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ABSTRACT

Let w 1 = d, w 2 , ... , w s be the weights of the nonzero codewords in a binary linear [n , k, d]

code C, and let w1
′ , w2

′ , ... , ws ′′ be the nonzero weights in the dual code C ⊥ . Let t be an integer

in the range 0 < t < d such that there are at most d − t weights wi
′ with 0 < wi

′ ≤ n − t. Assmus

and Mattson proved that the words of any weight w i in C form a t-design. We show that if

w 2 ≥ d + 4 then either the words of any nonzero weight w i form a (t + 1 )-design or else the

codewords of minimal weight d form a { 1 , 2 , ... , t , t + 2 }-design. If in addition C is self-dual

with all weights divisible by 4 then the codewords of any given weight w i form either a (t + 1 )-

design or a { 1 , 2 , ... , t , t + 2 }-design. The special case of this result for codewords of minimal

weight in an extremal self-dual code with all weights divisible by 4 also follows from a theorem

of Venkov and Koch; however our proof avoids the use of modular forms.

________________

* This paper appeared in IEEE Trans. Inform. Theory, 37 (1991), pp. 1261-1268.
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1. A strengthened Assmus-Mattson theorem

Let C be a binary, linear [n , k, d] code with nonzero weights w 1 = d, w 2 , ... , w s , and let

w1
′ , ... , ws ′′ be the nonzero weights in the dual code C ⊥ . Our starting point is the following

theorem.

Theorem 1 (Assmus and Mattson [2]). Let t be the greatest integer in the range 0 < t < d such

that there are at most d − t weights wi
′ with 0 < wi

′ ≤ n − t. Then the codewords of any weight w i

in C form a t-design.

Venkov [21], answering a question raised in [20], showed that this theorem has an analogue

for extremal even unimodular lattices in Euclidean space of dimension 24m. The expected

analogue was that the lattice vectors of any fixed nonzero length would form a spherical

11-design. Venkov proved this and more: he showed that these vectors possess an additional

symmetry, forming what he called a spherical 111⁄2-design. His proof uses the theory of modular

forms.

Venkov [21] also announced that similar results could be obtained for self-dual codes. These

results are stated by Koch [15] (see also [14], [16]). In particular, Venkov and Koch show that, in

any extremal binary self-dual doubly-even code C, the set P of minimal weight words has the

property that a certain linear form associated with P is constant on (t + 2 )-sets. Here t = 5 if the

length n of the code is a multiple of 24, t = 3 if n≡8 (mod 24), and t = 1 if n≡16 (mod 24). To

prove their result they associate a unimodular lattice with C and again apply the theory of

modular forms.

Our strengthened version of Theorem 1 involves the concept of a T-design, defined as follows

(cf. [8]). Let Ω be the set of all d-subsets of the n-set [ 1 ,n] = { 1 , ... , n}, with d ≤ n /2. We

identify Ω with the set of all points ξ = (ξ 1 , ... , ξ n ) in Rn that satisfy ξ p ∈ { 0 , 1 } for all p and

Σp =1
n ξ p = d. The vector space RΩ of mappings from Ω to R is invariant under the natural
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action of the symmetric group S n . The irreducible S n-invariant subspaces of RΩ are the

harmonic spaces harm (i), i = 0 , 1 , ... , d. (These spaces are described in detail in Section 2,

where in particular we give an explicit basis for harm (i).)

Let P be a subset of Ω, i.e. a constant weight code, and let π(P ) ∈ RΩ be the corresponding

characteristic vector. The importance of the harmonic space harm (i) is that if the projection of

π(P ) onto harm (i) is zero, then there is some regularity in the way the vectors of P meet an

arbitrary i-subset of [ 1 , n]. In particular (see [10]), P is a t-design if and only if, for all

i = 1 , 2 , ... , t, the inner product 〈 π(P ) , f 〉 = 0 for all f ∈ harm (i). As in [8] we extend the

definition of a design to subsets T ⊆ [ 1 , n] other than [ 1 , t] by saying that a collection P is a T-

design if, for all i ∈ T, the inner product 〈 π(P ) , f 〉 = 0 for all f ∈ harm (i). (In case 0 ∈ T, a T-

design is defined to be a T ′ -design with T ′ = T \ { 0 }.)

When combined with the results of Section 3 of the present paper (in particular Theorem 7),

the Venkov-Koch result mentioned above implies that the codewords of minimal weight in an

extremal self-dual doubly-even code C form a { 1 , 2 , ... , t , t + 2 }-design. (For in this case the

linear form in Theorem 7 reduces to Venkov’s form, given on page 461 of Koch [15].)

The purpose of the present paper is to give a similar generalization of the Assmus-Mattson

theorem that does not assume the code is self-dual and whose proof avoids the use of modular

forms. Our main theorem is the following.

