
ON q–OLIVIER FUNCTIONS

HELMUT PRODINGER AND TUWANI A. TSHIFHUMULO

Abstract. We consider words w1 . . . wn with letters wi ∈ {1, 2, 3, . . . } satisfying an up–
up–down pattern like a1 ≤ a2 ≤ a3 ≥ a4 ≤ a5 ≤ a6 ≥ . . . . Attaching the (geometric)
probability pqi−1 to the letter i (with p = 1−q), every word gets a probability by assuming
indepence of letters. We are interested in the probability that a random word of length
n satisfies the up–up–down condition. It turns out that one has to consider the 3 residue
classes (mod 3) separately; then one can compute the associated probability generating
function. They turn out to be q–analogues of so called Olivier functions.

1. Introduction

We consider words w1 . . . wn with letters wi ∈ {1, 2, 3, . . . } satisfying an up–up–down pat-
tern like a1 ≤ a2 ≤ a3 ≥ a4 ≤ a5 ≤ a6 ≥ . . . . Attaching the (geometric) probability pqi−1

to the letter i (with p = 1− q), every word gets a probability by assuming independence of
letters. We are interested in the probability that a random word of length n satisfies the
up–up–down condition. It turns out that one has to consider the 3 residue classes (mod 3)
separately; then one can compute the associated probability generating function.

This extends previous research of the first author about up-down patterns, leading to q–
tangent and q–secant numbers, see [4]. There are several variations possible, since “up”
might mean ≤ or < and similar for “down.” Also, one can consider down–down–up patterns.

As it was discussed already in [4], the limit q → 1 yields the model of permutations (in
one line notation). Thus we get the generating functions of permutations satisfying the
up–up–down condition as corollaries. These results are due to Carlitz [1]. The generating
functions he obtained are known as Olivier functions [3, 2]:

Φk,t(z) :=
∑

n≥0

zkn+t

(kn + t)!
.

In this way we get various different q–Olivier functions.

We arrange these functions in a table and prove only one significant instance, the other ones
being similar. More details can be found in the forthcoming thesis of the second author [7].

Extensions to patterns like (≤ · · · ≤≥)∗ and (≤≤>>)∗ are also discussed.

We need the following notations: (x; q)n := (1 − x)(1 − qx) . . . (1 − qn−1x) and [n]q! =
(q; q)n/pn, which in the limit q → 1 are the ordinary factorials.

2. Results

We first consider n ≡ 1 mod 3. The probability generating function is given by
∑

n≥0

(−1)n z3n+1qAn2+Bn

[3n + 1]q!

/ ∑

n≥0

(−1)n z3nqCn2+Dn

[3n]q!
,
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with the parameters A, B,C, D given in the following table.

A B C D

(≤≤≥)∗ 3
2 −1

2
3
2 −3

2

(≤≤>)∗ 0 0 0 0

(≤<≥)∗ 3 0 3 −2

(≤<>)∗ 3
2

1
2

3
2 −1

2

(<≤≥)∗ 3 1 3 −1

(<≤>)∗ 3
2

3
2

3
2

1
2

(<<≥)∗ 9
2

3
2

9
2 −3

2

(<<>)∗ 3 2 3 0

A B C D

(≥≥≤)∗ 3
2

3
2

3
2 −3

2

(≥≥<)∗ 0 0 0 0

(≥>≤)∗ 3 2 3 −1

(≥><)∗ 3
2

1
2

3
2

1
2

(>≥≤)∗ 3 1 3 −2

(>≥<)∗ 3
2 −1

2
3
2 −1

2

(>>≤)∗ 9
2

3
2

9
2 −3

2

(>><)∗ 3 0 3 0

Now we consider n ≡ 2 mod 3. The probability generating function is given by

∑

n≥0

(−1)n z3n+2qAn2+Bn+E

[3n + 2]q!

/ ∑

n≥0

(−1)n z3nqCn2+Dn

[3n]q!
,

with the parameters A, B,C, D,E given in the following table.

