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Abstract

Let �i � �� for i � �� We discuss the convergents of the continued fractions of two
formal Laurent series in �Q��X����� g��X� �

P
i�� �iX

��i and h��X� � Xg�X�� In
particular� we show that the denominators of the convergents to both series have the
remarkable property that their coe�cients all lie in f	� ����g�
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� Introduction

Let t�X� 	
P

k��n akX
�k be a formal Laurent series in �Q��X����� Then it is well known

that t�X� may be expanded uniquely as a continued fraction


a�� a�� a�� � � ��

where ai � �Q
X� for i � � and deg ai � � for i � �� �This fact was apparently �rst proved by
E� Artin in his thesis 

� x�
�� for alternative treatments� see 
��� �� ����� The ai are called
the partial quotients� These expansions share many of the properties of ordinary continued
fractions for real numbers� for example� if we set p�� 	 �� p�� 	 �� q�� 	 �� q�� 	 �� and
pn 	 anpn�� � qn��� qn 	 anqn�� � qn�� for n � �� then


a�� a�� � � � � an� 	
pn
qn
� ���

We call pn�qn the nth convergent to the continued fraction for t�X�� The following three
identities will prove useful 
�� ����


an� an��� � � � � a�� 	
qn
qn��

� �
�

pnqn�� � pn��qn 	 ����n��� ���

pn
qn

	 a� �
X

��i�n

����i

qiqi��
� ���

Let �� 	 � and �i 	 �� for i � �� De�ne

g��X� 	
X
i��

�iX
��i � ���

h��X� 	 X
X
i��

�iX
��i� ���

If the choice of signs is arbitrary� or is clear from the context� we will often omit the subscript
and simply write g�X� and h�X�� Previous papers have discussed the continued fractions
for g��X� and h��X�� see� for example� 
��� �� ��� �
� 
�� �� 
�� ���� It is known that� no
matter what the choice of signs is� the continued fraction for g��X� has partial quotients in
the set f��X � ��X � ��X�X � 
�X � 
g� and the continued fraction for h��X� has partial
quotients in the set f��X��Xg� furthermore� explicit formulas are known for these partial
quotients in terms of the choice of signs made� These explicit formulas use a description
arising from iterated paperfolding 
���

In this paper� we examine the convergents to the continued fractions for g�X� and h�X��
In particular� we prove the surprising fact that the denominators of the convergents are
polynomials in ZZ
X� with coe�cients �� �����

Here is a brief outline of this paper� In Section 
� we recall the descriptions of the
continued fractions for g�X� and h�X� in terms of the folding and perturbed symmetry
maps� In Section �� we recall some basic facts about continuants and prove some technical






lemmas� In Section �� we prove some theorems about the constant terms of the convergents
to g�X� and h�X�� In Section � we give a recursion relation for computing the denominators
of the convergents and characterize their support� In Section �� we show how to describe
the convergents for h�X� in terms of those for g�X�� In Section �� we obtain further results
using some simple Diophantine approximation properties�

� Paperfolding and Continued Fractions

Let w and x be �nite sequences over an additive group G� and de�ne the folding map

fx�w� 	 w �x � ��wR�� where ��� represents concatenation� �w represents the same sequence
as w� but with all signs reversed� and wR represents the sequence w taken in reverse order�

Let G be a group written additively� and let xi � G for i � ��

F�x�� x�� � � � � xk� 	 fxk �fxk���� � � �fx��fx������ � � ����

where � represents the empty sequence� Since F�x�� x�� � � � � xk� is a pre�x of the sequence
F�x�� x�� � � � � xk� xk���� the limiting sequence F�x�� x�� � � �� is well�de�ned� For example�
F��� 
� �� �� � � �� denotes the in�nite sequence

��� 
���� �� ���
���� �� �� � � ���

We now have the following

Theorem � If �a�� a�� a�� � � �� 	 F�x�� x�� x�� � � ��� then

�a� a�i�� 	 ����ix� for i � ��

�b� �a�i�i�� 	 F�x�� x�� x�� � � ���

�c� a�k�j 	 �a�k�j for k � �� � � j � 
k � �	

Proof	 The easy proof by induction is left to the reader�

If ei 	 �� for i � �� we say that F�e�� e�� � � �� is a paperfolding sequence 
��� ��� In this
case� the ei are sometimes referred to as the unfolding instructions�

In the special case ei 	 � for i � �� we get the regular paperfolding sequence

�si�i�� 	 F��� �� �� � � �� 	 ��� ����� �� �������� �� �� �������� �������� � � ��� ���

For this sequence� we have
sn 	 ����r ���

if n 	 
a�
r � ���
Now let h�X� 	 X

P
i�� �iX

��i � and assume �� 	 �� and �i 	 �� for i � �� It is known

��� that

h�X� 	 
�� XF���� ���� ���� ���� � � ���� ���

�



For example� we have

X
X
k��

X��k 	 
�� X� �X� �X� �X� X� X� �X� �X� � � ���

Similarly� we can de�ne the perturbed symmetry map px�w� 	 w � x � wR 
�
�� Let
x�� x�� � � � xk each represent a �nite sequence over an additive group G� Then we de�ne

P�x�� x�� � � � � xk� 	 pxk�pxk���� � � �px��px������ � � ����

As before� we can also consider the limiting sequence P�x�� x�� � � ��� It is known 
�� Theorem
�� that if g�X� 	

P
i�� �iX

��i � then

g�X� 	 
�� X � ��� P�c�� c�� c�� � � ���� ����

where
c� 	 �X � �� � ���X � �� � ���

and
cj 	 �X � �� � �j�X � �� � �j�

for j � �� For example� we haveX
k��

X��k 	 
�� X � �� X � 
� X� X� X � 
� X� X � 
� � � ���

� Continuants

We recall the basic de�nition of the multivariate polynomials known as continuants� De�ne
K��� 	 �� K��a�� 	 a�� and Kn�a�� a�� � � � � an� 	 anKn���a�� � � � � an��� �Kn���a�� � � � � an����
It is also convenient to set K���� 	 �� Then it is not di�cult to see that


a�� a�� � � � � an� 	
Kn���a�� a�� � � � � an�

Kn�a�� a�� � � � � an�

for all n � � 
�� x�������
We now give three technical lemmas on continuants which will be used later in the paper�

Lemma � Let n � � and a�� a�� � � � � an�� be real numbers	 Then

Kn�j �a�� a�� � � � � an��� ���an����an��� � � � ��an�j� 	 Kn�j���a�� a�� � � � � an�j���

for � � j � n� �	

Proof	 The easy induction on j is left to the reader�

Lemma � Let n � �� and let a�� a�� � � � � an be integers	 Then

Kn�j �a�� � � � � an��� an��an����an��� � � � ��an�j� �

Kn�j �a�� � � � � an��� ���an����an��� � � � ��an�j� �mod anKn���a�� � � � � an����

for � � j � n� �	

�



Proof	 Let qn�� 	 Kn���a�� a�� � � � � an��� and qn�� 	 Kn���a�� a�� � � � � an���� Then we have

Kn�a�� a�� � � � � an��� an� 	 anqn�� � qn��

Kn�a�� a�� � � � � an��� �� 	 qn���

Now for each j there exist integer constants c�� c� such that

Kn�j �a�� � � � � an��� an��an����an��� � � � ��an�j� 	 c�Kn���a�� � � � � an����c�Kn�a�� � � � � an��� an�

and

Kn�j �a�� � � � � an��� ���an����an��� � � � ��an�j� 	 c�Kn���a�� � � � � an����c�Kn�a�� � � � � an��� ���

Hence� subtracting these last two equations� we get

Kn�j �a�� � � � � an��� an��an����an��� � � � ��an�j��

Kn�j�a�� � � � � an��� ���an����an��� � � � ��an�j� 	 c�anqn���

which proves the desired result�

Lemma � Let ki � � for i � �� and let

c 	 �c�� c�� c�� � � �� 	 ���� �k� � 
� �k� � �
� �k� � 
� �k� � �
� �k� � 
� � � ��

be an in�nite sequence of integers	 �The exponents on the �
s refer to the number of repeti�
tions� and the 

s alternate in sign	� Then for all n � �� Kn�c�� c�� � � � � cn� 	 ��� and the
same result holds for �c 	 ���� �k� ��
� �k� � 
� �k� ��
� � � ���

Proof	 Let qn 	 Kn�c�� c�� � � � � cn�� Then qn is the denominator of the nth convergent of the
continued fraction


����� �k� � 
� �k� ��
� �k� � 
� �k� ��
� �k� � 
� � � ���

By �
�� it follows that

qn
qn��

	 


n termsz �� �
� � � ��
� �k� � 
� �k� �����

But


� �k� ���� 	 �

for all k� � �� It follows that
qn
qn��

	 
� � � ��
� �k� � ���

But

�
� �k� � �� 	 ��

for all k� � �� It now follows by induction that

qn
qn��

	 ���

Since q� 	 �� we conclude that qn 	 �� for all n � ��

�



� The Constant Term

Let g��X� and h��X� be as de�ned above in Eqs� ��� and ���� Let p�n�q
�
n be the nth convergent

to the continued fraction for g��X�� and pn�qn be the nth convergent to the continued fraction
for h��X�� Then �p�n�n��� �q

