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Abstract

On Eliminating Square Paths in a Square Lattice

by

Nikki L. Williams

Removing the minimum number of vertices or points from a square lattice such
that no square path exists is known as the square path problem. Finding this number
as the size of the lattice increases is not so trivial. Results provided by Erdos-Pdsa
and Bienstock-Dean provides an upper bound for eliminating all cycles from a planar
graph but sheds little light on the case of the square lattice. This paper provides
several values for the minimum number of vertices needed to be removed such that

no square path exists.
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Chapter 1

Introduction

Consider an n x n square grid (also called a lattice) with vertices colored either black
or white. A path is a chain of edges such that the end vertex of one edge is the
beginning vertex of the next edge and no vertices are repeated, except possibly the
beginning is the end. A square path is a closed path in the shape of a square with
sides parallel to the edges of the lattice. Define M(n) to be the minimum number of
black points needed for an n x n square lattice so that every square path has at least
one black point. We seek to find M (n) for any given n. This is known as the Square
Path Problem [5]. For example, M(2) = 1. For the single point or 1 x 1 lattice we
define M (1) = 0. Even though these examples are obvious, finding M(n) is not so
trivial as n increases.

According to the 1988 editors of Mathematics Magazine [7, 4] the Square Path
Problem (SPP), which is one of three problems posed by Morris [5], has not been
solved. Several web and library searches using key words, such as Hamiltonian square
path, square cycle, square path, square circuit, square lattice, lattice packing, path
packing, and packing, were done in order to obtain information on the problem. Some
of these searches returned nothing while others returned articles that were not related
to the SPP.

However, the literature search did reveal one related problem. If we require the
black points in the SPP to cover not only square paths (or circuits) but also circuits
of any shape, then this new value is referred to as 7(n). We say a graph is planar if
it can be drawn in the plane such that there are no edge crossings. Thus, the grid

in the SPP is planar. This related problem seeks to find the minimum number of



vertices to be removed from a planar graph such that no circuit exists. Dean refers
to this minimum number as 7(n). In relation to the Square Path problem discussed
in this work, 7(n) provides an upper bound for M (n). Several upper bounds for n up
to 14 are included in the Results chapter.

Bienstock-Dean [1] consider covering points of a planar graph with a minimum
number of faces. The Erdos-Pdsa theorem [3] on independent circuits in graphs can
be applied when graphs with a specific embedding are considered. Erdos-Pdsa define
a family of cycles in a graph independent if they are pairwise vertex-disjoint.

The SPP can be transformed into a node covering problem in a bipartite graph.
Let A,B be a bipartition of our graph. Then the set A contains a node for every
vertex in the lattice, and the set B contains a node for every square path. An edge
joins a vertex in A to a vertex in B if a node in the set A is a black point. This
problem can be stated as follows: Find the minimum cardinality set S of nodes in the

set A such that every node in the set B is adjacent to a member of S.



Chapter 2

Square and Non-square Lattices

2.1 Bounds for M(n)

Erickson [2] showed that

lim M(n)

n—oo ’n,2

exists and that

M(n)

(1)~

2
=
He also replicated a pattern to show that < 2/7 of the points of the n x n lattice need
to be black. Thus,

Z(n— 1) < M(n) <

n?.

NN

Proof of lowerbound (Erickson): Let B be a black point in the lattice, and
suppose S is a 2 X 2 square path that passes through B. We will assign B a ”credit” of
1/k if S passes through exactly k black points. Let T(B) be the sum of all the credits
assigned to B as S varies over all 2 x 2 squares that pass through B.

Note that the sum of T(B) as B varies over all black points in the square array is
(n — 1)% since each of the 2 x 2 arrays contributes 1 to the total.

It is clear that the sum of T'(B) < 1 if B is a corner point, and T'(B) < 2 if B is
on the outer edge. Suppose that B is a point in the interior of the lattice. It lies on
exactly four 2 x 2 square paths, and there must be at least one black point on the

3 x 3 square path surrounding B. Thus, for such a B, T'(B) < 7/2.