Theorem 2. Let C be a binary [n , k, d] code with nonzero weights w 1 = d, w 2 , ... , w s , and let

w1
′ , ... , ws ′′ be the nonzero weights in the dual code C ⊥ . Let t be the greatest integer in the

range 0 < t < d such that there are at most d − t weights wi
′ with 0 < wi

′ ≤ n − t. If w 2 ≥ d + 4

then either the codewords in C of any nonzero weight w i form a (t + 1 )-design or else the

codewords of minimal weight d form a { 1 , 2 , ... , t , t + 2 }-design.
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The proof is given in Section 4. In one important special case we can prove slightly more.

Theorem 3. If, in addition to the hypotheses of Theorem 2, C is self-dual with all weights

divisible by 4 then the codewords of any given weight w i form either a (t + 1 )-design or a

{ 1 , 2 , ... , t , t + 2 }-design.

The proof is given in Section 5.

A list of the known extremal codes is given in [6, p. 194] and [7]. We may conclude for

example that the codewords of minimal weight in the [24, 12, 8] Golay code and the [48, 24, 12]

extended quadratic residue code form { 1 , 2 , 3 , 4 , 5 , 7 }-designs. The minimal weight

codewords in any of the five [32, 16, 8] self-dual doubly-even codes ([5], [7]) or in the extremal

self-dual codes of lengths 56, 80 and 104 form { 1 , 2 , 3 , 5 }-designs, and the minimal weight

words in the extremal self-dual codes of lengths 16, 40, 64, 88 and 136 form { 1 , 3 }-designs.

Other examples are given in Section 4.

The invariant linear forms associated with codes are further investigated in [3], [4].

Generalizations to nonlinear codes and other fields are considered in [3].

2. The harmonic space harm ( i )

In this section we give a more precise definition of and an explicit basis for the harmonic

space harm (i).

We first define the homogeneous space hom (i) ( 0 ≤ i ≤ n). This is the subspace of RΩ

represented by homogeneous polynomials f (z) = f (z 1 , ... , z n ) of total degree i and degree at

most 1 in each variable z p . Note that, since these functions are defined on Ω, zp
2 and z p

( 1 ≤ p ≤ n) represent the same function, and z 1 + z 2 + . . . + z p is the constant function d. The

latter assertion implies that hom ( j) is a subspace of hom (i) for 0 ≤ j ≤ i.
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The monomials z p 1
z p 2

. . . z p i
are linearly independent and span hom(i). Thus the

dimension of hom (i) is 1i
n2(cf. [10]).

The Laplacian ∆ is the differential operator given by

∆ f (z) =
p =1
Σ
n

∂z p

∂ f (z)_ _____ .

This maps hom (i) onto hom (i − 1 ), and the kernel is the harmonic space harm (i). In [10] it is

shown that there is an orthogonal decomposition

hom (i) = harm (i) ⊕ hom (i − 1 ) , ( 1 ≤ i ≤ n) ,

with respect to the inner product 〈 f , g 〉 =
ξ ∈ Ω
Σ f (ξ ) g(ξ ), from which it follows that the

dimension of harm (i) is 1i
n2− 1i − 1

n 2. Hom ( 0 ) = harm ( 0 ) is the 1-dimensional space of

constant functions.

Theorem 4. For any i-subset {q 1 , ... , q i } of [ 1 ,n] we define an element φof RΩ by

φ(z 1 , ... , z n ) =
j =0
Σ
i

( − 1 ) j 1j
i2

−1

1i − j
d − j21 j

n − i + 12σ j (z q 1
, ... , z q i

) , (1)

where σ j (z q 1
, ... , z q i

) is the sum of the characteristic functions z p 1
z p 2

. . . z p j
of all j-subsets

{p 1 , ... , p j } of {q 1 , ... , q i }. Then the set of all 1i
n2such φ’s spans harm (i).

Proof. Consider a monomial m(z) in hom (i). Without loss of generality we may take

m(z) = z 1 z 2
. . . z i .

For an integer u ∈ [ 0 , i] we define φu (z) ∈ hom (i) to be the sum of all monomials of degree i

having exactly u variables z p in common with m(z). We first show that

∆ φu (z) = (i − u + 1 ) g u −1 (z) + (n − 2i + u + 1 ) g u (z) , (2)
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where g j (z) ∈ hom (i − 1 ) is the sum of all monomials of degree i − 1 having exactly j variables in

common with m(z). We write z = (x, y), where x = (z 1 , ... , z i ) and y = (z i +1 , ... , z n ). Then

by definition,

φu (z) = σu (x) σ i −u (y) , g j (z) = σj (x) σ i − j −1 (y) , (3)

where σ j (w) = σj (w 1 , ... , w r ) = Σ w p 1
w p 2

. . . w p j
denotes the elementary symmetric

function of degree j in the variables w 1 , ... , w r . Note that σ j (x) is the sum of all monomials of

degree j dividing m(z). Equation (2) follows from the identities

∆ σu (x) = (i − u + 1 ) σu −1 (x) and ∆ σr (y) = (n − i − r + 1 ) σ r −1 (y) .