�
n�n��� �pn�n��� and �qn�n�� are sequences of polynomials in X�

and we are interested in their constant term�
We begin with the constant terms of pn and qn�

Theorem � For n � �� we have

�a� pn��� 	 ��

�b� q�n��� 	 ��

�c� q�n����� 	 �	

Proof	 Easy proof by induction on n� using the fact that pn 	 �Xpn�� � pn��� and qn 	
�Xqn�� � qn���

We now turn to the constant terms of p�n and q�n�

Theorem � For n � � we have q�n��� 	 ��	

Proof	 Note that if g��X� 	 
a���X�� a���X�� � � ��� then by Eq� ����� we have a�i��� 	 ci� where
�ci� is the sequence in Lemma ��

Remark	 Evidently the proof applies to any formal Laurent series such that the constant
terms of the partial quotients of its continued fraction expansion is given by the sequence
�ci� of Lemma ��

We now discuss p�n and q�n for a particular choice of �� namely� when �i 	 � for all i � ��
First� we describe the partial quotients for the continued fraction expansion of

P
i��X

��i �

Theorem � Let
P

i��X
��i 	 
a���X�� a���X�� � � ��	 Then a���X� 	 X � �� and a�n�X� 	

X � ����bn��c � ����nsbn��c� where �sn�n�� is the regular paperfolding sequence of Eq	 ���	

Proof	 Follows from Eq� ���

Now we discuss the denominators of the convergents to
P

i��X
��i �

Theorem � Let q�n�X� be the denominator of the nth convergent to
P

i��X
��i 	 Then

q�n��� 	 ����n�bn��cs�s� � � � sn�

where �si�i�� is the regular paperfolding sequence of Eq	 ���	

Proof	 By induction� using the fact that q�n����� 	 a�n�����q
�
n��� � q�n������ �Recall that the

sequence a�n�� was described in Theorem ���

Now we discuss the numerators of the convergents to
P

i��X
��i �

�



Theorem 	 For n � � we have

p�n���

q�n���
	 �

X
��i�n

si� ����

where �si�i�� is the regular paperfolding sequence of Eq	 ���	

Proof	 By Eq� ��� we know that

p�n���

q�n���
	

�

q�����q
�
����

�
�

q�����q
�
����

� � � ��
����n��

q�n�����q�n���
�

Since q�n��� 	 �� by Theorem �� it follows that q�n��� 	 ��q�n���� and we get

p�n���

q�n���
	 q�����q

�
���� � q�����q

�
���� � q�����q

�
����� � � �� ����n��q�n�����q

�
n���� ��
�

Let us �rst consider the case where n is even� say n 	 
k� Then Eq� ��
� and Theorem �
gives

p��k���

q��k���
	 �a������ a������ � � � � a��k���

	 �
X

��i�k

a��i���

	
X

��i�k

����i �
X

��i�k

si

	 �
X

��i�k��

s�i�� �
X

��i�k

s�i

	 �
X

��i��k

si�

Now let us consider the case where n is odd� say n 	 
k��� Then by Eq� ��
� and Theorem �
we get

p��k�����

q��k�����
	

p��k���

q��k���
� q��k���q

�
�k�����

	
p��k���

q��k���
� �����ks�s� � � � s�k������

k��s�s� � � � s�k���

	
p��k���

q��k���
� s�k��

	 �
X

��i��k��

si�

The result now follows�

Remark	 It is easy to prove by induction that
P

��k�n sk is always positive� and so we have
sgn p�n��� 	 �q�n����

�



Remark	 In true Ap�ery fashion� we have therefore established that the best approximations
to
P

k��
�

��k
are the integers �jp�n���j�

Our result also implies that the sequence p�n��� is 
�regular in the sense of Allouche and
Shallit 
���

Exercise	 Prove that jp�n���j 	 O�log n�� Also show that� for k � �� the base�
 representation

of the least index n such that jp�n���j 	 k is

k symbolsz �� �
����� � � ��

Exercise	 Show that the coe�cient of the second�highest term in q�n�X� is ����nsn for n � ��

� More on Convergents

In the previous section� we studied the constant term of the convergents to g��X� 	
P

i�� �iX
��i �

Our results suggest studying the rest of the coe�cients of the convergents� To aid intuition�
here is a brief table of the convergents p�n�X��q�n�X� to