Thus, in all cases, T(B) < 7/2, and so (7/2)M(n) > (n — 1)2, or equivalently,
M(n) > 2(n—1)%/7. O

Hence,

M 2
lim (n) = —.

n—oo N2 7

2.2 Trivial values for M(n)

In order to find a general formula for M (n), values for n small were easily computed.

The following results were used to obtain more information about M (n).

Theorem 2.1 M(2) = 1.

Theorem 2.2 M(3) = 2. Moreover, if one black point is a corner point,

then the other is the center.

Figure 2.1 Two configurations to show M (3) = 2.

Note that Figure 2.1 shows that M (3) = 2 does not have a unique solution. Thus,

there might be several optimal configurations.



Theorem 2.3 M (4) = 4.

Proof Since a 4 x 4 lattice contains four distinct 2 x 2 lattices and M (2) = 1, then
M (4) > 4. Choosing the four points indicated in Figure 2.2 eliminates all square
paths, and so M (4) = 4. OJ

-
|

Figure 2.2 M(4) =4

2.3 Non-square Lattices

Proving M(n) for a specific n can be difficult as n increases. One possible method
involves considering non-square lattices which partition the lattice into several regions.
This technique allowed M (n) to be determined for larger values of n.

Suppose we are given an a X b lattice or rectangle. Then we let M (a,b) denote
the minimum number of points to be removed from an a X b size rectangle such that

no square path exists. Note that M (a,b) = M(b,a). The following results are trivial.
Lemma 2.1 M(2,3) =1.
Lemma 2.2 M (3,4) =2, and the solution is unique.

The following results are used in the next section to prove cases for square lattices.



Lemma 2.3 M(3,5) = 3.

Proof Since a 3 x 3 lattice is contained in a 3 x 5 rectangle, then M (3,5) > 2.
Suppose M(3,5) = 2. Since we want to remove a minimum number of vertices, then
we want to choose points that eliminate as many square paths as possible. Choosing
the points in Figure 2.3(a) covers the eight distinct 2 x 2 square paths. However,
a 3 x 3 square path exists containing the center point. If we were to choose the
two center points indicated in Figure 2.3(b), then there is a 2 x 2 square path not

covered. Thus, at least one more black point is needed. Hence, M(3,5) > 3. In fact,

the configurations in Figure 2.4 show that M (3,5) < 3. OJ
(a) M(3,5) = 2 (b) M(3,5) > 2

Figure 2.3 Two subfigures

Lemma 2.4 M (4,5) =4, and the solution is unique.

Proof Since a 5 x4 contains a 4 x 4 square lattice and M (4) = 4, then M (4,5) > 4.
In fact, Figure 2.5 shows that M (4,5) = 4 by choosing the four corners of the inner

2 x 3 rectangle.
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Figure 2.4 Two configurations showing that M (3,5) < 3

Figure 2.5 M(4,5) =4

It’s easy to see that there are only 4 solutions for M(2,5) = 2. When we partition
the 4 x 5 lattice into two 2 x 5 lattices, the only solutions that avoid a square path

are combined as shown in Figure 2.5. Thus, the solution is unique. U]

Lemma 2.5 M(3,7) =4.

Proof We can divide the 3 x 7 rectangle into a 3 x 3 lattice and a 3 x 4 rectangle.
Since M(3,4) = 2 and M (3) = 2, then M(3,7) > 4. But, Figure 2.6 shows that
M(3,7) < 4. 0
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Figure 2.6 M (3,7) =4

Lemma 2.6 M(4,7) =6.

Proof Since we can divide the 4 x 7 rectangle into a 4 x 4 lattice and a 3 x 4

rectangle, then M (4,7) > 6. But, Figure 2.7 shows that M (4,7) < 6. OJ

Figure 2.7 M(4,7) =6

Lemma 2.7 M(5,6) =7.

