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Abstract

We examine the set of (0,1) matrices that can be uniquely reconstructed from
their row and column sum vectors. Their cardinality is shown to be the Poly-
Bernoulli numbers of negative index. The graphs generated by adjacency matrices
of this type are then surveyed.

1 Introduction

In the literature many of the results dealing with the row and column sums of (0-1)
matrices are linked to a paper by Ryser[9], and further work done by Brualdi[10]. A
good reference on the subject is chapter two of [11]. Discrete Tomography, the study of
constructing (0,1) matrices from their row and column sums, is another branch which is
surveyed in [13]. For this paper we will be dealing with (0,1) matrices that can be uniquely
reconstructed from their row and column sums. We will need the following theorem.

Theorem 1 (Ryser-Fulkerson 1950’s) Any (0,1) matrix with row sum vector R and
column sum vector S can be transformed into any other (0,1) matrix with row sum vector
R and column sum vector S via interchange operations.

An interchange operation is one of the following: replacing the sub-matrix
(

01
10

)
with(

10
01

)
, or replacing the sub-matrix

(
10
01

)
with

(
01
10

)
. Note that row/column sums stay un-

changed after interchange operations are preformed.
Any set of (0,1) matrices with the same row sum vector, and the same column sum

vector, are said to be in the same Ryser Class. For example, the Ryser Class of
(

011
100

)
is {

(
011
100

)
,
(

101
010

)
,
(

110
001

)
}

By the Ryser-Fulkerson Theorem, the Ryser classes can be represented as graphs where
each vertex is a matrix in the Ryser class, and each edge is an interchange operation.
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For this paper we will be interested in Ryser classes of size one. By the Ryser-Fulkerson
theorem we can deduce that a (0,1) matrix can be uniuqely determined by its row and
column sums IFF no interchange operation can be preformed on the matrix. We shall refer
to the sub-matrices

(
01
10

)
or

(
10
01

)
as Forbiden Minors, and the class of (0,1) matrices

uniquely determined by their row and column sums as Lonesum Matrices.

2 Enumeration of Lonesum Matrices

The Poly-Bernoulli Numbers are defined as:
B(k)

n =
∑n

m=0(−1)n+mm!
{

n
m

}
(m + 1)−k[6]

Note that
{

n
m

}
are Stirling Numbers of the Second Kind.

Theorem 2 (Main Result) The number of distinct n× k Lonesum Matrices is B(−k)
n .

Proof:
We shall view this as a language counting problem. The symbols in our alphabet will be
{0,1} columns. Forbidden words will have two symbols(columns) that form one of the

forbidden minors :
(

01
10

)
or

(
10
01

)
. For example, the three symbol word

(
010
110

)
is allowed while

the three symbol word
(

011
110

)
is forbidden because it contains the forbidden minor

(
01
10

)
.

Lemma 1 (Symbol Weight) : No two symbols of the same weight occur in the same
word of our language, unless they are the same symbol.

Proof: By weight we mean the number of 1’s in a given symbol. Let S1 and S2 be symbols
in our alphabet, S1 6= S2, and weight(S1) = weight(S2). Since S1 6= S2 there must be a
row where they have different values. Scanning both symbols from top to bottom find
the first row where their weights differ and call it X. At this point the running total of
one symbol weight is bigger than the other, so scan down to the row where their weights
are equal again and call that row Y . Thus, we have

(
X(0,1)
Y (1,0)

)
or

(
X(1,0)
Y (0,1)

)
. Since both are

forbidden minors the lemma holds. We can’t have two symbols of the same weight occur
in the same word of our language unless they are the same symbol.2

Corollary 1 (Row Weight) By a similar argument no two rows have the same weight
unless they are identical.

Lemma 2 (Swap) Permuting rows/columns does not change membership in the class of
Lonesum matrices.

Proof:
Note that the forbidden minors are mirror images. Swapping either the rows or columns
of one forbidden minor will give you the other. Thus, any permutation of rows or columns
will still yield the same number of forbidden minors. 2
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A (i + 1) by (i) matrix who’s rows are 1(i−j)0j for (0 ≤ j ≤ i) shall be refered to as a
Upper 1 Matrix. Let Gi be an onto mapping from the rows of an i symbol word to the
rows of an Upper 1 Matrix:

Example:


row(1)
row(2)

...
row(n)

 ONTO− >


1 1 1
1 1 0
1 0 0
0 0 0


Lemma 3 (Mapping) The words formed by the onto function Gi when combined with
the all 1’s symbol and the all 0’s symbol form every possible Lonesum Matrix.

Proof:

Proposition 1 (Uniqueness)

This will be proved by a contradiction. Assume that a Lonesum Matrix exists whose
symbols don’t arise from the onto mapping Gi along with the all 1’s symbol and the all
0’s symbol. Erase all but one copy of every duplicate symbol in the matrix, and any all-1’s
or all-0’s symbols. By the weight lemma all remaining symbols have a different weight, so
sort them in decreasing order of their weight. Since 1∗0∗ rows are in the onto mapping we
want a row of the form ∗0 ∗ 1∗, thus two columns of the form A(...0...) B(...1...). Column
A has a higher weight than column B, so two copies of the row (1 0) (1 0) must exist. We

have a forbidden minor
(

01
10

)
or

(
10
01

)
, and thus a contradiction.2

Proposition 2 (Existance)

Again we will use contradiction. Assume that the mapping Gi created a non-Lonesum
matrix. Note that the row (...0...1...) must exist to create a forbidden minor. This row
does not exist in the mapping, and thus we have a contradiction.2
By the two propositions we have proved the Mapping Lemma. 2

By the Mapping Lemma we can count the number of legal words on m symbols. If
each symbol is n digits tall, we get the onto functions from an n set to an m set. This
is m!

