are “00010 10000 11111 (2 16 31)”. To
advance, c1 increments to 10001 (17), c0 restarts
at c1 + 1 which is 10010 (18), and then c0
needs the bits in need0 = 01100, so c0 might
be 11110 (30) and the resulting assignment
might be “00010 10001 11110 (2 17 30)”.
But that would skip the assign-
ments “00010 10001 11100 (2 17 28)”
and “00010 10001 11101 (2 17 29)”! To address
this issue, before we set needed bits in c0, we clear some
low-order bit positions as follows:

1) Considering the value of lack = 01100, we set
a variable named “mask” to its low-order bit posi-
tions, 00111.3

2) Then, we actually set need0’s bits in c0 as follows:
c0 := need0 | (˜mask & c0)

:= 01100 | (˜00111 & 10010)
:= 11100 (28)

Thus, we obtain the assign-
ment “00010 10001 11100 (2 17 28)”.

The code for our enumeration algorithm can be found in
the Appendix.

As mentioned above, a goal here is to generate fewer than
all the 2nk naive assignments. This enumeration generates no
more than (2k− 1)n/k! assignments. This should be clear be-
cause for each of the n nodes there are naively 2k assignments,
but this enumeration excludes the one assignment where the
node is not in any community; and this enumeration includes
only one of each group of k! assignments that are permutations.
An exact formula for the number of assignments enumerated
here is in [5].

UNRANKING

The previous section presents an algorithm for iterating
over all community sets in a given community set space.
However, in order to generate the ith community set, this
algorithm must also generate the first i − 1 community sets.
We present here an unranking algorithm that can directly
and efficiently generate the ith community set in a given
community set space.

The days of the year can be easily ranked by assigning
a number to each day, starting with January 1. The rank for
1 February would be 32. The process to unrank would be to

2While clearly lack indicates whether we need to set bits in c0, we
use need0 to actually set the bits because we clear some bits in c0, as
discussed in the next paragraph.

3We do this efficiently by shifting need0 down one and then repeatedly
doubling its bits.

find the date given the number. Unranking 205 (in a non-leap
year), for example would mean first finding out which month
205 is in (July). Since the rank of 1 July is 182, day 205 is
23 July, because 205 - 182 = 23. In this example, unranking
is non-trivial because of the different number of days in the
different months.

Like the date example, we break up the assignments into
subranks. We will describe how the assignments are ordered
within the subranks, provide methods of counting the assign-
ments in the subranks, and describe how to find a particular
assignment within a subrank.

Ordering

We based our choice of subranks on a process for building
an assignment. We will show that this process is valid (no
empty communities, no orphan nodes) and exhaustive (every
assignment can be found from a unique rank). The process
of constructing an assignment is iterative: At each step, we
construct an assignment for nodes 1 through n − 1, then add
node n to one or more of those assignments. Our unranking
algorithm is used to specify (1) which assignment of nodes 1
through n − 1 to choose (the ”Base” assignment) and which
communities to which n should be added.

One could naively simply add n to a combination of the
communities of B. However, that would miss “difference”
community pairs. Consider a community ci ∈ B; there would
be many valid assignments that include both ci and ci ∪n but
the naive approach would miss these.

In our process, we start with an empty assignment C and
add communities to it. To build the communities, we select
a base assignment B for nodes 1 to n − 1. B can have k
or fewer communities. Our algorithm uses assignments from
k
2
to k. From B some of the communities are selected to be

difference communities, D. For each di ∈ D, we add both di
and di ∪ j to C. The remaining communities B −D, can be
added to C either with or without n.

A couple of artifacts must be addressed. First, this approach
does not generate assignments that contain the set {n} by
itself. This is fixed by splitting up the process into two parts
where the assignments without {n} are generated and then the
ones with {n} are generated using the same ordering. Second,
assure that we end up with the right number of communities
k, we need to select base sets using k − i for 1 ≤ i ≤ k

2

followed by selecting i difference sets.

The assignments are ordered as follows:

1) subrank1: first all sets that do not include {n} then
those that do

2) subrank2: all base sets B for k
2
communities, up to

k communities
3) subrank3: within subrank2, base sets are enumerated

recursively
4) subrank4: for a particular B, the difference sets D

are enumerated lexicographically
5) subrank5: the remaining communities, B − D are

appended with n according to a high-to-low order
permutation

3737

In mathematical terms, an assignment is a k-cover of the
set {1, ..., n} (also called a “k-cover of n”). For the rest of
this section we refer to a community assignment as a k-cover.

