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Preface

The first time I came along with polyominoes was in 1998 when I read a
do-it-yourself story about a little worm named Heiner Würmeling [104]. I
will tell a short version of this story in own words:

Heiner Würmeling, his wife Amelia and baby Wermentrude just recovered
their procession into a new lair. But Amelia was not amused seeing the
bath room. ”Heiner! Come to me!” Heiner reluctantly wormed one’s way
towards the bath room leaving his comfortable armchair.“My dear, what’s
wrong?” ”Didn’t the builder promised to tile the whole bath? NOTHING,
NOTHING is done yet and in the corner there’s standing a big box with
tiles!” ”I’ll phone him.” The builder apologized ”Sorry chief, we had a little
problem. Have a look at the funny tiles your wife ordered, we can’t match
them without leaving holes.” Heiner mashed ”That’s ridiculous! Why didn’t
you form a rectangle?” ”That’s exactly what we tried, but with no success.”.
”Ridiculous! I’ll do it by myself!”.

Can you do it? Here is the tile .

Two days later Heiner gave up and called his friend Albert Wurmstein work-
ing for the patent office. Hearing Heiner’s story Albert said after a great
time of thinking ”Your tile is some kind of a polyomino, that’s a plane figure
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of equal sized squares neighbored edge-to-edge. In 1969 Klarner defined the
order of a polyomino as the minimum number of copies of a polyomino filling
a rectangle.” Albert told Heiner that his polyomino has order 78 and gives
him a solution to fill a rectangle. Heiner run into the kitchen and proudly
said ”Amelia, I have solved the tile problem. All I have to do is taking 78
tiles and build a rectangle.” ”Wish you a lot of fun”, Amelia replied. Heiner
went into the bathroom and had a look at the description of the box

Combinatoric Ceramic Factory
Heptomino Tiles

Content: 77

During the winter semester 2002/2003 I took part in a course named Discrete
Geometry lectured by Prof. Dr. H. Harborth at the Technical University of
Braunschweig. A lot of unsolved problems concerning the field of Discrete
Geometry were treated in this course. Of those I took two problems about
polyominoes which I was able to solve. The solution to the first problem is
recently submitted [77] and the second problem is the topic of this bachelor
thesis.

Beside from proving a few theorems about maximum convex hulls of poly-
ominoes we find it interesting to give the known exact numbers of some kinds
of polyominoes in the appendix. And I also like to give an overview of the
literature about enumerating polyominoes in the bibliography.
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1 Introduction

A polyomino is a connected interior-disjoint union of axis-aligned unit
squares joined edge-to-edge, in other words, an edge-connected union of
cells in the planar square lattice. There are at least three ways to define
two polyominoes as equivalent, namely factoring out just translations (fixed
polyominoes), rotations and translations (chiral polyominoes), or reflections,
rotations and translations (free polyominoes). In the literature polyominoes
are sometimes named animals or one speaks of the cell-growth prob-
lem [74, 98]. For the origin of polyominoes we quote Klarner [75]: ”Poly-
ominoes have a long history, going back to the start of the 20th century,
but they were popularized in the present era initially by Solomon Golumb
[56, 57, 58, 59, 60, 61, 62, 55], then by Martin Gardner in his Scientific Amer-
ican columns.” To give an illustration of polyominoes Figure 1.1 depicts the
free polyominoes consisting of at most 5 unit squares.

Figure 1.1. Polyominoes with at most 5 squares.
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There are several generalizations of polyominoes i.e. polyiamonds (edge-
to-edge unions of unit equilateral triangles) [8, 53, 66, 86, 106], polyhexes
(edge-to-edge unions of unit regular hexagons) [6, 52, 53, 86], polyabolos
(edge-to-edge unions of unit right isosceles triangles) [52], polycubes (face-
to-face unions of unit cubes) [3, 87], etc. One can also define polyominoes
as connected systems of cells on archimedean tesselations [9]. In this thesis
we regard a d-dimensional polyomino as a facet-to-facet connected system of
d-dimensional unit hypercubes. If nothing else is mentioned the term poly-
ominoes is used for free polyominoes.

Before we introduce the theorems of this thesis we would like to mention a few
applications and problems for polyominoes. The term cell-growth problem
certainly suggests applications in medicine and biology. Polyominoes are use-
ful for the Ising Model [24] modelling neural networks, flocking birds, beating
heart cells, atoms, protein folds, biological membrane, social behavior, etc.
Further applications of polyominoes lie in the fields of chemistry and physics.
As problems concerning polyominoes one might mention counting polyomi-
noes [1,2,4,5,10-23,25-50,54,64,67,69-72,76,78-97,99-101,105,107,108,110,111,
113], generating polyominoes [109, 112], achievement games [6, 7, 8, 9, 51, 66]
and extremal animals [65, 68, 73, 77]. In Appendix A we give tables for the
exact number of some types of polyominoes for small numbers of cells.

This thesis is about polyominoes with maximum convex hull. At the end of
this introduction we would like to mention the proven theorems.

In [73] it is proved that the area of the convex hull of any facet-to-facet con-
nected system of n unit squares is at most n + 1

2

⌊
n−1

2

⌋ ⌊
n
2

⌋
. We will prove

their conjuncture for the d-dimensional case.

Theorem 1. The d-dimensional volume of the convex hull of any facet-to-
facet connected system of n unit hypercubes is at most

∑

I⊂{1,...,d}

1

|I|!
∏
i∈I

⌊
n− 2 + i

d

⌋
.

The authors of [73] also asked for the number of different polyominoes with
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n cells and maximum area of the convex hull. We enumerated them for the
Rd.

Theorem 2. The number c2(n) of polyominoes in R2 with maximum area
of the convex hull is given by

n ≡ 0 mod 4 : c2(n) =
n3 − 2n2 + 4n

16
,

n ≡ 1 mod 4 : c2(n) =
n3 − 2n2 + 13n+ 20

32
,

n ≡ 2 mod 4 : c2(n) =
n3 − 2n2 + 4n+ 8

16
,

n ≡ 3 mod 4 : c2(n) =
n3 − 2n2 + 5n+ 8

32
.

Theorem 3. The number cd(n) of polyominoes in Rd with maximum volume
of the convex hull is given by

n ≡ a mod d : cd(n) =

( ⌈
n−a
2d

⌉
+ d− a

d− a+ 1

)( ⌈
n+d−a

2d

⌉
+ a− 2

a− 1

)

with 0 < a ≤ d and d ≥ 3.

Knowing the maximum area of the convex hull, one can also asked for which
numbers a there is a polyomino with n cells and an area a of the convex hull.
For the 2-dimensional case the situation is fully described by the following
statement.

Theorem 4. The existence of a 2-dimensional polyomino consisting of n
cells with area a of the convex hull is equivalent to a ∈ An with

An =

{
n+

m

2

∣∣∣m ≤
⌊
n− 1

2

⌋⌊n
2

⌋
,m ∈ N0

}
−
{
n+

1

2

∣∣∣if n+ 1 is prime

}
.
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2 Proof of Theorem 1

Will first prove the theorem for d = 2, 3 before we prove it in any dimension.

