A method for the
compact and efficient encoding of ordinal primes

W. Freeman
Department of Computer Science
University of York
York YO105DD U.K.

wf@cs.york.ac.uk
28 April (revised 10 June) 2000
Submitted asa'Y CS Report 26 March 2003

Copyright [0 W. Freeman 2000

Indexing terms: ordinal prime numbers, compact encoding, Ada aggregates.

Consider the following two questions. (1) Given v, what is the v-th prime?
(2) Given p, then, if pisthev-th prime, what isv? The method described allows
these questions to be answered efficiently in real time, and compactly in space,
for arange of primes of significant size. We call primes in the range in which
the system can deliver their order in thisway, ordinal primes.

(Note that we are not concerned here with simple primality, prime factorisation,
etc., which can be determined by investigating the prime in question only.)

Practicalities and implementation issues are addressed. The method has been
implemented in Ada95 and tested using GNAT. Some Ada95 code is included,
which was used to give fast and compact access to ordinal primes up to
20999999 (the 1329943-th prime).

A method for the compact and efficient encoding of ordinal primes.
Introduction.

By ordinal primes, we mean primes recorded in such a way that we can tell (1) what isthe
v-th prime, given v; and (2) what is v, given prime p and supposing it to be the v-th prime.
We shall call the ordinal numbers of such primes, primals. As a guide to the magnitudes
concerned, it was required to deal with ordinal primes at least 19999999 (primal 1270607).
But, the bigger the better.

We are required to answer questions (1) and (2), within the range implemented, compactly
in space and efficiently in real time. Clearly, the table concerned must be pre-computed,
with the possibilities then that (a) it could be an aggregate, statically compiled in the pro-
gram, (b) it could be an array loaded in one go, at run-time, from aLAN fileserver, or (c) it
could be a set of buffersloaded at run-time on demand. The structure of awider system of
practically usable software, of which this was a part, gave a very strong preference for (a)
over (b) or (c), while the elapsed time on demand would always make (c) the least prefer-
able whenever real time is important. This note is concerned in particular with exploring
how far option (a) could be developed. Clearly, compactness and efficiency are always
important, but are most important for (a). The method developed here is, though, gen-
eraly applicable, including to cases (b) and (c).

(Notethat we are here concerned with ordinal primes and primals, and not with simple pri-
mality, prime factorisation, etc., since these latter can be determined by investigating the
primein question only.)

Tablel. Primalsand ordinal primes.

v | py v Py v Py v Py
0] 1 1000 | 7919 1000000 | 15485863 1270608 | 2000003
1] 2 1001 | 7927 1000001 | 15485867 1270609 | 2000029
2 | 3 1002 | 7933 1000002 | 15485017 1270610 | 2000039
3| 5 1003 | 7937 1000003 | 15485027 1270611 | 2000081
4| 7 1004 | 7949 1000004 | 15485033 1270612 | 2000083
5 | 11 1005 | 7951 1000005 | 15485941 1270613 | 2000093
6 | 13 1006 | 7963 1000006 | 15485959 1270614 | 2000107
7 | 17 1007 | 7993 1000007 | 15485989 1270615 | 2000113
8 | 19 1008 | 8009 1000008 | 15485993 1270616 | 2000143
9 | 23 1009 | 8011 1000009 | 15486013 1270617 | 2000147

We could set up asimple bit map of al the natural numbers up to some limit forced by the
resources available. Thiscould have ‘0’ for composite and ‘1’ for non-composite (i.e. unit
or prime’). Such atable, up to the 20 millionth natural number (19999999) would occupy
2500000 8-hit bytes, or 625000 32-bit words. It would flag primes up to 19999999, which
is the 1270607-th prime. This table would be pre-computed, as also would a table of the
running count of the number of primes so far (primals). On the assumption that as much
gpace as is feasible should be alocated to the primality bit-map, this running count would
be held only at regular intervas in the bit-map. Using these data to answer either of the
guestions (1) and (2) above could be efficient in time, but the bit-map would not be very
compact.

T To dlow asimple dichotomy, composite/prime, the unit is counted as the zeroth prime, throughout.

Thereis an obvious way of making it more compact: at the very least, the bit-map could be
halved in size by storing the primality of odd numbers only. The prime 2 (or its primal, 1)
would first be dealt with as a specia case; thereafter, the method would proceed as before.
A further improvement would be to take out all numbers divisible by 2 or by 3, and map
only those that remain. The primes 2 and 3 (or their primals, 1 and 2) would first be dealt
with as specia cases. The map would now contain two bit positions for every six natural
numbers (indicating the primality of those with remainders 1 or 5 on division by 6), so it
would now be only onethird of its original size.