A B C D E

(≤≤≥)∗ ≤ 3
2

1
2

3
2 −3

2 0

(≤≤>)∗ ≤ 0 0 0 0 0

(≤<≥)∗ ≤ 3 2 3 −2 0

(≤<>)∗ ≤ 3
2

3
2

3
2 −1

2 0

(<≤≥)∗ < 3 3 3 −1 1

(<≤>)∗ < 3
2

5
2

3
2

1
2 1

(<<≥)∗ < 9
2

9
2

9
2 −3

2 1

(<<>)∗ < 3 4 3 0 1

A B C D E

(≥≥≤)∗ ≥ 3
2

3
2

3
2 −3

2 0

(≥≥<)∗ ≥ 0 0 0 0 0

(≥>≤)∗ ≥ 3 2 3 −1 0

(≥><)∗ ≥ 3
2

1
2

3
2

1
2 0

(>≥≤)∗ > 3 4 3 −2 1

(>≥<)∗ > 3
2

5
2

3
2 −1

2 1

(>>≤)∗ > 9
2

9
2

9
2 −3

2 1

(>><)∗ > 3 3 3 0 1

Finally, we consider n ≡ 0 mod 3. The probability generating function is given by

1

/ ∑

n≥0

(−1)n z3nqCn2+Dn

[3n]q!
,

with the parameters C,D given in the following table.
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C D

(≤≤≥)∗ ≤≤ 3
2 −3

2

(≤≤>)∗ ≤≤ 0 0

(≤<≥)∗ ≤< 3 −2

(≤<>)∗ ≤< 3
2 −1

2

(<≤≥)∗ <≤ 3 −1

(<≤>)∗ <≤ 3
2

1
2

(<<≥)∗ << 9
2 −3

2

(<<>)∗ << 3 0

C D

(≥≥≤)∗ ≥≥ 3
2 −3

2

(≥≥<)∗ ≥≥ 0 0

(≥>≤)∗ ≥> 3 −1

(≥><)∗ ≥> 3
2

1
2

(>≥≤)∗ >≥ 3 −2

(>≥<)∗ >≥ 3
2 −1

2

(>>≥)∗ >> 9
2 −3

2

(>><)∗ >> 3 0

As an illustration, we prove the instance of (≤≤≥)∗, i. e. we consider words of length
1, 4, 7, . . . . Denote by an(u) the following probability generating function: the coefficient of
ui in an(u) is the probability that a word of length 3n− 2 has the desired shape and ends
with i. The initial value is immediate:

a1(u) =
pu

1− qu
.

To get a recursion, we compute what can become of the variable ui:

ui −→
∑

i≤j≤k≥l

pqj−1pqk−1pql−1ul

=
p3uq2i

q2(1− q)(1− q2)(1− qu)
− up3uiq3i

q2(1− qu)(1− q2u)(1− q3u)
.

(1)

The multiple sum was computed with Maple. This gives us the following recursion which
involves substitutions as well:

an+1(u) =
p3u

q2(q; q)2(1− qu)
an(q2)− p3u

q2(qu; q)3
an(q3u).

We translate that into a generating function: Set

f(u) =
∑

n≥1

an(u)z3n−2,

then

f(u) = z
pu

1− qu
+

z3p3u

q2(q; q)2(1− qu)
f(q2)− z3p3u

q2(qu; q)3
f(q3u).

The nature of that functional equation makes it necessary to compute first f(q2), something
that can be achieved by iteration:

f(q2) = z
pq2

1− q3
+

z3p3q2

q2(q; q)2(1− q3)
f(q2)

− z3p3q2

q2(q3; q)3

[
z

pq5

1− q6
+

z3p3q5

q2(q; q)2(1− q6)
f(q2)

− z3p3q5

q2(q6; q)3

[
z

pq8

1− q9
+

z3p3q8

q2(q; q)2(1− q9)
f(q2)

− z3p3q8

q2(q9; q)3

[
. . . ,
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or

f(q2)
[
1− z3p3

(q; q)3
+

z6p6q3

(q; q)6
− z9p9q0+3+6

(q; q)9
+ . . .

]

=
zpq2

(q3; q)1
− z4p4q5

(q3; q)4
+

z7p7q11

(q3; q)7
− z10p10q2+(0+3+6+9)

(q3; q)10
+ . . . ,

which gives us the explicit form

f(q2) =
∑

n≥0

(−1)n z3n+1p3n+1q
3
2
n2+ 3

2
n+2

(q3; q)3n+1

/ ∑

n≥0

(−1)n z3np3nq
3
2
n2− 3

2
n

(q; q)3n
.