We now define

φ(z) =
u =0
Σ
i

( − 1 ) u 1u
i 2

−1

1 u
n − 2i + u2φu (z) . (4)

It follows readily from (2) that φ(z) is a solution of the Laplace equation ∆ φ(z) = 0. Thus we

have associated an eigenfunction φ ∈ harm (i) with the given monomial m ∈ hom (i).

We next prove that φ(z) satisfies Eq. (1). First a simple counting argument yields

σu (x) σ l (x) =
j =max {u,l}

Σ
u + l

1u
j 21j − l

u 2σ j (x) , (5)

for all u and l with u + l ≤ i. We then obtain the identity

σ r (y) =
l =0
Σ
r

( − 1 ) l1r − l
d − l2σ l (x) , (6)

for r ≤ i. This can be proved by induction on r, as follows. We use the two relations

σ1 (y) = d − σ1 (x)

(which is the case r = 1 of (6)) and
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σ1 (.) σ l (.) = l σ l (.) + (l + 1 ) σ l +1 (.)

(which is a special case of (5)) together with (6) to obtain

(r + 1 ) σ r +1 (y) =
l =0
Σ

r +1
( − 1 ) l





(d − r − l)1r − l
d − l2+ l1r + 1 − l

d + 1 − l2



σ l (x) ,

which is (6) with r replaced by r + 1.

Using (3)-(5) and the combinatorial identity

l
Σ ( − 1 ) l1i − u − l

d − l 21j − l
u 2= ( − 1 ) j −u1i − j

d − j2

(which follows from [13], p. 58, Eq. (24)), we obtain a representation for φu (z) in the simple

form

φu (z) =
j =u
Σ
i

( − 1 ) j −u1u
j 21i − j

d − j2σ j (x) . (7)

Equation (1) now follows from (4) and (7), after applying the classical identity

u
Σ 1j − u

i − u21 u
n − 2i + u2= 1 j

n − i + 12([12], Eq. (3.2)), together with 1j
i21u

j 2= 1u
i 21j − u

i − u2.

The set of all φ(z) associated with monomials m of degree i spans the whole space harm (i).

For by construction the linear space spanned by these functions is invariant under the symmetric

group S n; and as the harmonic spaces harm ( j) are the irreducible S n-invariant subspaces of RΩ ,

this implies that the space in question coincides with harm (i). This completes the proof of

Theorem 4.

We conclude this section with an application of Theorem 4. (A stronger result will be given

in Section 3.)

Theorem 5. A classical (l − 2 )-design P is also an { l}-design if and only if for any l-subset x of

[ 1 ,n] the quantity
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L x = { l(d − l + 1 ) − (n − 2l + 2 ) }µ l,x + (d − l + 1 ) µ l −1 ,x , (8)

where µ j,x is the number of blocks in P that have exactly j points in common with x, is

independent of the choice of x. (We shall therefore call L x an invariant linear form.)

Proof. Let λ j ( 0 ≤ j ≤ l − 2 ) be the number of blocks of P containing a particular set of j points.

If x is any l-subset of [ 1 ,n] then since P is an (l − 2 )-design we have

〈 π(P ) , σ j (x) 〉 = 1j
l2λ j , j = 0 , 1 , ... , l − 2 ,

〈 π(P ) , σ l −1 (x) 〉 = l µ l,x + µl −1 ,x ,

〈 π(P ) , σ l (x) 〉 = µ l,x .

Now P is an {l}-design if and only if 〈 π(P ) , f 〉 = 0 for all f ∈ harm (l), or equivalently (from

Theorem 4) if and only if 〈 π(P ) , φ(x) 〉 = 0 for all l-subsets x of [ 1 ,n]. Using (1) with i = l, and

the trivial calculation that

( − 1 ) l −11 1
d − l + 121 l − 1

n − l + 12Y1l − 1
l 2

( − 1 ) l 10
d − l21 l

n − l + 12Y1l
l2_________________________________ = −

d − l + 1
n − 2l + 2_ ________

we see that 〈 π(P ) , φ(x) 〉 = 0 for all x implies that L x is independent of x. Conversely, if L x is

independent of x, the inner product

〈 π(P ) ,
j =0
Σ
l

( − 1 ) j 1j
l2

−1

1l − j
d − j21 j

n − l + 12σ j (x) 〉 = A ,

for some constant A independent of x. Since

x
Σ σ j (x) ∈ hom ( 0 ) , for all j ,

j =0
Σ
l

( − 1 ) j 1j
l2

−1

1l − j
d − j21 j

n − l + 12σ j (x) ∈ harm (l) , for all x ,

we have
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x
Σ

j =0
Σ
l

( − 1 ) j 1j
l2

−1

1l − j
d − j21 j

n − l + 12σ j (x) ∈ hom ( 0 ) > harm (l) = { 0 } ,

and so A = 0. This completes the proof.