Counting

Like with the date example where it is important to know
the days in a month, we have to have some expressions that
are used to count the subranks. For the rest of this section, we
use the notation, f(n, k) to be the number of k-covers of n
and f−(n, k) to be the number of k-covers of n that do not
include the set {n}.

Because each independent choice generates a different k-
cover of n (see Theorem 2), the number of k-covers of n that
do not contain the set {n} is

f−(n, k) =

k

2∑
i=0

f(n− 1, k − 1)

(
k − i

i

)
(2k−2i − z) (1)

where z = 1 when i is 0, and z = 0 otherwise. 4

If we bring the case where i = 0 outside the summation,
Equation 1 simplifies to

f−(n, k) = f(n−1, k)(2k−1)+

k

2∑
i=1

f(n−1, k−1)

(
k − i

i

)
2k−2i

(2)

where:

• f(n−1, k−1) represents the number of different base
sets for a given i.

•
(
k−i
i

)
is the number of choices for D given a specific

base set B.

• 2k−2i is the number of different ways to choose which
of the k− 2i sets in B−D receive then additional n.

For the k-covers of n that do include {n}, let C be a k-
cover of n that contains the set {n}. and let C ′ be C - {n}. If
n appears somewhere in C′, then C′ is a k− 1-cover of n. If
n does not appear anywhere in C′, then C′ is a k − 1-cover
of n− 1. Thus,

f(n, k) = f−(n, k) + f(n, k − 1) + f−(n− 1, k − 1) (3)

Unranking algorithm

To “unrank” a k-cover means to calculate which cover is
at position rank in the list. We do this by considering each
choice in order. If rank < f−(n, k), we generate a k-cover
that does not contain {n}. Otherwise, we generate a k-cover
that does contain {n}.

4This accounts for the fact that when i = 0, D is empty and so one of the
assignments generated would not have n which would be invalid, and so is
removed from the count.

The next step is to choose the number of difference pairs
(which we call i). Define g(n, k, i) to be the number of k-
covers of n that contain exactly i difference pairs and do not
include {n}. Our development of Equation 2 shows that

g(n, k, i) = f(n− 1, k − 1)

(
k − i

i

)
2k−2i

when i >= 1 and

f+(n− 1, k)2k − 1

when i = 0.

Because we order covers by the number of difference pairs,
we need to determine the value of i for which

i−1∑
j=0

g(n, k, j) < rank <=
i∑

j=0

g(n, k, j)

The algorithm to compute i is analogous to the algorithm one
would use to determine the month in which a given ordinal
date occurs.

Once we have determined i, we must determine which of
the g covers corresponds to rank. Thus, we set remainder =
rank − g(n, k, i) and chose our base set B based on
remainder.

Each base set B can serve as the basis for
(
k−i
i

)
2k−2i cov-

ers. Thus, we set basis index = remainder

(k−i

i)2k−2i
and recursively

call unrank(n− 1, k, basis index) to obtain B.

Once we have selected B, remainder2 =
remainder mod

(
k−i
i

)
2k−2i specifies both D and sets

in B −D to which we add {n}. Given i, B, and D, we can
generate 2k−2i different covers. Thus, d index = remainder2

2k−2i

and sets with n = remainder2 mod 2k−2i.

The set D represents one of the
(|B|
|D|

)
ways to choose |D|

sets from B. We use Stolee’s unranking algorithm to choose
D given d index [10].

Once we have made all four choices, we build our k-cover
(which we call C) as follows:

1) For each Dx ∈ D, adding both Dx and Dx + {n} to
C.

2) For each Ex ∈ B−D, adding Ex to C if the xth bit
of sets with n is 1.

3) Adding {n} to C, if rank >= without n.

Correctness

The algorithm described above takes a number rank as
input and returns a community assignment C. We show here
that C is a valid assignment and that each unique x will
produce a unique assignment C.

Theorem 1. The resulting set C is a valid k-cover of n

Proof: First, we show that |C| = k. We generate C by
taking the union of D, a “copy” of D with n added to each

3838

set, and a “copy” of B − D with n added some of the sets.
Therefore, |C| = 2|D|+ |B −D|. We defined B and D such
that |D| = i and |B| = k− i; thus, |C| = 2|D|+ |B| − |D| =
2i+ (k − i)− i = k as desired.

Now we show that, ∪Cx∈C = {1, ..., n}. Because B is a
valid covering of n − 1, we know that each 1 ≤ j ≤ n − 1
appears in some Bx ∈ B. For each Bx ∈ B, either Bx or
Bx + {n} appears in C; thus, C is a valid covering of n− 1.
Furthermore, we know that n appears in at least one set of
C: If i > 0, then C contains Dx + {n} for some Dx ∈ D. If
i = 0, then we specifically assure that C contains Ex + {n}
for some Ex ∈ B −D Hence C is a valid cover of n.