Definition 2.1.

f2(l1, l2, v1, v2) := 1 + (l1 − 1) + (l2 − 1) + (l1−1)(l2−1)
2

+

v1 + v2 + v1(l2−1)
2

+ v2(l1−1)
2

,

f3(l1, l2, l3, v1, v2, v3) := 1 + (l1 − 1) + (l2 − 1) + (l3 − 1)+
(l1−1)(l2−1)

2
+ (l1−1)(l3−1)

2
+ (l2−1)(l3−1)

2
+ (l1−1)(l2−1)(l3−1)

6
+

v1(l2−1)
2

+ v1(l3−1)
2

+ v2(l1−1)
2

+ v2(l3−1)
2

+ v3(l1−1)
2

+ v3(l2−1)
2

+
v1(l2−1)(l3−1)

6
+ v2(l1−1)(l3−1)

6
+ v3(l1−1)(l2−1)

6
+ v1v2(l3−1)

6
+

v1v3(l2−1)
6

+ v2v3(l1−1)
6

+ v1 + v2 + v3 + v1v2

2
+ v1v3

2
+ v2v3

2
+

v1v2v3

6
.

We number the standard coordinate axes of Rd by 1, . . . , d. Every d-dimensional
polyomino has a smallest surrounding box with side length l1, . . . , ld, where
li is the length in direction i. If we build up a polyomino cell by cell then
one of the li increases by 1 or none of the li increases. In the second case
we increase vi by one, where the new hypercube has a facet-neighbor in di-
rection of axis i. If N is the set of axis-directions of facet-neighbors of the
new hypercube, then vi is increased by one for only one i ∈ N . Since at this
position there is the possibility to choose, we must live with the fact that
there might be different tuples (l1, . . . , ld, v1, . . . , vd) for one polyomino. We
define v1 = . . . = vd = 0 for the polyomino consisting of a single hypercube.
This definition of li and vi leads to the following equation

n = 1 +
d∑
i=1

(li − 1) +
d∑
i=1

vi .
(†)

Lemma 2.2. The area of the convex hull of a 2-dimensional polyomino is
bounded by f2(l1, l2, v1, v2).
Proof. We prove the statement by induction on n, using equation †. For
n = 1 only l1 = l2 = 1, v1 = v2 = 0 is possible. Since f2(1, 1, 0, 0) = 1 is
clearly the area of the convex hull of a unit square, the induction start is
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made. Now we may assume that the lemma is proved for all possible tuples
(l1, l2, v1, v2) with 1 +

∑2
i=1(li − 1) +

∑2
i=1 vi = n− 1.

We consider the growth of the li, vi and the area a of the convex hull by
adding the n-th square.

(i) l1 is increased by 1:

�
�
�
�
�
��

@
@
@

@@

Q
Q

Q
Q
Q

QQ

�
����
�� ≤ l2

Figure 2.1. Increasing l1.

We depict (see Figure 2.1) the new square by
3 diagonal lines. Since l1 is increased the new
square must have a left or a right neighbor,
without loss of generality it has a left neigh-
bor. The new square contributes at most 2
(thick) lines to the convex hull of the poly-
omino. As we draw lines from the neighbor
square to the endpoints of the new lines we see
that the growth is at most 1 + l2−1

2
. One for

the new square and the rest for the triangles.
Since f2(l1 + 1, l2, v1, v2) − f2(l1, l2, v1, v2) =
1 + l2−1

2
the induction step follows.

(ii) v1 is increased by one:

@
@
@
@@

A
A
A
AA

@
@
@

@@

Q
Q

Q
Q
Q

QQ

�
����
�� ≤ l2

Figure 2.2. Increasing v1.

Again we depict (Figure 2.2) the new square
by 3 diagonal lines. Without loss of general-
ity the new square has a left neighbor, and
square contributes at most 2 (thick) lines
to the convex hull of the polyomino. As l1
is not increased there must be a square in
the same column as the new square. By the
same argument as in (i) the growth is less
than 1 + l2−1

2
. With f2(l1, l2, v1 + 1, v2) −

f2(l1, l2, v1, v2) = 1+ l2−1
2

the induction step
follows.

(iii) l2 or v2 is increased by one:
Due to symmetry this case is analogue to (i) or (ii).�
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Lemma 2.3. The area of the convex hull of a polyomino with n unit squares
is at most n+ 1

2

⌊
n−1

2

⌋ ⌊
n
2

⌋
.

Proof.
(i) If v1 > 0 we decrease v1 by one and increase l1 by one, and consider
f2(l1 + 1, l2, v1 − 1, v2) − f2(l1, l2, v1, v2) = v2

2
. Since due to the proof of

Lemma 2.2 the maximum f2(l1, l2, v1, v2) cannot be achieved for v1 6= 0 this
substitution increases the area. So we conclude with an symmetry argument
v1 = v2 = 0.

(ii) Since we can renumber the coordinate axes we can assume that l1 ≤ l2
holds. If l2 − l1 ≥ 2 we increase l1 and decrease l2 by one. Considering
f2(l1 + 1, l2 − 1, 0, 0) − f2(l1, l2, 0, 0) = l2−l1

2
> 0 shows that the area of the

convex hull increases by this substitution. So we conclude l2 − l1 ≤ 1.

(iii) Using equation † we get l1 =
⌊
n+1

2

⌋
, l2 =

⌊
n+2

2

⌋
. Inserting in Lemma 2.2

yields f2(l1, l2, v1, v2) ≤ n+ 1
2

⌊
n−1

2

⌋ ⌊
n
2

⌋
.

(iv) The proposed value is attained for the example in Figure 2.3.

. . .

...

@
@
@
@
@@

⌊
n+2

2

⌋

⌊
n+1

2

⌋

Figure 2.3. 2-dimensional polyomino with maximum convex hull.

�

Lemma 2.4. The volume of the convex hull of a 3-dimensional polyomino
is bounded by f3(l1, l2, l3, v1, v2, v3).
Proof. We prove the statement by induction on n, using equation †. For n =
1 only l1 = l2 = l3 = 1, v1 = v2 = v3 = 0 is possible. Since f3(1, 1, 1, 0, 0, 0) =
1 is clearly the volume of the convex hull of a single unit cube, the induction
start is made. Now we may assume that the lemma is proved for all possible
tuples (l1, l2, l3, v1, v2, v3) with 1 +

∑3
i=1(li − 1) +

∑3
i=1 vi = n− 1.

We consider the growth of the li, vi and the volume a of the convex hull by
adding the n-th cube.
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(i) l1 is increased by 1:

�
�
�
�
��

�
�
�
�
��

   
   

   
   �� ��

���
��
��

��

l3 →

l2 ↑ A �� ��

��

PP
PP

PP
PP

��
��

��
��

�
�
��

�
�
��

B
B
BB

B
B
BB

�
����
�� �

�
�
�
��

�
�
�
�
��

    
  

    
  

�� ��

���
��
��

��

l3 →

l2 ↑
A

Figure 2.4. Increasing l1 in the 3-dimensional case.