Proof The 5 x 6 lattice can be partitioned into two 3 x 3 lattices and three 2 x 2
lattices which are all pairwise disjoint. Hence, M (5,6) > 1+1+1+42+2 = 7. Figure
2.8 shows that M (5,6) < 7. O



Figure 2.8 M(5,6) =7

2.4 Square Lattices

Recall that the original problem seeks to remove the minimum number of vertices on
a square lattice such that no square path exists. Our approach will be for us use the

results from the previous section to prove values of M (n). We begin with n = 5.
Theorem 2.4 M(5) = 6.

Proof

Since the 5 x 5 lattice contains a 4 x 4 lattice, then M (5) > 4. Suppose all square
paths can be covered by five black points. Divide the 5 x 5 lattice into four 2 x 3
rectangles as in Figure 2.9, and label the regions I, II, III, and IV such that the
middle point is not included in any or the 2 x 3 rectangles.

Case 1: Center is a black point.
If the center is a black point, then there is one point from each region. We choose the

inner middle point so that all the square paths in that region are covered. Consider
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Figure 2.9 Divide into 2 x 3 rectangles and center

region IV. See Figure 2.10. If we choose the point 1 or 2 instead of a, then we have
the 2 x 2 square path that contains a and the cornerpoint 5 of the 5 x 5 lattice. If we
choose 3 or 5 instead of a, then we have a 2 x 2 square path between regions I and
IV. If we choose point 4, then we have the 2 x 2 lattice in IV. But, notice that the

5 X 5 square path is not covered, a contradiction.

Figure 2.10 Center selected

Case 2: Center is not a black point.
If the center is not black, then there is a region that contains two black points, say

region 1. Using the same strategy from Case 1 we can choose the points in regions II,
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ITI, and TV. See Figure 2.11. Regardless of how the two points are selected in region

I, there are two 3 x 3 square paths that contain the center in regions II and III, a

contradiction.

——
—O——O—O—<

Figure 2.11 center point not selected

Thus, M (5) > 5. In fact, Figure 2.12 shows that M (5) <6.

Figure 2.12 M(5) =6

Theorem 2.5 M(6) =9
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Proof Since the 6 x 6 lattice contains 9 disjoint 2 x 2 lattices, then M (6) > 9. In

fact, Figure 2.13 shows that M (6) < 9. OJ

Figure 2.13 M(6) =9

Theorem 2.6 M(7) = 12.

Proof Divide the 7 x 7 lattice into four 3 x 4 rectangles such that the center point
of the lattice is not included in any 3 x 4 lattice. Recall that M (3,4) = M(4,3) = 2,
and the solution is unique.

Suppose our 7 x 7 lattice has exactly 11 black points such that no square path
exists.

Case 1 Center point is a black point.
If the center point is a black point, then the remaining 10 points are in each of the
3 x 4 lattices.

Case 1.1 One 3 x 4 lattice has 4 black points.
WLOG assume that II has 4 black points. The remaining six black points are in the
three 3 x 4 lattices each containing two black points. Then there exists a 2 x 2 square
path between III and IV regardless of how the four black points are arranged in II, a

contradiction. See Figure 2.14.
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Figure 2.14 11 black points for M (7)

Case 1.2 Two 3 x 4 lattices have 3 black points.

Case 1.2.a
If the two 3 x 4 lattices that contain 3 black points are I and II (or any two 3 x 4
lattices that are not horizontal), then a 2 x 2 square path exists regardless of how the
3 black points in each of these two 3 x 4 lattices are arranged, a contradiction. See
Figure 2.15.

Case 1.2.b
Suppose the two 3 x 4 lattices that contain 3 black points are in II and IV. WLOG
consider region II. The black points in III and I are fixed according to Lemma 2.2.
See Figure 2.16.

