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Abstract

Recursive equations are derived for the exact number th of nonisomorphic free trees

which have some rooting as a binary tree of height h. Numerical results are calculated

using these formulae.

1. Introduction

A binary tree T can be defined as a rooted tree in which each node has degree at

most 3, except that the root has degree at most 2. The height of T is the maximum

distance from the root node to an endnode. Binary trees are much used in theoretical

computer science, with height often being a key parameter directly related to the

efficiency of associated algorithms. A free binary tree F is an unrooted tree which has a

node u (not necessarily unique) such that F is a binary tree when rooted at u. Our

purpose is to derive formulae for the number of unlabeled free binary trees which have a

rooting that produces a binary tree of height h; we say that such a tree admits height h.

In general our terminology follows [3]. Unlabeled counting does not distinguish between

versions of a tree which differ only in the assignment of labels to the nodes.

A 3-tree has maximum degree at most 3. It is convenient for our purpose of counting

free binary trees by admissible height to consider 3-trees first. Obviously every free

binary tree is a 3-tree, and conversely since any node of degree 1 or 2 could serve as the

root. Figure 1 shows a free binary tree F which has four distinct binary rootings.

Rooting F at node 5 or 6 gives one binary tree of height 5; at 7 gives height 4; at 3 gives

height 3; finally, rooting F at 8 or 9 gives a second binary tree of height 5. Thus F admits

height 3, 4, and 5. In the total of free binary trees of order a admitting height 5, for
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instance, F will be counted just once.

F :

1

5 6

2

7

3 4

8 9

FIGURE 1. A free binary tree which has four binary rootings

Both rooted and unrooted 3-trees have been counted by Cayley and Otter; see [4] for

a modern exposition.
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2. Planted 3-trees of given height

In a planted tree, the root is an endnode. Let ph be the number of planted 3-trees of

height h, and let qh be the number of height less than h, including for convenience the

empty one with no nodes and no edges.

Then p 1 = q 1 = 1, while for all h ≥ 1,

qh +1 = qh + ph (1)

ph +1 =

��
� 2
1+ph

���
� + ph qh (2)

Note that the numbers ph were known to Etherington [2]; they are sequence number

718 in Sloane’s book, [6].

To justify (2), we observe that a planted tree of height h +1 has two major subtrees,

one of height h and the other of height h or less. For both to have height h, there are��
	 2
1+ph


��
� possibilities since we need to select two trees (which may be isomorphic) from

among the ph of height h, and their order is immaterial. For the case when one major

subtree has height h and the other less, the possibilities are enumerated by ph qh since

the two branches cannot be confused with one another. The empty case admitted by

q 1 = 1 corresponds to the possibility that the node adjacent to the root has degree 2, so

that there is really only one major subtree.

In order to allow for the analysis of free 3-trees, it will be necessary to determine the

number dh ,i of planted 3-trees of height h which have no nodes of degree 1 or 2 at level

i (distance i from the root). Of course all 3-trees of height h have one or more nodes of
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degree 1 at level h and no nodes at any level greater than h, so dh ,h = 0 and

dh ,i = ph for all i > h . In fact, our interest will be in the number (ph − dh ,i ) of

3-trees of height h which do have a node of degree 1 or 2 at level i, for 1 ≤ i < h .

However the defining equations are more direct when written in terms of dh ,i . It will

also be convenient to identify the quantity

eh ,i = 1 +
1≤j <h
Σ dj ,i , (3)

which bears the same relation to dh ,i that qh bears to ph . One can then write the

recursively defining equations as

dh +1,i +1 =

�
� 2
1+dh ,i

���
� + dh ,i eh ,i (4)

eh +1,i = eh ,i + dh ,i (5)

for h > i ≥ 1. These parallel precisely equations (1) and (2). For boundary

conditions we have

dh +1,1 = ph +1 − ph ,
(6)

eh +1,1 = ph

for all h ≥ 1. This is because if a planted tree of height h + 1 has a node of degree 1 or

2 adjacent to the root, that node must have degree 2 since h ≥ 1. By suppressing this

node, one obtains a tree of height h in a 1-1 fashion, so that

pn +1 − dh +1,1 = ph .

Now
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eh +1,1 = 1 +
1≤k ≤h
Σ dk ,1 = 1 + d 1,1 +

2≤k ≤h
Σ (pk − pk −1)

= 1 + d 1,1 + ph − p 1

= ph

since p 1 = 1 and d 1,1 = 0.

3. Free 3-trees by admissible height

It does not appear possible to apply the principle of Otter’s dissimilarity characteristic

[4, p.56] to obtain the number th of free 3-trees which have some rooting as a binary tree

of height h. Instead, we will make use of the fact that every tree has a unique center

consisting of a single node or two adjacent nodes. The possibilities for binary rootings of

various heights are enumerated separately for these two cases. This approach was used

by Cayley [1] when he first counted trees.

Case 1 The center is a single node.

Assuming a nontrivial tree T, the diameter is 2h for some h ≥ 1. Then some two

branches at the center must have height h and the third branch (if there is one) must have

height at most h. The number of ways to choose these branches is

ah =

��
� 3
2+ph

���
� +

��
� 2
1+ph

���
� qh . (7)

The first term counts the number of ways to choose all three branches to have height h,

and the second gives the number with two branches of height h and either no third branch

or else a third branch having some height k, 1 ≤ k < h .
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Suppose now that one of the branches at the center of T has a node of degree 1 or 2 at

level i, i ≥ 1. Then T would have height h + i if rooted at such a node, since any path

of maximum length must pass through the center. The number of ways that T could fail

to contain such a node is exactly

� 
! 3
2+dh ,i

"�#
$ +

%&
' 2
1+dh ,i

(�)
* eh ,i . (8)

This is just as for (7) except that every branch must fail to have a node of degree 1 or 2 at

level i. Subtracting (8) from (7) will then give the number of 3-trees of diameter 2h

which have a binary rooting of height h + i , 1 ≤ i ≤ h .