P
i��X

��i�

n a�n�X� p�n�X� q�n�X�

� � � �
� X � � � X � �

 X � 
 X � 
 X� �X � �
� X X� � 
X � � X� �X� � �
� X X� � 
X� � 
X � 
 X� �X� �X� � �
� X � 
 X� �X� � � X� �X� �X� �X � �
� X X� � 
X� �X � 
 X� �X� �X� �X � �
� X � 
 X� � 
X� �X� � 
X� � 
X� � � X	 �X� �X� � �
� X X	 � 
X� � 
X� � 
X� � 
X� � 
X� � 
 X
 �X	 �X� �X� � �
� X � 
 X
 �X� �X� � 
X� � 
X � � X� �X
 �X� �X� �X� �X � �

Table �� Convergents to
P

i��X
��i�

The observant reader will note that the coe�cients of q�n�X� lie in f�� ����g for � � n � �
and will naturally wonder if this is true for all n� We prove this �and more� below in
Corollary ��� For the moment� however� we turn to the study of h��X� 	 Xg��X� instead�
This series is somewhat easier to handle and� as we will see in Section �� the results we obtain
for h��X� will also imply results for g��X��

Again� to build intuition� we provide a brief table of the convergents pn�X��qn�X� to
X
P

i��X
��i �

�



n an�X� pn�X� qn�X�

� � � �
� X X � � X


 �X �X� �X � � �X� � �
� �X X� �X� � � X�

� �X �X� �X� �X� � 
X � � �X� �X� � �
� X �X� �X� �X� �X � � �X� �X

� X �X� �X� �X� � 
X� �X � � �X� �X� � �
� �X X	 �X� �X� � � X	

� �X �X
 �X	 �X� � 
X� �X� � 
X� � 
X � � �X
 �X� �X� � �
� X �X� �X
 �X� �X� � 
X� �X � � �X� �X� �X

Table 
� Convergents to X
P

i��X
��i �

We begin our investigation by studying the denominators qn�X� of convergents to h��X��
Unfortunately� the notation qn�X� is no longer su�cient� so we introduce the new notation
q�a��a�����
n �X� to make the dependence on the partial quotients clear� More precisely� we de�ne

q�a��a�����
n �X� 	 Kn�a�� a�� a�� � � � � an��

�Since qn does not depend on a�� we do not specify it explicitly��
Now let ei 	 �� for i � �� and de�ne e 	 �e�� e�� � � ��� By Eq� ���� we know that

qXF�e

n �X� is the denominator of the nth convergent to h��X�� where �� 	 �� �� 	 e�� and
�i 	 �ei for i � 
� We now give a recursive formula for qXF�e


n �X� that expresses it as the
sum of two polynomials� one with high�order terms and one with low�order terms�

Theorem �
 Write n 	 
k � j� with k � � and � � j � 
k � �	 Let ei 	 �� for i � �	
De�ne e 	 �e�� e�� � � �� and e� 	 �e�� e�� � � � � ek����ek�	 Let F�e� 	 �a�� a�� � � ��	 Then

qXF�e

n �X� 	

���
��
e�X� if n 	 ��
�ek��X

�k����� if k � � and j 	 
k � ��

�ekek��X
�kq

XF�e�

j �X� � q

XF�e

�k�j���X�� if k � � and � � j � 
k � 
	

Proof	 By induction on n� The result is clearly true for n 	 �� Now assume it is true for all
n� � n� we prove it for n� 	 n�

Write n 	 
k�j� with k � � and � � j � 
k��� We prove the identity by considering the
high� and low�order terms of the polynomial qXF�e


j �X� separately� To do this� we consider

the polynomial modulo X�k � First� we observe that

qXF�e

n �X� 	 Kn�a�� � � � � an�

	 Kn�a�� � � � � a�k� a�k��� � � � � a�k�j�

	 Kn�a�� � � � � a�k��a�k��� � � � ��a�k�j� �by Theorem � �c��

� Kn�a�� � � � � a�k��� ���a�k��� � � � ��a�k�j� �mod a�kKn���a�� � � � � a�k���� �by Lemma 
�

� Kn�a�� � � � � a�k��� ���a�k��� � � � ��a�k�j� �mod X�k� �by the induction hypothesis�

	 K�k�j���a�� � � � � a�k�j��� �by Lemma ��

�



and so
qXF�e

n �X� � q

XF�e

�k�j���X� �mod X�k �� ����

Now� recalling that n 	 
k � j� de�ne

rj�X� 	
q
XF�e

�k�j �X� � q

XF�e

�k�j���X�

�ekek��X�k

for � � j � 
k � �� �We omit the superscript on the variable rj� since it is the same in both
of the terms in the numerator of the expression that de�nes it��

By induction� we know that

q
XF�e

�k�� �X� 	 �ekX

�k���

so the sign of the leading coe�cient of q
XF�e

�k is �ekek��� Hence r��X� 	 �� Similarly� it is

easily veri�ed that r���X� 	 �� We claim that

rj�X� 	 a�k�jrj���X� � rj���X�

for � � j � 
k � �� From the de�nition of rj�X�� it su�ces to verify that both q
XF�e

�k�j

�X�

and q
XF�e

�k�j���X� satisfy this recurrence� The �rst is clear� For the second� observe that

q�k�j 	 a�k�jq�k�j�� � q�k�j���

so
q�k�j�� 	 �a�k�jq�k�j�� � q�k�j �

But� by Theorem � �c�� we have a�k�j 	 �a�k�j for � � j � 
k � �� It follows that

q�k�j�� 	 a�k�jq�k�j�� � q�k�j �

as desired�
Now� by the folding property�

�a�k��� a�k��� � � � � a�k����� 	 ��a�k����a�k��� � � � ��a��

	 �XF�e�� e�� � � � � ek�
R

	 �X�F�e�� e�� � � � � ek���� ek��F�e�� e�� � � � � ek���
R�R

	 X�F�e�� e�� � � � � ek�����ek��F�e�� e�� � � � � ek���
R�

	 XF�e�� e�� � � � � ek����ek��

so we have
rj�X� 	 q

XF�e��e������ek����ek

j �X�

for � � j � 
k � ��

��



Finally� it remains to see that qXF�e

�k����

�X� 	 �ek��X
�k����� To see this� note that we

have shown that

q
XF�e

�k�����X� 	 �ekek��X

�kq
XF�e�

�k�� �X� � q���X�

	 �ekek��X
�kq

XF�e�

�k�� �X�

	 ��ekek��X
�k��ekX

�k���

	 �ek��X
�k�����

where we have used the fact that q���X� 	 �� induction� and the fact that e�k 	 �� This
completes the proof�

Corollary �� All the coe
cients of qXF�e

n �X�� no matter what choice of signs is made� are

in f�� ����g	

Proof	 An easy induction on n� using the fact that Theorem �� writes qn�X� as the sum of
a polynomial with lowest nonzero term of degree X�k and one with highest nonzero term of
degree X�k���

We now turn to a kind of converse to Corollary ��� It is easiest to phrase this converse
in terms of something we call the in�nite continuant tree T � This root of this in�nite binary
tree is labeled K���� 	 �� If z is a node of the tree labeled Kn���a�� � � � � an���� then there is
an edge labeled �� connecting z to its left child� labeled Kn�a�� � � � � an���X�� There is also
an edge labeled �� connecting z to its right child� labeled Kn�a�� � � � � an����X�� Figure �
gives the �rst few levels of the tree T � Labels on the edges have been omitted�
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Figure �� The �rst � levels of the continuant tree

By Theorem ��� any in�nite path labeled with a paperfolding sequence reaches nodes
with labels that have only coe�cients �� ����� The next theorem says that in T � only the
paperfolding paths have this property�

��



Theorem �� Suppose we de�ne a sequence of polynomials as follows� q���X� 	 �� q��X� 	
�� and qi�X� 	 aiXqi���X� � qi���X�� where ai � f����g	 Furthermore� choose ai succes�
sively so that the resulting polynomials qi�X� have coe
cients in f��� �� �g	 Then �a�� a�� � � ��
is a paperfolding sequence	

Proof	 Suppose� contrary to what we want to prove� that a�� a�� � � � is not a paperfolding
sequence� Then there is some index� say n� such that a�� a�� � � � � an is not the pre�x of
any paperfolding sequence� Without loss of generality let n be the smallest such� so that
a�� a�� � � � � an�� is the pre�x of some paperfolding sequence�

By assumption� qn 	 anXqn�� � qn�� has only coe�cients �� ����� and by Theorem ��
so does �qn 	 �anXqn�� � qn��� Write n 	 
k � j� with � � j � 
k� If n is not a
power of 
� then by reducing modulo X�k and applying Theorem ��� we see that qn�� has a
nonzero term of the form �X�k�j�� and qn�� has a nonzero term of the form �X�k�j � Since
�qn 	 �anXqn�� � qn��� we see that these terms must cancel in �qn� or else we would have a
coe�cient of �
 in the X�k�j term in �qn� But then X�k�j has a coe�cient of �
 in qn� a
contradiction�

It follows that n must be a power of 
� But then either choice an 	 �� corresponds to a
valid pre�x of a paperfolding sequence� a contradiction�

In Figure 
 below� we display the �rst few levels of the in�nite continuant tree with only
the paperfolding paths shown�

The continuant tree T has many other interesting properties� and we leave to the reader
the pleasure of discovering some of them�
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Figure 
� The �rst � levels of the continuant tree �only paperfolding paths shown�
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The reader will notice that in any particular level of Figure 
� the polynomials are essen�
tially the same� only the signs of the terms di�er� We now prove that this pattern continues
throughout the continuant tree�

First� we de�ne the support supp�b� of a polynomial b�X� 	 bnX
n � � � �� b�X � b� to be

the set fi � bi �	 �g� that is� the set of exponents corresponding to nonzero coe�cients� For
example� supp�X��X� 	 f�� �g� We also de�ne 
X i�b�X� to be bi� the coe�cient of the X i

term in b�X��

Corollary �� Let F�e�� e�� � � �� be a paperfolding sequence� and de�ne a 	 XF�e�� e�� � � ��	
Then the set supp�qan�X�� is independent of e�� e�� � � �� and is equal to

fn� 
i � � � i � n�
�

�
n� i

i

	
� � �mod 
�g�

Proof	 Since e�� e�� � � � is a paperfolding sequence� it follows that the coe�cients of qan�X�
are all �� ����� Now� taking everything mod 
� it follows that

qan�X� � sn�X� �mod 
��

where sn�X� is the denominator of the nth convergent to


��X�X�X� � � ���

But it is easy to prove by induction on n that


X�X�X� � � �� 	
tn���X�

tn�X�
�

where

tn�X� 	
X

��i�n��

�
n� i

i

	
Xn��i�

Clearly sn�X� 	 tn�X�� and the result follows�

Remark	 If we de�ne am�n 	 
Xn�tm�X� mod 
� then it is not hard to see that

am�n 	



�� if m �� n �mod 
���
m�n
m�n

�
mod 
� if m � n �mod 
��

Thus �am�n�m�n�� is a 
�automatic double sequence in the sense of Salon 
��� ����

The size of the support of qn�X� can be computed using Theorem ��� De�ne un to be
the number of nonzero coe�cients in qn�X�� Then we have

un 	

���
��
�� if n 	 ���
�� if n 	 �� ��
uj � u�k�j��� if n � 
 and n 	 
k � j with � � j � 
k�

Here is a brief table of this sequence�

��



n �� � � 
 � � � � � � � �� �� �
 �� �� �� ��

un � � � 
 � � 
 � � � � � 
 � � � � �

Table �� The sequence �un��

This sequence is easily proved by induction to satisfy the identities

u�n 	 un � un��� �n � ��

u�n�� 	 un� �n � ���

The sequence �un�n�� is the Stern�Brocot sequence 

�� ��� and is 
�regular in the sense of
Allouche and Shallit 
��� It is Sloane and Plou�e�s sequence M���� 


��

� Results through Approximation

In this section we obtain more results on the convergents to g��X� and h��X� through some
very simple approximation results� Our main tool is the the following theorem�

Theorem �� Let t�X� be a formal Laurent series with continued fraction expansion

a�� a�� a�� � � ��� let pn�qn be the nth convergent� and let p and q be polynomials	 Then

�a� deg�qnt� pn� 	 �deg qn�� � �deg qn�

�b� If deg�qt� p� � �deg q� then p�q is a convergent to t	

Proof	 See� for example� 
���� Note that in our statement of part �b� of the theorem� we
have omitted the super�uous condition� speci�ed in 
���� that the polynomials p and q be
relatively prime�

Up to now� most of our results have been for h��X�� We now show how to go from results
for h��X� to results for g��X��

Theorem �� Let pn�qn be the nth convergent to h��X� 	 X
P

i�� �iX
��i � and let p�n�q

�
n be

the nth convergent to g��X� 	
P

i�� �iX
��i 	 Then

p�n 	 dn�pn � pn����X

q�n 	 dn�qn � qn���

where dn 	 ��	

Proof	 From Theorem �� �a�� we obtain

deg�qnXg � pn� 	 �deg qn�� 	 ��n� ��� ����

deg�qn��Xg � pn��� 	 �deg qn 	 �n� ����

��



From Eqs� ���� and ����� it follows that

deg��qn � qn���Xg � �pn � pn���� 	 �n�

and so
deg��qn � qn���g � �pn � pn����X� 	 ��n� ��� ����

Since pi��� 	 � for all i � ��� it follows that �pn�pn����X is a polynomial� Since deg q�n 	 n�
it follows from Theorem �� �b� that