This algorithm to generate C relies on three choices:

1) The choice of B (the base k − i-cover of n− 1).
2) The choice of which i sets in B comprise D.
3) The choice of sets in B −D to which we add n.

For each different choice of input 0 < rank < max where
max is the number of possible community assignments, a
unique set of choices will be selected. The following proves
that for each unique set of choices, a unique k-cover of n
will be built. This is sufficient to show that every possible
assignment is mapped to a single rank.

Theorem 2. Each unique set of choices produces a unique
k-cover C.

Proof: Let C1 be a k-cover of n generated by base cover
B1 and difference sets D1. Likewise, let C2 be defined by B2

andD2. We will show that if either B1 �= B2 orD1 �= D2, then
C1 �= C2. Notice that every set Cx ∈ C1 is either an element
of B1 or there exists a Bx ∈ B1 such that Cx = Bx + {n}
(these are the only sets our algorithm adds to C1).

If B1 and B2 differ, then so do C1 and C2. Without loss
of generality, assume |B2| ≥ |B1|. This means that there is
some set X ∈ B2 that is not in B1. The resulting k-cover C2

will contain either X or X + {n}. Assume to the contrary
that either X ∈ C1 or X + {n} ∈ C1. We can then assume
X ∈ B1, which contradicts our assumption thatX ∈ B2−B1.
Thus, we know C1 �= C2.

We now show that if D1 �= D2, then C1 �= C2. We will
assume that B1 = B2. Without loss of generality, assume
|D2| ≥ |D1| and let X be in D2 but not D1. Both X and
X+{n} will appear C2; however, only one of X or X+ {n}
will appear in C1. Thus, C1 �= C2.

EXPERIMENTS

In this section we use the algorithms that were developed
in the preceding sections to investigate the characteristics of
assignments by exhaustive search. Our experiments uncovered
two interesting insights. First, we found that metric scores for
assignments appear to have a well-behaved distribution. This is
helpful because it reinforces our intuition that good community
assignments are very uncommon and difficult to find. Second,
the optimum k curve for most graphs appears to have a
parabolic shape. This differs from the typical SSE curve used
in clustering where the optimum k value has to be selected
by visually inspecting the curve for a “knee”. The parabolic

curve allows analysts to use a automated process such as hill
climbing to find the optimum number of communities.

Both sets of experiments used metrics to measure the
quality of the assignments. There have been many such metrics
proposed. For our experiments we chose two dissimilar met-
rics. First we used the violations from the community set space
[8]. A concept of home community, a particular community to
which a node is assigned is used. In the experiments, violations
refer to the sum of missing neighbors (those neighbors of
a node that do not appear in the node’s home community),
extraneous nodes (nodes not directly linked to a node within
its home community), and overlap (the number of communities
that a node is placed in besides its home community). The sec-
ond metric is the overlapping modularity metric proposed by
Shen[12]. It is based on Newman’s[4] well-known modularity
metric but allows us to examine overlapping assignments.

Distribution of Sets.

In a typical community finding algorithm, a specific graph
is given, a set of communities are formed and the metric (viola-
tions or modularity) is calculated. In this set of experiments we
look at the distribution of metrics across the range of possible
community assignments.

Rather than doing this for a single graph and then general-
izing it to all graphs, we chose to look at all graphs of a certain
size and then generate all communities for each one. In this
way we can get a broader picture of the space. The challenge
is that the numbers get very large very quickly. For n = 7,
there are 9 × 1010 different assignments and 1, 044 possible
graphs. For n = 8 there are 4×1014 different assignments and
12, 346 possible graphs. The largest graph size feasible for the
analysis was n = 7.

Fig. 2. distribution histograms for graph 390

For each of the 1044 graphs, we calculated the violations
for each of the possible assignments (for k = 2, 3, 4 and 5) and
then summarized the results in the histograms. Figures 2 and
3 show results for two randomly selected graphs. A number
of observations can be made. First, the histograms appear to
follow a distribution, perhaps normal. Second, typical of such
distributions, very few of the assignments have low violations

3939

TABLE I. PERCENTAGE OF GRAPHS THAT PASSED THE χ2 TEST AT
DIFFERENT VALUES OF k.

k violations modularity
2 90 67
3 74 3
4 88 0
5 94 0

– i.e., the assignments that most community finding algorithms
are searching for represent a very small percentage of the total
possible sets. This reinforces the difficulty of the community
finding problem.