Consider the left picture in Figure 2.4. The new cube (depicted in Figure 2.4
by 3 diagonal thick lines) contributes itself a volume of 1. As in the proof of
Lemma 2.2 we draw the lines of the convex hull of the new cube, and the cube
below. If we look at the facets in direction of coordinate axis 3 we have a
contribution of at most 1×1×(l3−1)

2
. Analogue in direction 2. Beside from this

there is an area A which contributes 1×A
3

. By a look at the proof of Lemma

2.2 we get A ≤ (l2−1)(l3−1)
2

+ v2(l3−1)
2

+ v3(l2−1)
2

+ v2 + v3 (the two summands
l2 − 1 and l3 − 1 are already considered before). In total we get a maximal

contribution of 1+ l2−1
2

+ l3−1
2

+ (l2−1)(l3−1)
6

+ v2(l3−1)
6

+ v3(l2−1)
6

+ v2

3
+ v3

3
by adding

the new cube. Now consider f3(l1 + 1, l2, l3, v1, v2, v3) − f3(l1, l2, l3, v1, v2, v3)

= 1 + l2−1
2

+ l3−1
2

+ (l2−1)(l3−1)
6

+ v2(l3−1)
6

+ v3(l2−1)
6

+ v2

2
+ v3

2
+ v2v3

6
. Since this

difference is not less than the maximal contribution of the new cube we have
the induction step.

The two pictures on the right in Figure 2.4 show, that the estimations also
hold, when the new cube does not lie as special as in the picture on the left. In
the picture on the left in Figure 2.4 we distinguish the terms (l2−1)+(l3−1)
and the area A. The first term is multiplied by a factor of 1

2
and the sec-

ond term is multiplied by a factor of 1
3
. The rightmost picture in Figure

2.4 shows that this distinction must not be the right one in general. But
because 1

2
> 1

3
we are on the safer side. One should spend a little thought

on the non-deterministic definition of the vi. We need the vi for estimating
the area A. In the case where a cube, with neighbors in 2 or 3 directions and
increasing a vi, is added there is a choose which vi is increased by one. If the
2 directions are direction 2 and 3, then we have seen in the proof of Lemma
2.2, that the estimation for A is correct in any case of choose. If there is a

7



neighbor in direction 1 the area in the 2× 3-plane is not increased. For our
purpose it doesn’t matter to get the best possible estimation, we only need
one that holds. So we have seen that the estimations hold for any choose of
the vi.

(ii) v1 is increased by one:
Similar to the case (ii) in the proof of Lemma 2.2, we use the same con-
sideration as in case (i). Since on one side, in direction 2 or 3, there
is already a cube on the level of the new cube the growth is less than
1 + l2−1

2
+ l3−1

2
+ (l2−1)(l3−1)

6
+ v2(l3−1)

6
+ v3(l2−1)

6
+ v2

3
+ v3

3
. Now we consider

f3(l1, l2, l3, v1+1, v2, v3) − f3(l1, l2, l3, v1, v2, v3) = 1+ l2−1
2

+ l3−1
2

+ (l2−1)(l3−1)
6

+
v2(l3−1)

6
+ (l2−1)v3

6
+ v2

2
+ v3

2
+ v2v3

6
. Since the last difference is not less than the

maximum growth by the new cube we have the induction step.

(iii) l2, l3, v2 or v3 is increased by one:
Due to symmetry this is analogue to case (i) or (ii). �

Lemma 2.5. The volume of the convex hull of a polyomino consisting of n
unit cubes is at most

1 +

⌊
n− 1

3

⌋
+
⌊n

3

⌋
+

⌊
n+ 1

3

⌋
+

⌊
n−1

3

⌋ ⌊
n
3

⌋

2
+

⌊
n−1

3

⌋ ⌊
n+1

3

⌋

2
+

⌊
n
3

⌋ ⌊
n+1

3

⌋

2
+

⌊
n−1

3

⌋ ⌊
n
3

⌋ ⌊
n+1

3

⌋

6

Proof.
(i) If v1 > 0 we decrease v1 and increase l1 by one. Now we consider the
difference of l3(l1 + 1, l2, l3, v1− 1, v2, v3) and l3(l1, l2, l3, v1, v2, v3), which is 0.
Since due to the proof of Lemma 2.4 the maximum f3(l1, l2, l3, v1, v2, v3) can-
not be achieved for v1 6= 0 this substitution increases the maximum possible
volume. So we conclude by an symmetry argument v1 = v2 = v3 = 0.

(ii) Since we can renumber the coordinate axes we can assume that l1 ≤ l2 ≤
l3 holds. If l3 − l1 ≥ 2 we increase l1 and decrease l3 by one. Considering
f3(l1 + 1, l2, l3− 1, 0, 0, 0)− f3(l1, l2, l3, 0, 0, 0) = (l3−l1−1)(l2+2)

6
> 0 shows that

the area of the convex hull increases by this substitution. So we conclude
|li − lj| ≤ 1.

8



(iii) Using equation † we get li =
⌊
n+1+i

3

⌋
. Inserting in Lemma 2.4 yields the

proposed formula.

(iv) An extremal configuration consist of 3 pairwise orthogonal linear arms
of
⌊
n−2+i

3

⌋
cubes (i = 1 . . . 3) joined at a central cube. �

Now we use the same structure of the lemmas for the 2- and 3-dimensional
case for the d-dimensional case.

Definition 2.6.

fd(l1, . . . , ld, v1, . . . , vd) :=
∑

I⊂{1,...,d}

1

|I|!2d−|I|
2d−1∑

b=0

∏
i∈I

qb,i

with b =
d∑
j=1

bj2
j−1, bj ∈ {0, 1}, qb,i =

{
li − 1 for bi = 0 ,
vi for bi = 1 .

Lemma 2.7. The d-dimensional volume of the convex hull of a polyomino
consisting of n unit hypercubes is bounded by fd(l1, . . . , ld, v1, . . . , vd).
Proof. We prove the statement by double induction on d and n, using
equation †. The cases d = 2, 3 are already treated, so we can first in-
duct on d. For n = 1 only li = 1, vi = 0 i ∈ {1, . . . , d} is possible.
Since fd(1, . . . , 1, 0, . . . , 0) = 1 is clearly the volume of the convex hull of
a single unit hypercube, the induction step is made. Now we may assume
that the lemma is proved for all possible tuples (l1, . . . , ld, v1, . . . , vd) with
1 +

∑d
i=1(li − 1) +

∑d
i=1 vi = n− 1.

We consider the growth of the li, vi and the volume a of the convex hull by
adding the n-th hypercube.

(i) l1 is increased by one:
The new hypercube has itself a volume of 1. Similar to the proof of Lemma
2.4 there is a hypervolume H ≤ fd−1(l2, . . . , ld, v2, . . . , vd)− 1 which grows in
direction 1. As in Lemma 2.4 we must split H in different parts which are
multiplied by 1

2
, 1

3
, . . . , 1

d
respectively plus the volume 1 of the new cube to

get the maximum growth of the volume by adding the new cube. We choose
the parts in such a way that the parts with the higher factors are as big

9



as theoretical possible. For every 0 ≤ r ≤ d − 2 we can consider the sets
{i1, i2, . . . , ir} with 1 6= ia 6= ib for a 6= b. Let Y be such a set. The axis direc-
tions 1, i1, . . . , ir span a hyperplane of the Rd. Define Y = {j1, . . . , jd−r−1}
by Y ∩Y = {} and 1∪Y ∪Y = {1, . . . , d}. So the spanned hyperplanes of Y
and of Y are orthogonal. The maximum volume in the hyperplane spanned
by Y is at most fd−r−1(lj1 , . . . , ljd−r−1

, vj1 , . . . , vjd−r−1
) − 1 due to induction.