How can this method be generalised? And, when does further such effort and complica-
tion cease to be cost-effective? We now address these questions.

The general method.

We define 11(s), the primorial function of s, in the usual way, as the product of thefirst s
primes

s = Mp
i=1

where p; isthei-th prime. See sequence M1691 in Sloane and Plouffe (1995), and Table 2
here. We define Z,, the ring of integers modulo m, in the usua way, as the set of
remainders from integer division by m

Zy 2 {r:0<sr<m-1} = {0,1,...,m-1}

and similarly @, the reduced set of resdues modulo m, as the subset of Z ,,, that contains
those elements that are relatively primetom

@, 2 {r:0<sr<m-10ged(r, m)=1}

and recall that #® ,, = @(m), where @(m) is Euler’ s totient function defined in terms of the
canonical prime factorisation of mas

o(m) = o(ITp") = Mp" "(pi - 1)

;20

where p; is the i-th prime number. See sequence M0299 in Sloane and Plouffe (1995),
and Table 2 here. For number-theoretic matters discussed here, see e.g. Burn (1997).

Any natural number n can be expressed uniquely as g.1i(s) +r, wherer Z), and given
fixeds. Thatis, g = ndiv 1i(s) and r = n mod 11(S), where ‘div’ and ‘mod’ are integer
divison and remainder in the sense usual in computer science. Now, it is a necessary (but
not sufficient) condition for n to be prime, that either n < ps or r0®). So, leaving
casesn < ps to be dedt with separately, and regarding casesn > pg as mapped numbers,
we can say of a mapped n that if rd0®) then n is certainly composite, while if
r O ®ys) then we need to refer to the appropriate one of a number of bits (actualy,
@(T1(s)) bits) that have been pre-computed to decide its primality.

The set of 11(s) consecutive numbers, from g.1i(s) to (g +1).1(s) — 1, will be caled the
g-th Z-block. The dring of @(m(s)) bits, from the q.@(m(s))-th to the
(q+1).¢(m(s)) — 1-th of the primality bit-map, whose values encode the primality of the
numbers in the corresponding Z-block, will be caled the g-th ®-block. Accordingly, we
define the compaction factor, K s, of the encoding, for given s, as the ratio between the size

of a®-block (#®) and the size of aZ-block (#2)

Before drawing up Table 2, we incorporate one simplification of notation. First, we note

Ks = %7

#O

@(i(s))

T(s)

that 11(S) is, by construction, aways square-free; then, defining

HCIE O

we aways have @(T11(s)) =11 (S).

Table2. Z-block sizes, ®-block sizes, and compaction factors.

Kg- K
s | ps | #Z=m(s) Py #O=TU(S) | Ks = % SKi—l >
0| 1 1 {0} 1 1.000
1| 2 2 {1} 1 0.500 50.0%
2| 3 6 {1, 5} 2 0.333 16.7%
3 5 30 {1, 7, 11, 13, 17, 19, 23, 29} 8 0.266 6.7%
4| 7 210 {1,11,..., 199, 209} 48 0.228 3.8%
5| 11 2310 {1,13,...,2297, 2309} 480 0.207 2.1%
6 | 13 30030 {1, 17, ..., 30013, 30029} 5760 0.191 1.6%
7 | 17 | 510510 | {1,19,...,510491, 510509} 92160 0.180 1.1%
Table3. ®-block sizesthat are multiples of a byte.
, t.7r(S) o _
S | Ps TI(S) ps—1 | T1(S) 8 t | #P=t.1U(s) | #Z=t.T(S)
o] 1 1 0 1 1|8 8) (8)
1| 2 2 1 1 1|8 8 16
2| 3 6 2 2 1 |4 8 24
3 5 30 4 8 1 1 8 30
4 | 7 210 6 48 6 |1 48 210
5| 11 2310 10 480 60 1 4380 2310
6 | 13 30030 12 5760 720 1 5760 30030
7 | 17 | 510510 | 16 | 92160 | 11520 | 1 92160 510510
Table4. ®-block sizesthat are multiples of aword.
. t.1r(s) o _
S | ps 11(S) ps—1 | 1(9s) 3 t | #O=t.1w'(s) | #Z=t.11(S)
0| 1 1 0 1 1 |32 (32) (32
1| 2 2 1 1 1 |32 3?2 64
2| 3 6 2 2 1 | 16 32 96
3 5 30 4 8 1 4 32 120
4| 7 210 6 48 3 2 9 420
5| 11 2310 | 10 480 15 1 480 2310
6 | 13 30030 12 5760 130 1 5760 30030
7 | 17 | 510510 16 92160 2880 1 92160 510510