Notice that the 2 x 2 lattices labeled 1 and 5 and the 3 x 3 lattice labeled 8 are
disjoint, and so at least 1+1-+2 = 4 points are required to cover them, a contradiction.

Case 2 Center point is not a black point.
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Figure 2.15 11 black points for M (7)

L LI
L LI
L LI
L LI
L L LI

11 black points for M (7)

Figure 2.16
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Case 2.1 One 3 x 4 contains 5 black points.
The result is similar to Case 1.1 which contains a square path, a contradiction. See

Figure 2.17.

Figure 2.17 11 black points for M (7)

Case 2.2 One 3 x 4 contains 4 black points and another has 3 black points.

Case 2.2.a
If the lattices are not diagonal, for example quadrants II, III, then WLOG assume
I1T has 4 black points and II has 3 black points. Then regardless of how these points
in IT and III are chosen, a square path exists between I and IV, a contradiction. See
Figure 2.18.

Case 2.2.b
If the lattices are diagonal, for example regions II, IV, then WLOG assume II has
4 black points and IV has 3 black points. We note as in Case 1.2.b, that we must
eliminate the 2 x 2 lattices labeled 4 and 5 and the 3 x 3 lattice labeled 8 with only

3 points. This is impossible, because they are disjoint. See Figure 2.19.
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Figure 2.18 11 black points for M (7)

L LI
L LI
L LI
L LI
L L LI

11 black points for M (7)

Figure 2.19
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Case 2.3 Three 3 x 4 rectangles contain 3 black points.
Assume WLOG that L[,II, and III contain 3 black points and IV contains 2 black
points. Since the center is not included and IV contains 2 fixed points, then we can
extend IIT to a 4 x 4 lattice. We know a 4 x 4 lattice requires at least 4 black points.
But, III is only allowed 3 black points. Thus, a square path exists, a contradiction.
See Figure 2.20.

Thus, M(7) > 12. But, we can in fact show that M(7) < 12. See Figure 2.21.
Thus, M(7) = 12. [

Figure 2.20 11 black points for M (7)
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Figure 2.21 M(7) =12

Theorem 2.7 M (8) =16

Proof Since the 8 x 8 lattice contains 16 disjoint 2 x 2 lattices, then M (8) > 16.

In fact, Figure 2.22 shows that A/(8) < 16. O

Figure 2.22 M (8) = 16

Theorem 2.8 M(9) =20
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Proof Suppose 19 black points is enough to cover a 9 x 9 lattice. We can divide
the lattice into the center and four regions of size 4 x 5. Since M (4,5) = 4, then each

of these regions contains at least four black points. Table 2.1 lists the five possibilities:

Table 2.1 Possibilities for 9 x 9 lattice

case | center | I | IT | IIT | IV
1.1 |1 414 (4 |6
1.2a |1 415 |4 5
1.2b | 1 5|15 |4 |4
21 |0 414 |4 7
2.2a | 0 414 |5 6
22b | 0 415 14 |6
23 |0 415 1|5 5)

Case 1 Center point is a black point.

Case 1.1 Assume region [V contains six black points. Recall that the configuration
for M(4,5) is unique from Lemma 2.4. Regardless of how the six nodes are placed,
we will have a 2 x 2 square path between regions that contain only four black points
as indicated by Figure 2.23.

Case 1.2 Have 5,5,4,4 black points in the regions
Case 1.2.a The regions that contain five black points are on diagonal, say Il and IV.
Since the configuration of black points in regions I and III are fixed by Lemma 2.4
to contain no points from their perimeters and the four 2 x 2 lattices indicated are
disjoint, at least four black points of IV are needed to eliminate these square paths.
This leaves only one black point to eliminate all square paths in the remaining 4 x 3

of IV which is impossible. See Figure 2.24.
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Figure 2.23 Case 1.1 of Proof of Theorem 2.8

Figure 2.24 Case 1.2.a of Proof of Theorem 2.8

Case 1.2.b The regions that contain five black points are not on diagonal.
This case breaks down like Case 1.1 since will have a 2 x 2 square path between
regions that only contain four black points.

