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Abstract

We consider two kinds of partitions having n blocks and an initial seg-
ment of positive integers as a ground set. Pretty partition has all blocks of
size at most 2, does not induce the pattern ...a...b...b...a..., and has
no two consecutive numbers in the same block. Ugly partition differs only
in that it does have some two consecutive numbers in the same block. Using
rooted plane trees we construct, for any n > 1, a bijection matching pretty

and ugly partitions.

1 Introduction

A partition uw with n blocks is a set of n nonempty disjoint subsets of X =
{1,2,...,1} whose union is X. We say that w is abba-free if there are no four
distinct numbers 1 < ¢; < ... < iy <[ and no two distinct blocks A and B such
that 71,14 € A and 12,73 € B. Partitions having no two consecutive numbers in the
same block are called pretty, otherwise they are ugly.

The purpose of this note is to prove bijectively the following identity.

Identity 1.1 Among abba-free partitions with n > 1 blocks, each block of size 1
or 2, there is as many pretty partitions as ugly partitions.

Any partition u can be written as a sequence ajas ...a; of labels given to the
blocks: a; is the label of the block B, i € B. The canonical form of u is obtained
when the blocks are ordered by their least elements as By, Bs,..., B, and B; is
labeled by 7. We shall work with partitions in their sequential form.
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For instance, one way how to write u = {{2,3,5},{1,6},{4}} as a sequence is
u = becach and the canonical form is v = 122321. For n = 2 the pretty and ugly
partitions appearing in the identity are:

{12,121,1212} and {112,122,1122}.

For n = 3 the two sets described in the identity have 11 elements.

The identity was discovered in [1] as a byproduct of formulae for generating
functions enumerating abba-free partitions. In the next section we present a bijec-
tion proving the identity. Our main tool is an encoding of abba-free partitions by
rooted plane trees.

2 The bijection

A rooted plane tree is a finite directed tree with all edges directed away from the
distinguished vertex, called a root, and with a linear order on any set of children
of a vertex. From now on we call them shortly trees.

We think of trees as plane pictures. We draw vertices as points, the root in
the lowest position, and edges as straight segments directed up. The children of a
vertex are drawn from left to right in accordance with the prescribed linear order.
It is well known that there are (2:) /(n + 1) (Catalan number) different trees with
n edges.

For e = vyvy an edge in a tree T we refer to vy, as to the child of vy and to vy
as to the parent of vy. A vertex with no child is called a leaf. A layer in T is
the set of vertices with the same distance from the root. Suppose the vertices of
T are ordered as vy, vq,...,v, so that lower layers come first and in one layer left
vertices come first. Hence vy is the root. Such an order is called good ordering.
A vertex of T is called solitary (young) if it is the only vertex in its layer and its
parent is the rightmost vertex in its layer (if it is a leaf whose parent is the root).

Let S(n) stand for the set of abba-free partitions with n blocks, each block of
size 1 or 2. The subsets of pretty and ugly partitions are denoted by P(n) and
U(n). The subset of partitions with two-element blocks only is R(n). The set of
trees with n edges is denoted by 7 (n).

In the rest of the note we shall construct a bijection F' between the sets P(n)
and U(n). First we restate the identity in terms of tree structures called gap trees.
In the second step we construct the desired bijection, working with gap trees rather
than with partitions.



From partitions to gap trees

We start with a bijection G between R(n) and 7 (n). Suppose u = ajas . . . aa, €
R(n) is in the canonical form. The tree T = G(u) is constructed by processing u
from left to right. In the beginning ¢ = 1, Ty = p, and v = p where p is a single
unlabeled vertex. In the general step T;_; is a tree with unlabeled root and all
other vertices labeled by positive integers and v is a vertex of 7;_4. If a; # a; for
all 1 < 7 < 1 we derive T; from T;_; by adding a new child with the label a; to
the right of the children of v. Then we move to the next term of u, v remains
the same. If a; appears in u before we put 7; equal to T;_;, v equal to the vertex
labeled by a;, and we move to the next term of u. The procedure terminates for
i = 2n, we forget the labels and set G(u) =T = Ty,.

Lemma 2.1 The mapping G : R(n) — T (n) is a bijection.