We suppose that ®-blocks have been computed and recorded for all values of g from O up
to a maximum value, qmax =Q — 1, so that the primality bit-map contains Q.#® bits alto-
gether, recording the primality of those natural numbers from 0 to Q.#Z —1 which, when
reduced mod #Z, are relatively prime to #Z. Similarly, the cumulative count of primes

will have been computed and recorded in a separate table, at intervals of h bits in the bit-
Q.#d

map. Therewill be e numbers in this count table (where thisratio is assumed to be a

whole number).

Clearly, in practice, it would be more efficient if #® were a round number of bytes.
Further, even if some table look-up (etc.) operations are carried out byte-wise, there will
be aspects of the representation that would be better carried out word-wise. So we explore
the consequences, first, of requiring that #® be a multiple of 8 (see Table 3); and, second,
of requiring it to be a multiple of 32 (see Table 4). (Extension to other powers of 2 is
obvious.) If each ®-block isto be made larger by the smallest necessary positive integral
factor t that will ensure the required divisibility by 8 or by 32, then the Z-block must be
made larger by the same factor. We could, in general, say that the new ®-block and the
new Z-block each represent t consecutive copies of the original (i.e. t =1) ®-block and Z-
block, respectively: but it would be less awkward to explain and to code if we could say
that ® ;v (s) was the reduced set of residues of the ring Z r(s)); and, so, that each new ®-
block was the residue primality map of the corresponding new Z-block. It is easy to show
that thisis so for sat least 1. (When s=0, t-fold replication remains a valid explanation.)
If y(m) is the greatest squarefree divisor of m, we have in generd
y(m)In O @(m.n)=m.q@(n); and so, in particular,

yit)yln(s) O ot.m(s)) = t.o(m(s))

Consequently, if t contains no prime divisors that are not also divisors of 11(s), then
Q(t.1(s)) =t.@(m(s)) =t.1'(s) asrequired. Sincet is here dways a power of 2, and 11(S)
isevenfor sat least 1, theresult follows for s at |least 1.

Thealgorithms.

In what follows, p(u) is the value of the u-th smallest element of the reduced set of resi-
dues modulo T1(s), S0 U Z 1) and p(u) 0P 5. Also, p~L(r) isthe partia inverse of p
defined over ® ;(s), sothat p~*(p(u))=u.

The procedure for pre-computing the tablesis as follows.

(1) Choose asmall positive integer, s. Thiswill determine that thefirst s primes are to be
treated as specia cases. Let #Z =11(s), and #P =717 (S).

(2) Choose avalue for the eventual size of the entire primality bit-map that is to be avail-
able to any main program using the tables at run-time. Let this size be Q.#® bits.
Each successive ®-block will be used to record the actua primality of those #®
numbers whose primality is in question, among each successive Z-block of natural
numbers.

(3) Choose aninterval, h, so that a cumulative count of ‘1" bitswill be kept prior to every
h.#®-th bit position in the bit-map.

(4) Find the primality of all numbers n, 0<n< Q#Z-1. For each n such that
n mod #Z is relatively prime to #Z, use one bit in the bit-map to record its primality
(‘1 for prime). For every h.#® such bits, use one word in the count table to record

the cumulative count of such ‘1’ bitsthat applies prior to the start of theinterval.

To find the v-th prime, proceed as follows.
(1) Ifv<s dea withthisspecialy (in an obvious way). Otherwise, continue.

(2) Search the count table (in logarithmic time) for the greatest count, ¢, suchthat ¢ < v.
Suppose that this ¢ is found at entry i in the count table: then the interval number in
the bit-map isi, and the zeroth bit position in that interval is the h.i.#®-th bit position
in the whole map.

(3) Scan through the i-th interval of the bit-map, accumulating k, the count of ‘1’ bits,
starting with k =c, until k first reaches the value n at (say) the j-th bit position within
theinterval.

(4) Then we have p, = (h.i + j div#®).#Z + p(] mod #®). So the answer returned
is(h.i + j div#®).#Z + p(j mod #D).