3. Invariant linear forms

Any S n-invariant subspace ζ of RΩ is the sum of harmonic subspaces:

ζ =
i∈ T
Σ harm (i) , (9)

where T is a well-defined subset of { 0 , 1 , ... , d}, and Σdenotes an orthogonal sum. There are

2d +1 such subspaces ζ.

Let P be a subset of Ω. A subspace ζ of RΩ will be said to be P-regular if

〈 π(P ) , ψ〉 =
Ω
 P _ ___ 〈 π(Ω) , ψ〉 , for all ψ ∈ ζ . (10)

Note that since π(Ω) is the function 1 (which spans harm ( 0 )), the inner product 〈 π(Ω) , ψ〉

vanishes for all ψ ∈ harm ( j) with j ≥ 1.

Theorem 6. A non-empty subset P ⊆ Ω is a T-design if and only if the subspace ζ defined by ( 9 )

is P-regular.

Proof. If ζ is P-regular it follows from (9) and (10) that

〈 π(P ) , ψ〉 = 0 , for all ψ ∈ harm ( j) with j ∈ T , j ≠ 0 , (11)

i.e. P is a T-design. Conversely, if P is a T-design with 0 /∈ T then

π(P ) ∈
i /∈ T
Σ harm (i) (12)

and so ζ =
i∈ T
Σ harm (i) is P-regular.

We can now give the generalization of Theorem 5 that will be used to prove the main
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theorem. We replace (8) by a more general invariant form, (13).

Theorem 7. Let P be a non-empty subset of Ω. Suppose that for some integer l with 1 ≤ l ≤ d

there exist real numbers a , b , c, not all zero, such that

a µ l,x + b µ l −1 ,x = c (13)

for all l-subsets x of { 1 , 2 , ... , n} (µ j,x was defined in Theorem 5 ). Then

P is an { l − 1 }- design ,

P is an { l}- design ,

i f a = lb .

i f a ≠ lb ,

(14)

In particular, if P is not an { l − 1 }-design then P is an { l}-design.

Proof. For a given l-set x = {p 1 , ... , p l } let us define a function ψx ∈ RΩ by

ψx (ξ 1 , ... , ξ n ) = a ξ p 1
ξ p 2

. . . ξ p l
+ (15)

b[ ( 1 − ξp 1
) ξ p 2

. . . ξ p l
+ ξp 1

( 1 − ξp 2
) ξ p 3

. . . ξ p l
+ . . . + ξp 1

. . . ξ p l − 1
( 1 − ξp l

) ] .

The assumption (13) can be written as

〈π (P ) , ψx 〉 = c , for all l-sets x . (16)

The value of c can be deduced from a and b by summing (13) over all l-sets x; this yields





a 1l
d2+ b 1l − 1

d 21 1
n − d2





 P  = c 1l
n2. (17)

Now 〈 π(Ω) , ψx 〉 is clearly constant, and this constant, c ′ say, is given by





a 1l
d2+ b 1l − 1

d 21 1
n − d2





Ω = c ′ 1l
n2. (18)

It follows from (17), (18) that (16) amounts to

〈 π(P ) , ψx 〉 =
Ω
 P _ ___ 〈 π(Ω) , ψx 〉 , for all l-sets x . (19)
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Consider the linear space ζ spanned by the functions ψx (for all l-sets x). By definition, ζ is

S n-invariant. Furthermore it follows from (19) that ζ is P-regular. Hence P is a T-design with

respect to the set T defined from the harmonic decomposition (9) of ζ. In view of (15) we have

ψx (ξ ) = (a − lb) ξ p 1

. . . ξ p l
+ θl −1 , (20)

where θ l −1 is a member of hom (l − 1 ). Hence ζ is a subspace of hom (l), and ζ is a subspace of

hom (l − 1 ) if and only if a = lb. Furthermore it is easily seen from (15) that (assuming a , b , c are

not all zero) ζ is not a subspace of hom (l − 2 ). (This is obvious if a ≠ lb. When a = lb,

where i = l, ..., n
x = { 1 , ..., l −1 , i}

Σ ψx (ξ ) = b
i = l
Σ
n

[ξ 2 ξ 3
. . . ξ l −1 + ξ1 ξ 3

. . . ξ l −1 + . . . + ξ1 ξ 2
. . . ξ l −2 ] ξ i

+ b(n − l + 1 ) ξ 1
. . . ξ l −1

= b[ξ 2
. . . ξ l −1 + . . . + ξ1

. . . ξ l −2 ]1d −
i =1
Σ

l −1
ξ i2

+ b(n − l + 1 ) ξ 1
. . . ξ l −1

= b(n − 2l + 2 ) ξ 1
. . . ξ l −1

+ b(d − l + 2 ) [ξ 2
. . . ξ l −1 + . . . + ξ1

. . . ξ l −2 ] ,

and since n − 2l + 2 is not zero, this sum cannot belong to hom (l − 2 ) unless b, and hence a and c,

are zero.) Thus if a ≠ lb then P is an {l}-design, and if a = lb then P is an {l − 1 }-design. This

completes the proof.