Now that this quantity is known, we can compute f(u), again by iteration:

f(u) = z
pu

1− qu
+

z3p3u

q2(q; q)2(1− qu)
f(q2)

− z3p3u

q2(qu; q)3

[
z

puq3

1− q4u
+

z3p3q3u

q2(q; q)2(1− q4u)
f(q2)

− z3p3q3u

q2(q4u; q)3

[
z

puq6

1− q7u
+

z3p3q6u

q2(q; q)2(1− q7u)
f(q2)

− z3p3q6u

q2(q7; q)3

[
. . . ,

or

f(u) =
∑

n≥0

(−1)n z3n+1p3n+1un+1q
3
2
n2− 1

2
n

(qu; q)3n+1
− f(q2)

∑

n≥1

(−1)n z3np3nunq
3
2
n2− 7

2
n

(q; q)2(qu; q)3n−2
.

Of course, we are especially interested in u = 1:

f(1) =
∑

n≥0

(−1)n z3n+1p3n+1q
3
2
n2− 1

2
n

(q; q)3n+1

−
∑

n≥0

(−1)n z3n+1p3n+1q
3
2
n2+ 3

2
n+2

(q; q)3n+3

∑

n≥1

(−1)n z3np3nq
3
2
n2− 7

2
n

(q; q)3n−2

/ ∑

n≥0

(−1)n z3np3nq
3
2
n2− 3

2
n

(q; q)3n
.

We will write everything over a common denominator and thus have to compute

∑

n≥0

(−1)n z3n+1p3n+1q
3
2
n2− 1

2
n

(q; q)3n+1

∑

n≥0

(−1)n z3np3nq
3
2
n2− 3

2
n

(q; q)3n

+
∑

n≥0

(−1)n+1 z3n+1p3n+1q
3
2
n2+ 3

2
n+2

(q; q)3n+3

∑

n≥1

(−1)n z3np3nq
3
2
n2− 7

2
n

(q; q)3n−2
.

The coefficient of (pz)3n+1 in the first sum is

(−1)n
n∑

k=0

q
3
2
k2− 1

2
k

(q; q)3k+1

q
3
2
(n−k)2− 3

2
(n−k)

(q; q)3n−3k
= (−1)nq

3
2
n(n−1)

n∑

k=0

qk(3k+1)−3kn

(q; q)3k+1(q; q)3n−3k
;

the coefficient of (pz)3n+1 in the second sum is

(−1)n+1q
3
2
n(n−1)

n∑

k=0

q3k2−k(3n−1)

(q; q)3k+1(q; q)3n−3k
+ (−1)n q

3
2
n2− 1

2
n

(q; q)3n+1
;
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so the combination of both is simply

(−1)n q
3
2
n2− 1

2
n

(q; q)3n+1
.

This proves that

f(1) =
∑

n≥0

(−1)n z3n+1p3n+1q
3
2
n2− 1

2
n

(q; q)3n+1

/ ∑

n≥0

(−1)n z3np3nq
3
2
n2− 3

2
n

(q; q)3n
,

as claimed.

3. A generalization

We briefly report on the more general pattern up. . . up–down, with k − 1 up steps always
followed by a down step (except possibly at the right border). Details of these computations
are to be found in [7]. There are four cases to be considered:

First, we consider n ≡ 0 mod k. For the pattern (≤≤ · · · ≤≥)∗, the probability generating
function is

1

/ ∑

n≥0

(−1)n zknq
k
2
n2− k

2
n

[kn]q!
.

For the pattern (≤≤ · · · ≤>)∗, the probability generating function is

1

/ ∑

n≥0

(−1)n zkn

[kn]q!
.

For the pattern (<< · · · <≥)∗, the probability generating function is

1

/ ∑

n≥0

(−1)n zknq
k2

2
n2− k

2
n

[kn]q!
.

Finally, for the pattern (<< · · · <>)∗, the probability generating function is given by

1

/ ∑

n≥0

(−1)n zknq
k(k−1)

2
n2

[kn]q!
.

Next, we consider n ≡ t mod k, where t = 1, 2, . . . , k−1. That means that we consider t−1
extra up steps at the right border. For the pattern (≤≤ · · · ≤≥)∗ ≤t−1, the probability
generating function is

∑

n≥0

(−1)n zkn+tq
k
2
n2+(t− k

2 )n

[kn + t]q!

/ ∑

n≥0

(−1)n zknq
k
2
n2− k

2
n

[kn]q!
.

For the pattern (≤≤ · · · ≤>)∗ ≤t−1, the probability generating function is

∑

n≥0

(−1)n zkn+t

[nk + t]q!