Case 2 Center is not a black point

Case 2.1 This case is also similar to Case 1.1.
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Case 2.2 We have 4,4,5,6 black points in the regions.
Case 2.2.a The regions that contain four black points are not diagonal
This is also similar to Case 1.1.

Case 2.2.b The regions that contain four black points are diagonal, say I and III.

Since the center is not black and the selection of black points in I and III is fixed
(Lemma 2.4), region IV can be extended to a 5 x 6 lattice without adding more black

points, i.e., M(5,6) < 6 contradicting Lemma 2.7. See Figure 2.25.

Figure 2.25 Case 2.2.b of Proof of Theorem 2.8

Case 2.3 We have 4,5,5,5 black points in the regions.
As in Case 2.2.b, region IV can be extended to a 5 x 5 without adding more black
points. Hence, M(5) < 5, contradicting Theorem 2.4. See Figure 2.26.

Thus, M(9) > 20. In fact, Figure 2.27 gives an optimal configuration that uses
exactly 20 black points. Thus, M(9) = 20. O]



Figure 2.26 Case 2.3 of Proof of Theorem 2.8

Figure 2.27 M (9) = 20 of Proof of Theorem 2.8

22
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Chapter 3

Binary Integer Programming Formulation

The SPP can be modeled as a {0,1}-integer programming problem or a binary integer
programming (BIP) problem. In the formulation we assign a variable to every point
in the square lattice.

Let L be an nx n lattice. For each point x; € L define

1 if 7 is a black point,
0 otherwise.

where i = 1, ..., n?

The variables are indexed over the total number of vertices in the lattice. The
points are assigned the value 1 if they are black and 0 if not black. We want to min-
imize the total number of black points in the square lattice subject to the constraint

that every square path contains a black point. Thus, the SPP can be formulated as

follows:

minimize ), x;
subject to Y . qw; > 1, for each 2 x 2 square S

Y ics i > 1, for each 3 x 3 square S (3.2)

Y icsTi > 1, for each n X n square S
These constraints require at least one black point on every square path, and the

last constraint forces the variables to be binary. CPLEX version 6.0.1 was employed to
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solve the BIP formulation and obtain values for M (n). The following result describes
the growth of the formulation which indicates how efficiently values for M (n) were

obtained from the BIP formulation.

Theorem 3.1 As n increases, the number of inequalities in the BIP

formulation grows cubically.

Proof There are
(n — 1) 2 x 2 equations, for n > 2
(n —2)? 3 x 3 equations, for n > 3

(n — 3)% 4 x 4 equations, for n > 4

1 n X n equation generated

and taking the sum gives

(=124 m=-27+.. . +1°=) "=
= O(n?) growth. O

Since the rapid growth prevented an efficient solution, there was a need to add
more constraints to the BIP so that CPLEX considers a minimum feasible region.

This led to the following results.

Theorem 3.2 There exists an optimal solution that contains no corner

point.

Proof Suppose we have an optimal solution with one corner point. Then removal

of this corner point yields a square path. We can replace this point by an adjacent
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Figure 3.1 no corner point

point, say either a or b, and still obtain an optimal solution, a contradiction. See
Figure 3.1.
(]

This result can be formulated as z; + x,, + 2,41 + Z,2 = 0 which is equivalent

to saying no corners are black.

Theorem 3.3 There exists an optimal solution that contains no bound-

ary contains two consecutive black points.

Proof Suppose we have two consecutive black points on a boundary. We can force
one of these to be white by making its perpendicular neighbor black and still cover

the same square paths. Figure 3.2 becomes Figure 3.3. (]

3.1 Unproven Claims for M(14)

The following conjectures were used to add more constraints to the BIP for the 14 x 14

case.



