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Abstract� Historically� the polylogarithm has attracted specialists and non�
specialists alike with its lovely evaluations� Much the same can be said for
Euler sums �or multiple harmonic sums�� which� within the past decade� have
arisen in combinatorics� knot theory and high�energy physics� More recently�
we have been forced to consider multidimensional extensions encompassing the
classical polylogarithm� Euler sums� and the Riemann zeta function� Here�
we provide a general framework within which previously isolated results can
now be properly understood� Applying the theory developed herein� we prove
several previously conjectured evaluations� including an intriguing conjecture
of Don Zagier�

�� Introduction

We are going to study a class of multiply nested sums of the form

�

�
s�� � � � � sk
b�� � � � � bk

�
��

�X
������ ��k��

kY
j��

b
��j
j

� kX
i�j

�i

��sj
������

and which we shall refer to as multiple polylogarithms� When k � �� we de�ne
��fg� �� �� where fg denotes the empty string� When k � �� note that
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is the usual polylogarithm 
��� �� when s is a positive integer and jbj � �� Of
course� the polylogarithm ���	� reduces to the Riemann zeta function 
	�� ��� ��

��s� �

�X
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�

�s
� ��s� � �������

when b � �� More generally� for any k � � the substitution nj �
Pk

i�j �i shows

that our multiple polylogarithm ����� is related to Goncharov�s 
�� by the equation

Lisk���� �s��xk� � � � � x�� � �

�
s�� � � � � sk
y�� � � � � yk

�
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and

Lisk���� �s��xk � � � � � x�� ��
X

n������nk��

kY
j��

n
�sj
j xj

nj ������

With each xj � �� these latter sums �sometimes called �Euler sums��� have been
studied previously at various levels of generality 
	� �� �� �� ��� ��� �� ��� ��� ��� ���
�	� �� ��� the case k � 	 going back to Euler 
	��� Recently� Euler sums have arisen
in combinatorics �analysis of quad�trees 
��� ��� and of lattice reduction algorithms

	���� knot theory 
��� �� ��� ���� and high�energy particle physics 
��� �quantum
�eld theory�� There is also quite sophisticated work relating polylogarithms and
their generalizations to arithmetic and algebraic geometry� and to algebraic K�
theory 
�� ��� ��� ��� ��� �� ��� ��� ����
In view of these recent applications and the well�known fact that the classical

polylogarithm ���	� often arises in physical problems via the multiple integration of
rational forms� one might expect that the more general multiple polylogarithm �����
would likewise �nd application in a wide variety of physical contexts� Nevertheless�
lest it be suspected that the authors have embarked on a program of generaliza�
tion for its own sake� let the reader be assured that it was only with the greatest
reluctance that we arrived at the de�nition ������ On the one hand� the polyloga�
rithm ���	� has traditionally been studied as a function of b with the positive integer
s �xed� while on the other hand� the study of Euler sums has almost exclusively
focused on specializations of the nested sum ����� in which each xj � ��� However�
we have found� in the course of our investigations� that a great deal of insight is
lost by ignoring the interplay between these related sums when both sequences of
parameters are permitted to vary� Indeed� it is our view that it is impossible to
fully understand the sums ���	����� without viewing them as members of a broader
class of multiple polylogarithms�
That said� one might legitimately ask why we chose to adopt the notation �����

in favour of Goncharov�s ������ inasmuch as the latter is a direct generalization of
the Lin notation for the classical polylogarithm� As a matter of fact� the nota�
tion ����� �with argument list reversed� was our original choice� However� as we
reluctantly discovered� it turns out that the notation ������ in which the second
row of parameters comprises the reciprocated running product of the argument
list in ������ is more suitable for our purposes here� In particular� our �running
product� notation ������ in addition to simplifying the iterated integral representa�
tion ����� �cf� 
��� Theorem ��� and the various duality formulae �Section ��see eg�
equations ����� and ������� brings out much more clearly the relationship �Subsec�
tion ��� between the partition integral �Subection ����� in which running products
necessarily arise in the integrand� and �stu�es� �Subsections ��� �	�� It seems also
that boundary cases of certain formulae for alternating sums must be treated sepa�
rately unless running product notation is used� Theorem �� with n � � �Section ��
provides an example of this�
Don Zagier �see eg� 
���� has argued persuasively in favour of studying special

values of zeta functions at integer arguments� as these values �often seem to dic�
tate the most important properties of the objects to which the zeta functions are
associated�� It seems appropriate� therefore� to focus on the values the multiple
polylogarithms ����� take when the sj are restricted to the set of positive integers�
despite the fact that the sums ����� and their special cases have a rich structure as



SPECIAL VALUES OF MULTIPLE POLYLOGARITHMS �

analytic functions of the complex variables sj � However� we allow the parameters
bj to take on complex values� with each jbj j � � and �b�� s�� �� ��� �� to ensure
convergence�
Their importance notwithstanding� we feel obliged to confess that our interest in

special values extends beyond mere utilitarian concerns� Lewin 
��� �p� xi� writes
of a �school�boy fascination� with certain numerical results� an attitude which we
whole�heartedly share� In the hope that the reader might also be convinced of the
intrinsic beauty of the subject� we o�er two modest examples� The �rst 
��� ����
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generalizes Euler�s celebrated result
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and is extended to all even positive integer arguments in 
��� The second �see
Corollary � of Section ���
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can be viewed as a multidimensional extension of the elementary �dual� Maclaurin
series evaluations

�X
���

�������

�
�

�X
���

�

�	�
� log 	�

and leads to deeper questions of duality �Section �� and computational issues related
to series acceleration �Section ��� We state additional results in the next section and
outline connections to combinatorics and q�series� In Section �� we develop several
di�erent integral representations� which are then used in subsequent sections to
classify various types of identities that multiple polylogarithms satisfy� Sections �
through �� conclude the paper with proofs of previously conjectured evaluations�
including an intriguing conjecture of Zagier 
��� and its generalization�

	� Definitions and Additional Examples

A useful specialization of the general multiple polylogarithm ������ which is at
the same time an extension of the polylogarithm ���	�� is the case in which each
bj � b� Under these circumstances� we write

�b�s�� � � � � sk� �� �

�
s�� � � � � sk
b� � � � � b

�
�

�X
������ ��k��

kY
j��

b��j
� kX

i�j

�i

��sj
��	���

and distinguish the cases b � � and b � 	 with special symbols�

� �� �� and � �� ����	�	�
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The latter ��function represents an iterated sum extension of the polylogarithm ���	�
with argument one�half� and will play a crucial role in computational issues �Sec�
tion �� and �duality� identities such as ���� The former coincides with ����� when
k � �� each xj � �� and the order of the argument list is reversed� and hence can
be viewed as a multidimensional unsigned Euler sum� We will follow Zagier 
���
in referring to these as �multiple zeta values� or �MZVs� for short� By specifying
each bj � �� in ������ alternating Euler sums 
�� are recovered� and in this case� it
is convenient to combine the strings of exponents and signs into a single string with
sj in the jth position when bj � ��� and sj� in the jth position when bj � ���
To avoid confusion� it should be also noted that in 
�� the alternating Euler sums
were studied using the notation

��s�� � � � � sk� ��
X

n������nk��

kY
j��

n
�jsjj
j �

�nj
j

where s�� � � � � sk are non�zero integers and �j �� signum�sj��
Additionally� n repetitions of a substring U will be denoted by Un� Thus� for

example�

��f	�� �gn� �� �

�
	� �� � � � � 	� �

��� �� � � � ���� �

�
�

�X
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������j���Pk
i��j�� �i

�� �Pk
i��j �i

� �
Unit Euler sums� that is those sums ����� in which each sj � �� are also important

enough to be given a distinctive notation� Accordingly� we de�ne

	�b�� � � � � bk� �� �

�
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To entice the reader� we o�er a small but representative sample of evaluations
below�

Example ���� Euler showed that

��	� �� �
�X
n��

�

n�

n��X
k��

�

k
�

�X
n��

�

n�
� �����

and more generally 
	�� ��� that

	��m� �� � m��m� ���
m��X
k��

��m� k���k � ��� 	 � m � Z�

The continued interest in Euler sums is evidenced by the fact that a recent American
Mathematical Monthly problem 
	�� e�ectively asks for the proof of ��	� �� � �����

Two examples of non�alternating� arbitrary depth evaluations for all nonnegative
integers n are provided by

Example ����

��f�� �gn� � ��n��f�gn� �
	��n

��n� 	��
�

previously conjectured by Don Zagier 
��� and proved herein �see Section ���� and
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Example ����

��	� f�� �gn� � ��n
nX

k��

����k��f�gn�k�

�
��k � �����k � 	�

� �

kX
j��

���j � �����k � �j � ��

�
�

conjectured in 
�� and proved by Bowman and Bradley 
����

Example ���� An intriguing two�parameter� arbitrary depth evaluation involving
alternations� conjectured in 
�� and proved herein �see Section ��� is

	�f��gm� �� f��gn� � ����m��
mX
k��

�
n� k

n

�
Ak�n��Pm�k

� ����n��
nX

k��

�
m� k

m

�
Zk�m��Pn�k�

�	���

where

Ar �� Lir�
�
� � � ��r� �

�X
k��

�

	kkr
� Pr ��

�log 	�r

r�
� Zr �� ����r��r���	��

The formula �	��� is valid for all nonnegative integers m and n if the divergent
m � � case is interpreted appropriately�

Example ���� If the sj are all nonpositive integers� then� kX
i�j

�i

��sj
� Dj exp

�
� uj

kX
i�j

�i

�
� Dj ��

�
�

d

duj

��sj ����� uj�� �
Consequently�
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In particular� �	��� implies

�

�
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b�� � � � � bk

�
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kY
j��

�

bj � �
��	���

Despite its utter simplicity� �	��� points the way to deeper waters� For example� if
we put bj � q�j for each j � �� 	� � � � � k and note that

�

�
�� �� � � � � �

q��� q��� � � � � q�k

�
�

X
n��n������nk��

kY
j��

qnj � k � ��
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then �	��� implies the generating function equality

�X
k��

zk�

�
�� �� � � � � �

q��� q��� � � � � q�k

�
�

�Y
n��

�� � zqn� �
�X
k��

zk
kY

j��

qj

�� qj
�

which experts in the �eld of basic hypergeometric series will recognize as a q�
analogue of the exponential function and a special case of the q�binomial theorem�
usually expressed in the more familiar form 
�	� as

��zq� q�� �

�X
k��

qk�k�����

�q� q�k
zk�

The case k � �� b� � 	� s� � �n of �	��� yields the numbers 
��� �A����	��

���n� � ����n� �

�X
k��

kn

	k
� Li�n�

�
� �� � � n � Z��	���

which enumerate 
�� the combinations of a simplex lock having n buttons� and
which satisfy the recurrence

���n� � � �

n��X
j��

�
n

j

�
���j�� � � n � Z�

Also� from the exponential generating function
�X
n��

���n�
xn

n�
�

ex

	� ex
�

	

	� ex
� ��

we infer 
��� ��� that for n � �� �����n� also counts

� the number of ways of writing a sum on n indices�
� the number of functions f � f�� 	� � � � � ng 	 f�� 	� � � � � ng such that if j is in
the range of f � then so is each value less than or equal to j�

� the number of asymmetric generalized weak orders on f�� 	� � � � � ng�
� the number of ordered partitions �preferential arrangements� of f�� 	� � � � � ng�

The numbers �
����n� also arise 
	�� in connection with certain constants related

to the Laurent coe�cients of the Riemann zeta function� See 
��� �A������� for
additional references�

�� Reductions

Given the multiple polylogarithm ������ we de�ne the depth to be k� and the
weight to be s �� s�� � � ��sk� We would like to know which sums can be expressed
in terms of lower depth sums� When a sum can be so expressed� we say it reduces�
Especially interesting are the sums which completely reduce� i�e� can be expressed
in terms of depth�� sums� We say such sums evaluate� The concept of weight is
signi�cant� as all our reductions preserve it� More speci�cally� we�ll see that all our
reductions take the form of a polynomial expression which is homogeneous with
respect to weight�
There are certain sums which evidently cannot be expressed �polynomially� in

terms of lower depth sums� Such sums are called �irreducible�� Proving irre�
ducibility is currently beyond the reach of number theory� For example� proving
the irrationality of expressions like ��� ��
������� or ���
��	����� seems to be
impossible with current techniques�
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���� Examples of Reductions at Speci�c Depths� The functional equation
�an example of a �stu�e� � see Sections �� through ���

��s���t� � ��s� t� � ��t� s� � ��s � t�

reduces ��s� s��
One of us �Broadhurst�� using high�precision arithmetic and integer relations

�nding algorithms� has found many conjectured reductions� One example is

���� �� �� � ���� �� � �
�
�����

	
�������� �

�
�����

���	�������

which expresses a multiple zeta value of depth three and weight eight in terms of
lower depth MZVs� and which was subsequently proved� Observe that the combined
weight of each term in the reduction ����� is preserved� The easiest proof of �����
uses Minh and Petitot�s basis of order eight 
��
Broadhurst also noted that although ���� 	� �� 	� is apparently irreducible in terms

of lower depth MZVs� we have the conjectured� weight��	 reduction

���� 	� �� 	�
�
� � ����

� ����� ��� �
���
		�� ���	�� ����

� ���� ��� 

� ��������

� �
�
� ������� � 	��������� � ����� ������

� ������������� � �

����

�

���	�

in terms of lower depth MZVs and the alternating Euler sum ����� ��� Thus�
alternating Euler sums enter quite naturally into the analysis� And once the alter�
nating sums are admitted� we shall see that more general polylogarithmic sums are
required�
We remark that the depth�two sums in ���	�� namely ����� ��� ���� ��� and

��� ��� are almost certainly irreducible� For example� if there are integers c�� c�� c��
c� �not all equal to �� such that c���� ���c��

��c�����
���	��c�������� � �� then

the Euclidean norm of the vector �c�� c�� c�� c�� is greater than ��	�� This result
can be proved computationally in a mere ��	 seconds on a DEC Alpha workstation
using D� Bailey�s fast implementation of the integer relation algorithm PSLQ 
	���
once we know the four input values at the precision of 	�� decimal digits� Such
evaluation poses no obstacle to our fast method of evaluating polylogs using the
H�older convolution �see Section ���

��	� An Arbitrary Depth Reduction� In contrast to the speci�c numerical re�
sults provided by ����� and ���	�� reducibility results for arbitrary sets of arguments
can be obtained if one is prepared to consider certain speci�c combinations of MZVs�
The following result is typical in this respect� It states that� depending on the par�
ity of the depth� either the sum or the di�erence of an MZV with its reversed�string
counterpart always reduces� Additional reductions� such as those alluded to in
Sections � and 	� must await the development of the theory provided in Sections
����

Theorem ���� Let k be a positive integer and let s�� s�� � � � � sk be positive integers
with s� and sk greater than �� Then the expression

��s�� s�� � � � � sk� � ����k��sk � � � � � s�� s��

reduces to lower depth MZVs�


Both sides of ���� agree to at least ���� signi�cant �gures�
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Remark ��	� The condition on s� and sk is imposed only to ensure convergence of
the requisite sums�

Proof� Let N �� �Z��
k
denote the Cartesian product of k copies of the positive

integers� De�ne an additive weight�function w � 	N 	 R by

w�A� ��
X
�n�A

kY
j��

n
�sj
j �

where the sum is over all �n � �n�� n�� � � � � nk� � A 
 N� For each � � j � k � ��
de�ne the subset Pj of N by

Pj �� f�n � N � nj � nj��g�

The Inclusion�Exclusion Principle states that

w

� k���
j��

N n Pj

�
�

X
T�f������� �k��g

����jT jw

� �
j�T

Pj

�
������

We remark that the term on the right�hand side of ����� arising from the subset
T � fg is ��s����s�� � � � ��sk� by the usual convention for intersection over an empty
set� Next� note that the left�hand side of ����� is simply ��s�� s�� � � � � sk�� Finally�
observe that all terms on the right�hand side of ����� have depth strictly less than
k�except when T � f�� 	� � � � � k � �g� which gives

����k��
X

n��n������nk

kY
j��

n
�sj
j � ����k����sk� � � � � s�� s�� � lower depth MZVs�

This latter observation completes the proof of Theorem ����

�� Integral Representations

Writing the de�nition of the gamma function 
�� in the form

r�s �s� �

Z �

�

�logx�s��x�r�� dx� r � �� s � ��

it follows that if each sj � � and each jbj j � �� then

�

�
s�� � � � � sk
b�� � � � � bk

�
�

�X
������ ��k��

kY
j��

b
��j
j

� kX
i�j

�i

��sj

�
�X

����

Z �

�

�logx�s��� dx

 �s��b
��
� x����

�X
������ ��k��

kY
j��

�xbj�
��j

� kX
i�j

�i

��sj

�
�

 �s��

Z �

�

�log x�s���

xb� � �
�

�
s�� � � � � sk
xb�� � � � � xbk

�
dx

x
�

�����

a representation vaguely remindful of the integral recurrence for the polylogarithm�
Repeated application of ����� yields the k�dimensional integral representation