Now look through a facet of the new cube which is parallel to Y . This would
yield a contribution of 1

d−r (fd−r−1(lj1 , . . . , ljd−r−1
, vj1 , . . . , vjd−r−1

) − 1) to the
volume of the convex hull. In terms of Definition 2.6 this is

1

d− r
∑

{}6=I⊂{j1,...,jr−d−1}

1

|I|!2d−r−1−|I|

2d−r−1−1∑

b=0

∏
i∈I

qb,i .

To avoid double counting we now only sum over subsets I of cardinality
r−d−1. The subsets of less cardinality will be recognized in the consideration
of the subspaces of the hyperplane spanned by Y . So that we finally get for
Y a maximum contribution of

1

d− r
1

|d− r − 1|!
2d−r−1−1∑

b=0

∏

i∈Y
qb,i .

If we do so for all possible sets Y we have assigned a factor between 1
2

and 1
d

to
every summand of fd−1(l2, . . . , ld, v2, . . . , vd)−1. To get the induction step we
now must only remark that the described sum above with its factors is exactly
the difference between fd(l1+1, . . . , ld, v1, . . . , vd) and fd(l1, . . . , ld, v1, . . . , vd).

(ii) v1 is increased by one:
Due to the symmetry of li and vi in Definition 2.6 this is analogue to (i)
with the addition that the maximum cannot be achieved in this case because
there is already a cube on this level and a part of the contribution of the new
cube to the volume of the convex hull is double counted.

(iii) l2, . . . , ld, v2, . . . , vd is increased by one:
Due to symmetry this is analogue to (i) or (ii).�

10



Theorem 1. The d-dimensional volume of the convex hull of any facet-to-
facet connected system of n unit hypercubes is at most

∑

I⊂{1,...,d}

1

|I|!
∏
i∈I

⌊
n− 2 + i

d

⌋
.

Proof.

(i) If v1 > 0 we decrease v1 and increase l1 by one. Now we consider the
difference of fd(l1 + 1, l2, . . . , ld, v1 − 1, v2, . . . , vd) and
fd(l1, l2, . . . , ld, v1, v2, . . . , vd) which is 0. Since due to the proof of Lemma 2.7
the maximum volume fd(l1, . . . , ld, v1, . . . , vd) cannot be achieved if v1 6= 0
this substitution increases the volume. So we conclude by an symmetry ar-
gument v1 = . . . = vd = 0.

(ii) Since we can renumber the coordinate axes we can assume that l1 ≤ l2 ≤
. . . ≤ ld holds. If ld − l1 ≥ 2 we increase l1 and decrease ld by one. Now
consider fd(l1 + 1, l2, . . . , ld−1, ld − 1, 0, 0, . . . , 0)− fd(l1, l2, . . . , ld, 0, 0, . . . , 0).
If a summand of fd(. . .) contains only the term l1 and not ld than there is a
corresponding term with l1 replaced by ld, so those terms raise each other in
the above difference. Clearly the summands containing none of the terms l1
or ld raise each other in the difference. So there only the summands with both
terms l1 and ld left. Since (l1+1−1)(ld−1−1)−(l1−1)(ld−1) = ld−l1−1 > 0
the above difference is > 0, so this substitution increases the volume, and we
conclude |li − lj| ≤ 1.

(iii) Using equation † we get li =
⌊
n−2+i+d

d

⌋
. Inserting in Lemma 2.7 yields

the proposed formula.

(iv) An extremal configuration consist of d pairwise orthogonal linear arms
of
⌊
n−2+i
d

⌋
cubes (i = 1 . . . d) joined at a central cube. �
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3 Proof of Theorem 2

Lemma 3.1. Every polyomino with the maximum area of the convex hull
must be a part of the two shapes depicted below, up to symmetry. Addition-
ally this shapes all have the maximum area given by f2(a, b, 0, 0).

� -

?

6

� -

6

?

Figure 3.1. The 2 shapes of polyominoes with maximum convex hull.

Proof.

We denote the length of the middle strip by a, and
the height of the total polyomino by b. By h1 and h2

we denote the heights of the two vertical strips with
h1 + 1 + h2 = b. So we compute the area of the convex
hull to (a−1)h1

2
+ (a−1)h2

2
+ h1 + l1 + h2 = (a−1)(b−1)

2
+ n.

Figure 3.2 shows that an extremal polyomino cannot
grow in another way than depicted in Figure 3.1, be-
cause the area would not be optimal. �

�
�
�

S
S
S
S
S
S

A
A
A
A
A
A

J
J
J
JJ

Figure 3.2.

Now we start to count the polyominoes with the shape of Lemma 3.1. There-
fore we distinguish whether a = b or not and the two cases for the shapes.

(i) a = b, shape 1.
We can describe each polyomino of this form by a tuple (r, t), where r should
give the position of the horizontal strip, and t the position of the vertical strip.
Reflecting at the horizontal and vertical symmetry-axis yields 1 ≤ r ≤ da

2
e,

1 ≤ t ≤ da
2
e. If we reflect at the diagonal we get r ≤ t. As there are no more

symmetries we get

c2,1(a, b) =

⌈
a
2

⌉
∑
r=1

r∑
t=1

1 =

⌈
a
2

⌉
∑
r=1

r =

⌈
a
2

⌉⌈
a+2

2

⌉

2
.
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(ii) a = b, shape 2.
By mirroring at the diagonal we can assume that the ’broken’ strip is verti-
cally and not horizontally. For the middle strip only the rows 1 to da

2
e are

possible. Row 1 leads to (i). If the horizontal line lies exactly on the center
then the horizontal symmetry-axis exists. We handle this case extra. So
there are ba−2

2
c cases. We fist must only consider the vertical symmetry-axis.

As there are two vertical stripes we describe their position by t1 and t2. If
t1 does not lie in the middle we have the conditions 2 ≤ r ≤ ba

2
c, t1 6= t2,

1 ≤ t1 ≤ ba2c (vertical symmetry-axis) and we get

c2,2(a, b) =
⌊a− 2

2

⌋⌊a
2

⌋
(a− 1) .

If t1 lies in the middle which is only possible for a ≡ 1 mod 2 we have the
conditions 2 ≤ r ≤ ba

2
c, t1 = a+1

2
, t2 <

a+1
2

and we get an additional

c2,3(a, b) =
⌊a− 2

2

⌋⌊a
2

⌋
.