Fig. 3. distribution histograms for graph 524

To find out if the violations from all possible assignments
follow a normal distribution we applied the χ2 test. The ex-
periments are summarized in Table I. A large number of these
small 7 node networks appear to follow a normal distribution
when we use violations. For modularity the percentage is high
for k = 2 but then drops off dramatically. We can conclude
that modularity is not distributed normally but there still seems
to be a bell-shaped distribution. The modularity histograms in
Figures 2 and 3 are typical of the graphs in general. While
the histograms for violations had a more symmetric curve, the
modulation histograms were more skewed.

These examples are fairly choppy histograms. To get a
perspective of slightly larger networks we also plotted the
histogram for the Tina [6] data set. A small network with
11 nodes, it still generates 88572 assignments with k = 2 and
over 329 million assignments with k = 3 . The histograms can
be seen in Figure 4. For both violations and modularity, for
k = 2 the curves appear smoother than the 7 node graphs.
For k = 3, the curves are even smoother (the spikes in
the violation histogram is explained by the binning of the
floating point modularity scores). The violation histograms
are both symmetric while the two modularity histograms are
a bit skewed which supports the earlier findings with the 7
node graphs. While these few experiments are not conclusive,
they do lend support to our conjecture that the metrics for
community quality follow a bell-shaped distribution.

In the χ2 experiment above we showed evidence to support
the claim that the violations for the assignments of most of the

Fig. 4. Distribution of communities for Tina using violations and modularity
for both k = 2 and k = 3

violation graphs followed a normal distribution. We would like
now to focus on the graphs that failed the χ2 test. Rather than
look at every non-normal graph, we show two representatives:
graphs 342 and 872. Looking at Figure 5, the histograms
appear to have a nearly normal, but skewed distribution. Graph
342 has a long tail to the right and 872 has a long tail to the
left. Looking at the actual graphs we see that 342 is bipartite
and graph 872 is two nearly connected components. Inspection
of other non-normal graphs were similar. Recall that with
violation histograms, assignments that are plotted to the left
have fewer violations. So it appears that graphs that graphs
that lend themselves to nearly perfect “good” assignments will
have longer left tail distributions, in other words, more good
assignments. And those with that lend themselves to nearly
perfect “bad” assignments will have more poor assignments.

4040

distribution for graph 342 graph 342

distribution for graph 872 graph 872

Fig. 5. Selected graphs on non-normal distributions.

Distribution of Minimum Violations for k.

Community finding algorithms can be separated into those
where the parameter k is specified and those where it is not.
In the latter group, the algorithm determines the best k for
the optimum assignment. The algorithms in the former group
then must determine the best assignment by exhaustively trying
each value of k. To find a more efficient way to find the k
with the minimum violations we examined the distribution of
violations for each value of k.

Fig. 6. Typical SSE curve for finding the optimum k value

Clustering has a similar problem. The popular Kmeans
clustering algorithm finds a good set of clusters when given a
k value. It is based on the sum squared error (SSE) function.
When applying Kmeans to a set with multiple values of k,
SSE has a curve that is highest when k = 1, falls quickly and
then tails off until it becomes zero at k = n, as seen for the
Iris data set in Figure 6. To find the optimum k, analysts can
visually inspect the graph of SSE and choose a point where
the curve changes dramatically (the knee). In the case of Iris,
it is at k = 3.

We are interested whether the metrics for community
finding behave similarly. Note that the minimum violation
curve will be different for different graphs. First, consider a
graph that is one large clique. Clearly this graph will have

a. connected
graph b. no edges

c. other graphs
?

Fig. 7. Hypothesis of minimum violation curve for k for different types of
graphs.

a minimum number of violations with k = 1 (one large
community) and will get worse as k grows as seen in Figure
7(a). Next, consider a graph with no edges. This graph will
have the minimum violations when k = n, (all singletons) and
grows as k decreases as in Figure 7(b).

Fig. 8. Finding the best k. This chart shows the totals for each value of k of
all the graphs where the assignment that had the lowest violations was equal
to k. The half numbers are explained by the fact that some graphs had their
lowest assignments for two values of k so the average was taken.

For all the other graphs, that are not cliques and have edges,
we hypothesize that the minimum violation curve will look
something like the one in Figure 7(c). It may be skewed one
way or the other but the absolute minimum will be between
1 and n. To test this hypothesis, we ran tests on the graphs,
finding the assignment or sets that had the lowest violations
and keeping track of its k value (the number of communities
used) In cases of ties between two values of k, an average was
taken.