Proof. The algorithm adds vertices in their good order and v traces T in the
good order. Let us define the inverse of G. We take the vertices (vg,vq,...,v,)
of T € T(n) in their good order and write down for each v; first the index ¢ and
then, left to right, the indices of its children. We set G~(T") equal to the sequence
obtained, the initial 0 deleted. Clearly, G and G~ are inverses of one another. O

The mapping G corresponds to the bredth-first search in 7. We remark that
abab-free partitions (the avoidance of abab is defined in a way analogous to that
of abba) with n blocks, each of size 2, can be put in a bijective correspondence
with 7 (n) as well. These partitions are proper bracketings with n brackets. The
correspondence matching them with trees is based on the depth-first search and is
well known.

A gap in a finite sequence u = ajas ... a; is the space between two consecutive
terms or the space before a; or the space after a;. The set of gaps g(u) has [ + 1
elements. Suppose u = a; ...az, € R(n) and let x = a; = a;, i < j. The first (the
second ) gap of w is the gap following after a; (after a;). The first gap of w is the
gap of u before a;.

The gaps of a vertex v of a tree T' € T (n) are the wedge-shaped spaces into
which the edges going up from v divide the neighborhood of v. A vertex with d
children has d 4+ 1 gaps. In particular, any leaf has exactly one gap. The set ¢g(7T)
of all gaps has 2n + 1 elements. For e = v1v5 an edge of T we call the leftmost gap
of vy the top gap of e and the gap of vy to the right of e the bottom gap of e. The
first gap of T is root’s leftmost gap.



The mapping G induces a bijection G* : ¢g(u) — g¢g(G(u)). Suppose u =
a1as . ..as, € R(n) is in the canonical form. The first gap of u is sent to the first
gap of "= G(u). The first (the second) gap of an integer x is sent to the top (to
the bottom) gap of the edge whose endvertex is the xth one in the good order, we
remind that the root is the Oth vertex.

A gap tree is a pair (T, s) where T is a tree and s : ¢(T) — Ny is an integer
mapping. Its size is |E(T)|+ X s(g) where we sum over ¢g(7T'). The set of gap trees
of size n is denoted by G7 (n). A vertex is solitary (young) in (T, s) if it is solitary
(young) in 7" and s(g) = 0 for its leftmost gap (for its only gap).

Any sequence u € S(n) can be encoded by a gap tree H(u) = (T, s) of size n
as follows. We decompose u into (u*,t) where u* € R(m) is the subsequence of
2-element blocks and t : g(u*) — Ny counts the numbers of 1-element blocks in
the gaps of u*. We set T'= G(u*) and s(G*(g)) = t(g) for any g € g(u*). For an
example illustrating H see Fig. 2.

Lemma 2.2 The above mapping H : S(n) — G7T (n) is a bijection. Moreover,
it maps pretty partitions to those and only those gap trees which have no solitary
vertex.

Proof. Check the definitions. O

Thus the desired bijection F' : P(n) — U(n) is constructed as soon as we
exhibit a bijection matching gap trees of size n without solitary vertices with those
having at least one solitary vertex. We denote the former set as G7 o(n) and the
latter set as G7 1(n).

Bijections for gap trees

It is was not too obvious to us how to match the elements of G7y(n) and
GT ((n). However, we could easily see the bijection between the sets G7°(n) and
GT'(n). The former set consists of gap trees of size n with no young vertex and
the latter set of gap trees of size n with at least one young vertex.

Lemma 2.3 There is a bijection I : GT*(n) — GT°(n).

Proof. Suppose (7, s) is a gap tree with young vertices, let v be the leftmost one.
We transform (7', s) into a gap tree [((T,s)) = (U, t) of the same size and with no
young vertex. Let (Tj, s) be the gap subtree of (7', s) rooted in the root r which is
lying to the right of v. There is to distinguish two cases.



1. If there is nothing to the right of v — (T, s) consists of r only and s(g) = 0
for g the rightmost gap of r in ' — we delete v and put t(h) = s(¢') + 1 where h
is now the rightmost gap of r in U and ¢’ was the second rightmost gap of r in T
(h arises by merging ¢ and ¢’). The values of ¢ on other gaps equal to those of s.

2. If there is anything to the right of v — (7g, s) has more than one vertex or
s(g) > 0 — (Tp, s) is cut off from r (r gets duplicated for a while) and is glued to
v. We set t(h) = 0, on other gaps t retains the values of s.

1. 0 o m+ 1

Figure 1: The bijection I.