{
n
m

}
.[2] We can now construct a counting formula using inclusion-exclusion on these

words.

Lemma 4 (Counting Formula) The number of n×m Lonesum Matrices is∑n
m=1(−1)n+mm!

{
n
m

}
(m + 1)k

By inclusion-exclusion we know that our counting formula is:∑n
m=1(−1)n+mA ∗B, were A is the number symbol sets of size m-1, and B is the number

of strings length k on an m-1 symbol set along with the all-1 and all-0 symbols. By the
mapping lemma A = m!

{
n
m

}
. Trivially B = (m + 1)k. Thus, the formula is:∑n

m=1(−1)n+mm!
{

n
m

}
(m + 1)k. 2
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By the counting lemma the number of Lonesum matrices is equal to the Poly-Bernoulli
numbers of negative index. Thus, we have proved our main theorem.2

We can now use transformations on sets of Lonesum matrices to simplify proofs about
the Poly-Bernoulli Numbers of Negative Index. For instance, take this identity proved by
Kaneko[6].

Corollary 2 (Inversion) For any n, k ≥ 0 we have B(−k)
n = B

(−n)
k

Lonesum Matrix Proof:
Transpose the set of n × k Lonesum Matrices. Since

(
01
10

)
and

(
10
01

)
are duals under this

transformation no forbidden matrices are added or deleted from our set. 2

3 Survey of n by n Lonesum Matrices

The following is indended to be a small survey. Almost, if not all of the results presented
here can be found in the literature. First we will look at n by n Lonesum Matrices with
no restriction.

Corollary 3 (Labeled Directed Graphs) The number of n by n labeled directed graphs
uniquely reconstructable from their in and out degrees is B−n

n

Proof:
By viewing the square (0,1) matrix as an adjacency matrix the row and column sum
vectors correspond to in and out degrees for each vertex. Thus, n by n Lonesum Matrices
are equivalent to labeled directed graphs uniquely reconstructable from their in and out
degree vectors. From above we know that the number of these matrices is B−n

n .2
How about labeled directed graphs without loops? In this case we restrict ourselves
to square Lonesum matrices that have 0 down the main diagonal; ∀iai,i = 0. Instead
of enumerating them outright we will show that they are equivalent to labeled interval
orders on n elements A079144[3].

Definition 1 (Interval Order) a, b, c, d are distinct elements in a set I with two prop-
erties:
(i)Irreflexive: a < a is not valid.
(ii)Relativity:a < b,c < d implies at least one of a < d,c < b

Observation 1 (Labeled Interval Orders on n Elements) Square Lonesum Matri-
ces with 0 down the main diagonal are the set of labeled interval orders on n elements

Proof:
View the matrix as ai,j = 1 ⇔ i < j.
(i) is satisfied because ai,i = 0, thus we never have a < a
(ii)is satisfied because we have no forbidden minors.
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Take the intervals a, b, e, f . The forbidden minor: < e f
a 1 0
b 0 1


shows that a < e, b < f . It violates condition (ii) because a < f or b < e must exist.2

The set of Lonesum matrices that correspond the adjacency matrices of simple graphs
is pretty dull. If ai,j = 1 then aj,i = 1 by symmetry, and we get the forbidden minor: ♠ a b

a 0 1
b 1 0


Thus, the only matrix in this class is the all zero n by n matrix; the empty graph.

Suppose we allow every vertex to have a loop. This is the set of Lonesum n by n
matrices with ai,j = aj,i.
Let’s list the forbidden minors and their implications. Assume a, b, c, d are distinct ver-
texes: a b

a 0 1
b 1 0


(1) Every edge is connected to a looped vertex. If the edge ab exists, but a loop on a or b
does not, then we get the above forbidden minor. a b

a 1 0
b 0 1


(2) Every two loops are connected by an edge. Two loops not connected by an edge forms
the above forbidden minor. a c

a 1 0
b 0 1


(3)Every loop is distance ≤ 1 from every edge. From the above forbidden minor, given
the loops a and c we must also include at least one of the edges ac or ab. Either edge
would make the distance between a and bc at most one. a c

a 0 1
b 1 0


(4)Any two edges sharing a non-loop vertex form a triangle. If a is a non-loop vertex, and
ac, bc are edges in the graph, then edge bc must be added to avoid the above forbidden
minor. c d

a 1 0
b 0 1


(5)Every two non-adjacent edges are connected by an edge. Given the edges ac, bd we
must insert either edge bc or edge ad to avoid the above forbidden minor.
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The resulting graph consists of a completely connected and looped center, surrounded
by a set of non-adjacent and unlooped vertexes.

Theorem 3 (Labeled Lonesum Graphs) The number of labeled Lonesum graphs on
n vertexes is:
G(n) =

∑n
k=0[

(
n
k

)
2k∗(n−k)]

Proof:
Since the looped vertexes are totally connected make a choice for each set of k looped
vertexes. Next we must decide how to connect the remaining n−k vertexes to the looped
vertexes. Each vertex has k possible edges to a looped vertex,or 2kedge configurations.
There are n−k vertexes that must make this choice, thus 2k∗(n−k) total edge configurations
for every k set of looped vertexes.2
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