Figure 3.2 2 consecutive black points on boundary

Figure 3.3 No consecutive black points on boundary

26
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Conjecture 1 There does not exist an optimal solution that contains a black
point on each of the four distinct boundaries.
Since the 14 x 14 square must be covered and if Conjecture 1 holds, then the

optimal configuration for the 14 x 14 case has either 1, 2, or 3 points on the boundary.

Conjecture 2 There exists an optimal solution that contains no black points on
one of the boundaries.

Argument for Conjecture 2 Suppose there exists an optimal solution with 3
boundaries containing exactly one black point. Consider the 12 x 12 region which
requires 38 black points. WLOG, let 3 of these black points share the boundary with
the 3 black points from the 14 x 14 lattice such that there is no overlap in squares
covered thus allowing a possible optimal solution. See Figure 3.4. Then we need at
least 53 black points since the 12 x 12 region requires 38, the 3 x 5 region and the
3 x 7 region requires 3 and 4 black points respectively. Also, the seven 2 x 3 regions
require 1 each and the two 2 X 2 regions may be in a 2 x 3 form so only require at
least one black point. But, the configuration in Figure 3.5 requires 52 black points
which is one less black point than the 38 +3 + 44 7+ 1 = 53, a contradiction.

End of Argument

If Conjecture 2 holds, then it can be formulated for the BIP as xy+x5+. . .4+x, = 0,
i.e., first row of the lattice has no black points.
Remark Since the lattice can be rotated 90,180, or 270 degrees any boundary

may be considered the first row of the lattice.

Conjecture 3 There exists an optimal solution such that two nonadjacent bound-

aries have no black points.



Figure 3.4 3 black points on the boundary

28



Figure 3.5 M (14) =52

29
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Argument for Conjecture 3 Moving the black point in row 2, column 2 in
Figure 3.5 up to the top boundary gives us a configuration that requires 52 black
points. Moving this black point up still covers the same square paths. This solution
has two black points on the boundary that are on nonadjacent boundaries.

End of Argument

If Conjectures 2 and 3 hold, then clearly Conjecture 4 follows.
Conjecture 4 There exists an optimal solution such that three of the four bound-

aries do not contain a black point.

The following conjecture holds if all of the above are true.

Conjecture 5 There exists an optimal solution such that the points in positions
n+2,2n —1, n> —n — 1 are black points.

Argument for Conjecture 5 Since there exist an optimal solution such that
three of the four boundaries do not contain any black points, then it follows that
the points labeled a and b must be black since the boundaries adjacent to the corner
nodes do not contain a black point. See Figure 3.6. This forces either c or e and d
or f to be black points. Since there is an optimal solution that contains a black point
on the outer n x n boundary, then we can force say e to be a black point. Thus, this
requires d to be a black.

End of Argument

The new constraints contributed significantly in the improvement for the time
to obtain M (n). For n=12, the original BIP in (wherever it is located) required
3111.67 seconds while the new BIP took only 1157.18 seconds *. With the addi-

tional constraints the final BIP required only 182.53 seconds. These computational

*All computations were obtained from a Sun Sparc Ultra 30 Model with 256M memory.
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Figure 3.6 No black points on one boundary.

results quantify how the final mathematical formulation is significantly better than

the original. All computed values for M (n) can be found in the Results chapter.
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Chapter 4

A Similar Problem

One related problem to the SPP is the problem that seeks to find the minimum
number of vertices to remove from a planar graph G such that no circuits exist.
Dean refers to this minimum value as 7(G) in general and 7(n) for the SPP. The
graphs are planar in both of these problems. In relation to to the Square Path
problem discussed in this work, 7(n) provides an upper bound for M (n). Bienstock-
Dean consider covering points of a planar graph with a minimum number of faces.
The Erdos-Pésa theorem on independent circuits in graphs can be applied when we
consider graphs with a specific embedding.

Several upper bounds for 7(n) for n up to 14 are included in the Results chapter.

The following is a conjecture about the bounds of 7(n).