The results of the tests can be seen in Figure 8. Notice
that for most of the graphs the number of communities for
the lowest violation set was between 1 and n. There were a
number of graphs that had minimums at k = 1, however these
graphs were all highly connected so we suspect that in most
real social networks the minimum violation curve will be U
shaped with a minimum between 1 and n.

This will make finding the best value of k a bit more effi-
cient for algorithms that require k to be specified. Analysts can
use a hill-climbing technique, repeatedly calling the algorithm
with k values to quickly and accurately find the optimum value
of k.

CONCLUSIONS

The purpose of this paper is to further the study of
community finding. When one actually counts the number
of potential solutions to the community finding problem the

4141

number is staggeringly large. However, it seems important to
study this solution space even if for small graphs.

Generating an exhaustive list of community assignments
is itself a difficult problem. We presented an enumeration
algorithm that efficiently lists all community assignments for a
given n and k, generating only assignments that are non-empty,
unique, and comprehensive. In addition, we also provided an
unranking algorithm that researchers can use for sampling the
solution space for a particular graph.

As a way to demonstrate the usefulness of these algorithms,
we ran experiments that showed that the community quality
metrics are distributed in a bell-like curve over the range of
possible solutions. We also showed that curve for the optimum
metric value across all k is shaped like a parabola, meaning
finding the optimum k can be done using a traditional hill-
climbing approach.

APPENDIX

Our code is as follows. The parameter “LIMIT” is the
bit pattern comprising n “1”s, i.e. 111...111. For the
community-representing counters ...,c2,c1,c0, we use
a k-long array named “c[]” of integers which have at
least n+ 1 bits.5 We initialize c[] to contain the bit pat-
terns “{...0001,...0010,...0011,...0100,...}”,
i.e. {1,2,3,4,...} (from the highest index k-1
down to the lowest index 0). Similarly, for the
variables ...,need2,need1,need0 we use an array
named “need[]” which we set as discussed above. Then, we
perform repetition as shown below. The variable e is available
if desired for numbering the assignments we enumerate. The
repetition stops when advancing would make c[k-1] exceed
its limit discussed above, LIMIT - (k - 1).

for (e = 1 ; ; e++) {
// if nec. modify c[0] so comprehensive:
if ((lack = need[0] & ˜c[0]) != 0x0) {
// use mask for unnecessary bits:
for (mask = lack >> 1, s = 1 ;

((mask + 1) & mask) != 0x0 ;
s <<= 1)

mask |= mask >> s;
c[0] = need[0] | (˜mask & c[0]);
}

<OUTPUT OR PROCESS ASSIGNMENT IN c[]>

// advance/‘roll around’ counters:
for (i = 0 ; i < k ; i++)
if (c[i] < LIMIT - i)

break;
if (i == k)
break; // all done

c[i]++;
while (--i >= 0) {
c[i] = c[i + 1] + 1;
need[i] = need[i + 1] & ˜c[i + 1];
}

}

5For unlimited values of n, we could use something like BigInteger
in Java or a custom data structure (possibly based on bitset) in C++/C.

REFERENCES

[1] A. Clauset, M. E. J.Newman, and C. Moore. Finding
community structure in very large networks. In Statistical
Mechanics, 2004.

[2] A. Lancichinetti and S. Fortunato. Community detection
algorithms: a comparative analysis. Physical Review E, 80,
Sep 2009.

[3] M. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical Review E, 69,
Feb 2004.

[4] The on-line encyclopedia of integer sequences.
http://oeis.org/A055154.

[5] Pajek datasets. http://vlado.fmf.uni-
lj.si/pub/networks/pajek/default.htm.

[6] G. Palla, I. Dernyi, I. Farkas, and T. Vicsek. Uncovering
the overlapping community structure of complex networks
in nature and society. Nature, 435, Jun 2005.

[7] J. Scripps. Exploring the community set space. In
IEEE/WIC/ACM International Conference on Web Intelli-
gence, 2011.

[8] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Transactions On Pattern Analysis And Machine
Intelligence, 22(8), August 2000.

[9] Derrick Stolee. Combinatorics using computational meth-
ods. 2012.

[10] Lei Tang, Xufei Wang, Huan Liu, and Lei Wang. A multi-
resolution approach to learning with overlapping commu-
nities. In KDD Workshop on Social Media Analytics, 2010.

[11] J. Xie, S. Kelly, and B. Szymanski. Overlapping community
detection in networks: the state of the art and comparative
study. CoRR, abs/1110.5813, 2011.

4242