Now consider the case that the horizontal strip lies exactly in the middle.
This is only possible for a ≡ 1 mod 2. We describe the polyominoes by
triples (r, t1, t2). By mirroring at the vertical symmetry-axis we can achieve
that t1 lies nearer at the border: min(t1, a + 1 − t1) ≤ min(t2, a + 1 − t2).
Mirroring at the horizontal symmetry-axis yields 1 ≤ t1 ≤ ba2c, so we get

c2,4(a, b) =

ba
2
c∑

t1=1

a+1−t1∑
t2=t1+1

1 =

ba
2
c∑

t1=1

a+1−2t1 = (a+1)
⌊a

2

⌋
−
⌊a

2

⌋⌊a+ 2

2

⌋
=
⌊a

2

⌋⌈a
2

⌉
.

(iii) a 6= b, shape 1.
Because a 6= b we cannot mirror at the diagonal. Again we describe the
polyominoes by (r, t). Mirroring at the horizontal and vertical symmetry-

axis yields 1 ≤ r ≤
⌈
a
2

⌉
, 1 ≤ t ≤

⌈
b
2

⌉
, so we get

c2,5(a, b) =
⌈a

2

⌉⌈ b
2

⌉
.
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(iv) a 6= b, shape 2.
Analogue to (ii) we get

c2,6(a, b) =
⌊b− 2

2

⌋⌊a
2

⌋
(a− 1)

plus for a ≡ 1 mod 2 an extra

c2,7(a, b) =
⌊b− 2

2

⌋⌊a
2

⌋

and for b ≡ 1 mod 2 an extra

c2,8(a, b) =
⌊a

2

⌋⌈a
2

⌉
.

The exchange of a and b is obvious.

We summarize the results

a = b :

a ≡ 0 mod 2: c2(a, b) = 2a3−5a2+6a
8

for a ≥ 0 ,

a ≡ 1 mod 2: c2(a, b) = 2a3−5a2+10a+1
8

for a ≥ 1 .

a 6= b :

a ≡ 0, b ≡ 0 mod 2: c2(a, b) = ab(a+b−1)−2a2−2b2+2a+2b
4

for a, b ≥ 2 ,

a ≡ 1, b ≡ 0 mod 2: c2(a, b) =
{ ab(a+b−1)−2a2−2b2+4b+2a

4

1
for

a ≥ 3, b ≥ 2 ,
a = 1, b ≥ 2 ,

a ≡ 0, b ≡ 1 mod 2: c2(a, b) =
{ ab(a+b−1)−2a2−2b2+4a+2b

4

1
for

a ≥ 2, b ≥ 3 ,
a ≥ 2, b = 1 ,

a ≡ 1, b ≡ 1 mod 2: c2(a, b) =
{ ab(a+b−1)−2a2−2b2+4a+4b−2

4

1
for

a, b ≥ 3 ,
(a− 1)(b− 1) = 0 .

14



Theorem 2. The number c2(n) of polyominoes in R2 with maximum area
of the convex hull is given by

n ≡ 0 mod 4 : c2(n) =
n3 − 2n2 + 4n

16
,

n ≡ 1 mod 4 : c2(n) =
n3 − 2n2 + 13n+ 20

32
,

n ≡ 2 mod 4 : c2(n) =
n3 − 2n2 + 4n+ 8

16
,

n ≡ 3 mod 4 : c2(n) =
n3 − 2n2 + 5n+ 8

32
.

Proof. The polyominoes with maximal area of the convex hull are given by
|a− b| ≤ 1 so Theorem 2 follows from the above. �

Conclusion 3.2. The generating function for the number c2(n) of polyomi-
noes in R2 with maximum area of the convex hull is given by

1 + x− x2 − x3 + 2x5 + 8x6 + 2x7 + 4x8 + 2x9 − x10 + x12

(1− x2)2(1− x4)2
.

4 Proof of Theorem 3

Lemma 3.1. A polyomino in Rd, d ≥ 3 with the maximum volume of the
convex hull consists of a central cube with linear arms at his faces.
Proof. We will prove by double induction on d and n. Therefore we consider
the process of building up a polyomino cube by cube. If the final polyomino
has the maximum volume of the convex hull in every step of the building
process the volume of the convex hull must be given by fd(l1, . . . , ld, 0, . . . , 0).
If li = 1 for an i we can delete axis i and project the polyomino in the Rd−1.
Now we assume d ≥ 3. In Lemma 2.7 we have seen, that when li increases
by one then the volume grows by the term

d∑
j=1

(lj − 1) − (li − 1)

2

15



considering the faces of the new cube.
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Figure 4.1. Adding a new cube.

The new cube in Figure 4.1 is depicted by 3 diagonals on the left picture.
The right picture shows the convex hull. The new cube contributes a volume
of 1 to the convex hull. The two faces of the cube contribute 1

2
+ 1

4
, and

the corner of the new cube contributes 1
3
. By a look at Figure 2.4 and the

proof of Lemma 2.4 we see that here the area A is 1
2

bigger than estimated
and that the strip in direction 2 is 1

2
fewer than estimated. As the first term

is multiplied by 1
3

and the second by 1
2

we loose 1
12

. This holds in general,
because the contribution of a face of dimension k is multiplied by 1

d−k+1
, so

the contribution of a face of dimension k must be as big as estimated in
Lemma 2.7. We conclude, that the polyominoes with maximum volume of
the convex hull must have the proposed shape for n ≥ 4 (because we use
d ≥ 3), It is easy to see that the polyominoes with maximum volume of the
convex hull consisting of n < 4 cubes also have the proposed shape. �

Theorem 3. The number cd(n) of polyominoes in Rd with maximum volume
of the convex hull is given by

n ≡ a mod d : cd(n) =

( ⌈
n−a
2d

⌉
+ d− a

d− a+ 1

)( ⌈
n+d−a

2d

⌉
+ a− 2

a− 1

)

with 0 < a ≤ d and d ≥ 3.
Proof. From the proof of Theorem 1 we know the length of the linear arms
to be

⌊
n−2+i
d

⌋
. For n ≡ a mod d, 0 < a ≤ d this is (d−a+1) times the length

n−a
d

and a−1 times the length n+d−a
d

. We can describe every polyomino in the
shape of Lemma 4.1 as a set of the sets {ai, bi} with ai+bi =

⌊
n−2+i
d

⌋
, ai, bi ∈

N0, since we can reflect on the hyperplanes and renumber the coordinate
axes by rotation. Using the fact that every symmetry of a hypercube can be
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composed by the rotations and the reflections on hyperplanes the theorem
follows by a simple combinatorial formulae. �

5 Proof of Theorem 4

Theorem 4. The existence of a 2-dimensional polyomino consisting of n
cells with area a of the convex hull is equivalent to a ∈ An with

An =

{
n+

m

2

∣∣∣m ≤
⌊
n− 1

2

⌋⌊n
2

⌋
,m ∈ N0

}
−
{
n+

1

2

∣∣∣if n+ 1 is prime

}
.

Proof. ⊆ :
Since the corner points of a polyomino lie on a unit square grid the area of
the convex hull must be a natural multiple of 1

2
. With Lemma 2.3 and the

fact that the area of n unit squares is n we got that the set of possible areas
of the convex hull of polyominoes with n cells must be a subset of

{
n+

m

2

∣∣∣m ≤
⌊
n− 1

2

⌋⌊n
2

⌋
,m ∈ N0

}
.