/ ∑

n≥0

(−1)n zkn

[kn]q!
.

For the pattern (<< · · · <≥)∗ <t−1, the probability generating function is

∑

n≥0

(−1)n zkn+tq
k2

2
n2+(t− 1

2
)kn+

t(t−1)
2

[kn + t]q!

/ ∑

n≥0

(−1)n zknq
k2

2
n2− k

2
n

[kn]q!
.
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Finally, for the pattern (<< · · · <>)∗ <t−1, the probability generating function is given by

∑

n≥0

(−1)n zkn+tq
k(k−1)

2
n2+(k−1)tn+

t(t−1)
2

[nk + t]q!

/ ∑

n≥0

(−1)n zknq
k(k−1)

2
n2

[kn]q!
.

We sketch again the instance (≤≤ · · · ≤≥)∗: Maple computes in analogy to (1)

ui −→
∑

i≤j≤k≤l≥h

pqj−1pqk−1pql−1pqh−1uh

=
p4uq3i

q3(q; q)3(1− qu)
− up4uiq4i

q3(qu; q)4
,

as well as the next instance (a five fold sum)

ui −→ p5uq4i

q4(q; q)4(1− qu)
− up5uiq5i

q4(qu; q)5
,

from which it is easy to guess the general substitution formula and to prove it by induction.
This leads to the recursion

an+1(u) =
pku

qk−1(q; q)k−1(1− qu)
an(qk−1)− pku

qk−1(qu; q)k
an(qku).

The rest of the proof is then as in the previous section.

4. Other patterns

The method we use is suitable to deal with other patterns as well. As an example, we
consider words (and permutations in the limit) of length ≡ 1 mod 4 satisfying the pattern
(≤≤>>)∗. A relatively straight forward computation leads to

a1(u) =
pu

1− qu
,

and for n ≥ 1

an+1(u) =
p3u

q(q; q)2(1− q2u)
an(q2)− p4u

q3(q; q)3(1− qu)
an(q3) +

p4

q4(qu; q)4
an(q4u).

We translate that into a generating function,

f(u) =
∑

n≥1

z4n−3an(u).

With this notation we get the functional equation

f(u) =
zpu

1− qu
+

z4p3u

q(q; q)2(1− q2u)
f(q2)− z4p4u

q3(q; q)3(1− qu)
f(q3) +

z4p4

q4(qu; q)4
f(q4u). (2)

We must compute f(q2) and f(q3):

f(q2) =
zpq2

1− q3
+

z4p3q2

q(q; q)2(1− q4)
f(q2)− z4p4q2

q3(q; q)3(1− q3)
f(q3)

+
z4p4

q4(q3; q)4

[
zpq6

1− q7
+

z4p3q6

q(q; q)2(1− q8)
f(q2)− z4p4q6

q3(q; q)3(1− q7)
f(q3)

+
z4p4

q4(q7; q)4

[
zpq10

1− q11
+

z4p3q10

q(q; q)2(1− q12)
f(q2)− z4p4q10

q3(q; q)3(1− q11)
f(q3)
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+
z4p4

q4(q11; q)4

[
+ . . .

So defining the auxiliary quantities

α = q2
∑

n≥0

z4n+1p4n+1

(q3; q)4n+1
,

β = 1− q

p

∑

n≥1

z4np4n

(q; q)4n−2(1− q4n)
,

γ = − 1
q(q; q)3

∑

n≥1

z4np4n

(q3; q)4n−3
,

we get
f(q2)β = α + γf(q3).

Similarly,

f(q3) =
zpq3

1− q4
+

z4p3q3

q(q; q)2(1− q5)
f(q2)− z4p4q3

q3(q; q)3(1− q4)
f(q3)

+
z4p4

q4(q4; q)4

[
zpq7

1− q8
+

z4p3q7

q(q; q)2(1− q9)
f(q2)− z4p4q7

q3(q; q)3(1− q8)
f(q3)

+
z4p4

q4(q8; q)4

[
zpq11

1− q12
+

z4p3q11

q(q; q)2(1− q13)
f(q2)− z4p4q11

q3(q; q)3(1− q12)
f(q3)

+
z4p4

q4(q12; q)4

[
. . . ,

or, with

δ = q3
∑

n≥0

z4n+1p4n+1

(q4; q)4n+1
,

ρ =
q2

p(q; q)2

∑

n≥1

z4np4n

(q4; q)4n−4(1− q4n+1)
,

σ =
∑

n≥0

z4np4n

(q; q)4n
,

we get
f(q3)σ = δ + ρf(q2).