The transformation is depicted schematicly on the above figure (0, a, b, and m
stand for the values of s and t on the corresponding gaps). All young vertices are
destroyed. To reconstruct (7', s) from (U, t) we check first whether t(h) > 0 for h
the rightmost gap of the root of U. If yes we proceed backwards via (1) otherwise
via (2). Hence [ is a bijection. O

It remains to work out the bijections between GT o(n) and GT°(n), and GT(n)
and GT'(n). We prove more. We present a bijection .J : G7 (n) — GT (n) that
maps a gap tree with & solitary vertices to a gap tree with k& young vertices.

We need few definitions. For 7" a tree the rightmost branch (zq,xs,..., ),
xry = r, the final leaf x;,, is omitted, is called the right side of T. The top side
of T (y1,y2,-..,y) consists of the vertices yy, ..., ¥y, of the highest layer, ordered
from right to left, and of the vertices 4,11, - - ., y; of the highest but one layer which
lie to the right of y;’s parent, again taken from right to left. An encoding sequence
is a sequence ((ay,b1),..., (an,b,,)) of pairs of positive integers satisfying

b1:1andbi_§ai_1—|—bi_1—1forz':2,...,m.



Its size is a; + az + ...a,,. The one term sequence ((0,1)) is defined to be an
encoding sequence too.

Lemma 2.4 There is a bijection J : GT (n) — GT (n) that maps a gap tree with

k solitary vertices to a gap tree with k young vertices.

Proof. Suppose z = ((ay,b1),...,(am,bn)) is an encoding sequence. We show
two ways to decode it and to obtain a tree T" with a; 4+ as + ... + a,, edges.

The sequence z = ((0,1)) is decoded in both ways as the one vertex tree. We
start the first decoding with drawing, from bottom to top, a path of a; edges. We
denote this initial tree as 7. In the general step, to derive T;;¢ from T}, we draw
from bottom to top and to the right of T; a path P of a,y; edges starting in the
b; . 1th vertex of the right side of T;. P is clearly the final segment of the right side
of T;41. On the end we set T'=T,,. We denote this decoding as .J;. The order in
which the edges of T" are drawn is called the .Ji-order.

The second decoding is a similar one, the difference being that 77 is the broom
of a; edges (the root has a; children, all of them are leaves) and that in the general
step we join to the b;;1th vertex of the top side of T; a broom of a;y; edges.
Their endpoints become the initial segment of the top side of T;,;. Fach broom is
drawn from right to left. This decoding is denoted as Jo, the Jy-order is defined
analogously.

Both decodings are bijections from the set of encoding sequences of size n to
T (n). Hence J3 = J; o Jy ' is a bijection on 7 (n). Since solitary (young) vertices
correspond in Jy (in J;) exactly to the terms (1,1) of the encoding sequence, we
conclude that J3 has the property stated in the lemma. It remains to extend it to
G7T (n).

We define the bijection J5 : ¢(T) — g(J3(T)) as follows. Suppose g is the top
(the bottom) gap of the mth edge, in the Jy-order, of 7. We set .J5(g) equal to
the top (to the bottom) gap of the mth edge, in the Ji-order, of J3(T"). The first
gap of T' is sent, of course, to the first gap of J3(7T').

Finally, let (7, s) € GT (n). We define J((T,s)) = (J3(T),t) where t(J5(g)) =
s(g) for any g € g(T). Clearly g is the leftmost gap of a solitary vertex in 7T iff
J3(g) is the gap of a young vertex in J3(7"). Thus J has the property stated. O

Our construction of the bijection F' : P(n) — U(n) is complete: F =
H Yo J ol o Jo H. We illustrate it for a specific partition on Fig. 2. In
the top row the encoding sequence is ((2,1),(2,2),(1,2)) and in the bottom row
((1,1),(1,1),(2,1),(1,1)). In I~" we proceed backwards via (2).
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Figure 2: The bijection F'

3 Concluding remarks

The reader may wonder about the numbers a,, = |P(n)| = [U(n)|,
{anbos = {1,3, 11, 45,197,903, 4279, 20793, 103049, . . . }.

These are Schroder numbers [3], A1003 in [4], one of their explicit forms [2] is

n-l 9l n n—1
“”_gn—z<l+1>< I )

The interested reader will find more references and expressions for Schroder num-
bers in [2] or in [4].
Our construction could be translated back to partitions but we prefer tree

structures because they enable visual insight in the whole matter. We plan to
prove along similar lines two other identities of [1] concerning abba-free and abab-

free partitions.
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