4. Proof of Theorem 2

Suppose C satisfies the hypotheses of Theorem 2. By Theorem 1 the codewords of any

weight w i in C form a t-design. If k = dim C = 1, only the repetition code yields a t-design. In

this case C ⊥ consists of all even weight vectors and gives trivial designs. So from now on we

assume k > 1.
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It is easy to see (the argument is given on page 165 of [17]) that there are no codewords of C ⊥

with weight w ′ satisfying n − t < w ′ < n, and hence that there are two cases: (i) C is even,

ws ′′ = n, s ′ = d − t + 1, or (ii) C is not even, ws ′′ ≠ n, s ′ = d − t. Thus we can write

s ′ = d − t + 1 − δ , (21)

where δ =0 if C is even, δ =1 if C is not even.

We work in the framework of the Hamming association scheme H(n , 2 ) – see [8], [9], [11],

[17, Chap. 21] for background. The Krawtchouk polynomial of degree i is defined to be

P i (ξ ) =
j =0
Σ
i

( − 1 ) j 1j
ξ21i − j

n − ξ2 ( 0 ≤ i ≤ n) ,

and the annihilator polynomial of C is

α (ξ ) = 2n −k

i =1
Π
s ′

11 −
wi

′
ξ_ __2.

Let us expand

ξm α (ξ ) =
i =0
Σ

s ′ +m
α i

(m) P i (ξ ) , m = 0 , 1 , ... .

We set α i
( 0 ) = α i . Note that α s ′ +m

(m) ≠ 0 for all m.

It was shown in [9] that for all x∈ F2
n ,

i =0
Σ

s ′ +m
α i

(m) b i (x) =


î 0 ,

1 ,

m ≥ 1 ,

m = 0 ,
(22)

where b i (x) is the number of codewords in C at distance i from x.

We next prove a lemma.
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Lemma 8. Let C be a binary [n , k, d] code with nonzero weights w 1 = d, w 2 , ... , w s , and let

w1
′ , ... , ws ′′ be the nonzero weights in the dual code C ⊥ . Let t be the greatest integer in the

range 0 < t < d such that there are at most d − t weights wi
′ with 0 < wi

′ ≤ n − t, and suppose

w 2 ≥ d + 4. If the codewords of minimal weight form a (t + 1 )-design then so do the codewords

of any nonzero weight w i .

Proof. Let x be an arbitrary subset of { 1 , 2 , ... , n} of size l = t + 1. Setting

m = w 2 − d − 2 + δ > 0 in (22) we obtain

i =0
Σ

w 2 − t −1

α i
(m) b i (x) = 0 . (23)

The zero codeword contributes to the sum in (23) if and only if l ≤ w 2 − t − 1. The contributions

from the codewords of weight d are independent of x, since by hypothesis these words form a

(t + 1 )-design. Codewords of weight greater than w 2 do not contribute to the sum at all, since

w 3 − l > w 2 − l = w 2 − t − 1 . (24)

We now consider the contributions from the codewords c of weight w 2 . Suppose c intersects x in

j points. Then

dist (c, x) = w 2 + l − 2 j ≤ w 2 − t − 1 , (25)

implying j = t + 1, i.e. codewords of weight w 2 contribute to the sum in (23) if and only if they

contain x. Therefore (23) implies that the number of codewords of weight w 2 containing x is

independent of x, or in other words the codewords of weight w 2 form a (t + 1 )-design. Similarly,

by taking m = w j − d − 2 + δ in (22), we find that the words of weight w j form a (t + 1 )-design.

This proves the lemma.

We now complete the proof of Theorem 2. The set of minimal weight words in C will be
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denoted by P , and µ j,x is the number of words in P that have exactly j points in common with a

given l-set x.