Solving the system we find

f(q2) =
ασ + γδ

βσ − γρ
,

f(q3) =
αρ + βδ

βσ − γρ
.

Now we can compute f(1):

f(1) =
zp

1− q
+

z4p3

q(q; q)2(1− q2)
f(q2)− z4p4

q3(q; q)3(1− q)
f(q3)
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+
z4p4

q4(q; q)4

[
zpq4

1− q5
+

z4p3q4

q(q; q)2(1− q6)
f(q2)− z4p4q4

q3(q; q)3(1− q5)
f(q3)

+
z4p4

q4(q5; q)4

[
zpq8

1− q9
+

z4p3q8

q(q; q)2(1− q10)
f(q2)− z4p4q8

q3(q; q)3(1− q9)
f(q3)

+
z4p4

q4(q9; q)4

[
. . . ,

or, with

λ =
∑

n≥0

z4n+1p4n+1

(q; q)4n+1
,

µ =
1

pq(q; q)2

∑

n≥0

z4n+4p4n+4

(q; q)4n(1− q4n+2)
,

ν =
1

q3(q; q)3

∑

n≥1

z4np4n

(q; q)4n−3
,

f(1) = λ + µf(q2)− νf(q3).

We are not aiming to simplify this expression in the general case. However, we move straight
to the limit q → 1, to study permutations. At this stage it seems necessary to make the
variable z (and residue class (mod 4)) explicit: We write H1(z) := f(1). Then

H1(z) = λ + µ
ασ + γδ

βσ − γρ
− ν

αρ + βδ

βσ − γρ
,

with

α = 2
∑

n≥0

z4n+1

(4n + 3)!
,

β = 1−
∑

n≥1

z4n

(4n− 2)!(4n)
,

γ = −1
3

∑

n≥1

z4n

(4n− 1)!
,

δ = 6
∑

n≥0

z4n+1

(4n + 4)!
,

ρ = 3
∑

n≥1

z4n

(4n− 1)!(4n + 1)
,

σ =
∑

n≥0

z4n

(4n)!
,

λ =
∑

n≥0

z4n+1

(4n + 1)!
,

µ =
1
2

∑

n≥0

z4n+4

(4n)!(4n + 2)
,
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ν =
1
6

∑

n≥1

z4n

(4n− 3)!
.

All these series can be expressed by exponential functions as follows:

α =
1

2z2

[
ez + ieiz − e−z − ie−iz

]
,

β =
1
4

[
ez + eiz + e−z + e−iz

]− z

4
[
ez + ieiz − e−z − ie−iz

]
,

γ = − z

12
[
ez + ieiz − e−z − ie−iz

]
,

δ = − 6
z3

+
3

2z3

[
ez + eiz + e−z + e−iz

]
,

ρ =
3
4

[
ez + eiz + e−z + e−iz

]− 3
4z

[
ez − ieiz − e−z + ie−iz

]
,

σ =
1
4

[
ez + eiz + e−z + e−iz

]
,

λ =
1
4

[
ez − ieiz − e−z + ie−iz

]
,

µ =
z3

8
[
ez − ieiz − e−z + ie−iz

]− z2

8
[
ez − eiz + e−z − e−iz

]
,

ν =
z3

24
[
ez − ieiz − e−z + ie−iz

]
.

Finally, this allows to express the generating function of interest as

H1(z) = (1 + i)
−ie(1+i)z − e(−1+i)z + ie(−1−i)z + e(1−i)z

e(1+i)z + e(−1+i)z + 4 + e(−1−i)z + e(1−i)z
.

Here is the list of the first coefficients (normalized by factorials, to make them the number
of permutations satisfying the pattern (≤≤>>)n, for n = 0, 1, 2, . . . ):

1, 6, 1456, 2020656, 9336345856, 108480272749056, 2664103110372192256,
122840808510269863827456, 9758611490955498257378246656,
1251231616578606273788469919481856, 245996119743058288132230759497577005056, . . . .

This sequence is not in Sloane’s encyclopedia [5, 6].

Now we sketch briefly what happens for the other residue classes (mod 4). They can all
be obtained from f(u) by appropriate substitutions.