To find primal v, given p and that p is the v-th prime, proceed as follows.
(1) If p < pg, dea with thisspecially (in an obvious way). Otherwise, continue.
(2) Leti=pdiv (h.#Z). Takethei-th count from the count table, and let it be c.

(3) Scan through the i-th interval of the primality bit-map, accumulating k, the count of
‘1’ bits, starting with k =c, until the next bit position would be the zeroth bit of the
p div #Z-th ®-block of the entire map. Retain the resulting value of k.

(4) Letu=p Y(pmod#Z). If uisnot defined, there must have been an error in the
value of p supplied, since it has been found to be composite. Otherwise, let b be the
u-th bit of the (p div #2)-th ®-block of the primality bit-map.

If b=0, there must have been an error in the value of p supplied, since it has been
found to be composite. Otherwise, increase k by the number of ‘1’ bits from the
zeroth bit podition to the u-th bit position (inclusive) within the (p div #2)-th ®-
block of the primality bit-map. So pispy, and so the answer returned is k.

I mplementation choices and practicalities.

The original implementation, in Ada83 compiled under the Y ork Ada compiler, used s=2
and (effectively) t=1, and held the bit-map in the lower 31 bits of each 32-bit signed

integer, giving K = 31 X% =0.344. This arrangement was forced by the lack of unsigned

32-bit or 8-hit types and bitwise operators in Ada83, and by the fact that the Y ork compiler
generated Boolean vectors with — astoundingly — one byte, rather than one bit, per ele-
ment. There were sufficient complications with s=2, without going to s=3, especidly
since s =2 enabled a primality table of adequate size to be compiled.

In re-coding for Adag5, it was decided that the bit-map would be expressed as a sequence
of 32-bit unsigned numbers (using package ada.interfaces). It was hoped that this would
enable a larger table to be used. Each 32-bit number (containing four juxtaposed bytes)
was output (in decimal, for compactness) by the pre-computation program and incor-
porated into the ordinal prime package. It was decided initially touses=3 and t =1, giv-
ing#Z =30, #® =8 and k =0.266.

The Ada95 was compiled using GNAT 3.11p. The size of aggregate that this compiler
could cope with turned out to be much smaller than that possible with the Y ork compiler

for Ada83, for a given ceiling on the virtual memory available during compilation. If the
bit-map table were merely to be declared statically, and then the aggregate loaded dynami-
cally, there would be no problem; but on this occasion a static aggregate solution was
sought, so as to be accessible simply through the Unix execution path. (That does not
mean that the general idea of the compact encoding of ordinal primes, as described from
the start of this note, is restricted to such an implementation: it is of course usable gen-
eraly.)

Each of the two tables (bit-map and count) was held on its own in a package specification
(see below), but, even if these were forcibly pre-compiled individualy, that would be to no
avail because the virtual memory limit would be exceeded (only) when there was a
demand for code generation and linking, during the first compilation of a main program
employing the package. It was decided to explore the setting s=4 and t=2, giving
#7Z =420, #P =96 and Kk =0.228. (The code given below isfor thiscase.) Then, abit-map
of 150000 words would encode up to 20999999, the 1329943-th prime.

It will be appreciated, from Table 2, that there would be a small further improvement with
s=5; while, with s=6 and s =7, the auxiliary tables would have grown to a size that coun-
tervailed any further compaction of the bit-map table. (For an example showing the neces-
sary auxiliary tables, see the code given below for s=4 andt=2.)

Actua figures for sizes of virtual memory available, speeds of processors and times
required for compilation are not given above, nor in Figure 5, since they became out of
date (and were not of historical interest) even during the writing of this note.

Table5. Implementation characteristics.

Language | Compiler | Wordsin | Bitsused | s | t | #® #7 K Vinax P max
bitmap | per word
Ada83 York 150000 31 2| —|(64) | (186) | 0.344 | 907101 | 13949989
Ada83 York 450000 31 2 (64) | (186) | 0.344 | 2539186 | 41849999
Ada95 GNAT 50000 32 4 12| 96 | 420 | 0.228 | 476606 | 6999299
Ada 95 GNAT 150000 32 4 12| 96 | 420 | 0.228 | 1329943 | 20999999
References.

Sloane N J A and Plouffe S (1995) The encyclopaedia of integer sequences. San Diego
CA: Academic Press.

Burn R P (1997) A pathway into number theory. Second edition. Cambridge: Cambridge
University Press.