�

�
s�� � � � � sk
b�� � � � � bk

�
�

Z �

�

� � �

Z �

�

kY
j��

�logxj�
sj��dxj

 �sj�
�
bj
Qj

i�� xi � �
	
xj
����	�
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which generalizes Crandall�s integral 
	�� for ��s�� � � � � sk�� An equivalent formula�
tion of ���	� is

�

�
s�� � � � � sk
b�� � � � � bk

�
�

Z �

�

� � �

Z �

�

kY
j��

u
sj��
j duj

 �sj��bj exp
�Pj

i�� ui
	
� ��

������

the integral transforms in ����� replacing the derivatives in �	����
Although depth�dimensional integrals such as ���	� and ����� are attractive� they

are not particularly useful� As mentioned previously� we are interested in reducing
the depth whenever this is possible� However� since the weight is an invariant of all
known reductions� we seek integral representations which respect weight invariance�
As we next show� this can be accomplished by selectively removing logarithms from
the integrand of ���	�� at the expense of increasing the number of integrations� At
the extreme� the representation ���	� is replaced by a weight�dimensional integral
of a rational function�

���� The Partition Integral� We begin with the parameters in ������ Let R��
R�� � � � � Rn be a �disjoint� set partition of f�� 	� � � � � kg� Put

rm ��
X
i�Rm

si� � � m � n�

If d�� d�� � � � � dn are real numbers satisfying jdmj � � for all m and r�d� �� �� then

�

�
r�� � � � � rn
d�� � � � � dn

�
�

�X
������ ��n��

nY
m��

d��mm

� nX
j�m

�j

��rm

�

�X
������ ��n��

nY
m��

d��mm

Y
i�Rm

� nX
j�m

�j

��si

�

�X
������ ��n��

nY
m��

d��mm

Z �

�

� � �

Z �

�

Y
i�Rm

�logxi�
si�� dxi

 �si�x
���m������n
i

�

Now collect bases with like exponents and note that �
Qn

m��

Q
i�Rm

�
Qk

j�� �� It
follows that

�

�
r�� � � � � rn
d�� � � � � dn

�
�

Z �

�

� � �

Z �

�

� �X
������ ��n��

nY
m��

d��mm

mY
j��

Y
i�Rj

x��mi

�

�
kY

j��

�log xj�
sj�� dxj

 �sj�xj

�

Z �

�

� � �

Z �

�

� nY
m��

�
dm

mY
j��

Y
i�Rj

xi � �

����

�

kY
j��

�log xj�
sj�� dxj

 �sj�xj
�

�����

on summing the n geometric series�

Example ���� Taking n � k� we have Rm � fmg� and rm � sm for all � � m � n�
In this case� ����� reduces to the depth�dimensional integral representation ���	��



�� BORWEIN� BRADLEY� BROADHURST� AND LISON�EK

Example ���� Taking n � �� we have R� � f�� 	� � � � � kg and r� � s �
Pk

j�� si� If

we also put d ��
Qk

j�� dj � then ����� yields the seemingly wasteful k�dimensional
integral

�

�
s

d

�
� �

�Pk
j�� sjQk
j�� dj

�
�

Z �

�

� � �

Z �

�

� kY
j��

djxj � �

��� kY
j��

�logxj�
sj�� dxj

 �sj�xj

for a polylogarithm of depth one�

Example ���� Let sj � � for each � � j � k� r� � � and let r�� r�� � � � � rn be
arbitrary positive integers with

Pn
m�� rm � k� For � � m � n de�ne

Rm ��

rm

j��

�
j �

m��X
i��

ri

�
�

In this case� ����� yields a weight�dimensional integral of a rational function in k
variables�

�

�
r�� � � � � rn
d�� � � � � dn

�
�

Z �

�

� � �

Z �

�

� nY
m��

�
dm

umY
i��

xi � �

���� unY
j��

dxj
xj

�����

where um �
Pm

i�� ri� An interesting specialization of ���� is

��	� �� �

Z �

�

Z �

�

Z �

�

dx dy dz

xyz�xy � ���xyz � ��
�

Z �

�

Z �

�

Z �

�

dx dy dz

xyz�xyz � ��
� �����

Although it may seem wasteful� as in Example ��� above� to use more integra�
tions than are required� nevertheless such a technique allows an easy comparison
of multiple polylogarithms having a common weight but possessing widely di�ering
depths� For example� from the four equations

�

�
s� t

ab

�
�

�

 �s� �t�

Z �

�

Z �

�

�logx�s���log y�t�� dx dy

�abxy � ��xy
�

�

�
s� t

a� ab

�
�

�

 �s� �t�

Z �

�

Z �

�

�logx�s���log y�t�� dx dy

�ax� ���abxy � ��xy
�

�

�
t� s

b� ab

�
�

�

 �s� �t�

Z �

�

Z �

�

�logx�s���log y�t�� dx dy

�by � ���abxy � ��xy
�

�

�
s

a

�
�

�
t

b

�
�

�

 �s� �t�

Z �

�

Z �

�

�logx�s���log y�t�� dx dy

�ax� ���by � ��xy
�

�����

and the rational function identity

�

�ax� ���by � ��
�

�

abxy � �

�
�

ax� �
�

�

by � �
� �

�
������

the �stu�e� identity �see Section ���

�

�
s

a

�
�

�
t

b

�
� �

�
s� t

a� ab

�
� �

�
t� s

b� ab

�
� �

�
s� t

ab

�
�����

follows immediately� The connection between �stu�e� identities and rational func�
tions will be explained and explored more fully in Section ���
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��	� The Iterated Integral� A second approach to removing the logarithms from
the depth�dimensional integral representation ���	� yields a weight�dimensional it�
erated integral� The advantage here is that the rational function comprising the
integrand is particularly simple�
We use the notation of Kassel 
��� for iterated integrals� For j � �� 	� � � � � n� let

fj � 
a� c�	 R and !j �� fj�yj� dyj � ThenZ c

a

!�!� � � �!n ��

nY
j��

Z yj��

a

fj�yj� dyj � y� �� c

�

� R c
a
f��y��

R y�
a
!� � � �!n dy� if n � �

� if n � ��

For each real number b� de�ne a di�erential ��form

�b �� ��b� ��
dx

x� b
�

With this de�nition� the change of variable y �	 � � y generates an involution
��b� �	 ���� b�� By repeated application of the self�evident representation

bmm�s �

Z b

�

�s��� ym�� dy� � � m � Z

one derives from ����� that

�

�
s�� � � � � sk
b�� � � � � bk

�
�

�X
������ ��k��

kY
j��

b
��j
j

Z yj��

�

�
sj��
� y

�j��
j dyj � y� �� �

�

kY
j��

Z yj��

�

�
sj��
�

b��j dyj

�� b��j yj

� ����k
Z �

�

kY
j��

�
sj��
� ��bj�������

Letting s �� s� � s� � � � � � sk denote the weight� one observes that the represen�
tation ����� is an s�dimensional iterated integral over the simplex � � y� � y� �
� � � � ys � �� Scaling by q at each level yields the following version of the linear
change of variable formula for iterated integrals�

�q

�
s�� � � � � sk
b�� � � � � bk

�
�� �

�
s�� � � � � sk
qb�� � � � � qbk

�
� ����k

Z ��q

�

kY
j��

�
sj��
� ��bj�������

for any real number q �� ��
Having seen that every multiple polylogarithm can be represented ����� by a

weight�dimensional iterated integral� it is natural to ask whether the converse holds�
In fact� any convergent iterated integral of the formZ �

�

sY
r��

���r�������
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can always �by collecting adjacent �� factors � note that for convergence� �s� �� ��
be written in the formZ �

�

kY
j��

�
sj��
� ��bj� � ����k�

�
s�� � � � � sk
b�� � � � � bk

�
�����	�

where

� �� bj � 

� jX
i��

si

�
�������

We remark that the iterated integral representation ����� and the weight�dimen�
sional non�iterated integral representation ���� of Example ��� are equivalent under
the change of variable xj � yj��
yj � y� �� �� j � �� 	� � � � � s� In fact� every integral
representation of Section ��� has a corresponding iterated integral representation
under the aforementioned transformation� For example� the depth�dimensional
integral ���	� becomes

�

�
s�� � � � � sk
b�� � � � � bk

�
�

kY
j��

Z yj��

�

�log�yj��
yj��
sj�� dyj

 �sj��bj � yj�
�

The explicit observation that MZVs are values of iterated integrals is apparently
due to Maxim Kontsevich 
���� Less formally� such representations go as far back
as Euler�

� Shuffles and Stuffles

Although it is natural to study multiple polylogarithmic sums as analytic objects�
a good deal can be learned from the combinatorics of how they behave with respect
to their argument strings�

��� The Stu�e Algebra� Given two argument strings �s � �s�� � � � � sk� and �t �
�t�� � � � � tr�� we de�ne the set stu�e��s��t� as the smallest set of strings over the
alphabet

fs�� � � � � sk� t�� � � � � tr� ���� ���� ���� ���g

satisfying

� �s�� � � � � sk� t�� � � � � tr� � stu�e��s��t��

� If a string of the form �U� sn� tm� V � is in stu�e��s��t�� then so are the strings
�U� tm� sn� V � and �U� sn � tm� V ��

Let �a � �a�� � � � � ak� and �b � �b�� � � � � br� be two strings of the same length as �s and
�t� respectively� We now de�ne

ST �� ST

�
�s��t

�a��b

�
����

to be the set of all pairs
�
�u
�c

	
with �u � stu�e��s��t� and �c � �c�� c�� � � � � ch� de�ned as

follows�

� h is the number of components of �u�
� c� �� a� �� b� �� ��
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� for � � j � h� if cj�� � an��bm��� then

cj ��

��


anbm� if uj � sn � tm�
anbm��� if uj � sn�
an��bm� if uj � tm�

�	� Stu�e Identities� A class of identities which we call �depth�length shu�es�
or �stu�e identities� is generated by a formula for the product of two ��functions�
Consider

�

�
�s

�a

�
�

�
�t
�b

�
�

� �X
������ ��k��

kY
j��

a
��j
j

� kX
i�j

�i

��sj�� �X
������ ��r��

rY
j��

b
��j
j

� rX
i�j

�i

��tj�
�

If we put

nj ��
Pk

i�j �i� mj ��
Pr

i�j �i�

aj ��
Qj

i�� xi� bj ��
Qj

i�� yi�

then it follows that

�

�
�s

�a

�
�

�
�t
�b

�
�

X
n� � � � � � nk � �
m� � � � � � mr � �

� kY
j��

x
�nj
j n

�sj
j

�� rY
j��

y
�mj

j m
�tj
j

�
�

Rewriting the previous expression in terms of ��functions yields the stu�e formula

�

�
�s

�a

�
�

�
�t
�b

�
�
X

�

�
�u

�c

�
���	�

where the sum is over all pairs of strings
�
�u
�c

	
� ST

��s��t
�a��b

	
�

Example ����

�

�
r� s

a� b

�
�

�
t

c

�
� �

�
r� s� t

a� b� bc

�
� �

�
r� s� t

a� bc

�
� �

�
r� t� s

a� ac� bc

�
� �

�
r � t� s

ac� bc

�
� �

�
t� r� s

c� ac� bc

�
�

When specialized to MZVs� this example produces the identity

��r� s���t� � ��r� s� t� � ��r� s� t� � ��r� t� s� � ��r � t� s� � ��t� r� s��

The term �stu�e� derives from the manner in which the two �upper� strings are
combined� The relative order of the two strings is preserved �shu�es�� but elements
of the two strings may also be shoved together into a common slot �stu�ng�� thereby
reducing the depth�

��� Stu�es and Partition Integrals� In Section ���� an example was given
in which a stu�e identity ����� was seen to arise from a corresponding rational
function identity ����� and certain partition integral representations ������ This is
by no means an isolated phenomenon� In fact� we shall show that every stu�e
identity is a consequence of the partition integral ����� applied to a corresponding
rational function identity�

Theorem ���� Every stu�e identity is equivalent to a rational function identity�
via the partition integral�
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Before proving Theorem �	� we de�ne a class of rational functions� and prove
they satisfy a certain rational function identity� Let �s � �s�� � � � � sk� and �t �

�t�� � � � � tr� be vectors of positive integers� and let � � ��� � � � � k� and �� �
���� � � � � �r� be vectors of real numbers� As in ����� put

ST � ST

�
�s��t

�� ��

�
�

and de�ne

T � T ��� ��� ��

�
�� �

�
�u

��

�
� ST

�
�

Let f � T 	 Q
��� ��� � � � � be de�ned by

f���� � � � � �h� ��

hY
j��

��j � ���������

Then we have the following lemma�

Lemma ���� Let f be de�ned as in �	�
�� Then

f���f���� �
X

���T �����	�

f�����

Proof of Lemma 	�
� Apply ��	� with �a � � and �b � ��� In view of �	���� the

lemma follows on taking �s and �t to be zero vectors of the appropriate lengths�

Proof of Theorem 	��� Let �s� �t� �a� and �b be as in ��	�� Let � and �� be given by

j �� aj

jY
i��

xi� �j �� bj

jY
i��

yi�
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Applying Lemma �� and the partition integral representation ����� to the depth�
dimensional integral ���	� yields

�

�
�s

�a

�
�

�
�t
�b

�
�

�Z �

�

� � �

Z �

�

f���
kY

j��

�log xj�
sj��dxj

 �sj�xj

�

�

�Z �

�

� � �

Z �

�

f����
rY

j��

�log yj�
tj��dyj

 �tj� yj

�

�

Z �

�

� � �

Z �

�

X
���T �����	�

f����

� kY
j��

�log xj�
sj��dxj

 �sj�xj

�

�

� rY
j��

�log yj�
tj��dyj

 �tj� yj

�

�
X

���T �����	�

Z �

�

� � �

Z �

�

f����

� kY
j��

�log xj�
sj��dxj

 �sj�xj

�

�

� rY
j��

�log yj�
tj��dyj

 �tj� yj

�

�
X

��u�c��ST�
�s��t

�a��b�

�

�
�u

�c

�
�

as required�

��� The Shu�e Algebra� As opposed to depth�length shu�es� or stu�es� which
arise from the de�nition ����� in terms of sums� the iterated integral representa�
tion ����� gives rise to what are called em �weight�length shu�es�� or simply �shuf�
"es�� Weight�length shu�es take the formZ �

�

!�!� � � �!n

Z �

�

!n��!n�� � � �!n�m �
XZ �

�

!
���!
��� � � �!
�n�m������

where the sum is over all
�
n�m
n

	
permutations � of the set f�� 	� � � � � n�mg which

satisfy ����i� � ����j� for all � � i � j � n and n � � � i � j � n � m� In
other words� the sum is over all �n�m��dimensional iterated integrals in which the
relative orders of the two strings of ��forms !�� � � � �!n and !n��� � � � �!n�m are
preserved�

Example ����

��	� ����	� � �

Z �

�

���
�
�

Z �

�

����

� ��

Z �

�

����
�
� � �

Z �

�

�������
�
� �

Z �

�

���
�
�����

� ����� �� �� � ���	� 	� �� � ��	� �� 	��

In contrast� the stu�e formula gives

��	� ����	� � 	��	� 	� �� � ���� �� � ��	� �� � ��	� �� 	��

Note that weight�length shu�es preserve both depth and weight� In other words�
the depth �weight� of each term which occurs in the sum over shu�es is equal to
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the combined depth �weight� of the two multiple polylogarithms comprising the
product�
Though it may appear that the shu�es form a rather trivial class of identities sat�

is�ed by iterated integrals� it is worth mentioning that the second proof of Zagier�s
conjecture �see Corollary 	 of Section ���	� uses little more than the combinatorial
properties of shu�es 
��� In addition� both shu�es and stu�es have featured in the
investigations of other authors in related contexts 
��� ��� ��� 	� �� �� � �� ��
�� ����

�� Duality

In 
���� Ho�man de�nes an involution on strings s�� � � � � sk� The involution co�
incides with a notion we refer to as duality� The duality principle states that
two MZVs coincide whenever their argument strings are dual to each other� and
�as noted by Zagier 
���� follows readily from the iterated integral representation�
In 
�	�� Broadhurst generalized the notion of duality to include relations between
iterated integrals involving the sixth root of unity� here we allow arbitrary complex
values of bj � Thus� we �nd that the duality principle easily extends to multiple
polylogarithms� and in this more general setting� has far�reaching implications�

���� Duality for Multidimensional Polylogarithms� We begin with the iter�
ated integral representation ����� of Section ��	� Reversing the order of the omegas
and replacing each integration variable y by its complement �� y yields the dual
iterated integral representation

�

�
s�� � � � � sk
b�� � � � � bk

�
� ����s�k

Z �

�

�Y
j�k

���� bj��
sj��
� ������

where again s � s� � � � �� sk is the weight�

Example ���� Using ������ ������ and ������ we have

�

�
	� �

����

�
�

Z �

�

������������� � �

Z �

�

��	��������� � ��

�
�� 	

	� �

�
�

which is to say that

�X
n��

�

n�

n��X
k��

����k

k
� �

�X
n��

�

n	n

n��X
k��

	k

k�
�

a result that would doubtless be di�cult to prove by na�#ve series manipulations
alone�

When b� � b� � � � � � bk � b� the two dual iterated integral representations �����
and ����� simplify as follows�

�b�s�� � � � � sk� � ����k
Z �

�

kY
j��

�
sj��
� ��b� � ����s�k

Z �

�

�Y
j�k

���� b��
sj��
� ����	�
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A somewhat more symmetric version of ���	� is

����m�b�s� � 	� f�gr�� � � � � sm � 	� f�grm� � ����r
Z �

�

mY
j��

�
sj��
� �

rj��
b

� ����s
Z �

�

�Y
j�m

�
rj��
��b �

sj��
� ������

where r ��
P

j rj and� as usual� s ��
P

j sj �

��	� Duality for Unsigned Euler Sums� Taking b � � in ������ we deduce the
MZV duality formula �cf� 
��� p� ����

��s� � 	� f�gr� � � � � � sm � 	� f�grm� � ��rm � 	� f�gsm � � � � � r� � 	� f�gs�������

for multidimensional unsigned Euler sums� i�e� multiple zeta values �MZVs� �

Example ���� MZV duality ����� gives Euler�s evaluation ��	� �� � ����� as well
as the generalizations ��f	� �gn� � ��f�gn�� and ��	� f�gn� � ��n� 	�� valid for all
nonnegative integers n�

In 
��� a beautiful extension of MZV duality ����� is given� which also subsumes
the so�called sum formula X

nj��j��
N��jnj

��n�� n�� � � � � nk� � ��N��

conjectured independently by C� Moen 
��� and M� Schmidt 
��� and subsequently
proved by A� Granville 
���� We refer the reader to Dr� Ohno�s article for details�
The duality principle has an enticing converse� namely that two MZVs with

distinct argument strings are equal only if the argument strings are dual to each
other� Unfortunately� although the numerical �and symbolic� evidence in support
of this converse statement is overwhelming� it still remains to be proved� In the
case of self�dual strings� the conjectured converse of the duality principle implies
that such a MZV can equal no other MZV� moreover we �nd that certain of these
completely reduce� i�e� evaluate entirely in terms of �depth�one� Riemann zeta
functions�

Example ���� The following self�dual evaluation� previously conjectured by Don
Zagier 
���

��f�� �gn� � ��n��f�gn� �
	��n

��n� 	��
� � � n � Z�

is proved herein �see Section ����

Example ���� The evaluation

��	� f�� �gn� � ��n
nX

k��

����k��f�gn�k�

�
��k � �����k � 	�

� �

kX
j��

���j � �����k � �j � ��

�
� � � n � Z

conjectured in 
�� and recently proved by Bowman and Bradley 
��� is also self�dual�
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Example ���� The self�dual two�parameter generalization of Example ���

��f	gm� f�� f	gm� �� f	gmgn�
�
�
	�m� �����m���n��m

�	�m� ���	n� ����
� � � m�n � Z�

remains to be proved�

We conclude this section with the following result� since the special case p � �
has some bearing on the MZV duality formula ������

Theorem ���� Let jpj � �� The double generating function equality

��

�X
m��

�X
n��

xm��yn���p�m� 	� f�gn� � �F�

�
y��x
�� x

���� �p
�

holds�

Proof� By de�nition �	��� of �p�

�X
m��

�X
n��

xm��yn���p�m� 	� f�gn� � y

�X
m��

xm��
�X
k��

�

km��pk

k��Y
j��

�
� �

y

j

�

�

�X
m��

xm��
�X
k��

�y�k
km��k�pk

�
�X
k��

�y�k
k�pk

�
x

k � x

�

� �

�X
k��

�y�k��x�k
k�pk��� x�k

� �� �F�

�
y��x
�� x

���� �p
�

as claimed�

Remarks ���� In 
�� it was noted that the p � � case of Theorem ��� is equivalent
to the m � � case of MZV duality ����� via the invariance of

�F�

�
y��x
�� x

���� �
�
�
 ��� x� ��� y�

 ��� x� y�

� exp

� �X
k��

�
xk � yk � �x� y�k

	 ��k�
k

�����

with respect to the interchange of x and y� However� it appears that this observation
can be traced back to Drinfeld 
	�� In connection with his work on series of Lie
brackets� Drinfeld encountered a scaled version of the exponential series above�
and showed that the coe�cients of the double generating function satisfy cmn �
cnm and cm� � c�m evaluates to ��m � 	�� up to a so�called Oppenheimer factor
which we omit �
���� p� ����� In our notation� this is essentially the statement that
��m� 	� f�gn� � ��n� 	� f�gm��
Note that Theorem ��� in conjunction with ���� shows that ��m�	� f�gn� com�

pletely reduces �i�e� is expressible solely in terms of depth�� Riemann zeta values�
for all nonnegative integers m and n� In particular� the coe�cient of xm��y� gives
Euler�s formula �Example 	���� and taking the coe�cient of xm��y� provides a
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much simpler derivation of Markett�s formula 
�� for ��m� �� ��� m � 	� Thus� the
complete reducibility of ��m�	� f�gn� is a simple consequence of the instance ����
of Gauss�s �F� hypergeometric summation theorem 
�� �� �	�� Wenchang Chu 
���
has elaborated on this idea� applying additional hypergeometric summation the�
orems to evaluate a wide variety of depth�	 sums� including nonlinear �cf� 
����
sums�
It would be interesting to know if there is a generating function formulation of

MZV duality at full strength ������ Presumably� it would involve an analogue of
Drinfeld�s associator in 	m non�commuting variables�

���� Duality for Unit Euler Sums� Recall the ��function was de�ned �	�	� as
the nested sum extension of the polylogarithm at one�half�

��s�� � � � � sk� �� �

�
s�� � � � � sk
	� � � � � 	

�
�

�X
������ ��k��

kY
j��

	��j
� kX

i�j

�i

��sj
������

Due to its geometric rate of convergence� ��values can be computed to high preci�
sion relatively quickly� On the other hand� the unit Euler 	�sums �	��� converge
extremely slowly when the bj all lie on the unit circle� In particular� the slow
convergence of the unit ���� argument 	�sums initially confounded our e�orts to
create a data�base of numerical evaluations from which to form viable conjectures�
Nevertheless� there is a close relationship between the ��sums and the 	�sums� as
we shall presently see�
Taking b � 	 in ������ we deduce the �delta�to�unit�mu� duality formula

����� ��s� � 	� f�gr� � � � � � sm � 	� f�grm�

� ����r�m	�f��grm��� f�gsm��� � � � � f��gr���� f�gs�����

Thus� every convergent unit ���� argument 	�sum can be expressed as a �rapidly
convergent� ��sum� The converse follows from the more general� but less symmetric
formula� arising from ���	��

��s�� � � � � sk� � ����k	���� f�gsk��� � � � ���� f�gs����������

Example ��	�

���� �

�X
���

�

�	�
� � log� �� � �

�X
���

�������

�
� �	�����

and more generally� for all nonnegative integers n� we have

��n� �� �

�X
���

�

�n��	�
� Lin���

�
� � � �	���� f�gn�������

Example ��
� For all nonnegative integers n�

��f�gn� � ����n	�f��gn� � �log 	�n
n��������

��	� f�gn� � ����n��	�f��gn��� ���������

and more generally�

��f�gm� 	� f�gn� � ����m�n��	�f��gn��� �� f��gm�� � � m�n � Z�
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Example �����

���� n� �� � 	���� f�gn����� � � n � Z�

and in particular� remembering �	��	������� that ��r� � Lir�
�
� �� we have

���� �� � �� log 	 � �� �����

���� 	� � 	
��	������

�
���� �

	
���

�����

Integer relation searches �see 
��� or 
�� for details� have failed to �nd a similar
formula for ���� ��� However�

	���� 	n� �� �

�n��X
j��

����j����j���	n� j�� � � n � Z�

Also�

�����n� �

nX
���

�
n

�

�
Bn�������

� � �
� � � n � Z�

where the ����� are the simplex lock numbers �	��� and the B� are the Bernoulli
numbers 
��� More generally� if n� is a positive integer and n�� n�� � � � � nr are all
nonnegative integers� then