For an extra up step ≤, we must compute H2(z) := z
q f(q). Starting from the functional

equation (2) we obtain

1
q
f(q) =

∑

n≥0

p4n+1z4n+1

(q2; q)4n+1
+

f(q2)
pq(q; q)2

∑

n≥1

p4nz4n

(q2; q)4n−4(1− q4n−1)
− f(q3)

q3(q; q)3

∑

n≥1

p4nz4n

(q2; q)4n−3
.

If we let

λ1 =
∑

n≥0

p4n+1z4n+1

(q2; q)4n+1
,

% =
1

pq(q2; q)

∑

n≥1

p4nz4n

(q; q)4n−3(1− q4n−1)
,
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ω =
1

q3(q; q)3

∑

n≥1

p4nz4n

(q2; q)4n−3
,

we obtain
1
q
f(q) = λ1 +

σα + γδ

βα− γρ
%− ρα + βδ

βα− γρ
ω.

Again, we concentrate on the limit q → 1, to study permutations. So

H2(z) = z
(
λ1 +

σα + γδ

βα− γρ
%− ρα + βδ

βα− γρ
ω
)

where

λ1 =
∑

n≥0

z4n+1

(4n + 1)!
,

% =
1
2

∑

n≥1

z4n

(4n− 3)!(4n− 1)
,

ω =
1
6

∑

n≥1

z4n

(4n− 2)!
.

The three series ω, % and λ1 can be expressed by exponential functions as follows:

λ1 =
1
4
[ez − ieiz − e−z + ie−iz],

% =
z2

8
[ez − eiz + e−z − e−iz)− z

8
(ez + ieiz − e−z − ie−iz],

ω =
z2

24
[ez − eiz + e−z − e−iz].

This allows us to express the generating function of interest as follows:

H2(z) = −i
e(1+i)z − e(1−i)z − e(−1+i)z + e(−1−i)z

e(1+i)z + e(1−i)z + 4 + e(−1+i)z + e(−1−i)z
.

The first few values are 1, 26, 10576, 20551376, 122087570176, 1733786041150976, correspond-
ing to n = 2, 6, 10, 14, 18.

For two extra up steps ≤≤, we must compute H3(z) := z2

q(1+q)f(q2). In the limit q → 1,

this becomes

H3(z) = 2
ez − e−z + ieiz − ie−iz

e(1+i)z + e(1−i)z + 4 + e(−1+i)z + e(−1−i)z
.

The first few values are 1, 71, 45541, 120686411, 908138776681, corresponding to n = 3, 7, 11, 15, 19.

Finally, for 3 extra steps ≤≤> we compute

H0(z) := 1 +
z3

q2(1 + q)
f(q2)− z3

q3(1 + q)(1 + q + q2)
f(q3).

In the limit q → 1, this becomes

H0(z) = 2
ez + e−z + eiz + e−iz

e(1+i)z + e(1−i)z + 4 + e(−1+i)z + e(−1−i)z
.

The first few values are 1, 3, 413, 397023, 1402815833, corresponding to n = 0, 4, 8, 12, 16.

Remark. Alternative expressions are as follows: If we define (following Carlitz)

φi(z) =
∑

n≥0

z4n+i

(4n + i)!
, for i = 0, 1, 2, 3,



ON q–OLIVIER FUNCTIONS 11

(these are the functions Φ4,i(z) from the Introduction) and N := φ0(z)2 − φ1(z)φ3(z), then

H1(z) =
φ1(z)φ0(z)− φ2(z)φ3(z)

N
,

H2(z) =
φ2(z)φ0(z)− φ2

3(z)
N

=
φ2

1(z)− φ2
3(z)

2N
,

H3(z) =
φ3(z)

N
,

H0(z) =
φ0(z)

N
.

Carlitz and Scoville in [2, 3] have such results. However, in [2, p. 47] we see a result that
is difficult to interpret; there is a drawing of an up-up-down-down permutation of a length
≡ 1 mod 4, but its length is denoted by 4n− 1; as a generating function the authors give

φ1(z)φ2(z)− φ0(z)φ3(z)
N

= 2
z3

3!
+ 132

z7

7!
+ . . . ,

but there is only one permutation of length 3 satisfying that pattern.

The equivalence of the two forms for H2(z) follow from the relation φ2
1(z) + φ2

3(z) =
2φ0(z)φ2(z), given by [3, (3.12)].
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