A polyomino consisting of n cells with area n of the convex hull must be
convex. If the area of the convex hull is n+ 1

2
there must be a triangle of area

1
2
. If we extend the triangle to a rectangle we get a polyomino consisting of
n+ 1 cells.

@@

Figure 5.1. Polyominoes with n squares and area n+ 1
2

of the convex hull.

Thus we can construct all polyominoes consisting of n unit squares with
area n + 1

2
of the convex hull by deleting a square at the corner of a convex

polyomino consisting of n+ 1 cells. The convex polyominoes are exactly the
a × b rectangles. Therefore for n + 1 prime there is only the 1 × (n + 1)

17



rectangle. Deleting a square yields area n of the convex hull.

⊇:
For m = 0 we have the a× b rectangles with ab = n as examples. The above
consideration for area n+ 1

2
of the convex hull yields a construction for n+ 1

composite. Now we give 6 constructions to handle the other values for m.

(i)

a

↔
b 1

l

Figure 5.2. Construction 1.

We let a run from
⌈
n
2

⌉
to n−2 and l run from 0 to a−b−1. With a+b+1 = n

we get a ≥ b+1 so that the construction depicted in Figure 5.2 is possible. For
n ≡ 0 mod 2 the attained values for m are (0), (2, . . . , 4), (4, . . . , 8), . . . , (a−
b− 1, . . . , 2a− 2b− 2), . . . , (n− 4, . . . , 2n− 8) = 0, 2, 3, . . . , 2n− 8. For n ≡
1 mod 2 the attained values for m are (1, 2), (3, . . . , 6), (5, . . . , 10), . . . , (a −
b− 1, . . . , 2a− 2b− 2), . . . , (n− 4, . . . , 2n− 8) = 0, 2, 3, . . . , 2n− 8.
So we can handle 2 ≤ m ≤ 2n− 8.

(ii)

. . .

Figure 5.3. Construction 2.

For n ≥ 9 Construction 2 yields m = 2n− 7. The remaining cases 5 ≤ n ≤ 8
for m = 2n− 7 are treated in Figure 5.4.

18



Figure 5.4. m = 2n− 7 for 5 ≤ n ≤ 8.

(iii)

l2
l1

l
l

b+ 1

1

Figure 5.5. Construction 3.

The conditions for a possible construction of Figure 5.5 are 0 ≤ l1, l2 ≤
n− 2b− 2 and 2b+ 2 ≤ n. We demand n− 2b− 2 ≥ b which is equivalent to
b ≤ n

3
. With given l1, l2, b, n it holds m = bn−2b2−2b+l1 +l2(b−1). Because

we have demanded n− 2b− 2 ≥ b− 1 we can vary l1 at least between 0 and
b−2 and so we can get by changing l1 and l2 all values between b(n−2b−2)
and 2b(n − 2b − 2). Now we want to combine those intervals for successive
values for b. The assumption that the intervals do not intersect is equivalent
to

2(b− 1)(n− 2(b− 1)− 2) < b(n− 2b− 2)

⇔ bn− 2n− 2b2 + 6b < 0

⇔ n(b− 2) < 2b(b− 3)

⇔ n < 2b b−3
b−2

< 2b

As we already have to fulfill b ≤ n
3

the intervals intersect. We choose 2 ≤
b ≤ ⌊n

4

⌋
and get constructions for m the interval 2n− 6, 2n− 5 . . . ,

⌈
n2−4n

4

⌉
.
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(iv)

l

⌊
n−1

2

⌋

⌊
n
2

⌋

Figure 5.6. Construction 4.

For n ≥ 4 Construction 4 is possible and for n ≡ 0 mod 2 we can get m from
n2−4n

4
to n2−2n−8

4
. For n ≡ 1 mod 2 we can get m from n2−4n−1

4
to n2−2n−11

4
.

(v)

. . .

...

Figure 5.7. Construction 5.

The height and the width of Figure 5.7 is be given by
⌊
n+1

2

⌋
and

⌊
n+2

2

⌋

For n ≥ 7 Construction 5 is possible. We need it only for odd n to obtain
m = n2−2n−7

4
. For n ≤ 5 we remark 2n− 7 ≥ n2−2n−7

4
.
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(vi)

. . .

...

Figure 5.8. Construction 6.

The height and the width of Figure 5.8 is as is Figure 5.7. For even n we get
m = n2−2n−4

4
and for odd n we get m = n2−2n−3

4
.

The proof is completed by Figure 2.3.�

In higher dimensions the situation analogue to Theorem 4 is more compli-
cates as we will see in the next Lemma.

Lemma 5.1. For every integer t there is a 3-dimensional polyomino con-
sisting of n cubes so that the denominator of its volume of the convex hull
exceeds t.
Proof. The volume of the convex hull of the polyomino in Figure 5.9 is given
by 2n− 3 + 1

6
(n− 1 + 1

2(n−3)
). �

�
�

�
�

�
�

. . .
�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�
�
�

Figure 5.9. Polyomino with a big denominator for the volume of the convex
hull.
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We enumerated the 2-dimensional polyominoes with maximum area of the
convex hull in Theorem 2. For the minimum area n of the convex hull we
enumerate them in Lemma 5.2 and for area n+ 1

2
of the convex hull we enu-

merate them in Lemma 5.3. Therefore we denote the number of divisors of
an integer n by τ(n).

Lemma 5.2. The number of polyominoes consisting of n unit squares with

minimum area n of the convex hull is given by
⌈
τ(n)

2

⌉
.

Proof. Those polyominoes are convex (in the sense of geometry) and so
they are all rectangle polyominoes. Considering the symmetries yields the
division by two and the ceiling. �

Lemma 5.3. The number of polyominoes consisting of n unit squares with

area n+ 1
2

of the convex hull is given by
⌈
τ(n+1)

2

⌉
− 1.

Proof. See Figure 5.1 and the proof of Theorem 4 for a description of those
polyominoes. �

Lemma 5.4. The number of d-dimensional polyominoes consisting of n unit
hypercubes with minimum volume n is the number of ways to decompose n
into sets of d factors.
Proof. Those polyominoes are convex (in the sense of geometry) and so
they are hyper rectangle polyominoes.

6 Outlook

In the last sections we enumerated the d-dimensional polyominoes with max-
imum and those with minimum volume of the convex hull. Here we do not
treat the equivalent problem for polyiamonds, polyhexes or other kinds of
polyominoes. For polyiamonds consisting of n unit equilateral triangles the
minimum area of the convex hull is n since there are convex (in the sense
of geometry) polyiamonds for every integer n. It is not difficult to describe
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the shape of those extremal animals but to find an elegant way to enumerate
their number is another thing. Polyhexes with more then one cell cannot
be convex (in the sense of geometry). We propose that the set of polyhexes
with the minimum are of the convex hull is equivalent to the set of polyhexes
with minimum perimeter. The later set is not enumerated yet, at least to
the authors knowledge.

Another class of problems which is also related to our topic is the question
for the maximum area of the convex hull of all edge-to-edge packings of n
regular k-gons in the plane.