�pn � pn����X

qn � qn��

is the nth convergent to g� Since the degrees of numerator and denominator agree with the
degrees of p�n and q�n� it follows that

p�n 	 dn�pn � pn����X�

q�n 	 dn�qn � qn���

for some sequence �dn� of ���s�

Remark	 It is easy to determine precisely what the sequence �dn� is� Since the sign of the
leading term of p�n is clearly ��� and the sign of the leading term of pn is

Q
��j�n bj� where

�b�� b�� � � �� 	 F������������ � � ���

it follows that dn 	
Q

��j�n bj�

Corollary �� The coe
cients of q�n�X� lie in f��� �� �g for all n � �	

Proof	 We know that q�n 	 ��qn � qn���� and it is easy to see q�n�X� is an even polynomial
and q�n���X� is an odd polynomial� The result follows�

� Further Approximation Results

Let E 	 f��n�n�� � f�����gIN � �� 	 �g� De�ne on E the map T as follows�

T ���n�n��� 	 ����n�n�� 	 ����n���n���

For ��n�n�� � E� let g� 	 X
P

k�� �kX
��k � We know that the continued fraction expansion

of g� is of the form 
���X��X� � � ��� Denote by p��n�X

q��n�X
 its nth convergent� �Note that this

notation is slightly di�erent from the notation we introduced in Section �� In particular�
here the � indicates the dependence of the convergent on a particular choice of signs in
the associated series� while in Section �� the superscript indicated the dependence of the
convergent on the particular choice of partial quotients��

��



Lemma �� The following properties hold�

�a� deg q��n 	 n�

�b� deg
�
g��X�� p��n

q��n

�
	 �
n � �	

Proof	 As the continued fraction expansion of g� is of the form 
���X��X� � � ��� we have

p��n���X� 	 �Xp��n���X� � p��n�X��
q��n���X� 	 �Xq��n���X� � q��n�X��

which proves our claim�

Theorem �� The following relations hold between the polynomials q���n�X�� q���n���X� and
the polynomial qT��n�X��

�a� q���n���X� 	 ��XqT��n�X���

�b� q���n�X� 	 ����n�qT��n�X��� qT��n���X����

�c� the polynomial q���n���X� is odd�

�d� the polynomial q���n�X� is even	

Proof	 We have

deg

�
gT��X

���
pT��n�X��

qT��n�X��

	
	 
deg

�
gT��X��

pT��n�X�

qT��n�X�

	
	 ��n � 
� ����

On the other hand� we have

gT��X
�� 	 X�

X
k��

���k��X
��k�� 	 ��X�g��X�� ��� ����

Combining Eqs� ���� and ����� we get

deg

�
g��X�� �� ��

pT��n�X��

XqT��n�X��

	
	 ��n� �� ����

Now� considering the even� and odd�indexed convergents of g�� we get

deg
�
g��X� � p���n�X


q���n�X


�
	 ��n � ��

deg
�
g��X� � p���n���X


q���n���X


�
	 ��n � ��

�
��

Now� combining Eqs� ���� and �
��� we get

deg
�
p���n�X

q���n�X
 � �� ��

pT��n�X
�


XqT��n�X�


�
	 ��n � ��

deg
�
p���n���X

q���n���X


� � � ��
pT��n�X

�

XqT��n�X�


�
� ��n � ��

��



Hence

deg�XqT��n�X��p���n�X� �Xq���n�X�qT��n�X��� ��pT��n�X��q���n�X�� 	 ��
deg�XqT��n�X��p���n���X��Xq���n���X�qT��n�X��� ��pT��n�X��q���n���X�� � ���

We thus have two polynomials� one of which has degree �� hence is constant and equal to
its value at �� the second of which has degree at most ��� hence �	 and hence is the zero
polynomial� Using the values at � of the q�s and p�s that we gave in Theorem �� we get

XqT��n�X��p���n�X��Xq���n�X�qT��n�X��� ��pT��n�X��q���n�X� 	 ����
XqT��n�X��p���n���X��Xq���n���X�qT��n�X��� ��pT��n�X��q���n���X� 	 ��

Solving this linear system in qT��n�X
�� and pT��n�X

�� and noticing that by Eq� ���� its
determinant

��Xp���n���X�q���n�X�� p���n�X�q���n���X�

is equal to ��X� we obtain

q���n���X� 	 ��XqT��n�X
���

p���n���X� 	 pT��n�X
�� � ��XqT��n�X

���

This proves parts �a� and �c� of our theorem�
Now� using the recurrence relation satis�ed by the qn�s and the fact that the partial

quotients of g� are �X� we get

q���n���X� 	 �Xq���n�X� � q���n���X��

Replacing q���n���X� �and q���n���X�� by the expressions in qT��n�X�� �and qT��n���X��� we
have just obtained gives

��XqT��n�X
�� 	 �Xq���n�X� � ��XqT��n���X

���

that is�
q���n�X� 	 ����qT��n�X

��� qT��n���X
����

Looking at the value at �� we get

q���n�X� 	 ����n�qT��n�X
��� qT��n���X

����

This proves parts �b� and �d� of our theorem�

Remark	 Theorem �� can be used to give a di�erent proof of Corollary ��� Indeed� we
deduce from Theorem �� that if the coe�cients of q��j are all ���� for all j � n� then the
coe�cients of q���n and q���n�� have the same property� the di�erent parities of q��n and q��n��
ensure that there is no �overlap� in the equation of Theorem ���b��

We conclude the paper by proving a results about the automaticity of the double sequence
�
Xn�qm���X��m�n���

��



Theorem �	 Let ��n�n�� be a sequence in E	 As before� let p��n�X

q��n�X


be the nth convergent

of the continued fraction expansion of g� 	 X
P

k�� �kX
��k 	 Let �a�m�n�m�n�� be the double

sequence de�ned by am�n 	 
Xn�qm���X�	 Then the double sequence �a�m�n�m�n�� is 
�automatic
in the sense of Salon ���� ��� if and only if the sequence � 	 ��j�j�� is ultimately periodic	

Proof	 Suppose �rst that the sequence �a�m�n�m�n�� is 
�automatic� Then 
��� ��� the se�
quence �a�n�n�n�� is a one�dimensional 
�automatic sequence� Hence� by a classical result� the
sequence

�a��j����j���j��

is ultimately periodic�
But from Theorem �� we have

a��m����n�� 	 ��a
T�
m�n�

By induction� it follows that

a��j����j�� 	 ���T��� � � � �T
j�����a

T j�
��� �

Now observe that aT
j�

��� 	 � and �T j��n 	 �j�n�j � Hence

���T��� � � � �T
j����� 	 �j 	 a��j����j���

Since �a��j����j���j�� is ultimately periodic� the sequence ��j�j�� is also ultimately periodic�
Now we prove the converse� Suppose that the sequence ��j�j�� is ultimately periodic�

Theorem �� gives the following relations�

a��m��n 	 ����m�aT�m�n � aT�m���n��
a��m��n�� 	 ��
a��m����n 	 ��
a��m����n�� 	 ��a

T�
m�n�

Denote by V �
m�n for m � � the vector

V �
m�n 	



BBB�

a�m�n

a�m���n
����ma�m�n

����ma�m���n

�
CCCA �

We then obtain
V �
�m��n 	 A���V

T�
m�n�

V �
�m��n�� 	 ��A���V

T�
m�n�

V �
�m����n 	 A���V

T�
m�n�

V �
�m����n�� 	 ��A���V

T�
m�n�

��



where the matrices Ai�j are given by

A��� 	



BBB�

� � � ��
� � � �
� � � ��
� � � �

�
CCCA � A��� 	



BBB�

� � � �
� � � �
� � � �
� � � �

�
CCCA �

A��� 	



BBB�

� � � �
� � � ��
� � � �
� � �� �

�
CCCA � A��� 	



BBB�

� � � �
� � � �

�� � � �
� � � �

�
CCCA �

Now� examining the set of subsequences of the double sequence �V �
m�n�m�n de�ned by

N 	 f�V Tu�
�jm�r��jn�s�m�n�� � j � �� � � r� s � 
j � �� u � �g

we see from the above relations that this set is �nite if � 	 T j� for some j� i�e�� if the
sequence � is ultimately periodic� Hence the 
�kernel of the sequence �V �

m�n�m�n is also �nite�
which means that this sequence is 
�automatic� Finally� its �rst component �a�m�n�m�n is also

�automatic�

Remark	 The same proof works for the coe�cients of the polynomial q���n� but the corre�
sponding result for the coe�cients of q���n can also be deduced from Theorem �� and from
the property that �dn�n is 
�automatic if and only if ��n�n is ultimately periodic�
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