Case (i), C even, s ′ = d − t + 1. Suppose first that there is a smallest integer f in the range

0 ≤ f ≤ [ (d − t)/2 ] such that α d − t −2 f ≠ 0. Let x be an arbitrary subset of { 1 , 2 , ... , n} of size

l = t + 2 f. Since C is even, the distances from x to C are all congruent to t (modulo 2), and from

(22) we have

i ≡ t ( mod 2 )
i =0
Σ

d − t −2 f
α i b i (x) = 1 . (26)

Proceeding as in the proof of the lemma, we find that only the zero codeword and the codewords

of weight d contribute to the sum in (26), and the words of weight d contribute if and only if they

contain x. Equation (26) then reads

α d − t −2 f µ t +2 f ,x = 1 − α t +2 f εd −2t −2 f −2 , (27)

where we set

εp =


î 1

0

p ≥ 0.

p < 0 ,

If f ≥ 1 we conclude from (27) that P is a (t + 2 f )-design, in particular a (t + 1 )-design, and

therefore by Lemma 8 that the codewords of every nonzero weight form (t + 1 )-designs.

On the other hand suppose f = 0. We take x to have weight l = t + 2, and find that (22)

becomes

α d − t −2 µ t +2 ,x + αd − t µ t +1 ,x = 1 − α t +2 εd −2t −2 , (28)

where both coefficients on the left side are nonzero. From Theorem 7 we conclude that P is a

{ t + 1 }-design or a {t + 2 }-design, and hence either a (t + 1 )-design or a { 1 , ... , t , t + 2 }-design.

In the former case Lemma 8 extends this to codewords of every nonzero weight.
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The third possibility is that no such f exists, and all coefficients α d − t −2i are zero. But in this

case taking x in (22) to have weight t leads to a contradiction (that left side of (26) vanishes but

the right side does not).

Case (ii), C not even, s ′ = d − t. Let x have weight t + 2. Equation (22) implies

α d − t −2 µ t +2 ,x + αd − t µ t +1 ,x = 1 − α t +2 εd −2t −2 ,

where α d − t ≠ 0. From Theorem 7 we conclude that P is a {t + 1 }-design or a {t + 2 }-design,

and Lemma 8 completes the proof.

An alternative proof of Theorem 2. The above argument shows only that an invariant linear

form of the type (13) exists; by Theorem 7 this is enough to prove the desired result. However it

is possible to give a proof in which a ‘‘computation miracle’’ produces an explicit invariant linear

form. We give this direct proof in the case when C is even. We suppose that P is not a (t + 1 )-

design.

By applying (22) with m = 0 and 1 to a (t + 1 )-set x we obtain

α d − t −1 µ t +1 ,x + αd − t +1 µ t,x = 1 − α t +1 εd −2t , (29)

αd − t −1
( 1 ) µ t +1 ,x + αd − t +1

( 1 ) µ t,x = − α t +1
( 1 ) εd −2t +1 , (30)

where α d − t +1 ≠ 0. Since P is a t-design,

(t + 1 ) µ t +1 ,x + µt,x = (t + 1 ) λ t , (31)

where λ t is the number of blocks through t given points. Since P is not a (t + 1 )-design, the left

sides of (29)-(31) must be proportional (or else m t +1 ,x would be independent of x). Therefore

α d − t −1 = (t + 1 ) α d − t +1 , (32)

αd − t −1
( 1 ) = (t + 1 ) αd − t +1

( 1 ) , (33)

and so α d − t −1 ≠ 0. From the Krawtchouk recurrence [17, p. 152]
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(i + 1 ) P i (ξ ) = (n − 2ξ ) P i (ξ ) − (n − i + 1 ) P i −1 (ξ )

(i ≥ 1 ), with P 0 (ξ ) = 1, P 1 (ξ ) = n − 2ξ, we obtain

2α i
( 1 ) = − (n − i) α i +1 + nα i − iα i −1 (34)

(i ≥ 1 ). In particular,

2αd − t +1
( 1 ) = nα d − t +1 − (d − t + 1 ) α d − t , (35)

2αd − t −1
( 1 ) = − (n − d + t + 1 ) α d − t + nα d − t −1 − (d − t − 1 ) α d − t −2 . (36)

Furthermore α d − t ≠ 0, or else (as shown in the first proof) P is a (t + 1 )-design. From (32), (33),

(35), (36) we obtain

α d − t −2 =
d − t − 1

(t + 2 ) (d − t − 1 ) − (n − 2t − 2 )_ __________________________ α d − t . (37)

We now apply (22) with m = 0 to a (t + 2 )-set x and find

{ (t + 2 ) (d − t − 1 ) − (n − 2t − 2 ) } µ t +2 ,x + (d − t − 1 ) µ t +1 ,x

=
α d − t

d − t − 1_ _______ ( 1 − α t +2 εd −2t −1 ) . (38)

The left-hand side of (38) is the desired linear form, independent of x. Theorem 7 and Lemma 8

complete the proof. The most interesting aspect of this argument is the leverage provided by the

assumption that P is not a (t + 1 )-design.