Ada code.

Thefollowing will be found in the subsequent pages.
[1] Common package specification PRIMA.

[2] Brief description of main program PRIME_GEN that generated primality bit-map
and cumulative count tables, for use as aggregates in package specifications PRIMB
and PRIMC.

[3] Package specification PRIMB that defined the primality bit-map.

[4] Package specification PRIMC that defined the cumulative count table.
[5] Package specification PRIME that provided primal and ordinal prime functions.
[6] Package body PRIME that provided primal and ordinal prime functions.

-- common decl arations for
-- (1) prinme-tabl e-generating main program PRI ME_GEN
-- (2) packages PRI MB, PRI MC, PRI ME
package PRI MA is
WORDS _PER SET: constant POSITIVE := 3; -- that is 12 bytes
-- or 96 bits
subt ype WORD | NDEX i s NATURAL range 0 .. WORDS PER SET - 1;

S SIZE: constant NATURAL := 50000; -- nunber of SETS all ocated
-- toprimality bit-map table

subtype S INDEX is NATURAL range 0 .. S SIZE - 1;

P_SIZE: constant NATURAL := S S| ZE * WORDS PER SET;
subtype P_INDEX is NATURAL range O .. P_SIZE - 1;

Bl TS_PER BYTE: constant PCSITIVE : = 8;
subtype BIT_INDEX i s NATURAL range O .. BITS PER BYTE - 1;

BYTES_PER WORD: constant PCSITIVE : = 4;
subtype BYTE_I NDEX i s NATURAL range 0 .. BYTES_PER WORD - 1;

RI NG SI ZE: constant POSITIVE := 2 * (2*3*5*7); -- equal s 420
subtype RING I NDEX i s NATURAL range O .. RING SIZE - 1;

LAST_MAPPED _NUMBER: constant POSI Tl VE :

S SIZE * RING Sl ZE;

RESI DUES_PER SET: constant PCSITIVE := 2 * (1*2*4*6); -- equals 96
subt ype RESI DUE_| NDEX i s NATURAL range O .. RESIDUES PER SET - 1;
-- It is inportant that RESIDUES PER _SET = phi (RI NG _SIZE) = phi (420)
2(2-1)(3-1)(5-1)(7-1) = 2(1*2*4*6) 96 = bits per set

BI TS _PER BYTE * BYTES_PER WORD * WORDS_PER_SET

I =

-- Reduced Set of Residues nodul o 420:

R S R constant array (RESIDUE_I NDEX) of RING INDEX :=
(1, 11, 13, 17, 19, , 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103,
107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157,
163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209,
211, 221, 223, 227, 229, 233, 239, 241, 247, 251, 253, 257,
263, 269, 271, 277, 281, 283, 289, 293, 299, 307, 311, 313,
317, 319, 323, 331, 337, 341, 347, 349, 353, 359, 361, 367,
373, 377, 379, 383, 389, 391, 397, 401, 403, 407, 409, 419);

VAL_OF SMALLEST NON_COWPGCSI TE: constant POSITIVE : = 1;

VAL_OF _SMALLEST_PRI ME: constant POSITIVE : = 2;

POS_OF _SMALLEST_NON_COWVPOSI TE: constant NATURAL : = O;

POS_OF SMALLEST PRI ME: constant NATURAL := 1;

CGREATEST_PRI ME_DI VI SOR_OF_RI NG_SI ZE: constant POSITIVE := 7;

NUMBER_OF_PRI ME_DI VI SORS_OF_RI NG_SI ZE: constant POSI Tl VE : = 4,
-- 2,3,5,7 -- nb not 1

subt ype UNMAPPED POS DOMAI N i s NATURAL

range POS_OF SMALLEST_NON_COWPCSI TE
NUVBER_OF PRI ME_DI VI SORS_OF_RI NG_SI ZE;
-- contains O, 1, 2, 3, 4

subt ype UNMAPPED VAL _DOVAI N i s NATURAL
range VAL_OF SMALLEST_NON_COVPOSI TE
.. GREATEST PRI ME_DI VI SOR_OF_RI NG _SI ZE;
-- contains 1, 2, 3, 5, 7: i.e. Oth, 1st, 2nd, 3rd, 4th prines

NUVBER_OF UNVAPPED PRI MES: constant PCSITIVE : =
NUMBER_OF PRI ME_DI VI SORS_OF_RI NG _SI ZE;
-- counts 2, 3, 5, 7 (but not 1)