��s��nr� � � � ��n���n�� �

� rY
j��

�jX
�j��

A��j�

�
��s� �r � ��� s � C�

where

�j �� nj � �j�� � �� A��j� ��
�

�j � �

�
�j
�j

�
B�j��j � �� �� ���

�� The H�older Convolution

Richard Crandall 
	�� �see also 
		�� describes a practical method for fast eval�
uation of MZVs� Here� we develop an entirely di�erent approach which is based
on the fact that any multiple polylogarithm can be expressed as a convolution of
rapidly convergent multiple polylogarithms� We have used such representations to
compute otherwise slowly convergent alternating Euler sums and �unsigned� MZVs
to precisions in the thousands of digits� Lest this strike the reader as perhaps an
excessive exercise in recreational computation� consider that many of our results
were discovered via exhaustive numerical searches 
�� for which even hundreds of
digits of precision were insu�cient� depending on the type of relation sought 
����
A publicly available implementation of our technique is brie"y described in Sec�

tion ��	� There are also interesting theoretical considerations which we have only
begun to explore� See equations ���������� below for a taste of what is possible�

���� Derivation and Examples� We have seen how multiple polylogarithms with
unit arguments can be expressed in terms of rapidly convergent ��sums� What if the
arguments are not necessarily units$ In the iterated integral representation �����
the domain � � yj � yj�� � � in s �

P
j sj variables splits into s � � parts�

Each part is a product of regions � � yj � yj�� � �
p for the �rst r variables�
and �
p � yj � yj�� � � for the remaining s � r variables� Next� yj �	 � � yj
replaces an integral of the former type by one of the latter type� with �
p replaced
by �
q �� �� �
p�
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Motivated by these observations� we consider the string of di�erential ��forms
which occurs in the integrand of the iterated integral representation ����� and de�ne

r ��

�
bj � if r �

Pj
i�� si

�� otherwise�

Then

�

�
s�� � � � � sk
b�� � � � � bk

�
� ����k

Z �

�

sY
r��

��r�

�
sX

r��

����r�k
�Z ��q

�

�Y
j�r

���� j�

��Z ��p

�

sY
j�r��

��j�

�
������

Thus� by means of ������� ����	�� and ������� we have expressed the general multiple
polylogarithm as a convolution of �p with �q for any p� q such that the H�older
condition �
p��
q � � is satis�ed� For this reason� we refer to ����� as the Holder
convolution� Note that the H�older convolution generalizes duality ����� for multiple
polylogarithms� as can be seen by letting p tend to in�nity so that ������ �p 	 ��
and q 	 ��
MZV Example� For any p � �� q � � with �
p� �
q � ��

��	� �� 	� �� �� �� � �p�	� �� 	� �� �� ��� �p��� �� 	� �� �� ���q���

��p��� 	� �� �� ���q�	� � �p�	� �� �� ���q���

��p��� �� �� ���q��� �� � �p��� �� ���q�	� �� � �p��� ���q��� ��

��p����q��� �� � �q�� ��

� ��� ���

The pattern should be clear� For � � j � m� de�ne the concatenation products

�aj ��
m

Cat
i�j

fsi � 	� f�grig � fsj � 	� f�grj � � � � � sm � 	� f�grmg�

�bj ��
�

Cat
i�j

fri � 	� f�gsig � frj � 	� f�gsj � � � � � r� � 	� f�gs�g�

and �am�� �� �b� �� fg� Then the H�older convolution for the general MZV case is
given by

���am� �
mX
j��

�sj��X
t��

�p�sj � 	� t� f�grj ��aj����q�f�g
t��bj���

�

rjX
���

�p�f�g
� ��aj����q�rj � 	� �� f�gsj ��bj���

�
� �q��bm����	�

� ���bm��

Of course� �am and �bm are the dual strings in the MZV duality formula ������ Since
the sums �p converge geometrically� whereas MZV sums converge only polyno�
mially� ���	� provides an excellent method of computing general MZVs to high
precision with the optimal parameter choice p � q � 	� For rapid computation of
general multiple polylogarithms� it is simplest to use the H�older convolution �����
directly� translating the iterated integrals into geometrically convergent sums on
a case by case basis� using ������
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Alternating Example�

��	� ��� �

Z �

�

�������������

�

Z ��p

�

��������������

Z ��q

�

����

Z ��p

�

���������

�

Z ��q

�

��������

Z ��p

�

������

Z ��q

�

��	���������

� �p�	� ��� � �p��� ����q��� � �p�����q�	�� �q

�
�� 	

	� �

�

� ��

�
�� 	

	� �

�
�

Although we could now work out the explicit form of the analogue to ���	� in
the alternating case� the resulting formula is too complicated in relation to its
importance to justify including here�
In addition to the impressive computational implications already outlined� the

H�older convolution ����� gives new relationships between multiple polylogarithms�
providing a path to understanding certain previously mysterious evaluations� For
example� taking p � q � 	 shows that every MZV of weight s can be written
as a weight�homogeneous convolution sum involving 	s ��functions� Furthermore�
employing the weight�length shu�e formula ���� to each product shows that every
MZV of weight s is a sum of 	s �not necessarily distinct� ��values� each of weight
s� and each appearing with unit ���� coe�cient� In particular� this shows that the
vector space of rational linear combinations of MZVs is spanned by the set of all
��values� Thus�

���� � �

Z ���

�

������ �

Z ���

�

��

Z ���

�

���� �

Z ���

�

����

Z ���

�

��

�

Z ���

�

������

� ���� �

Z ���

�

��� � ���� � �� � �� � �� � ���� � ���

�

Z ���

�

����� � �� � �� � �� � �� � �� � ����� � ��	� ��

� ���� � ���� 	� � ��	� �� � ��	� �� � ���� �� �� � ���� �� �� � ���� �� �� � ��	� ���

Polylog Example� Applying ����� to ��n�	�� with p � q � 	 provides a lovely
closed form for ��	� f�gn�� Indeed�

��n� 	� � ��	� f�gn� �

n��X
r��

��r���f�gn���r�������

The desired closed form follows after rearranging the previous equation ����� and
applying the de�nition ����� and the result ������ in the form ��r� � Lir�

�
� � and

��f�gr� � �log 	�r
r�� respectively�
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Example ���� Putting n � � in ����� gives 
�

���� �

�X
n��

�

n�
�

�

�	
�� log�	� �

�X
n��

�

	nn�

nX
j��

�

j
������

In fact� formula ����� is non�trivial even when n � �� Putting n � � in �����
gives the classical evaluation of the dilogarithm at one�half�

	Li��
�
� � � ��	�� �log 	�� i�e�

�X
n��

�

	nn�
� �

���
� � �

� �log 	�
������

Di�erentiation of ����� with respect to the parameter p provides another avenue
of pursuit which has not yet been fully explored� We have used this approach to
derive ���� f�gn� � ��f�gn�� but in fact� removing the initial zero is trivial from
�rst principles�

��	� EZ Face� A fast program for evaluating MZVs �as well as arithmetic expres�
sions containing them� based on the H�older convolution formula ���	� has been
developed at the CECM�� and is available for public use via the World Wide Web
interface called �EZ Face� �an abbreviation for Euler Zetas interFace� at the URL

http���www�cecm�sfu�ca�projects�EZFace�

This publicly accessible interface currently allows one to evaluate the sums

z�s�� � � � � sk� ��
X

n������nk

kY
j��

n
�jsjj
j �

�nj
j

for non�zero integers s�� � � � � sk and �j �� signum�sj�� and

zp�p� s�� � � � � sk� ��
X

n������nk

p�n�
kY

j��

n
�sj
j

for real p � � and positive integers s�� � � � � sk� The code for evaluating these sums
was written in C� using routines from GMP� the GNU Multiprecision Library�� Our
implementation permits the precision of the evaluation to be set anywhere between
�� and ��� digits� Progress is currently underway to extend the scope of sums that
can be evaluated� The exact status of the EZ Face is at any moment documented
at its �De�nitions� and �Using EZ�Face� pages�
In addition to the functions z and zp� the lindep function� based on the LLL

algorithm 
��� for discovering integer relations 
��� satis�ed by a vector of real num�
bers� can be called� An integer relation for a vector of real numbers �x�� � � � � xn� is a
non�zero integer vector �c�� � � � � cn� such that

Pn
i�� cixi � �� The required syntax is

lindep�
x�� � � � � xn��� where x�� � � � � xn is the vector of values for which the relation
is sought� One must ensure that the vector of real numbers is evaluated to su�cient
precision to avoid bogus relations and other numerical artifacts� The lindep code
was written by Michael Monagan and Greg Fee� both of the CECM� and is available
on request� Send e�mail to either monagan�cecm�sfu�ca or gjfee�cecm�sfu�ca�
Below� we give some examples showing how EZ Face may be used� The left�

aligned lines represent the input to EZ Face� while the centered lines represent the
output of EZ Face� All computations are done with the precision of � digits�

�Centre for Experimental and Constructive Mathematics� Simon Fraser University�
�http���www�swox�com�gmp�
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Example ����

Pi���z���

�	
������������������������������������������������

Example ����

lindep��z�	��� z�
�� z��� z�
��z��� z������z�����

��� ��� ���� ��� ����

Example ����

lindep�� z��� Pi���log��� zp����� zp���� ��

��� ��� ���� ����

Example ��	 is a simple instance of Euler�s formula for ��	n�� Example ��� is
the discovery of equation ������ Example ��� con�rms formula ������

�� Evaluations for Unit Euler Sums

As usual� the H�older conjugates p and q denote real numbers satisfying �
p �
�
q � �� and p � � or p � �� for convergence� Our �rst result is an easy conse�
quence of the binomial theorem�

Theorem 	��� The generating function equality

� �

�X
n��

xn	�fpgn� � qx�

holds�

Proof� By de�nition �	��� of 	�

� �

�X
n��

xn	�fpgn� � � � x

�X
m��

�

mpm

m��Y
j��

�
� �

x

j

�

� ��

�X
m��

�
��

p

�m�
�x

m

�
� ��� �
p��x

� qx�

Corollary ��

	�fpgn� � �log q�n
n�� � � n � Z�

Remarks ��	� Of course� when n � �� we need to invoke the usual empty product
convention to properly interpret 	�fg� � �� Since the mapping p �	 �� p induces
the mapping q �	 �
q under the H�older correspondence� duality ���	� takes the par�
ticularly appealing form 	�fpgn� � ����n	�f��pgn� in this context� In particular�
p � �� and ��duality ������ ������ gives

��f�gn� � ����n	�f��gn� � �log 	�n
n�� � � n � Z�
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i�e�
�X

������ ��n��

nY
j��

�

	�j ��j � � � �� �n�
�

�X
������ ��n��

nY
j��

�����j��

�j � � � �� �n

�
�log 	�n

n�
� � � n � Z�

which can be viewed as an iterated sum extension of the well�known result
�X
���

�

�	�
�

�X
���

�������

�
� log 	�

typically obtained by comparing the Maclaurin series for log�� � x� when x � � �
�

and x � ��

We now prove a few results for unit Euler sums that were left as open conjectures
in 
��� It will be convenient to employ the following notation�

Ar �� Lir�
�
� � � ��r� �

�X
k��

�

	kkr
� Pr ��

�log 	�r

r�
� Zr �� ����r��r�������

Theorem 	��� For all positive integers m�

	�f��gm� �� � ����m��
mX
k��

Ak��Pm�k � Zm���

Proof� From the case ����� of the H�older convolution� we have

��	� f�gm��� � ��m � ���

m��X
r��

��r���f�gm���r��

Now multiply both sides by ����m and apply the case ������ of ��duality�

Remarks ���� Theorem ��� appeared as the conjectured formula ���� in 
��� and
is valid for all nonnegative integers m if the divergent m � � case is interpreted
appropriately� The equivalent generating function identity is

�X
n��

xn	�f��gn� �� �

Z ���

�

��� t�x � �

t
dt

� log 	 �

�X
n��

�
�

x� n
�
�

n

�
�

�X
n��

	��x�n�

x� n
�

correcting the misprinted sign in formula �	�� of 
���

The asymmetry which marrs Theorem ��� is recovered in the generalization �	����
restated and proved below�

Theorem 	��� For all positive integers m and all nonnegative integers n� we have

	�f��gm� �� f��gn� � ����m��
mX
k��

�
n� k

n

�
Ak�n��Pm�k

� ����n��
nX

k��

�
m� k

m

�
Zk�m��Pn�k����	�

where Ar� Pr and Zr are as in ������
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Proof� Let m be a positive integer� and let n be a nonnegative integer� We have

	�f��gm� �� f��gn� � ����m�n��
Z �

�

�m����

Z y

�

�n��

� ����m�n��
Z �

�

�m����

Z ��y

�

�n�

� ����m�n��
Z �

�

�m����

Z ���y���

���

�n�

� ����m�n��
Z �

�

�m���� �log�� � y��
n

n��

By duality�

m�n�	�f��gm� �� f��gn� � m�

Z �

�

�� log�	� y��
n
���

m
�

� m�

Z �

�

�� log�	� y��n ��

Z y��

�

�m�

�

Z �

�

�� log�	� y��
n
�log��� y
	��

m
dy
y�

Letting t � �� y
	 and forming the generating function� it follows that

�X
m��

�X
n��

xmyn	�f��gm� �� f��gn�

�

�X
m��

�X
n��

xm

m�

yn

n�

Z �

���

�� log�	t��
n
�log t�

m dt

�� t

�

Z �

���

�	t��y �tx � ��

�� t
dt�

Expanding �
��� t� in powers of t and integrating term by term yields

�X
m��

�X
n��

xmyn	�f��gm� �� f��gn�

� 	�y
�X
k��

�
�

k � x� y
�

�

k � y

�
�

�X
k��

	��k�x�

k � x� y
�

�X
k��

	�k

k � y
������

Since m � �� we may ignore the terms in ����� which are independent of x� Thus
formally� but with the divergences coming only from the terms independent of x
and hence harmless�

�	�x
�X
k��

	�k

k � x� y
� 	�y

�X
k��

�

k � x� y

� �

�X
r��

��x�rPr

�X
h��

�y � x�h��Ah �

�X
r��

��y�rPr

�X
h��

�x� y�h��Zh�

where we have used the abbreviations in ������ It is now a routine matter to extract
the coe�cient of xmyn to complete the proof�
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Remark ���� Theorem �� is an extension of conjectured formula ���� of 
��� and is
valid for all nonnegative integers m and n if the divergent m � � case is interpreted
appropriately�

�� Other Integral Transformations

In Section �� we proved the duality principle for multiple polylogarithms by using
the integral transformation y �	 ��x� Similarly� in this section we prove additional
results for multiple polylogarithms by using suitable transformations of variables
in their integral representations�

Theorem 
��� Let n be a positive integer� Let b�� � � � � bk be arbitrary complex
numbers� and let s�� � � � � sk be positive integers� Then

�

�
s�� s�� � � � � sk
bn� � b

n
� � � � � � b

n
k

�
� ns�k

X
�

�
s�� � � � � sk

��b�� � � � � �kbk

�
�

where the sum is over all nk cyclotomic sequences

��� � � � � �k �
n
�� e�i�n� e�i�n� � � � � e�i�n����n

o
�

and� as usual� s �� s� � s� � � � �� sk�

Proof� Write the left�hand side as an iterated integral as in ������

L �� �

�
s�� s�� � � � � sk
bn� � b

n
� � � � � � b

n
k

�
� ����k

Z �

�

kY
j��

�
sj��
� ��bnj ��

Now let y � xn at each level of integration� This sends �� to n�� and� by partial
fractions�

��bn� �	
n��X
r��

�
�
be�ir�n

�
�

The change of variable gives

L � ����k
Z �

�

kY
j��

�n���
sj��

n��X
r��

�
�
bje

�ir�n
�
�

Now carefully expand the noncommutative product and reinterpret each resulting
iterated integral as a ��function to complete the proof�

Example 
��� When n � 	 and k � �� Theorem ��� asserts that

��s� � 	s��
�X
n��

� � ����n

ns
�

Thus� Theorem ��� can be viewed as a cyclotomic extension of the well�known �sum
over signs� formula for the alternating zeta function�

�X
n��

����n��

ns
� ��� 	��s���s�� ��s� � ��

Next we prove two broad generalizations of formulae �	��� �	�� and �	�� of 
���

By a pair of Cat operators we mean nested concatenation �similarly as two
P

signs

mean nested summation��
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Theorem 
��� Let s�� s�� � � � � sk be nonnegative integers� Then

�

�
� � sk� � � sk��� � � � � � � s�
��� ��� � � � � ��

�
�
X

	

�
k

Cat
j��

f��g
sj

Cat
i��

f�i�jg

� kY
j��

sjY
i��

�i�j

where the sum is over all 	s��s������sk sequences of signs ��i�j�� with each �i�j �

f����g for all � � i � sj � � � j � k� and Cat denotes string concatenation�

Proof� Let

L �� �

�
� � sk� � � sk��� � � � � � � s�
��� ��� � � � � ��

�
� ����k

Z �

�

�Y
j�k

�
sj
� ����

Now let us use duality� and then we let y � 	t
�� � t� at each level of integration�
We get

L � ����k
Z �

�

kY
j��

������� � ���
sj �

Now let us carefully expand the noncommutative product� We get

L � ����k
X

������i�j��
Z �

�

kY
j��

���

sjY
i��

���i�j��

where the sum is over all sign choices �i�j � f����g� � � i � sj � � � j � k� and
where by %�i�j � a we mean the cardinality of the set f�i� j� j �i�j � ag�
Let us now interpret the iterated integrals as ��functions� In this case� they are

all unit Euler 	�sums� as we de�ned in �	���� Thus�

L � ����k
X

������i�j������k�s	

�
k

Cat
j��

f��g
sj

Cat
i��

f�i�jg

�
�

where� as usual� s �� s� � s� � � � �� sk� Now if r of the �i�j equal ��� then s� r of
them equal ��� Hence�

L �
X

������i�j���	

�
k

Cat
j��

f��g
sj

Cat
i��

f�i�jg

�
�

Finally� ������i�j��� is the same as the product over all the signs �i�j � and this
latter observation completes the proof of Theorem ����

Theorem ��� generalizes several identities conjectured in 
��� For example� we
get the conjecture �	�� of 
�� if we put sn�� � m� sn � sn�� � ��� � s� � � in
Theorem ���� Furthermore� �	�� of 
�� is the case sm�n�� � sm�n � ��� � sn�� � ��
sn�� � �� sn � sn�� � ��� � s� � �� and �	�� of 
�� is a special case of Theorem ���
as well� Thus every multiple polylogarithm with all alternations �or� equivalently�
every Euler sum with �rst position alternating and all the others non�alternating�
is a signed sum over unit Euler sums� The representation of the sign coe�cients
used in Theorem ��� is much simpler than the cumbersome form of �	�� in 
���
Below we present a dual to Theorem ���� which gives any unit Euler 	�value

in terms of ��values with all alternations �equivalently� Euler sums with only �rst
position alternating��
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Theorem 
��� Let s�� s�� ���� sk be nonnegative integers� Then

	

�
k��

Cat
j��

f��gf�gsk�j
�
�
X

�

�
k

Cat
j��

qj

Cat
i��

fti�j�g

�
where the sum is over all 	s��s������sk positive integer compositions

t��j � t��j � ���� tqj �j � sj � �� � � qj � sj � �� � � j � k�

Proof� Let

M �� 	

�
k��
Cat
j��

f��gf�gsk�j
�
� ����k�

�
k

Cat
j��

f� � sjg

�
�

Z �

�

kY
j��

�
sj
� ���

Again� let us make the change of variable y � 	t
�� � t� at each level� Then

M �

Z �

�

kY
j��

��� � ����
sj �������

Again� let us carefully expand the noncommutative product� We get

M �
X

������i�j���
Z �

�

kY
j��

� sjY
i��

���i�j�

�
�������

where this time� the sum is over all �i�j � f����g with � � i � sj � � � j � k� Note
that each ��� in the integrand contributes �� to the sign and �� to the depth�
Since

����depth
Z �

�

weight�length string � ��depth�length string��

it follows that M is a sum of ��values with all �� coe�cients� That is�

M �
X

�

�
�t�� � � � ��tk
��� � � � ���

�
�

where the sum is over all vectors

�tj � �t��j � � � � � tqj �j�� � � qj � � � sj �

and such that
qjX
i��

ti�j � � � sj � � � j � k�

In other words� the sum is over all 	s independent positive integer compositions �in
the technical sense of combinatorics� of the numbers � � sj � � � j � k�

��� Functional Equations

One fruitful strategy for proving identities involving special values of polyloga�
rithms is to prove more general �functional� di�erential� identities and instantiate
them at appropriate argument values� In the last two sections of this paper we
present examples of such proofs�
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Lemma ����� Let � � x � � and let

J�x� ��

Z x

�

�log��� t��
�

	t
dt

Then

J��x� � �J�x� � �
�J�x

�� � J

�
	x

x� �

�
� �

�J

�
�x

�x� ���

�
�������

Proof� If L�x� and R�x� denote the left�hand and the right�hand sides of �������
respectively� then by elementary manipulations �under the assumption � � x � ��
we can show that dL
dx � dR
dx� The easy observation L��� � R��� � � then
completes the proof�

Remarks ���	� The identity ������ can be discovered and proved using a computer�
Once the �ingredients� �the J�terms� of the identity are chosen� the constant coef�
�cients at them can be determined by evaluating the J�terms at a su�ciently arbi�
trary value of x ���� �
 and using an integer relation algorithm 
���� Once the iden�
tity is discovered� the main part of the proof �namely showing that dL
dx � dR
dx�
can be accomplished in a computer algebra system �e�g�� using the simplify��

command of Maple��

Theorem ����� We have

��	�� ��� � ��	� ��
������	�

Proof� Using notation of Lemma ���� let us observe that

J�x� �
X

n��n���

xn�

n��n�
�

Plugging in x � � and applying ������ now completes the proof�

Remarks ����� Theorem ���� is the n � � case of the conjectured identity �	�� of

��� namely

��	�� ��� 	� �� � � �� �z �
�n

�
�
� ��n��f	� �gn��������

for which we have overwhelming numerical evidence� This evidence also suggests
that ������ with n � � seems to be the only case when two Euler sums that do
not evaluate �in the sense of the de�nition in Section �� have a rational quotient�
di�erent from �� �See also Section ��	��

��� Differential Equations and Hypergeometric Series

Here� it is better to work with

L�s�� � � � � sk�x� �� ���x�s�� � � � � sk��

since then we have

d

dx
L�sk� � � � � s��x� �

�

x
L��� � sk� � � � � s��x�

if sk � 	� while for sk � ��

d

dx
L�sk� � � � � s��x� �

�

�� x
L�sk��� � � � � s��x��
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With the initial conditions

L�sk� � � � � s�� �� � �� k � �� and L�fg�x� �� ��

the di�erential equations above determine the L�functions uniquely�

����� Periodic Polylogarithms� If �s �� �s�� s�� � � � � sk� and s ��
P

j sj � then

every periodic polylogarithm L�f�sgr� has an ordinary generating function

L�s�x� t� ��

�X
r��

L�f�sgr�x�trs

which satis�es an algebraic ordinary di�erential equation in x� In the simplest
case� k � �� �s reduces to the scalar s� and the di�erential equation for the ordinary
generating function is Ds � ts � �� where

Ds ��

�
��� x�

d

dx

���
x
d

dx

�s��

�

The series solution is a generalized hypergeometric function

Ls�x� t� � � �

�X
r��

xr
ts

rs

r��Y
j��

�
� �

ts

js

�

� sFs��

�
��t����t� � � � ����s��t

�� �� � � � � �

���� x
�
�

where � � ei�s� a primitive sth root of ���

���	� Proof of Zagiers Conjecture� Let �F��a� b� c�x� denote the Gaussian hy�
pergeometric function� Then�

Theorem �����

������
�X
n��

L�f�� �gn�x�t�n

� �F�
�
�
� t�� � i��� �

� t�� � i�� ��x
	
�F�

�
�
� t��� i��� �

� t��� i�� ��x
	
�

Proof� Both sides of the putative identity start

� �
t�

�
x� �

t�

��
x� �

t� � ��t�

���
x� � � � �

and are annihilated by the di�erential operator

D�� ��

�
��� x�

d

dx

���
x
d

dx

��
� t��

Once discovered� this can be checked in Mathematica or Maple�

Corollary �� �Zagier�s Conjecture�
��� For all nonnegative integers n�

��f�� �gn� �
	��n

��n� 	��
�
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Proof� Gauss�s �F� summation theorem gives

�F��a��a� �� �� �
�

 ��� a� �� � a�
�
sin��a�

�a
�

Hence� setting x � � in the generating function ������� we have

�X
n��

��f�� �gn�t�n

� �F�
�
�
� t�� � i��� �

� t�� � i�� �� �
	
�F�

�
�
� t��� i��� �

� t��� i�� �� �
	

�
	 sin� �� �� � i��t� sin� �� ��� i��t�

��t�

�
cosh��t� � cos��t�

��t�

�

�X
n��

	��nt�n

��n� 	��
�

Remark ���	� The proof is Zagier�s modi�cation of Broadhurst�s� based on the ex�
tensive empirical work begun in 
���

����� Generalizations of Zagiers Conjecture� In 
�� we give an alternative
�combinatorial� proof of Zagier�s conjecture� based on combinatorial manipulations
of the iterated integral representations of MZVs �see Sections ��	 and ���� Using
the same technique� we prove in 
�� the �Zagier dressed with 	� identity�X

�s

���s� �
��n��

��n� ���
����	�

where �s runs over all 	n�� possible insertions of the number 	 in the string f�� �gn�
Still� ����	� is just the beginning of a large family of conjectured identities that we
discuss in 
���

�	� Open Conjectures

The reader has probably noticed that many formulae proved in this paper were
conjectured in 
��� For the sake of completeness� we now list formulae from 
�� that
are still open� ����� �	��� �	�� �	��� �	��� ����� and ���������� It is possible that
some of these conjectures can be proved using techniques of the present paper�
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