Conjecture 1

The following figures show an example of 7(n) where n=4. Figure 4.2 illustrates

the new lattice after the black points indicated in Figure 4.1 have been removed.



Figure 4.1 7(4) =4

Figure 4.2 No circuits in 7(4) =4
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Chapter 5

Results

Table 5.1 indicates proven results for the non-square lattice.

Table 5.1 Results for M(a,b)

M(2,3) = M(3,2) =1
M(3,4) = M(4,3) = 2
M(3,5) = M(5,3) =

M(5,4) = M(4,5) = 4
M(3,7) = M(7,3) =4
M(4,7) = M(7,4) =6
M(5,6) = M(6,5) = 7

Table 5.2 indicates proven and computed values for M (n) and 7(n). Note that an

underlined value provides an upper bound and a ”*”

indicates values computed via
CPLEX and not proven theoretically. Also note that ”**” indicates that constraints

that were not proven theoretically were added to the BIP to obtain the indicated

solution.
Table 5.2 Results for both M(n) and 7(n)
n 2 3 4 5 6 7 8 9 10 11 12 13 14
MMm) 1 2 4 6 9 12 16 20 26* 31* 38% 44* 52%*
() 1 2 4 6 10 13 19 24 32 38 47 56 64
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5.1 Computational Results

The table below will include the amount of time it took to solve the BIP with the
original formulation and also with the new formulation which includes the new con-
straints mentioned in chapter 3. The computational results were obtained from a Sun
Sparc Ultra 30 Model with 256 M memory using CPLEX version 6.0.1 with the excep-
tion of the new results for n = 12,13, 14. These results were run on four processors
and used an unpublished version of CPLEX and are indicated by * in the table. We
might expect the case for n = 15 to take at least 2 days if run on multiple processors.
Otherwise, it may take about six days since the lack of memory forced us to abort the
run after 175057.52 sec which is roughly 48.63 hours. The upper and lower bounds
for this problem at the time of abortion was 62 and 58, respectively. Storing only

necessary information in CPLEX should eventually lead us to the solution for n = 15.

Table 5.3 Computational Results

n | M(n) | Old BIP (sec) | New BIP (sec)
312 0.00 0.0
414 0.02 0.0
516 0.02 0.0
619 0.02 0.0
712 0.13 0.7
8116 0.15 0.11
9120 3.78 2.93
10 | 26 40.92 17.45
11 | 31 568.42 313.87
12| 38 3111.67 182.53*
13 | 44 - 19506.30*
14 | 52 - 26206.80**
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We want to stress the importance of having more constraints to define the feasible
region of the BIP. As mentioned earlier, adding the new constraints decreases the

running time. Finding more constraints should direct us to solutions for larger n.

5.2 Configurations for Larger n

The following figures show configurations obtained by CPLEX.

Cplex_10
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5.3 Closed Form Attempt

In an attempt to obtain insight for a closed form expression or formula for M(n),
the computed values from the CPLEX solution of the BIP formulation were fed into
Sloane’s On-Line Encyclopedia of Integer Sequences [6], but no formula was found.
However, there exists a formula for even values of n due to Kimberling [6]. Kimberling
describes this sequence as the index of 5" within the sequence of numbers of the form
2!57. For example, the first nine terms of this sequence are 1, 2, 4, 5, 8, 10, 16, 20,
25 and the underlined terms are the first, fourth and ninth terms of the sequence.
These indices are indeed the values of M (n) for n > 2 with n even. Even though this
provides more information for a formula for the SPP, a general formula for any n is

still desired.

5.4 Future Work

Adding more constraints to the BIP as well as taking advantage of symmetry should
aid in providing a a formula for M (n) efficiently. Also passing known bounds to
CPLEX for M (n) and using tricks in CPLEX should decrease the running time com-
pared to the time for n=14. Proving more values for M (n) should eventually help in

obtaining a general formula for M (n). This work can be investigated further.
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