COUNT_I NTERVAL: constant POSITIVE := 5; -- one count per this nany sets
C DI VI SIBI LI TY_CHECK: constant NATURAL := (-(S_SIZE mod COUNT_I NTERVAL));
C SI ZE: constant NATURAL := S SIZE / COUNT_| NTERVAL;

subtype C_ INDEX is NATURAL range 0 .. C SIZE - 1;

end PRI MA;
------------------------------------- 2 R e
with PRI MA;
package PRIMEN is -- Prine-tabl e-generating main program (not shown here)
-- which outputs packages PRI MB.ads and PRI MC. ads,
-- as shown bel ow.
--- etc.
end PRI MGEN;

wi t h | NTERFACES; use | NTERFACES;

with PRI MA;

package PRIMB is

PRI MES TABLE: constant array (PRI MA P_INDEX) of UNSIGNED 32 : = (

2147483631, 2111749983, 3617315763, 4009081626, 4126078778, 2910688479, 1022471854,
3017533693, 1664527843, 536281777, 1337654858, 2121266222, 980116948, 2759808102,

--------------- etc. (150000 numbers altogether) ------------------

34701324, 1224769543, 26217250, 839165992, 2323783699, 1101009760, 268837128,
1153466432, 807451140, 3223420936, 88629281

)

end PRI MB;

with PRI MA;
package PRIMC is
PRI MES_COUNT: constant array (PRI MA C_| NDEX) of NATURAL : = (

0, 313, 570, 815, 1047, 1280, 1500, 1716, 1935, 2146, 2356,
2576, 2777, 2985, 3190, 3385, 3594, 3791, 3994, 4191, 4388, 4585,

--------------- etc. (10000 nunbers altogether) ------------------
1327585, 1327706, 1327821, 1327945, 1328069, 1328179, 1328299, 1328425, 1328561,

1328686, 1328820, 1328957, 1329074, 1329202, 1329328, 1329452, 1329582, 1329707,
1329822

)s
end PRI MC;

package PRI ME is

function PRIME_POS (P_VAL: in NATURAL) return NATURAL;

function PRIME VAL (P_PCS: in NATURAL) return PCSITI VE;

end PRI MVE;

wi t h | NTERFACES; use | NTERFACES;

with PRI MA; use PRI MA;
wi th PRI MB; use PRI MB;
with PRIMC, use PRI M

package body PRI ME is

-- To save space, the nechani smby which procedure ERROR rai ses an
-- exception is omtted here

BYTE_MASK: constant UNSI GNED 32 : = 2#00000000000000000000000011111111#;

LEFT_MASK: constant array (UNSIGNED 8) of UNSIGNED 8 : = (
2#10000000# => 2#10000000#,
2#01000000# => 2#11000000%#,
2#00100000# => 2#11100000#,
2#00010000# => 2#11110000#,
2#00001000# => 2#11111000%#,
2#00000100# => 2#11111100%#,
2#00000010# => 2#11111110#,
2#00000001# => 2#11111111#, others => 0);

subt ype BYTE_WEI GHT_RANGE i s NATURAL range 0 .. BITS_PER BYTE;

BYTE_WEI GHT: array (UNSI GNED_8) of BYTE_VEI GHT_RANGE : = (
1

0, 1, .

CUTNAUARWURRWAWWN

abhbPwWbPwWwoONPOWONONDN

CUNA,AORARPOWAORMPWAWWNI
Noogoouhroouh~hobhbhw
ocvuunbhoabhpbhowabhbwprhowowd
Noougouunhrouh~oabhbhw
Noougouunhrouabhobhbhw
ON~NONOoOOOUNOOOTOoO O Uo A

ocoguhrabrbPhwobhbrhwbhwowonN
Noououuhrouanhbhoabhbow

o, POWAOARMPOWPOWLON

rbPbwbwwodMPOONLONNDE
uhrPwbwwnNndPPwowNdLONDN
OO hrAMPOWARMPWOWPWLON
brhbPwWwbPwoONPOWONONDND

PWWNWNNRWNNRNRER

)

-- N b. in RESIDUE_WORD POS | N_SET and RESI DUE_BYTE _POS | N WORD, a zero
-- value is used as ‘don’t care’', since these cases will be dealt with
-- by a zero value in RESIDUE BI T_PCS | N BYTE, which neans ‘not a pringe’.