There remains the possibility of rooting at the central node. The center has degree at

most 2 exactly when there are just two branches. In that case the tree has height h when

rooted at the center, so we have exactly

+,
- 2
1+ph

.�/
0 (9)

3-trees of diameter 2h which have a binary rooting of height h.

Case 2 The center consists of two adjacent nodes.

The diameter is 2h − 1 for some h ≥ 1, and we can obtain any such tree in a unique

fashion by joining two trees of height h at the root, then smoothing out the root node.

We refer to these two trees as the branches at the bicenter. Of course their order is

unimportant, and they may be isomorphic. Hence there are exactly

bh =

12
3 2
1+ph

4�5
6 (10)
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3-trees of diameter 2h − 1.

In this case a node of level i on one of the branches at the bicenter gives a rooting of

height h + i − 1. The number of 3-trees of diameter 2h − 1 having no node of level i

of degree 1 or 2 on either branch at the center is just

78
9 2
1+dh ,i

:�;
< . (11)

Subtracting (11) from (10) then gives the number of 3-trees of diameter 2h − 1 which

have a binary rooting of height h + i − 1.

The total number th of free 3-trees with a binary rooting is just the sum of the

numbers obtained in Cases 1 and 2, for the appropriate values of h and i. More

explicitly, for h ≥ 1 we have

th =

=>
? 2
1+ph

@�A
B +

i =1
Σ

C
h /2 D EF�G

ah −i −

HI
J 3
2+dh −i ,i

K�L
M −

NO
P 2
1+dh −i ,i

Q�R
S eh −i ,i

T�U
V

+
i =1
Σ

W
(h +1)/2 X YZ�[

bh −i +1 −

\]
^ 2
1+dh −i +1,i

_�`
a

_�b
a . (12)

4. Numerical results.

Table I lists ph for h ≤ 11. Equations (1) and (2) enable us to calculate the

sequence p 1, p 2, ..., pn in O(n) time.

Table II gives the values of th for h ≤ 10. Note that ph +1 ≥ th . This is because

any tree with a binary rooting of height h corresponds to a planted 3-tree of height

h + 1. This correspondence is obtained by adding a new root of degree one adjacent to

the original root node. In general there are trees with more than one binary rooting of
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height h, so that equality does not hold. (An example is provided by the tree F of Figure

1, which has two different binary rootings of height 5.) However, it is apparent that

ph +1 − th is small compared to th as h increases, so that multiple rootings of the same

height are relatively rare.
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TABLE I The number of planted 3-trees by height

h ph

1 1

2 2

3 7

4 56

5 2212

6 2595782

7 3374959180831

8 5695183504489239067484387

9 16217557574922386301420531277071365103168734284282

10 131504586847961235687181874578063117114329409897598970946516793776
220805297959867258692249572750581

11 864672818102648960261040653715831867092837278673702464113037906939
422113848975628994429633085310830824182159666913797168694932947833
6661530334430058051973336177293923772027610801794840747988177012

In general, the method employed enables one to compute the values t 1,t 2,...,tn with

O(n 2) integer arithmetic operations and storage of O(n) integers. This analysis of

complexity takes no account of the rapid increase in the size of the numbers involved. It

is clear that log tn = O(n 2), so this has a significant effect.

First, (1) and (2) are applied to compute ph and qh for h ≤ n . Simultaneously (7)

and (10) are applied to determine ah and bh for h ≤ n , and these values are stored. At

the same time, (5) and (6) are used to find dh ,1 and eh ,1 for h ≤ n , and these too are

stored. The calculation proceeds by induction on i, i = 1, . . . , c (n +1)/2 d . As the

numbers dh ,i and eh ,i are computed and stored, their contributions to t 1,...,tn as given

in (12) are accummulated. First dh ,i +1 for h ≤ n is given by (3), and then eh ,i +1 for
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h ≤ n is determined from (4).

By computing the values of dh ,i in descending order of h, one can overwrite the dh ,i

array by the dh ,i +1. Using (4) one calculates the eh ,i +1 in ascending order, but the eh ,i

are not needed and so can be overwritten too. In order to avoid separately storing the

values ei +1,i needed to start with (4), note that for i ≥ 2 we have

ei +1,i = ei ,i −1 + pi −1,

and

pi −1 = di ,i −1.

Now di ,i −1 should still be available due to the fact that dh ,i only needed computing for

h > i . This is because di ,i = 0 (so can be handled separately) and dh ,i for h < i is

not called for in (12). For the same reasons ei ,i −1 should also still be available. Finally,

the trees counted by di ,i −1 can be obtained in a 1-1 fashion from those of height i − 1

by joining two new endnodes to each old endnode. Each new tree then has height i but

has only nodes of degree 3 at level i − 1. Hence pi −1 = di ,i −1 as claimed above.
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TABLE II The number of free binary trees by height

h th

1 2

2 7

3 52

4 2133

5 2590407

6 3374951541062

7 5695183504479116640376509

8 16217557574922386301420514191523784895639577710480

9 131504586847961235687181874578063117114329409897550318273792033024
340388219235081096658023517076950

10 864672818102648960261040653715831867092837278673702464113037906939
422113848975628994429633085310791372806105278543091014135638261111
3325681250718311629163466222152852597067554256522520919973090955
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