Conjuncture 6.1. The maximum area of the convex hull of n regular k-gons
of area 1 is at most

1 +
(n− 1)2

π
√

3
+

2
√

3(n− 1)

π

with equality only for k =∞, more precisely circles, and n ≡ 1 mod 3.
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Figure 6.1. An example of circles with big area of the convex hull.
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A Exact numbers of different types of poly-

ominoes

Since I am generally interested in enumerating of polyominoes the bibliog-
raphy, with most entries concerning enumeration of polyominoes, will be
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followed by the, at least to me, known exact numbers of some kinds of poly-
ominoes.

In this context I would like to mention N.J.A. Sloane’s marvellous Online
Encyclopedia of Integer Sequences [102, 103]. This archive contains
over 80.000 integer sequences and numerous references. Suppose your are
working on a topic were an integer sequence is involved. Calculating the
first few terms and using the Look-Up interface of the Online Encyclopedia
of Integer Sequences might give you the next terms, the name, references,
generating functions,... . Since the numbers of polyominoes given in the next
subsections will not be up to date for a long time we cite the corresponding
sequences of [102] to give the reader the chance of getting the newest num-
bers.

Before we give the numbers we would like to encourage all mathematical au-
thors to support this archive by contributing the integer sequences from their
mathematical work. The author itself had submitted and extended over 500
sequences for this archive.

A.1 Number of square polyominoes

n A0001055(n) n A0001055(n) n A0001055(n)
1 1 11 4655 21 2870671950
2 1 12 17073 22 11123060678
3 1 13 63600 23 43191857688
4 2 14 238591 24 168047007728
5 5 15 901971 25 654999700403
6 12 16 3426576 26 2557227044764
7 35 17 13079255 27 9999088822075
8 108 18 50107909 28 39153010938487
9 369 19 192622052 29 153511100594603
10 1285 20 742624232

Table A.1. A0001055 Polyominoes or square animals.
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n A001168(n) n A001168(n)
1 1 24 5239988770268
2 2 25 20457802016011
3 6 26 79992676367108
4 19 27 313224032098244
5 63 28 1228088671826973
6 216 29 4820975409710116
7 760 30 18946775782611174
8 2725 31 74541651404935148
9 9910 32 293560133910477776
10 36446 33 1157186142148293638
11 135268 34 4565553929115769162
12 505861 35 18027932215016128134
13 1903890 36 71242712815411950635
14 7204874 37 281746550485032531911
15 27394666 38 1115021869572604692100
16 104592937 39 4415695134978868448596
17 400795844 40 17498111172838312982542
18 1540820542 41 69381900728932743048483
19 5940738676 42 275265412856343074274146
20 22964779660 43 1092687308874612006972082
21 88983512783 44 4339784013643393384603906
22 345532572678 45 17244800728846724289191074
23 1344372335524 46 68557762666345165410168738

Table A.2. A001168 Fixed polyominoes with n cells.
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A.2 Number of polyiamonds

n A000577(n) n A000577(n) n A000577(n)
1 1 11 1186 21 41835738
2 1 12 3334 22 121419260
3 1 13 9235 23 353045291
4 3 14 26166 24 1028452717
5 4 15 73983 25 3000800627
6 12 16 211297 26 8769216722
7 24 17 604107 27 25661961260
8 66 18 1736328 28 75195166667
9 160 19 5000593
10 448 20 14448984

Table A.3. A000577 Triangular polyominoes (or polyiamonds) with n cells
(turning over is allowed, holes are allowed, must be connected along edges).

n AA001420(n) n A001420(n) n A001420(n)
1 2 11 14016 21 501994070
2 3 12 39169 22 1456891547
3 6 13 110194 23 4236446214
4 14 14 311751 24 12341035217
5 36 15 886160 25 36009329450
6 94 16 2529260 26 105229462401
7 250 17 7244862 27 307942754342
8 675 18 20818498 28 902338712971
9 1838 19 59994514
10 5053 20 173338962

Table A.4. A001420 Fixed 2-dimensional triangular-celled animals with n
cells.
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A.3 Number of polyhexes

n A000228(n) n A000228(n) n A000228(n)
1 1 8 1448 15 76581875
2 1 9 6572 16 372868101
3 3 10 30490 17 1822236628
4 7 11 143552 18 8934910362
5 22 12 683101 19 43939164263
6 82 13 3274826 20 216651036012
7 333 14 15796897

Table A.5. A000228 Hexagonal polyominoes.

n A001207(n) n A001207(n) n A001207(n)
1 1 9 77359 17 21866153748
2 3 10 362671 18 107217298977
3 11 11 1716033 19 527266673134
4 44 12 8182213 20 2599804551168
5 186 13 39267086 21 12849503756579
6 814 14 189492795 22 63646233127758
7 3652 15 918837374
8 16689 16 4474080844

Table A.6. A001207 Fixed hexagonal polyominoes with n cells.

A.4 Number of 3-dimensional polyominoes

n A000162(n) n A000162(n) n A000162(n)
1 1 6 166 11 2522522
2 1 7 1023 12 18598427
3 2 8 6922 13 138462649
4 8 9 48311
5 29 10 346543

Table A.7. A000162 3-dimensional polyominoes (or polycubes) with n cells.
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n A001931(n) n A001931(n) n A001931(n)
1 1 7 23502 13 3322769321
2 3 8 162913 14 24946773111
3 15 9 1152870 15 188625900446
4 86 10 8294738 16 1435074454755
5 534 11 60494549 17 10977812452428
6 3481 12 446205905

Table A.8. A001931 Fixed 3-dimensional polyominoes with n cells; lat-
tice animals in the simple cubic lattice (6 nearest neighbors), face-connected
cubes.

A.5 Number of polyominoes on archimedean tessella-
tions

The numbers given in this section are all taken from [9]. The eight Archimedean
tessellations are depicted in Figure A.4 to A.11 where the cyclic sequences
(p1, p2, . . . , pq) represent the lists of the numbers of sides of all polygons sur-
rounding any vertex in this order. In the tables n denotes the number of cells
and a(n) denotes the number of free polyominoes with n cells on the given
tessellation.
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Figure A.1. (3,3,3,4,4).

n a(n) n a(n)
1 2 9 2822
2 3 10 9207
3 5 11 30117
4 13 12 99708
5 32 13 331219
6 96 14 1106870
7 281 15 3710728
8 891 16

Table A.9. (3,3,3,4,4).
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Figure A.2. (3,3,3,3,6).

n a(n) n a(n) n a(n) n a(n)
1 3 5 69 9 8943 13 1345840
2 3 6 228 10 31164 14 4758782
3 7 7 762 11 108840
4 23 8 2594 12 382063

Table A.10. (3,3,3,3,6).
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Figure A.3. (3,3,4,3,4).

n a(n) n a(n)
1 2 9 2161
2 2 10 6690
3 4 11 20881
4 10 12 65593
5 28 13 207171
6 79 14 657301
7 233 15 2093785
8 705 16

Table A.11. (3,3,4,3,4).
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Figure A.4. (3,4,6,4).

n a(n)
1 3
2 2
3 7
4 16
5 59
6 194
7 790
8 3116
9 13091
10 55021
11 235754
12 1015101
13 4408515

Table A.12.
(3,4,6,4).
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Figure A.5. (3,6,3,6).