Examples. An example with t = 5 is provided by the set of 759 minimal weight words in the

[24, 12, 8] Golay code. In this case we have the identity µ 7 ,x + µ6 ,x = 1 for any 7-set x. (There

are only two possibilities, (µ 7 ,x , µ 6 ,x ) = ( 0 , 1 ) or ( 1 , 0 ), corresponding to the two kinds of 7-

subsets of [ 1 , 24 ] under the action of the Mathieu group M 24 – cf. [6, Fig. 10.1].) The 759 words

form a { 1 , 2 , 3 , 4 , 5 , 7 }-design.
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A second example with t = 5 is provided by the 17296 minimal weight words in the

[ 48 , 24 , 12 ] extended quadratic-residue code (or in any self-dual doubly even [ 48 , 24 , 12 ]

code). In this case we have the identity µ 7 ,x + µ6 ,x = 8 for any 7-set x. (There are only two

possibilities: (µ 7 ,x , µ 6 ,x ) = ( 0 , 8 ) or ( 1 , 7 ).) Again the minimal weight words form a

{ 1 , 2 , 3 , 4 , 5 , 7 }-design.

A more trivial example with t = 1 is provided by the [n = 2m , 2 , m] code

{ 02m , 0m 1m , 1m 0m , 12m }. The two words of weight m form a { 1 , 3 }-design.

A further example: complementation. The { 1 , 2 , ... , l , l + 2 }-design property is preserved

when the blocks of P are complemented. To see this, let P
_ _

= { [ 1 ,n] \ B  B ∈ P }, and let ν j,x

be the number of blocks in P
_ _

meeting a given (l + 2 )-set x in exactly j points. Then

ν j,x = µl +2 − j,x , and we must therefore show that

a
_

µ 0 ,x + b
_

µ 1 ,x = c
_

(39)

for all x, for suitable real numbers a
_
, b

_
, c

_
not all zero. Since P

_ _
is a { 1 , 2 , ... , l , l + 2 }-design we

have invariant linear forms

a µ l +2 ,x + b µ l +1 ,x = c , where b ≠ 0 , (40)

i = j
Σ

l +2

1j
i2µ i,x = 1 j

l + 22λ j , j = 0 , 1 , ... , l , (41)

where λ j is the number of blocks of P through j given points. Equations (40), (41) form a

triangular system of l + 2 equations in the l + 3 quantities µ j,x , j = 0 , ... , l + 2. From this we

obtain

µ 0 ,x = α µ l +2 ,x + β , (α , β not both zero ) ,

µ 1 ,x = γ µ l +2 ,x + δ , (γ, δ not both zero ) ,

for suitable real numbers α , β, γ, δ, and Equation (39) follows.
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5. Extension to codewords of higher weight and the proof of Theorem 3

Lemma 8 shows that if the codewords of minimal weight form a (t + 1 )-design then so do the

codewords of any nonzero weight. To extend the { 1 , 2 , ... , t , t + 2 }-design property to

codewords of higher weight it is necessary to make some assumptions about the gap sizes

w i − w i −1 for i ≥ 3. In the sequel we shall only consider self-dual codes with all weights

divisible by 4, even though the arguments apply to a wider class of codes.

We begin with an example, the [ 24 , 12 , 8 ] Golay code. The annihilator polynomial is

α (ξ ) = 21211 −
8
ξ_ _211 −

12
ξ_ __211 −

16
ξ_ __211 −

24
ξ_ __2

=
i =0
Σ
3

P i (ξ ) +
6
1_ _ P 4 (ξ ) . (42)

Given an arbitrary 7-set x, let Mj,x
w be the number of codewords of weight w that meet x in exactly

j points. From (38), (41) we obtain the invariant linear forms

M7 ,x
8 + M6 ,x

8 , (43)

21M7 ,x
8 + 6M6 ,x

8 + M5 ,x
8 . (44)

Next we apply (22) with m = 1 to obtain the invariant form

α1
( 1 ) M7 ,x

8 + α3
( 1 ) M6 ,x

8 + α5
( 1 ) M5 ,x

8 + α5
( 1 ) M7 ,x

12 . (45)

Before calculating the shifted Krawtchouk coefficients α j
( 1 ) we can see that there are two

possibilities. The first is that the form

α1
( 1 ) M7 ,x

8 + α3
( 1 ) M6 ,x

8 + α5
( 1 ) M5 ,x

8 (46)

is a linear combination of (43) and (44). Since α5
( 1 ) ≠ 0, we may conclude that in this case the

codewords of weight 12 form a 7-design. The second possibility is that (43), (44), (46) form a

basis for the space of linear forms in the variables Mj,x
8 j = 5 , 6 , 7. Now we understand the Golay
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code well enough to know that the first possibility does not occur, but it is precisely this argument

that we will apply to an arbitrary doubly-even code. We may in fact calculate the shifted

Krawtchouk coefficients from (34), finding that α0
( 1 ) = α1

( 1 ) = α2
( 1 ) = 0, α3

( 1 ) =
4
35_ __, α4

( 1 ) = 0,

α5
( 1 ) = −

12
5_ __, so (45) becomes

21 M6 ,x
8 − M5 ,x

8 − M7 ,x
12 . (47)