RESI DUE_WORD POS | N_SET: constant array (RING_INDEX) of WORD | NDEX : = (

1 .. 139 => 0,
143 .. 277 => 1,
281 .. 419 => 2, others => 0);

RESI DUE_BYTE_POS | N WORD: constant array (R NG_INDEX) of BYTE_INDEX := (
1.. 31| 143 .. 173 | 281 .. 313 => O,
37 .. 67| 179 .. 209 | 317 .. 349 => 1,
71 .. 103 | 211 .. 241 | 353 .. 383 => 2,
107 .. 139 | 247 .. 277 | 389 .. 419 => 3, others => 0);
RESI DUE_BI T_PCS I N BYTE: constant array (RING INDEX) of UNSIGNED 8 := (

1] 37| 71| 107 | 143 | 179
| 211 | 247 | 281 | 317 | 353 | 389 => 2#10000000#,

11| 41| 73| 109 | 149 | 181
| 221 | 251 | 283 | 319 | 359 | 391 => 2#01000000#,

13| 43| 79| 113 | 151 | 187
| 223 | 253 | 289 | 323 | 361 | 397 => 2#00100000#,

17 | 47| 83| 121 | 157 | 191
| 227 | 257 | 293 | 331 | 367 | 401 => 2#00010000#,

19 | 53| 89| 127 | 163 | 193
| 229 | 263 | 299 | 337 | 373 | 403 => 2#00001000#,

23| 59| 97| 131 | 167 | 197
| 233 | 269 | 307 | 341 | 377 | 407 => 2#00000100#,

29 | 61| 101 | 137 | 169 | 199
| 239 | 271 | 311 | 347 | 379 | 409 => 2#00000010#,

31| 67| 103 | 139 | 173 | 209
| 241 | 277 | 313 | 349 | 383 | 419 => 2#00000001#, others => 0);
-- PRIMES_COUNT (1) contains the count of primes indicated by bits in
-- PRIMES_TABLE (0 .. | * COUNT_INTERVAL * WORDS PER SET - 1)

-- e.g. with COUNT_I NTERVAL = 5, and WORDS_PER_SET = 3,
-- the array PRI MES_COUNT woul d contain

-~ PRIMES COUNT (0) = 0 = #ones in PRI MES_TABLE (0 .. -1)
-~ PRIMES_ COUNT (1) = 313 = #ones in PRI MES_TABLE (0 .. 14)
.- PRIMES_ COUNT (2) = 570 = #ones in PRI MES_TABLE (0 .. 29)
-~ PRIMES_COUNT (3) = 815 = #ones in PRI MES_TABLE (0 .. 44)

-- etc.

function PRIME_POS (P_VAL: in NATURAL) return NATURAL is

-- if P_VAL is P_PCS-th prime then return P_PCS el se ERROR

PVST: constant NATURAL := P_VAL / RI NG_SI ZE; -- P_VAL's set nunber

-- in prines map
PVIR constant RING INDEX := P_VAL nod RING SIZE; -- P_VAL's el enent

-- nunber in ring
PW\E: constant NATURAL : = RESIDUE_ WORD PCS IN _SET (PVIR); -- P_VAL's

-- word nunber in set
PVBW constant NATURAL : = RESI DUE_BYTE POCS IN WORD (PVIR); -- P_VAL's

-- byte nunber in word
PVIT: constant NATURAL := PVST / COUNT_I NTERVAL; -- P_VAL's nunber

-- in count table
PVFS: constant NATURAL := PVIT * COUNT_I NTERVAL; -- P_VAL's interval’'s

-- first set’s no
-- in prines map

WORD: UNSIGNED 32 := 0; -- for shifting bytes in a word
-- taken fromprines nmap

BYTE: UNSI GNED 8 : = 0; -- for holding a byte whose 1 bits indicate
-- primality inthe RS R

RPI B: UNSI GNED_8 : = 0; -- residue position in byte
-- for holding a byte whose 1 bit indicates
-- the position of P_VAL in the rel evant
-- byte of the RS R