n a(n)
1 2
2 1
3 4
4 9
5 29
6 90
7 330
8 1167
9 4393
10 16552
11 63618
12 245732
13 957443
14 3745541

Table A.13. (3,6,3,6).
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Figure A.6. (4,8,8).

n a(n) n a(n)
1 2 7 1914
2 2 8 9645
3 7 9 50447
4 21 10 266992
5 90 11 1432165
6 388

Table A.14. (4,8,8).
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Figure A.7. (3,12,12).

n a(n) n a(n) n a(n) n a(n)
1 2 4 35 7 5949 10 1541542
2 2 5 173 8 37198
3 8 6 983 9 237762

Table A.15. (3,12,12).
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Figure A.8. (4,6,12).

n a(n) n a(n) n a(n) n a(n)
1 3 4 49 7 7796 10 1697278
2 3 5 255 8 45876 11 10472378
3 14 6 1327 9 278002

Table A.16. (4,6,12).
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B Deutsche Zusammenfassung

Ein Polyomino ist eine über Kanten verbundene Vereiningung von Zellen
im ebenen Quadratgitter. Es gibt mindestens 3 Möglichkeiten zu definieren
wann 2 Polyominoes als äquivalent betrachtet werden sollen. Man bezeichnet
dies als fixe Polyominoes wenn äquivalente Polyominoes durch Verschiebun-
gen auseinander hervorgehen, als chirale Polyominoes falls wenn äquivalente
Polyominoes durch Verschiebungen und Drehungen auseinander hervorgehen
und man bezeichnet sie als freie Polyominoes wenn äquivalente Polyominoes
durch Verschiebungen, Drehungen und Spiegelungen auseinander hervorge-
hen. In der Literatur werden sie auch manchmal animals genannt, oder man
spricht vom Zellwachstums-Problem [74, 98]. Für den Ursprung von Poly-
ominoes zitiere ich in freier Übersetzung Klarner [75]: ”Polyominoes haben
eine lange Geschichte, die bis zum Anfang des 20. Jahrhunderts zurück geht.
Aber einer breitern Öffentlichkeit bekannt gemacht wurden sie zunächst von
Solomon Golomb [56, 57, 58, 59, 60, 61, 62, 55] und Martin Gardner in seinen
Kolumnen des Scientific American.” Um die abstrakt definierten Polyomi-
noes zu veranschaulichen sind in der Graphik 1.1 auf Seite 1 die Polyominoes
aus höchstens 5 Quadraten dargestellt.

Es gibt mehrere Verallgemeinerungen von Polyominoes, z.B. Polyiamonds
(kantenbenachbarte Vereinigungen von gleichseitigen Einheitsdreiecken) [8,
53, 66, 86, 106], Polyhexes (kantenbenachbarte Vereinigungen von regulären
Einheitssechsecken) [6, 52, 53, 86], Polyabolos (kantenbenachbarte Vereini-
gungen von rechtwinkligen gleichschenkligen Einheitsdreiecken) [52], Poly-
cubes (flächenbenachbarte Vereinigungen von Einheitswürfeln) [3, 87], usw.
Desweiteren kann man Polyominoes als Vereinigung von Zellen auf den Archi-
medischen Parkettierungen [9] definieren. In dieser Arbeit betrachten wir d-
dimensionale Polyominoes als flächenbenachbarte Vereinigung von d-dimen-
sionalen Einheitswürfeln. Falls nicht anders erwähnt sind mit dem Terminus
Polyominoes die freien Polyominoes gemeint.

Bevor die Sätze dieser Arbeit aufgelistet werden sollen noch ein paar An-
wendungen und Probleme von Polyominoes genannt werden. Der Ausdruck
Zellwachstums-Problem suggeriert Anwendungen in Medizin und Biologie.
Polyominoes sind nützlich für das Ising Model [24] mit dem man z.B. Ner-
vennetzwerke, Vogelschwärme, schlagende Herzzellen, Atome, Proteinfaltun-
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gen, Membrane, soziales Verhalten, usw. modellieren kann. Weitere An-
wendungen liegen auf dem Gebiet der Chemie und der Physik. Als Prob-
leme mit Polyominoes seien das Abzählen von Polyominoes [1,2,4,5,10-23,25-
50,54,64,67,69-72,76,78-97,99-101,105,107,108,110,111,113], das Erzeugen von
Polyominoes [109, 112], Vollendungsspiele [6, 7, 8, 9, 51, 66] und extremale
Polyominoes [65, 68, 73, 77] erwähnt. Im Anhang A werden exakte Anzahlen
für einige Arten von Polyominoes aufgelistet.

Der Hauptteil dieser Arbeit handelt von Polyominoes mit maximalem Flächen-
inhalt der konvexen Hülle. In [73] wurde gezeigt, daßder maximale Flächen-
inhalt der konvexen Hülle eines Polyominoes aus n Einheitsquadraten n +
1
2

⌊
n−1

2

⌋⌊
n
2

⌋
beträgt. In dieser Arbeit wird die Vermutung aus [73] für den

d-dimensionalen Fall bewiesen.

Satz 1. Das d-dimensionale Volumen der konvexen Hülle einer flächenbe-
nachbarten Vereinigung von n Einheitshyperwürfeln is höchstens

∑

I⊂{1,...,d}

1

|I|!
∏
i∈I

⌊
n− 2 + i

d

⌋
.

Die Autoren von [73] fragten nach der Anzahl von verschiedenen Polyomi-
noes aus n Quadraten mit maximalem Flächeninhalt der konvexen Hülle.

Theorem 2. Die Anzahl c2(n) von Polyominoes im R2 maximalem Flächen-
inhalt der konvexen Hülle bestehend aus n Einheitsquadraten ist gegeben
durch

n ≡ 0 mod 4 : c2(n) =
n3 − 2n2 + 4n

16
,

n ≡ 1 mod 4 : c2(n) =
n3 − 2n2 + 13n+ 20

32
,

n ≡ 2 mod 4 : c2(n) =
n3 − 2n2 + 4n+ 8

16
,

n ≡ 3 mod 4 : c2(n) =
n3 − 2n2 + 5n+ 8

32
.
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Satz 3. Die Anzahl cd(n) von Polyominoes im Rd mit maximalem Flächen-
inhalt der konvexen Hülle bestehend aus n Einheitshyperwürfeln ist gegeben
durch

n ≡ a mod d : cd(n) =

( ⌈
n−a
2d

⌉
+ d− a

d− a+ 1

)( ⌈
n+d−a

2d

⌉
+ a− 2

a− 1

)

mit 0 < a ≤ d und d ≥ 3.

Wenn man den maximalen Flächeninhalt der konvexen Hülle kennt kann man
fragen welche Flächeninhalte möglich sind. Für den zweidimensionalen Fall
wird die Situation vollständig durch den nästen Satz beschrieben.

Satz 4. Die Existenz eines zweidimensionalen Polyomino bestehend aus n
Zellen mit einer Fläche a der konvexen Hülle ist äquivalent zu a ∈ An mit

An =

{
n+

m

2

∣∣∣m ≤
⌊
n− 1

2

⌋⌊n
2

⌋
,m ∈ N0

}
−
{
n+

1

2

∣∣∣if n+ 1 is prime

}
.
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