Next we apply (22) with m = 3 to obtain the invariant form

α1
( 3 ) M7 ,x

8 + α3
( 3 ) M6 ,x

8 + α5
( 3 ) M5 ,x

8 + α7
( 3 ) M4 ,x

8 + α5
( 3 ) M7 ,x

12 + α7
( 3 ) M6 ,x

12 , (48)

where α7
( 3 ) ≠ 0. From (41) we have a second invariant form involving the new variable M4 ,x

8 ,

namely

35 M7 ,x
8 + 15 M6 ,x

8 + 5 M5 ,x
8 + M4 ,x

8 . (49)

Since (43), (44), (46), (47) are a basis for the space of linear forms in the variables Mj,x
8

j = 4 , 5 , 6 , 7, we may eliminate these variables from (48) and obtain an invariant form

a M7 ,x
12 + b M6 ,x

12 ,

of type (13). In this case a / b = 5, and so the codewords of weight 12 in the Golay code form a

{ 1 , 2 , 3 , 4 , 5 , 7 }-design.

The proof of Theorem 3 is a straightforward generalization of this example. From Theorem 1

the codewords of any given weight w p form a t-design, so (generalizing (41)) we have invariant

linear forms

L w p , j =
h =1
Σ

t +2

1j
h2Mh,x

w p , j = 0 , 1 , ... , t , p = 1 , ... , d − t , (50)

where x is an arbitrary (t + 2 )-subset of [ 1 , n]. From (22) we also have invariant forms

(generalizing (45) and (48)):



- 20 -

H m =

w i + t +2 −2 j ≤ d − t +1 +m
w i , j
Σ αw i + t +2 −2 j

(m) Mj,x

w i , m = 1 , 3 , 5 , ... . (51)

Finally Theorem 2 provides an invariant form

a Mt +2 ,x
d + b Mt +1 ,x

d , b ≠ 0 . (52)

The theorem is proved by induction. For i = 2 , ..., let Γ (i) be the linear system in the variables

{Mj,x

w p : p < i, w p + t + 2 − 2 j < w i − t − 2 } consisting of (52) and the linear forms

L w p , j for p < i , w p + t + 2 − 2 j < w i − t − 2 , and

H m for m < w i − d − 3 , m odd .

The inductive hypothesis is that the corank of the linear system Γ (i) is at most 1. This is

certainly true for i = 2, since Γ ( 2 ) includes the triangular system consisting of (52) and L d, j for

d + t + 2 − 2 j < w 2 − t − 2.

The linear system Γ (i + 1 ) involves variables Mj,x

w p that do not appear in Γ (i). For each new

variable Mj,x

w p with w p < w i +1 we have a linear form L w p , f , so these new variables do not change

the corank. The linear form

H w i + 1 −d −3 − αw i + 1 − t −2

(w i + 1 −d −3 )
Mt +2 ,x

w i + 1 (53)

only involves variables Mj,x

w p with w p < w i +1 . We distinguish two cases.

The first is that (53) is a linear combination of forms from Γ (i) and forms L w p , f involving

variables Mj,x

w p not appearing in Γ (i). Then Mt +2 ,x

w i + 1 is independent of x, that is the codewords of

weight w i +1 form a (t + 2 )-design. Now Γ (i + 1 ) includes the triangular system

Mt +2 ,x

w i + 1 , (t + 2 ) Mt +2 ,x

w i + 1 + Mt +1 ,x

w i + 1 , L w i + 1 , j

in the variables Mj,x

w p , so the corank of Γ (i + 1 ) is at most 1.
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The second case is that the linear form (53), together with the forms in Γ (i) and the forms

L w p , f involving variables Mj,x

w p not appearing in Γ (i), form a basis for the space of linear forms in

the variables appearing in (53). Now consider H w i + 1 −d −1 . We may eliminate variables from

H w i + 1 −d −1 to obtain a linear form

a Mt +2 ,x

w i + 1 + b Mt +1 ,x

w i + 1 , (54)

where b ≠ 0. By Theorem 7 we may conclude that the codewords of weight w i +1 form a (t + 1 )-

design or a { 1 , 2 , ... , t , t + 2 }-design. The rank of Γ (i + 1 ) restricted to variables Mj,x

w p for

p < i + 1 is full. Since Γ (i + 1 ) includes the triangular system {(54), L w i + 1 , j} in the variables

Mj,x

w i + 1 , the corank of Γ (i + 1 ) is at most 1.

Remarks. The proof leaves open the possibility that the codewords of weight w i might form a

(t + 1 )-design while the codewords of weight w j ( j ≠ i) form a { 1 , ... , t , t + 2 }-design.
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