K: NATURAL := PRIMES_COUNT (PVIT); -- counts 1 bits (primes)

begi n
if P_VAL in UNMAPPED VAL_DOMAI N t hen
case P_VAL is
when 1 => return O;

when 2 => return 1;
when 3 => return 2;
when 5 => return 3;
when 7 => return 4
when others => nul
end case;
elsif PVST in S I NDEX then
for SET_POS in PVFS .. PVST | oop
for WORD PCS in WORD | NDEX | oop
WORD : = PRI MES_TABLE (SET_POS * WORDS_PER_SET + WORD POS);
for BYTE_PCS i n BYTE_I NDEX | oop
WORD : = ROTATE_LEFT (WORD, BI TS_PER BYTE);
BYTE : = UNSI GNED 8 (WORD and BYTE_MASK) ;
if SET_POS = PVST and t hen WORD _PCS = PW\S
and then BYTE_POS = PVBW 't hen
RPI B : = RESI DUE_BI T_PCS I N BYTE (PVIR);
BYTE : = BYTE and LEFT_MASK (RPI B);
K := K + BYTE_WEI GHT (BYTE);
if (RPIB and BYTE) = 0 then
ERROR ("primal position requested of a non-prine");
el se
return NUVBER _OF_UNMAPPED PRI MES + K;
end if;
end if;
K := K + BYTE_VEI GHT (BYTE);
end | oop;
end | oop;
end | oop;
end if;
ERROR ("primal position requested of too |arge a nunber");
return O;
end PRI ME_PCS;

;
I

function PRIME_VAL (P_PCS: in NATURAL) return POSITIVEis -- P_POS-th prinme

M constant | NTEGER := P_POS - NUMBER OF UNMAPPED PRI MES;
-- required mapped count of ‘1’ bits

WORD: UNSI GNED 32 : = 0; -- for shifting bytes in a word
-- taken from PRI MES_TABLE

BYTE: UNSI GNED 8 : = O0; -- for holding a byte whose 1 bits

-- indicate primality in the RS R
PEIR RI NG_I NDEX : = O0; -- position of element in ring
I LCT: constant POSITIVE := C_INDEX LAST; -- index of l|last count

-- in count table

I: CINDEX := ILCT / 2; -- current index for binary tree search
D CINDEX := (ILCT + 1) / 2; -- current difference

-- for binary tree search
K: NATURAL : = O; -- counts 1 bits (napped primes)
SET_POS _FI RST, SET_POS LAST: S INDEX := 0; -- relevant interval in nmap

-- expressed in set nunbers
begi n
if P_POS in UNVAPPED PCOS DOMAI N t hen
case P_PCS is

when 0 => return 1;
when 1 => return 2;
when 2 => return 3;
when 3 => return 5;
when 4 => return 7
when ot hers => nul

;
s

end case;
el se
loop -- forma binary tree search of the count table
D:=
if Mi PRI MES_COUNT (1) then

Din CINDEX then
=1 - D

f

per
(D+ 1)/ 2
nil

| -

I

end if;
elsif Min PRIMES COUNT (I) + 1 .. PRIMES_COUNT (I+1) then
exit;
elsif Min PRIMES COUNT (I+1) + 1 .. PRIMES COUNT (ILCT) then
if I + Din C_INDEX then
I :=1 + D
end if;
el sif PRIMES_COUNT (ILCT) < Mthen
| := I LCT;
exit;
end if;
end loop; -- | now holds the relevant interval nunber
K := PRI MES_COUNT (I);
SET_POS FIRST := 1 * COUNT_I| NTERVAL;
SET_PCS LAST := (I + 1) * COUNT_INTERVAL - 1;
for SET_POS in SET_PCS FIRST .. SET_POS LAST | oop

for WORD_PCS in WORD_| NDEX | oop
WORD : = PRI MES_TABLE (SET_POS * WORDS_PER_SET + WORD POS) ;
for BYTE_PCS in BYTE_I NDEX | oop
WORD : = ROTATE_LEFT (WORD, BI TS_PER BYTE);
BYTE : = UNSI GNED 8 (WORD and BYTE_MASK) ;
if M<= K + BYTE_WEI GHT (BYTE) then
for BIT_POS in Bl T_I NDEX | oop
BYTE : = ROTATE_LEFT (BYTE, 1);
K := K + INTEGER (BYTE and 1);
if K= Mthen
PEIR : =
(WORD_PCs * BYTES_PER WORD + BYTE_PCS) * BI TS _PER BYTE + Bl T_PCS;
return SET_PCS * RING SIZE + RS R (PEIR);
end if;
end | oop;
end if;
K := K + BYTE_WEI GHT (BYTE);
end | oop;
end | oop;
end | oop;
end if;
ERROR ("n-th prime requested for too large n");
return 1;
end PRI ME_VAL;

begin
nul | ;

end PRI MVE;

